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Parabolic-elliptic model:
preliminaries
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The parabolic-elliptic Keller and Segel system





∂u

∂t
= ∆u−∇ · (u∇v) x ∈ R

2 , t > 0

−∆v = u x ∈ R
2 , t > 0

u(·, t = 0) = n0 ≥ 0 x ∈ R
2

We make the choice:

v(t, x) = − 1

2π

∫

R2

log |x− y|u(t, y) dy

and observe that

∇v(t, x) = − 1

2π

∫

R2

x− y

|x− y|2 u(t, y) dy

Mass conservation:
d

dt

∫

R2

u(t, x) dx = 0
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Blow-up

M =
∫

R2 n0 dx > 8π and
∫

R2 |x|2 n0 dx <∞: blow-up in finite time
a solution u of

∂u

∂t
= ∆u−∇ · (u∇v)

satisfies

d

dt

∫

R2

|x|2 u(t, x) dx

= −
∫

R2

2x∆u dx+
1

2π

∫∫

R2×R2

2x·(y−x)
|x−y|2 u(t, x)u(t, y) dx dy

︸ ︷︷ ︸
(x−y)·(y−x)

|x−y|2 u(t,x) u(t,y) dx dy

= 4M − M2

2π
< 0 if M > 8π
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Existence and free energy

M =
∫

R2 n0 dx ≤ 8π: global existence [ Jäger, Luckhaus ], [ JD, Perthame ],
[ Blanchet, JD, Perthame ], [ Blanchet, Carrillo, Masmoudi ]

If u solves
∂u

∂t
= ∇ · [u (∇ (log u) −∇v)]

the free energy

F [u] :=

∫

R2

u log u dx− 1

2

∫

R2

u v dx

satisfies
d

dt
F [u(t, ·)] = −

∫

R2

u |∇ (log u) −∇v|2 dx

Log HLS inequality [ Carlen, Loss ]: F is bounded from below if M < 8π
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The dimension d = 2

In dimension d, the norm Ld/2(Rd) is critical. If d = 2, the mass is
critical

Scale invariance: if (u, v) is a solution in R
2 of the parabolic-elliptic

Keller and Segel system, then

(
λ2 u(λ2 t, λ x) , v(λ2 t, λ x)

)

is also a solution

For M < 8π, the solution vanishes as t→ ∞, but saying that
"diffusion dominates" is not correct: to see this, study "intermediate
asymptotics"
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The existence setting





∂u

∂t
= ∆u−∇ · (u∇v) x ∈ R

2 , t > 0

−∆v = u x ∈ R
2 , t > 0

u(·, t = 0) = n0 ≥ 0 x ∈ R
2

Initial conditions

n0 ∈ L1
+(R2, (1+|x|2) dx) , n0 logn0 ∈ L1(R2, dx) , M :=

∫

R2

n0(x) dx < 8π

Global existence and mass conservation: M =
∫

R2 u(x, t) dx for any t ≥ 0,
see [ Jäger-Luckhaus ], [ Blanchet, JD, Perthame ]

v = − 1
2π log | · | ∗ u
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Time-dependent rescaling

u(x, t) =
1

R2(t)
n

(
x

R(t)
, τ(t)

)
and v(x, t) = c

(
x

R(t)
, τ(t)

)

with R(t) =
√

1 + 2t and τ(t) = logR(t)





∂n

∂t
= ∆n−∇ · (n (∇c− x)) x ∈ R

2 , t > 0

c = − 1

2π
log | · | ∗ n x ∈ R

2 , t > 0

n(·, t = 0) = n0 ≥ 0 x ∈ R
2

[ Blanchet, JD, Perthame ] Convergence in self-similar variables

lim
t→∞

‖n(·, · + t) − n∞‖L1(R2) = 0 and lim
t→∞

‖∇c(·, · + t) −∇c∞‖L2(R2) = 0

means "intermediate asymptotics" in original variables:

‖u(x, t) − 1
R2(t) n∞

(
x

R(t) , τ(t)
)
‖L1(R2) ց 0
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The stationary solution in self-similar variables

n∞ = M
e c∞−|x|2/2

∫
R2 ec∞−|x|2/2 dx

= −∆c∞ , c∞ = − 1

2π
log | · | ∗ n∞

Radial symmetry [ Naito ]

Uniqueness [ Biler, Karch, Laurençot, Nadzieja ]

As |x| → +∞, n∞ is dominated by e−(1−ǫ)|x|2/2 for any ǫ ∈ (0, 1) [
Blanchet, JD, Perthame ]

Bifurcation diagram of ‖n∞‖L∞(R2) as a function of M :

lim
M→0+

‖n∞‖L∞(R2) = 0

[ Joseph, Lundgreen ] [ JD, Stańczy ]
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The free energy in self-similar variables

∂n

∂t
= ∇

[
n (logn− x+ ∇c)

]

F [n] :=

∫

R2

n log n dx+

∫

R2

1

2
|x|2 n dx− 1

2

∫

R2

n c dx

satisfies
d

dt
F [n(t, ·)] = −

∫

R2

n |∇ (logn) + x−∇c|2 dx

A last remark on 8π and scalings: nλ(x) = λ2 n(λx)

F [nλ] = F [n]+

∫

R2

n log(λ2) dx+

∫

R2

λ−2−1
2 |x|2 n dx+ 1

4π

∫

R2×R2

n(x)n(y) log
1

λ
dx dy

F [nλ] − F [n] =

(
2M − M2

4π

)

︸ ︷︷ ︸
>0 if M<8π

log λ+
λ−2 − 1

2

∫

R2

|x|2 n dx
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Parabolic-elliptic case: large time asymptotics

Theorem 1. There exists a positive constantM∗ such that, for any initial data

n0 ∈ L2(n−1
∞ dx) of massM < M∗ satisfying the above assumptions, there is a

unique solution n ∈ C0(R+, L1(R2)) ∩ L∞((τ,∞) × R
2) for any τ > 0

Moreover, there are two positive constants,C and δ, such that

∫

R2

|n(t, x) − n∞(x)|2 dx

n∞
≤ C e− δ t ∀ t > 0

As a function of M , δ is such that limM→0+
δ(M) = 1

The condition M ≤ 8π is necessary and sufficient for the global existence
of the solutions, but there are two extra smallness conditions in our proof:

Uniform estimate: the method of the trap

Spectral gap of a linearised operator L
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Introduction to the
parabolic-parabolic Keller-Segel
model
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The parabolic-parabolic Keller-Segel system

nt = ∆n−∇ · (n∇c)
τ ct = ∆c+ n

Some (open) mathematical issues:

global in time existence versus finite time blowup

large time behaviour

behaviour near blow-up and measure-valued solutions

Goal: the study of self-similar solutions
... the total mass is conserved

M :=

∫

R2

n(t, x) dx =

∫

R2

n0(x) dx

... there are self-similar solutions with an arbitrary large mass if τ > 0
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Some results

[ Raczyński ] solutions of the parabolic-parabolic Keller–Segel
system converge to those of parabolic-elliptic system when τ ց 0 if
M is small enough

[ Blanchet, JD, Perthame ] when τ = 0 in (1), M = 8π is a threshold
for existence versus blowup

[ Blanchet, Karch, Laurençot, Nadzieja ], [ Blanchet, Carrillo,
Masmoudi ] τ = 0 and M = 8π

[ Calvez,Corrias ] τ > 0, M < 8π, solutions globally exist

does explosion occur as soon as M > 8π, for instance under some
additional assumptions like a smallness condition on

∫
R2 |x|2 n0(x) dx ?

If M = 8π, τ = 0, there is an infinite number of steady states. If τ > 0 ?

... Existence of positive forward self-similar solutions with a large total
mass M ≥ 8π
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Duhamel approach

[ Biler 98 ], [ Naito 06 ]: look for mild solutions of

n(t, ·) = e(t−t0)∆ n(t0, ·) −
∫ t

t0

(
∇e(t−s)∆

)
·
(
n(s, ·)∇c(s, ·)

)
ds

c(t, ·) = e
t−t0

τ
∆ c(t0, ·) +

1

τ

∫ t

t0

e
t−s

τ
∆ n(s, ·) ds

for any t > t0 ≥ 0 (τ = 1)

Method: self-similar solutions are obtained by a fixed point theorem under
a smallness condition on M are required in order to apply a contraction
mapping principle
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PDE approach

n(t, x) =
1

t
u

(
x√
t

)
and c(t, x) = v

(
x√
t

)

With ξ = x/
√
t, the equations for self-similar solutions are

∆u−∇ ·
(
u∇v − 1

2
ξ u

)
= 0

∆v +
τ

2
ξ · ∇v + u = 0

Functional space: u and v ∈ C2
0 (R2) ≈ C2(R2) such that

lim
|ξ|→∞

u(ξ) = 0 and lim
|ξ|→∞

v(ξ) = 0
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First equation: ∇ ·
[
ev e−|ξ|2/4 ∇

(
u e−v e|ξ|

2/4
)]

= 0

[ Naito, Suzuki, Yoshida 02 ] u, v, and |∇v| are bounded; there exists a
constant σ such that

u(ξ) = σ ev(ξ)e−
|ξ|2

4

The problem is reduced to find a family of nonlinear elliptic equations for v

∆v +
τ

2
ξ · ∇v + σ ev e−

|ξ|2

4 = 0

parametrized by σ > 0, with u ∈ L1(R2). By the maximum principle

v(ξ) ≤ C e−min{1,τ} |ξ|2

4

with Cmin{1, τ} ≥ σ e‖v‖∞ , v ∈ L1(R2) and M = σ

∫

R2

ev(ξ) e−
|ξ|2

4 dξ

... a nonlocal problem if parametrized by M
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Variational approaches

[ Yoshida 01 ], [ Muramoto, Naito, Yoshida 00 ]
Solutions of

∇ ·
(
e

τ
4
|ξ|2 ∇v

)
+ σ ev e

τ−1
4

|ξ|2 = 0

can be found by varaitional approaches in the weighted functional space

H1
(
R

2; e
τ
4
|ξ|2 dξ

)

If τ ∈ (0, 2) and 0 < σ < σ∗, for some σ∗ > 0, solutions exist, are positive
and belong to C2

0 (R2)
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Radial symmetry

[ Naito, Suzuki, Yoshida 02 ] By the moving planes technique: any positive
solution v ∈ C2

0 (R2) must be radially symmetric and

u′ − u v′ +
1

2
r u = 0

v′′ +

(
1

r
+
τ

2
r

)
v′ + u = 0

where u and v are considered as functions of the radial variable r = |ξ|

u(r) = σ ev(r) e−r2/4,

v′′ +

(
1

r
+
τ

2
r

)
v′ + σ ev e−r2/4 = 0

[ Mizutani, Muramoto, Yoshida 99 ] there exists a positive decreasing
solution if v′(0) = 0 and

∫ ∞
0
r v(r) dr <∞, σ log τ

τ−1 < 1/e
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Equivalent boundary conditions

Natural boundary conditions

v′(0) = 0 and lim
r→∞

v(r) = 0

are equivalent to

w′′ +

(
1

r
+
τ

2
r

)
w′ + ew e−r2/4 = 0

w′(0) = 0 and w(0) = s

for some shooting parameter s ∈ R with

v(r) = w(r; s) − lim
r→∞

w(r; s)

but the range of M(s) = 2π

∫ ∞

0

ew(r;s) e−r2/4 r dr is not explicit
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Main result

Theorem 2. For any M > 0, there exists τ̃(M) ≥ 0 such that there is at

least one solution for any τ ≥ τ̃(M)

If M < 8π, τ̃(M) = 0

If M > 8π, τ̃(M) is positive and there are at least two solutions

(except for the maximal possible value of M )

All solutions are radial, non-increasing, with fast decay at infinity and

uniquely determined by a := 1
2
u(0), which defines M = M(a, τ)

lima→∞ M(a, τ) = 8π and as a → ∞, u
8 π

concentrates into a

Dirac delta distribution
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Large mass positive forward
self-similar solutions
The diffusion of c for positive large τ and some M > 8 π may prevent the blowup of the

solutions of the parabolic-parabolic Keller–Segel system. This is a major difference with the

parabolic-elliptic case τ = 0, for which the response of c to the variations of n being

instantaneous, any smooth solution with mass M > 8 π must concentrate and blow up in

finite time

There are self-similar solutions with a an arbitrary large mass if τ is large
enough
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A positive classical solution v solves

(
r eτ r2/4 v′

)′
+ σ r e(τ−1) r2/4 ev = 0

which, after an integration on (0, r), gives

v′(r) = −σ
r

e−τ r2/4

∫ r

0

e(τ−1) z2/4 ev(z) z dz

Hence v(z) ≤ v(0) for any z ≥ 0 and, for τ 6= 1

v′(r) ≥ −σ
r

e−τ r2/4 ev(0)

∫ r

0

e(τ−1) z2/4 z dz = − 2

τ − 1

σ

r
ev(0)

(
e−r2/4 − e−τ r2/4

)

d

dτ

∫ ∞

0

(
e−r2/4 − e−τ r2/4

) 2 dr

r
=

∫ ∞

0

e−τ r2/4 r

2
dr =

1

τ
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There are self-similar solutions with an arbitrary large ma ss

If τ 6= 1 (extension to τ = 1 is easy), we get the first estimate

v(0) ≤ σ ev(0)
︸ ︷︷ ︸

=u(0)=2 a

I(τ) with I(τ) :=
log τ

τ − 1

and for any r ∈ R+, any τ > 0,

0 = lim
z→∞

v(z) ≤ v(r) ≤ v(0) ≤ 2 a I(τ)

M = 2π σ

∫ ∞

0

ev(r) e−r2/4 r dr ≥ 2π σ

∫ ∞

0

e−r2/4 r dr = 4π σ ≥ M̃(a, τ)

where M̃(a, τ) := 8π a e−2 a I(τ) achieves its maximum at a∗(τ) := 1
2 I(τ)

max
a>0

M(a, τ) ≥ M̃(a∗(τ), τ) =
4π

e I(τ)
→ ∞ as τ → 0+
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Further consequences

the solution u(r) = σ ev(r)e−r2/4 has mass M > 8π if 4 π
e I(τ) > 8π

I(τ̄) = 1
2 e , means τ̄ ≈ 16.1109

for any τ > τ̄ the density u corresponding to a = a∗(τ) satisfies
u(0) = 2 a∗(τ) > 2 e

by monotonicity e−v(0) − limr→∞ e−v(r) ≤ −σ I(τ) for any τ > 0

1 − ev(0) ≤ −σ I(τ) ev(0) = − 2 a I(τ)

gives the estimate

v(0) > log(2 a I(τ) + 1) → ∞ as a→ +∞

σ takes arbitrarily large values for τ large enough

2 a e−2 a I(τ) ≤ σ ≤ min

{
M

4π
,

2 a

2 a I(τ) + 1

}
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Remarks

Estimates on σ are new

[ Naito, Suzuki, Yoshida 02 ] analyzed the continuous map s 7→ σ(s)
and proved that lims→±∞ σ(s) = 0 so that σ is bounded by
σ∗ = σ(s∗), for some s∗ ∈ R, and there is no solution for σ > σ∗, at
least one solution for σ = σ∗ and (at least) two distinct solutions for
0 < σ < σ∗. However, estimates on σ (or σ∗) were missing
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Cumulated densities
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Cumulated densities: definition

φ(y) :=
1

2π

∫

B(0,
√

y)

u(ξ) dξ =

∫ √
y

0

r u(r) dr

ψ(y) :=
1

2π

∫

B(0,
√

y)

v(ξ) dξ =

∫ √
y

0

r v(r) dr

Using the relations

φ′(y) =
1

2
u (

√
y) and φ′′(y) =

1

4
√
y
u′ (

√
y)

ψ′(y) =
1

2
v (

√
y) and ψ′′(y) =

1

4
√
y
v′ (

√
y)

φ and ψ solve φ′′ +
1

4
φ′ − 2φ′ψ′′ = 0

4 y ψ′′ + τ y ψ′ − τ ψ + φ = 0
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As in [ Naito, Suzuki, Yoshida 02 ], [ Biler 06 ], with

4 (y ψ′ − ψ)′ + τ (y ψ′ − ψ) + φ = 0

S(y) := 4 (ψ(y) − y ψ′(y))′ = −4 y ψ′′(y) = −√
y v′(

√
y)

the system becomes

φ′′ +
1

4
φ′ +

1

2 y
φ′S = 0

S′ +
τ

4
S = φ′
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A single non-local integro-differential equation

The last formulation of the ODE system can be equivalently written as a
single integro-differential equation, hence nonlocal, for φ′

φ′′ +
1

4
φ′ +

1

2 y
φ′ e−τ y/4

∫ y

0

eτ z/4 φ′(z) dz = 0

using

S(y) = e−τ y/4

∫ y

0

eτ z/4 φ′(z) dz

and as a single, local but nonlinear second order ODE for S

S′′ +
1

4
(τ + 1)S′ +

τ

16
S +

1

2 y

(
S S′ +

τ

4
S2

)
= 0

Corresponding initial conditions are

φ(0) = 0 , φ′(0) = a > 0 and S(0) = 0
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Reparametrization

φ(∞) := lim
y→∞

φ(y) =
M(a, τ)

2π

The problem is now formulated in terms of a shooting parameter problem
with shooting parameter a = u(0)/2

2 a = es , s = v(0) + log σ

v(0) = v(
√
y) +

1

2

∫ y

0

S(z)

z
dz

and the boundary condition limr→∞ v(r) = 0 is equivalent to

v(0) =
1

2

∫ ∞

0

S(z)

z
dz

We also have: σ = limr→∞ u(r) er2/4 = 2 limy→∞ φ′(y) e y/4
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Detailed results
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Mass estimates

Theorem 3. For any (a, τ) ∈ R
2
+ there exists a unique positive solution (φ, S) such that

φ ∈ C2(0,∞) ∩ C1[0,∞) and S ∈ C1[0,∞). The maps a ∈ R+ 7→ (φ, S) and

a ∈ R+ 7→M(a, τ) ∈ R+ are continuous and

g(a, τ) ≤ M(a, τ)

2π
≤ f(a, τ)

where

f(a, τ) =





min{4, 4 a} if τ ∈
(
0, 1

2

]

min
{
4 a, 2

3 π
2
}

if τ ∈
(

1
2 , 1

]

min
{
4 a, 2

3 π
2 τ, 4 (τ + 1)

}
if τ > 1

and

g(a, τ) =





max
{

4 a e−2 a log τ
τ−1 , 4 a τ

a+τ

}
if τ ∈ (0, 1]

max
{
4 a e−2 a log τ

τ−1 , 4 a
a+1

}
if τ > 1

Large mass self-similar solutions of the parabolic-parabolic Keller–Segel model of chemotaxis – p. 34/45



Concentration

Theorem 4. Given any fixed τ > 0, for any positive sequence {ak} such that ak → ∞
as k → ∞, there exists a sequence of positive self-similar solutions

(uk, vk) ∈ (C2
0 (R2))2 such that uk(0) = 2 ak , v′k(0) = 0 and

uk ⇀ 8π δ0 as k → ∞

in the sense of weak convergence of measures.

lim
k→∞

∫

R2

uk dx = 8π and lim
k→∞

‖vk‖L∞(R2) = ∞

This result has already been proved in [ Naito, Suzuki, Yoshida 02 ] using
a classical result by Brezis and Merle; in the cumulated densities
formulation, we obtain a direct proof
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Multiplicity

Theorem 5. For any fixed τ > 0 there exists M∗ = M∗(τ) ≥ 8π such that, with

φ(0) = 0 , lim
y→∞

φ(y) =
M

2π
, S(0) = 0

the problem has no positive solution (φ, S) ∈ C2[0,∞) × C1[0,∞) if M > M∗ and

has at least one positive solution (φ, S) ∈ C2[0,∞)×C1[0,∞) in the following cases:

(i) M ∈ (0,M∗] if M∗ > 8π

(ii) M ∈ (0,M∗) if M∗ = 8π

Moreover, there exist 1/2 < τ∗ ≤ τ∗∗ such that M∗ satisfies: M∗ = 8π if
0 < τ ≤ τ∗ and M∗ > 8π if τ > τ∗∗

When M∗ > 8 π, there are at least two positive solutions for any M ∈ (8 π, M∗). When
M∗ = 8 π, it is still an open question to decide if there is a positive solution such that
M = M∗ or to prove a uniqueness result for any M ∈ (0, 8 π)

The function M(a, τ) depends non-monotonously on a
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Numerical results
Plots in direct variables and in the cumulated densities framework
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Bifurcation diagrams

Taylor expansions around s = 0+: for ε > 0 small enough,

w(ε ; s) ≈ s− 1

4
ε2 es and w′(ε ; s) ≈ −1

2
ε es

and we obtain M(s) by solving M ′(r) = 2π ew(r;s) e−r2/4 r with the
approximate initial condition M(ε) = π ε2 es

Similarly
S′ ∼ φ′ ∼ a on (0, ε) and so

S(y) = a y + O(ε2) and φ′′(y) ∼ −a
4

(1 + 2 a) + O(ε)

In practice we solve the equations on (ε, ymax) with the initial data

φ′(ε) = a− a

4
(1 + 2 a) ε , φ(ε) = a ε− a

8
(1 + 2 a) ε2 and S(ε) = a ε
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Figure 1: The set of all positive solutions of ∆vσ + τ
2

ξ · ∇vσ + σ evσ e−|ξ|2/4 = 0

in C2
0 (R2), where σ = σ(s) = ew(∞;s), is represented by the multivalued diagram s 7→

(log σ, log vσ(0)) for τ = 10α, α = −2, −1, . . . , 3. Recall that the solutions vσ are radial
and decreasing so that vσ(0) = ‖vσ‖L∞(R2). We observe that max

s∈R

log σ(s) appears as an

increasing function of τ .
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Figure 2: Left: The set of all positive solutions of ∆vσ + τ
2

ξ ·∇vσ +σ evσ e−|ξ|2/4 = 0

in C2
0 (R2) is now represented by the diagram s 7→ (log(1 + M(s)), log vσ(0)) for τ = 10α,

α = −2, −1, . . . , 3. We observe that max
s∈R

M(s) appears as an increasing function of τ .

Right: The plot is an enlargement of the rectangle of Fig. 2 (left), with τ = 0.60, 0.62, 0.64,
. . . , 0.90. Numerically, the first solution with mass larger than 8 π appears for τ ∈ (0.62, 0.64),
which is far (below) from the theoretical bound. This is not easy to read on the above figure,
but it can be shown graphically by enlarging it enough.
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Figure 3: Left: Plots of φ for φ′(0) = a, with a = 10b c, b = −1, 0, 1, c ∈ {1, . . . , 10}

for τ = 0.1. Right: Plot of b 7→ φ(ymax) in the logarithmic scale, with φ′(0) = a, a = eb − 1,
ymax = 30.
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Figure 4: Left: Plots of φ for φ′(0) = eα, with α = 1, 2, . . . , 20 for τ = 10. Right:
Plot of φ(ymax) as a function of b (in the logarithmic scale), with φ′(0) = a, a = eb − 1. Here
τ = 10, ymax = 30.
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Figure 5: Left: The value of mass φ(∞) = M(a, τ)/(2 π) in the logarithmic scale as
a function of a, for τ = 0.1 k2 with k = 1, 2, . . . , 10. Right: An enlargement around the value
M(a, τ)/(2 π) = 4 in the logarithmic scale as a function of a, for τ = 0.50, 0.55, 0.60, . . . ,
1.00.
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Figure 6: The value of the maximal (in terms of a) mass φ(∞) = M∗(τ)/(2 π) as
a function of τ . Numerically, the first solution with mass larger than 8 π appears for τ ∈

(0.62, 0.64), as already noticed at the level of Fig. 2 (right). This is again not easy to read on
the above figure, but it can be shown graphically by enlarging it enough.
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Conclusions
more than an example of a family of solutions

self-similar solutions are likely to be attracting a whole class of solutions, although this
is still an open question for the parabolic-parabolic Keller–Segel model with large mass
(see [ Naito, 06 ] for a result for small mass solutions)

how to determine the basin of attraction of these self-similar solutions ? Not as simple
as in the parabolic-elliptic case. We can conjecture that blowup occurs for mass large
enough and even, maybe, as soon as the total mass of the system is above 8 π if initial
data are sufficiently concentrated.

How do the estimates of such a simple model extend to more realistic ones ?
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Thank you for your attention !

Large mass self-similar solutions of the parabolic-parabolic Keller–Segel model of chemotaxis – p. 46/45


	Outline
	The parabolic-elliptic Keller and Segel system
	Blow-up
	Existence and free energy
	The dimension $d=2$
	The existence setting
	Time-dependent rescaling
	The stationary solution in self-similar variables
	The free energy in self-similar variables
	Parabolic-elliptic case: large time asymptotics
	The parabolic-parabolic Keller-Segel system
	Some results
	Duhamel approach
	PDE approach
	Variational approaches
	Radial symmetry
	Equivalent boundary conditions
	Main result
	There are self-similar solutions with an arbitrary large mass
	Further consequences
	Remarks
	Cumulated densities: definition
	A single non-local integro-differential equation
	Reparametrization
	Mass estimates
	Concentration
	Multiplicity
	Bifurcation diagrams

