Large mass self-similar solutions of the parabolic-parabolic Keller–Segel model of chemotaxis

Jean Dolbeault

dolbeaul@ceremade.dauphine.fr

CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/~dolbeaul

(A JOINT WORK WITH P. BILER & L. CORRIAS) Modélisation et EDP non linéaires Osay, 15 décembre 2009

http://www.ceremade.dauphine.fr/~dolbeaul/

Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis - p. 1/45

Parabolic-elliptic model: preliminaries

- Introduction: the two-dimensional parabolic-elliptic Keller-Segel model, the $M < 8\pi$ regime, scalings, etc
- The asymptotic behaviour of the solutions of the Keller-Segel model

Parabolic-parabolic model

- introduction: self-similar solutions, parametrization, etc
- *a priori* estimates
- cumulated densities
- detailed results
- plots

Parabolic-elliptic model: preliminaries

The parabolic-elliptic Keller and Segel system

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u - \nabla \cdot (u \,\nabla v) & x \in \mathbb{R}^2, \ t > 0 \\ -\Delta v = u & x \in \mathbb{R}^2, \ t > 0 \\ u(\cdot, t = 0) = n_0 \ge 0 & x \in \mathbb{R}^2 \end{cases}$$

We make the choice:

$$v(t,x) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x-y| u(t,y) \, dy$$

and observe that

$$\nabla v(t,x) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \frac{x-y}{|x-y|^2} u(t,y) \, dy$$

Mass conservation:
$$\frac{d}{dt} \int_{\mathbb{R}^2} u(t, x) \ dx = 0$$

Blow-up

 $M=\int_{\mathbb{R}^2}n_0\,dx>8\pi$ and $\int_{\mathbb{R}^2}|x|^2\,n_0\,dx<\infty$: blow-up in finite time a solution u of

$$\frac{\partial u}{\partial t} = \Delta u - \nabla \cdot (u \,\nabla v)$$

satisfies

$$\begin{aligned} \frac{d}{dt} \int_{\mathbb{R}^2} |x|^2 \, u(t,x) \, dx \\ &= -\int_{\mathbb{R}^2} 2x \, \Delta u \, dx + \frac{1}{2\pi} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} \underbrace{\frac{2x \cdot (y-x)}{|x-y|^2} \, u(t,x) \, u(t,y) \, dx \, dy}_{\frac{(x-y) \cdot (y-x)}{|x-y|^2} \, u(t,x) \, u(t,y) \, dx \, dy} \\ &= 4 \, M - \frac{M^2}{2\pi} < 0 \quad \text{if} \quad M > 8\pi \end{aligned}$$

Existence and free energy

 $M = \int_{\mathbb{R}^2} n_0 dx \le 8\pi$: global existence [Jäger, Luckhaus], [JD, Perthame], [Blanchet, JD, Perthame], [Blanchet, Carrillo, Masmoudi]

If u solves

$$\frac{\partial u}{\partial t} = \nabla \cdot \left[u \left(\nabla \left(\log u \right) - \nabla v \right) \right]$$

the free energy

$$F[u] := \int_{\mathbb{R}^2} u \log u \, dx - \frac{1}{2} \int_{\mathbb{R}^2} u \, v \, dx$$

satisfies

$$\frac{d}{dt}F[u(t,\cdot)] = -\int_{\mathbb{R}^2} u \left|\nabla\left(\log u\right) - \nabla v\right|^2 dx$$

Log HLS inequality [Carlen, Loss]: F is bounded from below if $M < 8\pi$

The dimension d = 2

- In dimension d, the norm $L^{d/2}(\mathbb{R}^d)$ is critical. If d = 2, the mass is critical
- Scale invariance: if (u, v) is a solution in \mathbb{R}^2 of the parabolic-elliptic Keller and Segel system, then

$$\left(\lambda^2 u(\lambda^2 t, \lambda x), v(\lambda^2 t, \lambda x)\right)$$

is also a solution

Solution For $M < 8\pi$, the solution vanishes as $t \to \infty$, but saying that "diffusion dominates" is not correct: to see this, study "intermediate asymptotics"

The existence setting

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u - \nabla \cdot (u \,\nabla v) & x \in \mathbb{R}^2, \ t > 0 \\ -\Delta v = u & x \in \mathbb{R}^2, \ t > 0 \\ u(\cdot, t = 0) = n_0 \ge 0 & x \in \mathbb{R}^2 \end{cases}$$

Initial conditions

$$n_0 \in L^1_+(\mathbb{R}^2, (1+|x|^2) \, dx) \,, \quad n_0 \log n_0 \in L^1(\mathbb{R}^2, dx) \,, \quad M := \int_{\mathbb{R}^2} n_0(x) \, dx < 8 \, \pi$$

Global existence and mass conservation: $M = \int_{\mathbb{R}^2} u(x,t) dx$ for any $t \ge 0$, see [Jäger-Luckhaus], [Blanchet, JD, Perthame]

$$v = -\frac{1}{2\pi} \log|\cdot| * u$$

Time-dependent rescaling

$$u(x,t) = \frac{1}{R^2(t)} n\left(\frac{x}{R(t)}, \tau(t)\right) \text{ and } v(x,t) = c\left(\frac{x}{R(t)}, \tau(t)\right)$$

with $R(t) = \sqrt{1+2t}$ and $\tau(t) = \log R(t)$

$$\begin{cases} \frac{\partial n}{\partial t} = \Delta n - \nabla \cdot \left(n \left(\nabla c - x\right)\right) & x \in \mathbb{R}^2, \ t > 0\\ c = -\frac{1}{2\pi} \log |\cdot| * n & x \in \mathbb{R}^2, \ t > 0\\ n(\cdot, t = 0) = n_0 \ge 0 & x \in \mathbb{R}^2 \end{cases}$$

[Blanchet, JD, Perthame] Convergence in self-similar variables

 $\lim_{t \to \infty} \|n(\cdot, \cdot + t) - n_{\infty}\|_{L^{1}(\mathbb{R}^{2})} = 0 \quad \text{and} \quad \lim_{t \to \infty} \|\nabla c(\cdot, \cdot + t) - \nabla c_{\infty}\|_{L^{2}(\mathbb{R}^{2})} = 0$

means "intermediate asymptotics" in original variables:

$$\|u(x,t) - \frac{1}{R^2(t)} n_{\infty} \left(\frac{x}{R(t)}, \tau(t)\right)\|_{L^1(\mathbb{R}^2)} \searrow 0$$

The stationary solution in self-similar variables

$$n_{\infty} = M \frac{e^{c_{\infty} - |x|^2/2}}{\int_{\mathbb{R}^2} e^{c_{\infty} - |x|^2/2} dx} = -\Delta c_{\infty} , \qquad c_{\infty} = -\frac{1}{2\pi} \log|\cdot| * n_{\infty}$$

- Radial symmetry [Naito]
- Uniqueness [Biler, Karch, Laurençot, Nadzieja]
- As $|x| \to +\infty$, n_{∞} is dominated by $e^{-(1-\epsilon)|x|^2/2}$ for any $\epsilon \in (0,1)$ [Blanchet, JD, Perthame]
- Bifurcation diagram of $||n_{\infty}||_{L^{\infty}(\mathbb{R}^2)}$ as a function of M:

$$\lim_{M \to 0_+} \|n_\infty\|_{L^\infty(\mathbb{R}^2)} = 0$$

[Joseph, Lundgreen] [JD, Stańczy]

The free energy in self-similar variables

$$\frac{\partial n}{\partial t} = \nabla \Big[n \left(\log n - x + \nabla c \right) \Big]$$

$$F[n] := \int_{\mathbb{R}^2} n \log n \, dx + \int_{\mathbb{R}^2} \frac{1}{2} \, |x|^2 \, n \, dx - \frac{1}{2} \int_{\mathbb{R}^2} n \, c \, dx$$

satisfies

$$\frac{d}{dt}F[n(t,\cdot)] = -\int_{\mathbb{R}^2} n \left|\nabla\left(\log n\right) + x - \nabla c\right|^2 dx$$

A last remark on 8π and scalings: $n^{\lambda}(x) = \lambda^2 n(\lambda x)$

$$\begin{split} F[n^{\lambda}] &= F[n] + \int_{\mathbb{R}^2} \log(\lambda^2) \, dx + \int_{\mathbb{R}^2} \frac{\lambda^{-2} - 1}{2} \, |x|^2 \, n \, dx + \frac{1}{4\pi} \int_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \, n(y) \, \log \frac{1}{\lambda} \, dx \, dy \\ F[n^{\lambda}] - F[n] &= \underbrace{\left(2M - \frac{M^2}{4\pi}\right)}_{>0 \text{ if } M < 8\pi} \log \lambda + \frac{\lambda^{-2} - 1}{2} \int_{\mathbb{R}^2} |x|^2 \, n \, dx \end{split}$$

Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis - p. 11/45

Parabolic-elliptic case: large time asymptotics

Theorem 1. There exists a positive constant M^* such that, for any initial data $n_0 \in L^2(n_\infty^{-1} dx)$ of mass $M < M^*$ satisfying the above assumptions, there is a unique solution $n \in C^0(\mathbb{R}^+, L^1(\mathbb{R}^2)) \cap L^\infty((\tau, \infty) \times \mathbb{R}^2)$ for any $\tau > 0$ Moreover, there are two positive constants, C and δ , such that

$$\int_{\mathbb{R}^2} |n(t,x) - n_{\infty}(x)|^2 \frac{dx}{n_{\infty}} \le C e^{-\delta t} \quad \forall t > 0$$

As a function of M , δ is such that $\lim_{M \to 0_+} \delta(M) = 1$

The condition $M \le 8\pi$ is necessary and sufficient for the global existence of the solutions, but there are two extra smallness conditions in our proof:

- L Uniform estimate: the *method of the trap*
- Spectral gap of a linearised operator \mathcal{L}

Introduction to the parabolic-parabolic Keller-Segel model

The parabolic-parabolic Keller-Segel system

$$n_t = \Delta n - \nabla \cdot (n \nabla c)$$
$$\tau c_t = \Delta c + n$$

Some (open) mathematical issues:

- global in time existence *versus* finite time blowup
- Iarge time behaviour

behaviour near blow-up and measure-valued solutions

Goal: the study of self-similar solutions

... the total mass is conserved

$$M := \int_{\mathbb{R}^2} n(t, x) \, \mathrm{d}x = \int_{\mathbb{R}^2} n_0(x) \, \mathrm{d}x$$

... there are self-similar solutions with an arbitrary large mass if $\tau > 0$

Some results

- **Q** [Raczyński] solutions of the parabolic-parabolic Keller–Segel system converge to those of parabolic-elliptic system when $\tau \searrow 0$ if M is small enough
- **Q** [Blanchet, JD, Perthame] when $\tau = 0$ in (1), $M = 8 \pi$ is a threshold for existence *versus* blowup
- **Q** [Blanchet, Karch, Laurençot, Nadzieja], [Blanchet, Carrillo, Masmoudi] $\tau = 0$ and $M = 8 \pi$
- **Q** [Calvez, Corrias] $\tau > 0$, $M < 8\pi$, solutions globally exist

does explosion occur as soon as $M > 8 \pi$, for instance under some additional assumptions like a smallness condition on $\int_{\mathbb{R}^2} |x|^2 n_0(x) dx$? If $M = 8 \pi$, $\tau = 0$, there is an infinite number of steady states. If $\tau > 0$?

... Existence of positive forward self-similar solutions with a large total mass $M \ge 8 \pi$

Duhamel approach

[Biler 98], [Naito 06]: look for mild solutions of

$$n(t,\cdot) = e^{(t-t_0)\Delta} n(t_0,\cdot) - \int_{t_0}^t \left(\nabla e^{(t-s)\Delta}\right) \cdot \left(n(s,\cdot) \nabla c(s,\cdot)\right) ds$$
$$c(t,\cdot) = e^{\frac{t-t_0}{\tau}\Delta} c(t_0,\cdot) + \frac{1}{\tau} \int_{t_0}^t e^{\frac{t-s}{\tau}\Delta} n(s,\cdot) ds$$

for any $t > t_0 \ge 0$ ($\tau = 1$)

Method: self-similar solutions are obtained by a fixed point theorem under a smallness condition on M are required in order to apply a contraction mapping principle

PDE approach

$$n(t,x) = \frac{1}{t} u\left(\frac{x}{\sqrt{t}}\right)$$
 and $c(t,x) = v\left(\frac{x}{\sqrt{t}}\right)$

With $\xi = x/\sqrt{t}$, the equations for self-similar solutions are

$$\Delta u - \nabla \cdot \left(u \,\nabla v - \frac{1}{2} \,\xi \,u \right) = 0$$
$$\Delta v + \frac{\tau}{2} \,\xi \cdot \nabla v + u = 0$$

Functional space: u and $v \in C_0^2(\mathbb{R}^2) \approx C^2(\mathbb{R}^2)$ such that

$$\lim_{|\xi| \to \infty} u(\xi) = 0 \quad \text{and} \quad \lim_{|\xi| \to \infty} v(\xi) = 0$$

First equation: $\nabla \cdot \left[e^{v} e^{-|\xi|^{2}/4} \nabla \left(u e^{-v} e^{|\xi|^{2}/4} \right) \right] = 0$ [Naito, Suzuki, Yoshida 02] u, v, and $|\nabla v|$ are bounded; there exists a constant σ such that

$$u(\xi) = \sigma e^{v(\xi)} e^{-\frac{|\xi|^2}{4}}$$

The problem is reduced to find a family of nonlinear elliptic equations for v

$$\Delta v + \frac{\tau}{2} \, \xi \cdot \nabla v + \sigma \, \mathrm{e}^v \, \mathrm{e}^{-\frac{|\xi|^2}{4}} = 0$$

parametrized by $\sigma > 0$, with $u \in L^1(\mathbb{R}^2)$. By the maximum principle

$$v(\xi) \le C e^{-\min\{1,\tau\}\frac{|\xi|^2}{4}}$$

with $C \min\{1, \tau\} \ge \sigma e^{\|v\|_{\infty}}$, $v \in L^1(\mathbb{R}^2)$ and $M = \sigma \int_{\mathbb{R}^2} e^{v(\xi)} e^{-\frac{|\xi|^2}{4}} d\xi$... a nonlocal problem if parametrized by M

Variational approaches

[Yoshida 01], [Muramoto, Naito, Yoshida 00] Solutions of

$$\nabla \cdot \left(\mathrm{e}^{\frac{\tau}{4}|\xi|^2} \, \nabla v \right) + \sigma \, \mathrm{e}^v \, \mathrm{e}^{\frac{\tau-1}{4}|\xi|^2} = 0$$

can be found by varaitional approaches in the weighted functional space

$$H^1\left(\mathbb{R}^2; e^{\frac{\tau}{4}|\xi|^2} \,\mathrm{d}\xi\right)$$

If $\tau \in (0,2)$ and $0 < \sigma < \sigma^*$, for some $\sigma^* > 0$, solutions exist, are positive and belong to $C_0^2(\mathbb{R}^2)$

Radial symmetry

[Naito, Suzuki, Yoshida 02] By the moving planes technique: any positive solution $v \in C_0^2(\mathbb{R}^2)$ must be radially symmetric and

$$u' - uv' + \frac{1}{2}ru = 0$$
$$v'' + \left(\frac{1}{r} + \frac{\tau}{2}r\right)v' + u = 0$$

where u and v are considered as functions of the radial variable $r = |\xi|$

$$u(r) = \sigma e^{v(r)} e^{-r^2/4},$$
$$v'' + \left(\frac{1}{r} + \frac{\tau}{2}r\right)v' + \sigma e^{v} e^{-r^2/4} = 0$$

[Mizutani, Muramoto, Yoshida 99] there exists a positive decreasing solution if v'(0) = 0 and $\int_0^\infty r v(r) \, \mathrm{d}r < \infty$, $\sigma \frac{\log \tau}{\tau - 1} < 1/\mathrm{e}$

Equivalent boundary conditions

Natural boundary conditions

$$v'(0) = 0$$
 and $\lim_{r \to \infty} v(r) = 0$

are equivalent to

$$w'' + \left(\frac{1}{r} + \frac{\tau}{2}r\right)w' + e^w e^{-r^2/4} = 0$$

 $w'(0) = 0$ and $w(0) = s$

for some shooting parameter $s \in \mathbb{R}$ with

$$v(r) = w(r;s) - \lim_{r \to \infty} w(r;s)$$

but the range of $M(s) = 2\pi \int_0^\infty e^{w(r;s)} e^{-r^2/4} r \, dr$ is not explicit

Main result

Theorem 2. For any M > 0, there exists $\tilde{\tau}(M) \ge 0$ such that there is at least one solution for any $\tau \ge \tilde{\tau}(M)$

- \ref{M}_{-} If $M<8\,\pi$, $\tilde{\tau}(M)=0$
- If $M > 8 \pi$, $\tilde{\tau}(M)$ is positive and there are at least two solutions (except for the maximal possible value of M)

All solutions are radial, non-increasing, with fast decay at infinity and uniquely determined by $a := \frac{1}{2} u(0)$, which defines $M = M(a, \tau)$

• $\lim_{a\to\infty} M(a,\tau) = 8\pi$ and as $a\to\infty$, $\frac{u}{8\pi}$ concentrates into a Dirac delta distribution

Large mass positive forward self-similar solutions

The diffusion of c for positive large τ and some $M > 8 \pi$ may prevent the blowup of the solutions of the parabolic-parabolic Keller–Segel system. This is a major difference with the parabolic-elliptic case $\tau = 0$, for which the response of c to the variations of n being instantaneous, any smooth solution with mass $M > 8 \pi$ must concentrate and blow up in finite time

There are self-similar solutions with a an arbitrary large mass if τ is large enough

A positive classical solution v solves

$$\left(r \,\mathrm{e}^{\tau \,r^2/4} \,v'\right)' + \sigma \,r \,\mathrm{e}^{(\tau-1) \,r^2/4} \,\mathrm{e}^v = 0$$

which, after an integration on (0, r), gives

$$v'(r) = -\frac{\sigma}{r} e^{-\tau r^2/4} \int_0^r e^{(\tau-1) z^2/4} e^{v(z)} z \, \mathrm{d}z$$

Hence $v(z) \leq v(0)$ for any $z \geq 0$ and, for $\tau \neq 1$

$$v'(r) \ge -\frac{\sigma}{r} e^{-\tau r^2/4} e^{v(0)} \int_0^r e^{(\tau-1)z^2/4} z \, dz = -\frac{2}{\tau-1} \frac{\sigma}{r} e^{v(0)} \left(e^{-r^2/4} - e^{-\tau r^2/4} \right) \frac{dr}{d\tau} \int_0^\infty \left(e^{-r^2/4} - e^{-\tau r^2/4} \right) \frac{2 \, dr}{r} = \int_0^\infty e^{-\tau r^2/4} \frac{r}{2} \, dr = \frac{1}{\tau}$$

Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis - p. 24/45

There are self-similar solutions with an arbitrary large mass

If $\tau \neq 1$ (extension to $\tau = 1$ is easy), we get the first estimate

$$v(0) \leq \underbrace{\sigma e^{v(0)}}_{=u(0)=2a} I(\tau)$$
 with $I(\tau) := \frac{\log \tau}{\tau - 1}$

and for any $r \in \mathbb{R}_+$, any $\tau > 0$,

$$0 = \lim_{z \to \infty} v(z) \le v(r) \le v(0) \le 2 a I(\tau)$$

$$M = 2\pi\sigma \int_0^\infty e^{v(r)} e^{-r^2/4} r \, dr \ge 2\pi\sigma \int_0^\infty e^{-r^2/4} r \, dr = 4\pi\sigma \ge \widetilde{M}(a,\tau)$$

where $\widetilde{M}(a,\tau) := 8 \pi a e^{-2 a I(\tau)}$ achieves its maximum at $a_*(\tau) := \frac{1}{2 I(\tau)}$

$$\max_{a>0} M(a,\tau) \ge \widetilde{M}(a_*(\tau),\tau) = \frac{4\pi}{e I(\tau)} \to \infty \quad \text{as} \quad \tau \to 0_+$$

Further consequences

- the solution $u(r) = \sigma e^{v(r)} e^{-r^2/4}$ has mass $M > 8\pi$ if $\frac{4\pi}{eI(\tau)} > 8\pi$ $I(\bar{\tau}) = \frac{1}{2e}$, means $\bar{\tau} \approx 16.1109$
- for any $\tau > \overline{\tau}$ the density u corresponding to $a = a_*(\tau)$ satisfies $u(0) = 2 a_*(\tau) > 2 e$
- by monotonicity $e^{-v(0)} \lim_{r \to \infty} e^{-v(r)} \le -\sigma I(\tau)$ for any $\tau > 0$

$$1 - e^{v(0)} \le -\sigma I(\tau) e^{v(0)} = -2 a I(\tau)$$

gives the estimate

$$v(0) > \log(2 \, a \, I(\tau) + 1) \to \infty \quad \text{as} \quad a \to +\infty$$

• σ takes arbitrarily large values for au large enough

$$2 a e^{-2 a I(\tau)} \le \sigma \le \min\left\{\frac{M}{4 \pi}, \frac{2 a}{2 a I(\tau) + 1}\right\}$$

Remarks

- **Q** Estimates on σ are new
- [Naito, Suzuki, Yoshida 02] analyzed the continuous map $s \mapsto \sigma(s)$ and proved that $\lim_{s \to \pm \infty} \sigma(s) = 0$ so that σ is bounded by $\sigma^* = \sigma(s^*)$, for some $s^* \in \mathbb{R}$, and there is no solution for $\sigma > \sigma^*$, at least one solution for $\sigma = \sigma^*$ and (at least) two distinct solutions for $0 < \sigma < \sigma^*$. However, estimates on σ (or σ^*) were missing

Cumulated densities

Cumulated densities: definition

$$\phi(y) := \frac{1}{2\pi} \int_{B(0,\sqrt{y})} u(\xi) \,\mathrm{d}\xi = \int_0^{\sqrt{y}} r \,u(r) \,\mathrm{d}r$$
$$\psi(y) := \frac{1}{2\pi} \int_{B(0,\sqrt{y})} v(\xi) \,\mathrm{d}\xi = \int_0^{\sqrt{y}} r \,v(r) \,\mathrm{d}r$$

Using the relations

$$\begin{split} \phi'(y) &= \frac{1}{2} u \left(\sqrt{y}\right) \quad \text{and} \quad \phi''(y) = \frac{1}{4\sqrt{y}} u' \left(\sqrt{y}\right) \\ \psi'(y) &= \frac{1}{2} v \left(\sqrt{y}\right) \quad \text{and} \quad \psi''(y) = \frac{1}{4\sqrt{y}} v' \left(\sqrt{y}\right) \\ \phi \text{ and } \psi \text{ solve} \qquad \qquad \phi'' + \frac{1}{4} \phi' - 2 \phi' \psi'' = 0 \\ &\quad 4 y \psi'' + \tau y \psi' - \tau \psi + \phi = 0 \end{split}$$

As in [Naito, Suzuki, Yoshida 02], [Biler 06], with

$$4 (y \psi' - \psi)' + \tau (y \psi' - \psi) + \phi = 0$$

$$S(y) := 4 \left(\psi(y) - y \, \psi'(y) \right)' = -4 \, y \, \psi''(y) = -\sqrt{y} \, v'(\sqrt{y})$$

the system becomes

$$\phi'' + \frac{1}{4}\phi' + \frac{1}{2y}\phi'S = 0$$
$$S' + \frac{\tau}{4}S = \phi'$$

A single non-local integro-differential equation

The last formulation of the ODE system can be equivalently written as a single integro-differential equation, hence nonlocal, for ϕ'

$$\phi'' + \frac{1}{4}\phi' + \frac{1}{2y}\phi' e^{-\tau y/4} \int_0^y e^{\tau z/4} \phi'(z) dz = 0$$

using

$$S(y) = e^{-\tau y/4} \int_0^y e^{\tau z/4} \phi'(z) dz$$

and as a single, local but nonlinear second order ODE for ${\cal S}$

$$S'' + \frac{1}{4}(\tau + 1)S' + \frac{\tau}{16}S + \frac{1}{2y}\left(SS' + \frac{\tau}{4}S^2\right) = 0$$

Corresponding initial conditions are

$$\phi(0) = 0$$
, $\phi'(0) = a > 0$ and $S(0) = 0$

Reparametrization

$$\phi(\infty) := \lim_{y \to \infty} \phi(y) = \frac{M(a, \tau)}{2 \pi}$$

The problem is now formulated in terms of a shooting parameter problem with shooting parameter a = u(0)/2

$$2a = e^s, \quad s = v(0) + \log \sigma$$

$$v(0) = v(\sqrt{y}) + \frac{1}{2} \int_0^y \frac{S(z)}{z} dz$$

and the boundary condition $\lim_{r\to\infty} v(r) = 0$ is equivalent to

$$v(0) = \frac{1}{2} \int_0^\infty \frac{S(z)}{z} \,\mathrm{d}z$$

We also have: $\sigma = \lim_{r \to \infty} u(r) e^{r^2/4} = 2 \lim_{y \to \infty} \phi'(y) e^{y/4}$

Detailed results

Mass estimates

Theorem 3. For any $(a, \tau) \in \mathbb{R}^2_+$ there exists a unique positive solution (ϕ, S) such that $\phi \in C^2(0, \infty) \cap C^1[0, \infty)$ and $S \in C^1[0, \infty)$. The maps $a \in \mathbb{R}_+ \mapsto (\phi, S)$ and $a \in \mathbb{R}_+ \mapsto M(a, \tau) \in \mathbb{R}_+$ are continuous and

$$g(a,\tau) \le \frac{M(a,\tau)}{2\pi} \le f(a,\tau)$$

where

$$f(a,\tau) = \begin{cases} \min\{4,4\,a\} & \text{if} \quad \tau \in \left(0,\frac{1}{2}\right] \\ \min\{4\,a,\frac{2}{3}\,\pi^2\} & \text{if} \quad \tau \in \left(\frac{1}{2},1\right] \\ \min\{4\,a,\frac{2}{3}\,\pi^2\,\tau,4\,(\tau+1)\} & \text{if} \quad \tau > 1 \end{cases}$$

and

$$g(a,\tau) = \begin{cases} \max\left\{4\,a\,e^{-2\,a\,\frac{\log\tau}{\tau-1}},\frac{4\,a\,\tau}{a+\tau}\right\} & \text{if} \quad \tau \in (0,1]\\ \max\left\{4\,a\,e^{-2\,a\,\frac{\log\tau}{\tau-1}},\frac{4\,a}{a+1}\right\} & \text{if} \quad \tau > 1 \end{cases}$$

Concentration

Theorem 4. Given any fixed $\tau > 0$, for any positive sequence $\{a_k\}$ such that $a_k \to \infty$ as $k \to \infty$, there exists a sequence of positive self-similar solutions $(u_k, v_k) \in (C_0^2(\mathbb{R}^2))^2$ such that $u_k(0) = 2 a_k$, $v'_k(0) = 0$ and

 $u_k
ightarrow 8 \, \pi \, \delta_0$ as $k
ightarrow \infty$

in the sense of weak convergence of measures.

$$\lim_{k \to \infty} \int_{\mathbb{R}^2} u_k \, \mathrm{d}x = 8 \pi \quad \text{and} \quad \lim_{k \to \infty} \|v_k\|_{L^{\infty}(\mathbb{R}^2)} = \infty$$

This result has already been proved in [Naito, Suzuki, Yoshida 02] using a classical result by Brezis and Merle; in the cumulated densities formulation, we obtain a direct proof

Multiplicity

Theorem 5. For any fixed $\tau > 0$ there exists $M^* = M^*(\tau) \ge 8 \pi$ such that, with

$$\phi(0) = 0$$
, $\lim_{y \to \infty} \phi(y) = \frac{M}{2\pi}$, $S(0) = 0$

the problem has no positive solution $(\phi, S) \in C^2[0, \infty) \times C^1[0, \infty)$ if $M > M^*$ and has at least one positive solution $(\phi, S) \in C^2[0, \infty) \times C^1[0, \infty)$ in the following cases: (i) $M \in (0, M^*]$ if $M^* > 8\pi$ (ii) $M \in (0, M^*)$ if $M^* = 8\pi$ Moreover, there exist $1/2 < \tau^* \le \tau^{**}$ such that M^* satisfies: $M^* = 8\pi$ if $0 < \tau \le \tau^*$ and $M^* > 8\pi$ if $\tau > \tau^{**}$

When $M^* > 8 \pi$, there are at least two positive solutions for any $M \in (8 \pi, M^*)$. When $M^* = 8 \pi$, it is still an open question to decide if there is a positive solution such that $M = M^*$ or to prove a uniqueness result for any $M \in (0, 8 \pi)$

The function $M(a, \tau)$ depends non-monotonously on a

Numerical results

Plots in direct variables and in the cumulated densities framework

Bifurcation diagrams

Taylor expansions around $s = 0_+$: for $\varepsilon > 0$ small enough,

$$w(\varepsilon; s) \approx s - \frac{1}{4} \varepsilon^2 e^s$$
 and $w'(\varepsilon; s) \approx -\frac{1}{2} \varepsilon e^s$

and we obtain M(s) by solving $M'(r) = 2 \pi e^{w(r;s)} e^{-r^2/4} r$ with the approximate initial condition $M(\varepsilon) = \pi \varepsilon^2 e^s$

Similarly

$$S' \sim \phi' \sim a \text{ on } (0, \varepsilon) \text{ and so}$$

 $S(y) = a y + \mathcal{O}(\varepsilon^2) \text{ and } \phi''(y) \sim -\frac{a}{4} (1+2a) + \mathcal{O}(\varepsilon)$

In practice we solve the equations on (ε, y_{max}) with the initial data

$$\phi'(\varepsilon) = a - \frac{a}{4} (1+2a) \varepsilon, \quad \phi(\varepsilon) = a \varepsilon - \frac{a}{8} (1+2a) \varepsilon^2 \text{ and } S(\varepsilon) = a \varepsilon$$

Figure 1: The set of all positive solutions of $\Delta v_{\sigma} + \frac{\tau}{2} \xi \cdot \nabla v_{\sigma} + \sigma e^{v_{\sigma}} e^{-|\xi|^2/4} = 0$ in $C_0^2(\mathbb{R}^2)$, where $\sigma = \sigma(s) = e^{w(\infty;s)}$, is represented by the multivalued diagram $s \mapsto (\log \sigma, \log v_{\sigma}(0))$ for $\tau = 10^{\alpha}$, $\alpha = -2, -1, \ldots, 3$. Recall that the solutions v_{σ} are radial and decreasing so that $v_{\sigma}(0) = \|v_{\sigma}\|_{L^{\infty}(\mathbb{R}^2)}$. We observe that $\max_{s \in \mathbb{R}} \log \sigma(s)$ appears as an increasing function of τ .

Figure 2: Left: The set of all positive solutions of $\Delta v_{\sigma} + \frac{\tau}{2} \xi \cdot \nabla v_{\sigma} + \sigma e^{v_{\sigma}} e^{-|\xi|^2/4} = 0$ in $C_0^2(\mathbb{R}^2)$ is now represented by the diagram $s \mapsto (\log(1 + M(s)), \log v_{\sigma}(0))$ for $\tau = 10^{\alpha}$, $\alpha = -2, -1, \ldots, 3$. We observe that $\max_{s \in \mathbb{R}} M(s)$ appears as an increasing function of τ . *Right:* The plot is an enlargement of the rectangle of Fig. 2 (left), with $\tau = 0.60, 0.62, 0.64, \ldots, 0.90$. Numerically, the first solution with mass larger than 8π appears for $\tau \in (0.62, 0.64)$, which is far (below) from the theoretical bound. This is not easy to read on the above figure, but it can be shown graphically by enlarging it enough.

Figure 3: Left: Plots of ϕ for $\phi'(0) = a$, with $a = 10^b c$, $b = -1, 0, 1, c \in \{1, \dots, 10\}$ for $\tau = 0.1$. Right: Plot of $b \mapsto \phi(y_{\text{max}})$ in the logarithmic scale, with $\phi'(0) = a$, $a = e^b - 1$, $y_{\text{max}} = 30$.

Figure 4: Left: Plots of ϕ for $\phi'(0) = e^{\alpha}$, with $\alpha = 1, 2, ..., 20$ for $\tau = 10$. Right: Plot of $\phi(y_{\text{max}})$ as a function of *b* (in the logarithmic scale), with $\phi'(0) = a$, $a = e^{b} - 1$. Here $\tau = 10$, $y_{\text{max}} = 30$.

Figure 5: Left: The value of mass $\phi(\infty) = M(a, \tau)/(2\pi)$ in the logarithmic scale as a function of a, for $\tau = 0.1 k^2$ with k = 1, 2, ..., 10. Right: An enlargement around the value $M(a, \tau)/(2\pi) = 4$ in the logarithmic scale as a function of a, for $\tau = 0.50, 0.55, 0.60, ..., 1.00$.

Figure 6: The value of the maximal (in terms of *a*) mass $\phi(\infty) = M_*(\tau)/(2\pi)$ as a function of τ . Numerically, the first solution with mass larger than 8π appears for $\tau \in (0.62, 0.64)$, as already noticed at the level of Fig. 2 (right). This is again not easy to read on the above figure, but it can be shown graphically by enlarging it enough.

Conclusions

- more than an example of a family of solutions
- self-similar solutions are likely to be attracting a whole class of solutions, although this is still an open question for the parabolic-parabolic Keller–Segel model with large mass (see [Naito, 06] for a result for small mass solutions)
- how to determine the basin of attraction of these self-similar solutions? Not as simple as in the parabolic-elliptic case. We can conjecture that blowup occurs for mass large enough and even, maybe, as soon as the total mass of the system is above 8π if initial data are sufficiently concentrated.

How do the estimates of such a simple model extend to more realistic ones?

Thank you for your attention !

Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis - p. 46/45