Fast diffusions and generalized entropies

Jean Dolbeault

dolbeaul@ceremade.dauphine.fr

CEREMADE

CNRS & Université Paris-Dauphine

http://www.ceremade.dauphine.fr/ \sim dolbeaul

Paris-London Analysis seminar
October 3, 2008

Abstract

An overview of the connections between functional inequalities, nonlinear diffusions, (transport theory) and generalized entropy functionals

- From functional inequalities to rates in nonlinear diffusions (porous medium equation)
- Functional inequalities and gradient flows
- Large time asymptotics of nonlinear diffusions (fast diffusion equation)

Contents

- $igspace L^q$ Poincaré inequalities and application
 - characterization of some L^q Poincaré inequalities
 - applications to a porous medium equation
- The Bakry-Emery method for generalized Poincaré inequalities
 - a non-local condition (linear case)
 - extension to a porous medium equation
- Remarks on entropies, transport and distances between measures
- The fast diffusion equation
 - intermediate asymptotics and interpolation
 - extensions (finite mass case)
 - the infinite mass regime and Hardy-Poincaré inequalities

L^q Poincaré inequalities for general measures, porous media equation

J.D., Ivan Gentil, Arnaud Guillin and Feng-Yu Wang

Goal

 L^q -Poincaré inequalities, $q \in (1/2, 1]$

$$\left[\mathbf{Var}_{\mu}(f^{q})\right]^{1/q} := \left[\int f^{2q} d\mu - \left(\int f^{q} d\mu\right)^{2}\right]^{1/q} \leqslant C_{P} \int |\nabla f|^{2} d\nu$$

Application to the weighted porous media equation, $m \geq 1$

$$\frac{\partial u}{\partial t} = \Delta u^m - \nabla \psi \cdot \nabla u^m \,, \quad t \geqslant 0 \,, \quad x \in \mathbb{R}^d$$

(Ornstein-Uhlenbeck form). With $d\mu = d\nu = d\mu_{\psi} = e^{-\psi} dx / \int e^{-\psi} dx$

$$\frac{d}{dt} \mathbf{Var}_{\mu_{\psi}}(u) = -\frac{8}{(m+1)^2} \int |\nabla u^{\frac{m+1}{2}}|^2 d\mu_{\psi}$$

Outline

Equivalence between the following properties:

- $igspace L^q$ -Poincaré inequality
- Capacity-measure criterion
- Weak Poincaré inequality
- BCR (Barthe-Cattiaux-Roberto) criterion

In dimension d=1, there are necessary and sufficient conditions to satisfy the BCR criterion

Motivation: large time asymptotics in connection with functional inequalities

L^q -Poincaré inequality

We shall say that (μ, ν) satisfies a L^q -Poincaré inequality with constant C_P if for all non-negative functions $f \in \mathcal{C}^1(M)$ one has

$$\left[\mathbf{Var}_{\mu}(f^q)\right]^{1/q} \leqslant C_{\mathrm{P}} \int \left|\nabla f\right|^2 d\nu$$

 $q \in (0,1]$ (false for q > 1 unless μ is a Dirac measure)

$$\mathbf{Var}_{\mu}(g^2) = \int g^2 d\mu - (\int g d\mu)^2 = \mu(g^2) - \mu(g)^2$$

 $q\mapsto \left[\mathbf{Var}_{\mu}(f^q)\,\right]^{1/q}$ increasing wrt $q\in (0,1]$: L^q -Poincaré inequalities form a hierarchy

Capacity-measure criterion

Capacity $\mathrm{Cap}_{\nu}(A,\Omega)$ of two measurable sets A and Ω such that $A\subset\Omega\subset M$

$$\operatorname{Cap}_{\nu}(A,\Omega) := \inf \left\{ \int |\nabla f|^2 d\nu : f \in \mathcal{C}^1(M), \, \mathbb{I}_A \leqslant f \leqslant \mathbb{I}_{\Omega} \right\}$$

$$\beta_{\mathcal{P}} := \sup \left\{ \sum_{k \in \mathbb{Z}} \frac{\left[\mu(\Omega_k)\right]^{1/(1-q)}}{\left[\operatorname{Cap}_{\nu}(\Omega_k, \Omega_{k+1})\right]^{q/(1-q)}} \right\}^{(1-q)/q}$$

over all $\Omega \subset M$ with $\mu(\Omega) \leq 1/2$ and all sequences $(\Omega_k)_{k \in \mathbb{Z}}$ such that for all $k \in \mathbb{Z}$, $\Omega_k \subset \Omega_{k+1} \subset \Omega$

Theorem 1 (i) If $q \in [1/2, 1)$, then $\beta_P \leqslant 2^{1/q} C_P$

(ii) If $q \in (0,1)$ and $\beta_P < +\infty$, then $C_P \leqslant \kappa_P \beta_P$

Weak Poincaré inequalities

Definition 2 [Röckner and Wang] (μ, ν) satisfies a weak Poincaré inequality if there exists a non-negative non increasing function $\beta_{\mathrm{WP}}(s)$ on (0, 1/4) such that, for any bounded function $f \in \mathcal{C}^1(M)$,

$$\forall s > 0, \quad \mathbf{Var}_{\mu}(f) \leqslant \beta_{\mathrm{WP}}(s) \int |\nabla f|^2 d\nu + s \left[\mathbf{Osc}_{\mu}(f)\right]^2$$

$$\mathbf{Var}_{\mu}(f) \leqslant \mu((f-a)^2) \ \forall \ a \in \mathbb{R}$$

For
$$a = (\operatorname{supess}_{\mu} f + \operatorname{infess}_{\mu} f)/2$$
, $\operatorname{Var}_{\mu}(f) \leqslant \left[\operatorname{Osc}_{\mu}(f)\right]^{2}/4$: $s \leqslant 1/4$.

Proposition 3 Let $q \in [1/2, 1)$. If (μ, ν) satisfies the L^q -Poincaré inequality, then it also satisfies a weak Poincaré inequality with $\beta_{\mathrm{WP}}(s) = (11 + 5\sqrt{5}) \, \beta_{\mathrm{P}} \, s^{1-1/q}/2$, $K := (11 + 5\sqrt{5})/2$.

 L^q -Poincaré \Longrightarrow BCR criterion \Longrightarrow weak Poincaré

Theorem 4 [Maz'ja] Let $q \in [1/2, 1)$. For all bounded open set $\Omega \subset M$, if $(\Omega_k)_{k \in \mathbb{Z}}$ is a sequence of open sets such that $\Omega_k \subset \Omega_{k+1} \subset \Omega$, then

$$\sum_{k \in \mathbb{Z}} \frac{\mu(\Omega_k)^{1/(1-q)}}{\left[\text{Cap}_{\nu}(\Omega_k, \Omega_{k+1})\right]^{q/(1-q)}} \leqslant \frac{1}{1-q} \int_0^{\mu(\Omega)} \left(\frac{t}{\Phi(t)}\right)^{q/(1-q)} dt$$

where $\Phi(t) := \inf \left\{ \operatorname{Cap}_{\nu}(A, \Omega) : A \subset \Omega, \ \mu(A) \geqslant t \right\}$

As a consequence: $\beta_{P} \leqslant (1-q)^{-(1-q)/q} \|t/\Phi(t)\|_{L^{q/(1-q)}(0,\mu(\Omega))}$

Corollary 5 Let $q \in [1/2, 1)$. If (μ, ν) satisfies a weak Poincaré inequality with function β_{WP} , then it satisfies a L^q -Poincaré inequality with

$$\beta_{\rm P} \leqslant \frac{11 + 5\sqrt{5}}{2} \left(\frac{4}{1 - q}\right)^{\frac{1 - q}{q}} \|\beta_{\rm WP}(\cdot/4)\|_{L^{\frac{q}{1 - q}}(0, 1/2)}$$

$$L^q\text{-Poincar\'e} \implies \begin{array}{c} \text{Weak Poincar\'e} \\ \text{with } \beta_{\mathrm{WP}}(s) = C\,s^{\frac{q-1}{q}} \end{array} \implies \begin{array}{c} L^{q'}\text{-Poincar\'e} \\ \forall \,\, q' \in (0,q) \end{array}$$

BCR criterion (1/2)

A variant of two results of [Barthe, Cattiaux, Roberto, 2005] (no absolute continuity of the measure μ with respect to the volume measure)

Theorem 6 [BCR] Let μ be a probability measure and ν a positive measure on M such that (μ, ν) satisfies a weak Poincaré inequality with function $\beta_{\mathrm{WP}}(s)$. Then for every measurable subsets A, B of M such that $A \subset B$ and $\mu(B) \leqslant 1/2$,

$$\operatorname{Cap}_{\nu}(A,B) \geq \frac{\mu(A)}{\gamma(\mu(A))}$$
 with $\gamma(s) := 4 \, \beta_{\operatorname{WP}}(s/4)$

Proof \lhd Take f such that $\mathbb{I}_A \leqslant f \leqslant \mathbb{I}_B$: $\mathbf{Osc}_{\mu}(f) \leqslant 1$ By Cauchy-Schwarz, $\left(\int f \, d\mu\right)^2 \leqslant \mu(B) \int f^2 \, d\mu \leqslant \frac{1}{2} \int f^2 \, d\mu$

$$\beta_{\mathrm{WP}}(s) \int |\nabla f|^2 d\nu + s \geqslant \mathbf{Var}_{\mu}(f) \geq \frac{1}{2} \int f^2 d\mu \geq \frac{\mu(A)}{2}$$

$$\frac{a}{\gamma(a)} = \frac{a}{4 \, \beta_{\mathrm{WP}}(a/4)} \leqslant \sup_{s \in (0,1/4)} \frac{a/2 - s}{\beta_{\mathrm{WP}}(s)} \text{ with } a/2 = \mu(A)/2 \leqslant 1/4 \; \rhd$$

BCR criterion (2/2)

Lemma 7 Take μ and ν as before, $\theta \in (0,1)$, γ a positive non increasing function on $(0,\theta)$. If \forall A, $B \subset M$ such that $A \subset B$ are measurable and $\mu(B) \leqslant \theta$,

$$\operatorname{Cap}_{\nu}(A, B) \ge \frac{\mu(A)}{\gamma(\mu(A))}$$

then for every function $f \in \mathcal{C}^1(M)$ such that $\mu(\Omega_+) \leqslant \theta$, $\Omega_+ := \{f > 0\}$

$$\int f_+^2 \leq \frac{11+5\sqrt{5}}{2}\,\gamma(s)\int_{\Omega_+} |\nabla f|^2\,d\nu + s\left[\operatorname{supess}_\mu f\right]^2 \quad \forall \ s\in(0,1)$$

Theorem 8 Same assumptions, $\theta = 1/2$. Then $\forall f \in \mathcal{C}^1(M)$

$$\mathbf{Var}_{\mu}(f) \leq \frac{11 + 5\sqrt{5}}{2} \gamma(s) \int |\nabla f|^2 d\nu + s \left[\mathbf{Osc}_{\mu}(f) \right] \quad \forall \ s \in (0, 1/4)$$

 $\theta=1/2$: use the median $m_{\mu}(f),\,\mu(f\geqslant m_{\mu}(f))\geqslant 1/2,\,\mu(f\leqslant m_{\mu}(f))\geqslant 1/2$

Using the BCR criterion: a "Hardy condition"

[Muckenhoupt, 1972] [Bobkov-Götze, 1999] [Barthe-Roberto, 2003] [Barthe-Cattiaux-Roberto, 2005]

 $M=\mathbb{R},\,d\mu=
ho_{
u}\,dx$ with median $m_{\mu},\,d
u=
ho_{
u}\,dx$

$$R(x) := \mu([x, +\infty)) \;, \quad L(x) := \mu((-\infty, x])$$

$$r(x) := \int_{m_{\mu}}^{x} \frac{1}{\rho_{\nu}} \; dx \quad \text{and} \quad \ell(x) := \int_{x}^{m_{\mu}} \frac{1}{\rho_{\nu}} \; dx$$

Proposition 9 Let $q \in [1/2, 1]$. (μ, ν) satisfies a L^q -Poincaré inequality if

$$\int_{m_{\mu}}^{\infty} |\, r\, R\,|^{q/(1-q)}\, d\mu < \infty \quad \text{and} \quad \int_{-\infty}^{m_{\mu}} |\, \ell\, L\,|^{q/(1-q)}\, d\mu < \infty$$

Proof

Proof \lhd Method: $\mathbf{Var}_{\mu}(f) \leqslant \mu(|F_{-}|^{2}) + \mu(|F_{+}|^{2}))$ with $g = (f - f(m_{\mu}))_{\pm}$ and prove that

$$\mu(|g|^2) \leqslant \frac{11+5\sqrt{5}}{2} \, \gamma(s) \int \left|\nabla g\right|^2 d\nu + s \left[\operatorname{supess}_{\mu} g\right]^2 \quad \forall \, s \in (0,1/2)$$

Let $A \subset B \subset M = (m_{\mu}, \infty)$ such that $A \subset B$ and $\mu(B) \leqslant 1/2$

$$\operatorname{Cap}_{\nu}(A, B) \geqslant \operatorname{Cap}_{\nu}(A, (m_{\mu}, \infty)) = \operatorname{Cap}_{\nu}((a, \infty), (m_{\mu}, \infty)) = \frac{1}{r(a)}$$

where $a=\inf A$. Change variables: t=R(a) and choose $\gamma(t):=t\,(r\circ R)^{-1}(t)$ for any $t\in(0,1/2)$

Porous media equation

With $\psi \in \mathcal{C}^2(\mathbb{R}^d)$, $d\mu_{\psi}:=\frac{e^{-\psi}\ dx}{Z_{\psi}}$, define \mathcal{L} on $\mathcal{C}^2(\mathbb{R}^d)$ by

$$\forall f \in \mathcal{C}^2(\mathbb{R}^d) \quad \mathcal{L}f := \Delta f - \nabla \psi \cdot \nabla f$$

Such a generator \mathcal{L} is symmetric in $L^2_{\mu_{\psi}}(\mathbb{R}^d)$,

$$\forall f, g \in \mathcal{C}^1(\mathbb{R}^d) \quad \int f \mathcal{L}g \, d\mu_{\psi} = -\int \nabla f \cdot \nabla g \, d\mu_{\psi}$$

Consider for m > 1 the weighted porous media equation

$$\begin{cases} \frac{\partial u}{\partial t} = \mathcal{L} u^m & \text{in } Q \\ u(\cdot, 0) = u_0 & \text{in } \Omega \\ n \cdot \nabla u = 0 & \text{on } \Sigma \end{cases}$$

$$\Omega \subset \mathbb{R}^d$$
, $Q = \Omega \times [0, +\infty)$, $\Sigma = \partial \Omega \times [0, +\infty)$

 $u \in \mathcal{C}^2$, L^1 -contraction, existence and uniqueness

Asymptotic behavior

Theorem 10 Let $m \geqslant 1$ and assume that (μ_{ψ}, μ_{ψ}) satisfies a L^q -Poincaré inequality, q = 2/(m+1)

$$\operatorname{Var}_{\mu_{\psi}}(u(\cdot,t)) \leqslant \left(\left[\operatorname{Var}_{\mu_{\psi}}(u_0) \right]^{-(m-1)/2} + \frac{4 m (m-1)}{(m+1)^2} \operatorname{C}_{P} t \right)^{-2/(m-1)}$$

Reciprocally, if the above inequality is satisfied for any u_0 , then (μ_{ψ}, μ_{ψ}) satisfies a L^q -Poincaré inequality with constant C_P

Proof ⊲

$$\frac{d}{dt} \operatorname{Var}_{\mu_{\psi}}(u) = 2 \int u_t \, u \, d\mu_{\psi} = 2 \int u \, \mathcal{L}u^m \, d\mu_{\psi} = -\frac{8m}{(m+1)^2} \int |\nabla u^{\frac{m+1}{2}}|^2 \, d\mu_{\psi}$$

Apply the L^q -Poincaré inequality with $u=f^{2/(m+1)},\,q=2/(m+1)$

Reciprocally, a derivation at t=0 gives the L^q -Poincaré inequality \triangleright

A conclusion on L^q -Poincaré inequalities

- Observe that we have only algebraic rates
- Weak logarithmic Sobolev inequalities [Cattiaux-Gentil-Guillin, 2006], L^q -logarithmic Sobolev inequalities [D.-Gentil-Guillin-Wang, 2006]

$$\left(\int f^{2q} \frac{\log f^{2q}}{\int f^{2q} d\mu} d\mu\right) =: \mathbf{Ent}_{\mu} (f^{2q})^{1/q} \le C_{LS} \int |\nabla f|^2 d\mu$$

Orlicz spaces, duality, connections with mass transport theory [Bobkov-Götze, 1999] [Cattiaux-Gentil-Guillin, 2006] [Wang, 2006] [Roberto-Zegarlinski, 2003] [Barthe-Cattiaux-Roberto, 2005]

The Bakry-Emery method revisited

J.D., B. Nazaret, G. Savaré

Consider a domain $\Omega \subset \mathbb{R}^d$, $d\gamma = g\,dx$, $g = e^{-F}$ and a generalized Ornstein-Uhlenbeck operator: $\Delta_g v := \Delta v - \mathrm{D} F \cdot \mathrm{D} v$

$$\int_{\Omega} |Dv|^2 d\gamma = -\int_{\Omega} v \, \Delta_g v \, d\gamma \quad \forall \, v \in H_0^1(\Omega, d\gamma)$$

Let
$$s := v^{p/2}$$
 and $\alpha := (2-p)/p, p \in (1,2]$

$$v_{t} = \Delta_{g} v \quad x \in \Omega, \ t \in \mathbb{R}^{+}$$

$$\nabla v \cdot n = 0 \quad x \in \partial\Omega, \ t \in \mathbb{R}^{+}$$

$$\mathcal{E}_{p}(t) := \frac{1}{p-1} \int_{\Omega} \left[v^{p} - 1 - p(v-1) \right] d\gamma$$

$$\mathcal{I}_{p}(t) := \frac{4}{p} \int_{\Omega} |\mathrm{D}s|^{2} d\gamma$$

$$\mathcal{K}_{p}(t) := \int_{\Omega} |\Delta_{g}s|^{2} d\gamma + \alpha \int_{\Omega} \Delta_{g}s \frac{|\mathrm{D}s|^{2}}{s} d\gamma$$

Written in terms of $s = v^{p/2}$, the entropy is

$$\mathcal{E}_p = \frac{1}{p-1} \int_{\Omega} \left[s^2 - 1 - p \left(s^{2/p} - 1 \right) \right] d\gamma$$

and the evolution is governed by

$$s_t = \Delta_g s + \alpha \, \frac{|\mathbf{D}s|^2}{s}$$

A simple computation shows that

$$\frac{d}{dt}\mathcal{E}_p(t) := -\mathcal{I}_p(t)$$

$$\frac{d}{dt}\mathcal{I}_p(t) := -\frac{8}{p}\mathcal{K}_p(t)$$

Using the commutation relation $[D, \Delta_g] s = -D^2 F Ds$, we get

$$\int_{\Omega} (\Delta_g s)^2 d\gamma = \int_{\Omega} |\mathbf{D}^2 s|^2 d\gamma + \int_{\Omega} \mathbf{D}^2 F \, \mathbf{D} s \cdot \mathbf{D} s \, d\gamma - \sum_{i,j=1}^d \int_{\partial \Omega} \partial_{ij}^2 s \, \partial_i s \, n_j \, g \, d\mathcal{H}^{d-1}$$

$$>_0 \text{ if } \Omega \text{ is convex}$$

Let $z := \sqrt{s}$. Using : $2 D^2 s \cdot Dz \otimes Dz = D(|Dz|^2) : Dz$ and i.p.p., we get

$$\mathcal{K}_{p} = \int_{\Omega} |\Delta_{g} s|^{2} d\gamma + 4 \alpha \int_{\Omega} \Delta_{g} s |\mathrm{D}z|^{2} d\gamma
\geq \int_{\Omega} |\mathrm{D}^{2} s|^{2} d\gamma + \int_{\Omega} \mathrm{D}^{2} F \, \mathrm{D}s \cdot \mathrm{D}s \, d\gamma
+ 4^{2} \alpha \int_{\Omega} |Dz|^{4} d\gamma - 2 \cdot 4 \alpha \int_{\Omega} \mathrm{D}^{2} s : \mathrm{D}z \otimes \mathrm{D}z \, d\gamma
\geq (1 - \alpha) \int_{\Omega} |\mathrm{D}^{2} s|^{2} d\gamma + \int_{\Omega} \mathrm{D}^{2} F \, \mathrm{D}s \cdot \mathrm{D}s \, d\gamma$$

An extension of the criterion of Bakry-Emery

Let $V(x) := \inf_{\xi \in S^{d-1}} (D^2 F(x) \xi, \xi)$ and define

$$\lambda_1(p) := \inf_{w \in \mathcal{D}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} \left(2 \frac{p-1}{p} |Dw|^2 + V |w|^2\right) d\gamma}{\int_{\Omega} |w|^2 d\gamma}$$

Theorem 1 Let $F \in C^2(\Omega)$, $\gamma = e^{-F} \in L^1(\Omega)$, and Ω be a convex domain in \mathbb{R}^d . If $\lambda_1(p)$ is positive, then

$$\mathcal{I}_p(t) \le \mathcal{I}_p(0) e^{-2\lambda_1(p) t}$$

$$\mathcal{I}_p(t) \le \mathcal{I}_p(0) e^{-2\lambda_1(p) t}$$
$$\mathcal{E}_p(t) \le \mathcal{E}_p(0) e^{-2\lambda_1(p) t}$$

Generalized entropies

Consider the weighted porous media equation

$$v_t = \Delta_g v^m$$

 $d\gamma$ is a probability measure, $p \in (1,2)$

$$\mathcal{E}_{m,p}(t) := \frac{1}{m+p-2} \int_{\Omega} \left[v^{m+p-1} - 1 \right] d\gamma$$

$$\mathcal{I}_{m,p}(t) := c(m,p) \int_{\Omega} |\mathrm{D}s|^2 d\gamma$$

$$\mathcal{K}_{m,p}(t) := \int_{\Omega} s^{\beta(m-1)} |\Delta_g s|^2 d\gamma + \alpha \int_{\Omega} s^{\beta(m-1)} \Delta_g s \frac{|\mathrm{D} s|^2}{s} d\gamma$$

with
$$v=:s^{\beta}$$
, $\beta:=\frac{1}{p/2+m-1}$, $\alpha:=\frac{2-p}{p+2(m-1)}$ and $c(m,p)=\frac{4\,m\,(m+p-1)}{(2m+p-2)^2}$

adapting the Bakry-Emery method...

Written in terms of $s = v^{1/\beta}$, the evolution is governed by

$$\frac{1}{m} s_t = s^{\beta(m-1)} \left[\Delta_g s + \alpha \frac{|Ds|^2}{s} \right]$$

A computation shows that

$$\frac{d}{dt}\mathcal{E}_{m,p}(t) := -\mathcal{I}_{m,p}(t)$$

$$\frac{1}{m}\frac{d}{dt}\mathcal{I}_{m,p}(t) := -2c(m,p)\mathcal{K}_{m,p}(t)$$

Exactly as in the linear case, define for any $\theta \in (0,1)$

$$\lambda_1(m,\theta) := \inf_{w \in H^1(\Omega, d\gamma) \setminus \{0\}} \frac{\int_{\Omega} \left((1-\theta) |Dw|^2 + V |w|^2 \right) d\gamma}{\int_{\Omega} |w|^2 d\gamma}$$

The non-local condition

Assume that for some $\theta \in (0,1)$, $\lambda_1(m,\theta) > 0$. Admissible parameters m and p correspond to $(m,p) \in \mathsf{E}_\theta$, 1 < m < p+1, where the set E_θ is defined by the condition: $\mathsf{b}^2 - 4\,\mathsf{a}(\theta)\,\mathsf{c} < 0$.

Results for the fast diffusion equation

Lemma 1 With the above notations, if Ω is convex and $(m,p) \in \mathsf{E}_{\theta}$ are admissible, then

$$\mathcal{I}_{m,p}^{\frac{4}{3}} \leq \frac{1}{3} \left[4 c(m,p) \right]^{\frac{4}{3}} \mathsf{K}^{\frac{1}{3}} \left[(m+p-2) \mathcal{E}_{m,p} + 1 \right]^{\frac{4-3q}{3(2-q)}} \mathcal{K}_{m,p}$$

Theorem 2 Under the above conditions there exists a positive constant κ which depends on $\mathcal{E}_{m,p}(0)$ such that any smooth solution u of the porous media equation satisfies, for any t > 0,

$$\mathcal{I}_{m,p}(t) \leq \frac{\mathcal{I}_{m,p}(0)}{\left[1 + \frac{\kappa}{3} \sqrt[3]{\mathcal{I}_{m,p}(0)} t\right]^3}$$

$$\mathcal{E}_{m,p}(t) \leq \frac{3 \left[\mathcal{I}_{m,p}(0)\right]^{\frac{8}{3}}}{2 \kappa \left[1 + \frac{\kappa}{3} \sqrt[3]{\mathcal{I}_{m,p}(0)} t\right]^2}$$

Entropies, transport and distances between measures

J.D., B. Nazaret, G. Savaré

Wasserstein distances

p>1, μ_0 and μ_1 probability measures on \mathbb{R}^d

- Transport plans between μ_0 and μ_1 : $\Gamma(\mu_0, \mu_1)$ is the set of probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ having μ_0 and μ_1 as marginals.
- Wasserstein distance between μ_0 ans μ_1

$$W_p^p(\mu_0, \mu_1) = \inf \left\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^p d\Sigma(x, y) : \Sigma \in \Gamma(\mu_0, \mu_1) \right\}$$

The Benamou-Brenier characterization (2000)

$$W_p^p(\mu_0, \mu_1) = \inf \left\{ \int_0^1 \int_{\mathbb{R}^d} |\mathbf{v}_t|^p \rho_t dx dt : (\rho_t, \mathbf{v}_t)_{t \in [0, 1]} \text{ admissible} \right\}$$

where admissible paths $(\rho_t, \mathbf{v}_t)_{t \in [0,1]}$ are such that

$$\partial_t \rho_t + \nabla \cdot (\rho_t \mathbf{v}_t) = 0, \, \rho_0 = \mu_0, \, \rho_1 = \mu_1$$

A generalization of the Benamou-Brenier approach

Given a function h on \mathbb{R}^+ , define the admissible paths by

$$\begin{cases} \partial_t \rho_t + \nabla \cdot (h(\rho_t) \mathbf{v}_t) = 0, \\ \rho_0 = \mu_0, \ \rho_1 = \mu_1 \end{cases}$$

and consider the distance

$$W_h^p(\mu_0, \mu_1) = \inf \left\{ \int_0^1 \int_{\mathbb{R}^d} |\mathbf{v}_t|^p h(\rho_t) dx dt : (\rho_t, \mathbf{v}_t)_{t \in [0, 1]} \text{ admissible} \right\}$$

$$h(\rho) = \rho^{\alpha}, 0 \le \alpha \le 1$$

- $\alpha = 1$: Wasserstein case

$$\|\mu_1 - \mu_0\|_{\dot{W}^{-1,p}} = \sup \left\{ \int_{\mathbb{R}^d} \xi d(\mu_1 - \mu_0) : \xi \in \mathcal{C}_c^1(\mathbb{R}^d), \int_{\mathbb{R}^d} |\nabla \xi|^q \le 1 \right\}$$

Gradient flows

Jordan-Kinderlehrer-Otto 98 : Formal Riemannian structure on $\mathcal{P}(\mathbb{R}^d)$: the McCann interpolant is a geodesic. For an integral functional such as

$$\mathcal{F}(\rho) = \int_{\mathbb{R}^d} F(\rho(x)) dx$$

the gradient flow of \mathcal{F} is

$$\frac{\partial \rho}{\partial t} = \nabla \cdot (\rho \nabla \left(F'(\rho) \right))$$

- Ambrosio-Gigli-Savaré 05: Rigorous framework for JKO's calculus in the framework of length spaces (based on the optimal transportation)
- Otto-Westdickenberg 05 : Use the Brenier-Benamou formulation to prove

$$W_2^2(\mu_0^t, \mu_1^t) \le W_2^2(\mu_0, \mu_1)$$

along the heat flow on a compact Riemannian manifold

The heat equation as gradient flow w.r.t. W_{φ}

Denote by S_t the semi-group associated to the heat equation. Let $\alpha > 1 - \frac{2}{d}$ and consider the generalized entropy functional

$$\Psi_{\alpha}(\mu) = \frac{1}{(1-\alpha)(2-\alpha)} \int_{\mathbb{R}^d} \rho^{2-\alpha}(x) dx, \text{ if } \mu = \rho \mathcal{L}^d$$

Theorem 1 If $\mu \in \mathcal{P}(\mathbb{R}^d)$, $\Psi_{\alpha}(\mu) < +\infty$, then $\Psi_{\alpha}(S_t\mu) < +\infty$ for all t > 0 and

$$\frac{1}{2}\frac{d}{dt}W_{\alpha}^{2}(S_{t}\mu,\sigma) + \Psi_{\alpha}(S_{t}\mu) \leq \Psi_{\alpha}(\sigma)$$

Corollary 2 Ψ_{α} is geodesically convex w.r.t. W_{α}

Fast diffusion equations: entropy methods and functional inequalities

$$u_t = \Delta u^m \quad x \in \mathbb{R}^d, \ t > 0$$

- Entropy methods for fast diffusion and porous media equations: intermediate asymptotics
- Entropy methods and functional inequalities

Porous media / fast diffusion equations

Generalized entropies and nonlinear diffusions (EDP, uncomplete): [Del Pino, J.D.], [Carrillo, Toscani], [Otto], [Juengel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Biler, J.D., Esteban], [Markowich, Lederman], [Carrillo, Vázquez], [Cordero-Erausquin, Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub],... [del Pino, Sáez], [Daskalopulos, Sesum]...

1) [J.D., del Pino] relate entropy and entropy-production by Gagliardo-Nirenberg inequalities

Various alternative approaches:

- 2) "entropy entropy-production method"
- 3) mass transport techniques
- 4) hypercontractivity for appropriate semi-groups

Heat equation, porous media & fast diffusion equation

Existence theory, critical values of the parameter m

Intermediate asymptotics for fast diffusion & porous media

$$u_t = \Delta u^m \quad \text{in } \mathbb{R}^d$$
 $u_{|t=0} = u_0 \ge 0$ $u_0(1+|x|^2) \in L^1 , \quad u_0^m \in L^1$

Intermediate asymptotics: $u_0 \in L^{\infty}$, $\int u_0 \ dx = M > 0$

Self-similar (Barenblatt) function: $\mathcal{U}(t) = O(t^{-d/(2-d(1-m))})$ [Friedmann, Kamin, 1980] As $t \to +\infty$

$$||u(t,\cdot) - \mathcal{U}(t,\cdot)||_{L^{\infty}} = o(t^{-d/(2-d(1-m))})$$

 \Longrightarrow What about $||u(t,\cdot)-\mathcal{U}(t,\cdot)||_{L^1}$?

Time-dependent rescaling

Take $u(t,x) = R^{-d}(t) v(\tau(t), x/R(t))$ where

$$\dot{R} = R^{d(1-m)-1}$$
, $R(0) = 1$, $\tau = \log R$

$$v_{\tau} = \Delta v^m + \nabla \cdot (x v) , \quad v_{|\tau=0} = u_0$$

[Ralston, Newman, 1984] Lyapunov functional: Entropy or Free energy

$$\Sigma[v] = \int \left(\frac{v^m}{m-1} + \frac{1}{2}|x|^2v\right) dx - \Sigma_0$$

$$\frac{d}{d\tau}\Sigma[v] = -I[v] , \quad I[v] = \int v \left| \frac{\nabla v^m}{v} + x \right|^2 dx$$

Entropy and entropy production

Stationary solution: choose C such that $||v_{\infty}||_{L^1} = ||u||_{L^1} = M > 0$

$$v_{\infty}(x) = \left(C + \frac{1-m}{2m} |x|^2\right)_{+}^{-1/(1-m)}$$

Fix Σ_0 so that $\Sigma[v_\infty] = 0$. The entropy can be put in an m-homogeneous form

$$\Sigma[v] = \int \psi\left(\frac{v}{v_{\infty}}\right) \ v_{\infty}^{m} \ dx \quad with \ \psi(t) = \frac{t^{m-1-m(t-1)}}{m-1}$$

Theorem 1
$$d \geq 3$$
, $m \in [\frac{d-1}{d}, +\infty)$, $m > \frac{1}{2}$, $m \neq 1$

$$I[v] \ge 2\,\Sigma[v]$$

An equivalent formulation

$$\Sigma[v] = \int \left(\frac{v^m}{m-1} + \frac{1}{2}|x|^2v\right) dx - \Sigma_0 \le \frac{1}{2} \int v \left|\frac{\nabla v^m}{v} + x\right|^2 dx = \frac{1}{2}I[v]$$

$$p = \frac{1}{2m-1}, v = w^{2p}, v^m = w^{p+1}$$

$$\frac{1}{2} \left(\frac{2m}{2m-1} \right)^2 \int |\nabla w|^2 dx + \left(\frac{1}{1-m} - d \right) \int |w|^{1+p} dx + K \ge 0$$

K < 0 if m < 1, K > 0 if m > 1 and, for some γ , K can be written as

$$K = K_0 \left(\int v \, dx = \int w^{2p} \, dx \right)^{\gamma}$$

 $w=w_{\infty}=v_{\infty}^{1/2p}$ is optimal

 $m=\frac{d-1}{d}$: Sobolev, $m\to 1$: logarithmic Sobolev

Gagliardo-Nirenberg inequalities

Theorem 2 [Del Pino, J.D.] Assume that $1 and <math>d \ge 3$

$$||w||_{2p} \le A ||\nabla w||_2^{\theta} ||w||_{p+1}^{1-\theta}$$

$$A = \left(\frac{y(p-1)^2}{2\pi d}\right)^{\frac{\theta}{2}} \left(\frac{2y-d}{2y}\right)^{\frac{1}{2p}} \left(\frac{\Gamma(y)}{\Gamma(y-\frac{d}{2})}\right)^{\frac{\theta}{d}}$$

$$\theta = \frac{d(p-1)}{p(d+2-(d-2)p)}, \quad y = \frac{p+1}{p-1}$$

Similar results for 0

Uses [Serrin-Pucci], [Serrin-Tang]

$$1 Fast diffusion case: $\frac{d-1}{d} \le m < 1$ $0 Porous medium case: $m > 1$$$$

Intermediate asymptotics

 $\Sigma[v] \leq \Sigma[u_0] e^{-2\tau}$ + Csiszár-Kullback inequalities

Theorem 3 [Del Pino, J.D.]

(i)
$$\frac{d-1}{d} < m < 1$$
 if $d \ge 3$

$$\lim_{t \to +\infty} u^{\frac{1-d(1-m)}{2-d(1-m)}} \|u^m - u^m_{\infty}\|_{L^1} < +\infty$$

(ii)
$$1 < m < 2$$

$$\lim_{t \to +\infty} t^{\frac{1+d(m-1)}{2+d(m-1)}} \| [u - u_{\infty}] u_{\infty}^{m-1} \|_{L^{1}} < +\infty$$

$$u_{\infty}(t,x) = R^{-d}(t) v_{\infty} (x/R(t))$$

Fast diffusion equations: the finite mass regime

- If $m \ge 1$: porous medium regime or $m_1 := \frac{d-1}{d} \le m < 1$, the decay of the entropy is governed by Gagliardo-Nirenberg inequalities, and to the limiting case m=1 corresponds the logarithmic Sobolev inequality
- If $m_c := \frac{d-2}{d} \le m < m_1$, solutions globally exist in L^1 and the Barenblatt self-similar solution has finite mass

A remark on the mass transport approach

- The fast diffusion equation can be seen as the gradient flow of the generalized entropy with respect to the Wasserstein distance
- Displacement convexity holds in the same range of exponents, $m \in ((d-1)/d, 1)$, as for the Gagliardo-Nirenberg inequalities
- \Rightarrow How to extend to $m_c < m < m_1$ what has been done for $m \ge m_1$?

Fast diffusion: finite mass regime

Inequalities...

... existence of solutions of $u_t = \Delta u^m$

Extensions and related results

- Mass transport methods: inequalities / rates [Cordero-Erausquin, Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub, Kang]
- General nonlinearities [Biler, J.D., Esteban], [Carrillo-DiFrancesco], [Carrillo-Juengel-Markowich-Toscani-Unterreiter] and gradient flows [Jordan-Kinderlehrer-Otto], [Ambrosio-Savaré-Gigli], [Otto-Westdickenberg] [J.D.-Nazaret-Savaré], etc
- Non-homogeneous nonlinear diffusion equations [Biler, J.D., Esteban], [Carrillo, DiFrancesco]
- Extension to systems and connection with Lieb-Thirring inequalities [J.D.-Felmer-Loss-Paturel, 2006], [J.D.-Felmer-Mayorga]
- Drift-diffusion problems with mean-field terms. An example: the Keller-Segel model [J.D-Perthame, 2004], [Blanchet-J.D-Perthame, 2006], [Biler-Karch-Laurençot-Nadzieja, 2006], [Blanchet-Carrillo-Masmoudi, 2007], etc
- ... connection with linearized problems [Markowich-Lederman], [Carrillo-Vázquez], [Denzler-McCann], [McCann, Slepčev]

Fast diffusion equations: the infinite mass regime

- If $m > m_c := \frac{d-2}{d} \le m < m_1$, solutions globally exist in L^1 and the Barenblatt self-similar solution has finite mass.
- lacktriangle For $m \leq m_c$, the Barenblatt self-similar solution has infinite mass
- \Rightarrow How to extend to $m \le m_c$ what has been done for $m > m_c$? Work in relative variables!

Fast diffusion: infinite mass regime

Entropy methods and linearization...

... intermediate asymptotics, vanishing

A. Blanchet, M. Bonforte, J.D., G. Grillo, J.L. Vázquez

- use the properties of the flow
- write everything as relative quantities (to the Barenblatt profile)
- compare the functionals (entropy, Fisher information) to their linearized counterparts
- Extend the domain of validity of the method to the price of a restriction of the set of admissible solutions

Setting of the problem

We consider the solutions $u(\tau, y)$ of

$$\begin{cases} \partial_{\tau} u = \Delta u^m \\ u(0, \cdot) = u_0 \end{cases}$$

where $m \in (0,1)$ (fast diffusion) and $(\tau,y) \in Q_T = (0,T) \times \mathbb{R}^d$ Two parameter ranges: $m_c < m < 1$ and $0 < m < m_c$, where

$$m_c := \frac{d-2}{d}$$

- \blacksquare $m_c < m < 1$, $T = +\infty$: intermediate asymptotics, $\tau \to +\infty$
- \bigcirc $0 < m < m_c$, $T < +\infty$: vanishing in finite time

$$\lim_{\tau \nearrow T} u(\tau, y) = 0$$

Barenblatt solutions

$$U_{D,T}(\tau,y) := \frac{1}{R(\tau)^d} \left(D + \frac{1-m}{2m} \left| \frac{y}{R(\tau)} \right|^2 \right)^{-\frac{1}{1-m}}$$

with

•
$$R(\tau) := \left[d \left(m - m_c \right) \left(\tau + T \right) \right]^{\frac{1}{d \left(m - m_c \right)}} \text{ if } m_c < m < 1$$

lacksquare (vanishing in finite time) if $0 < m < m_c$

$$R(\tau) := \left[d\left(m_c - m\right)\left(T - \tau\right)\right]^{-\frac{1}{d\left(m_c - m\right)}}$$

Time-dependent rescaling: $t:=\log\left(\frac{R(\tau)}{R(0)}\right)$ and $x:=\frac{y}{R(\tau)}$. The function $v(t,x):=R(\tau)^d\,u(\tau,y)$ solves a nonlinear Fokker-Planck type equation

$$\begin{cases} \partial_t v(t,x) = \Delta v^m(t,x) + \nabla \cdot (x \, v(t,x)) & (t,x) \in (0,+\infty) \times \mathbb{R}^d \\ v(0,x) = v_0(x) = R(0)^d \, u_0(R(0) \, x) & x \in \mathbb{R}^d \end{cases}$$

Assumptions

(H1) u_0 is a non-negative function in $L^1_{loc}(\mathbb{R}^d)$ and there exist positive constants T and $D_0 > D_1$ such that

$$U_{D_0,T}(0,y) \le u_0(y) \le U_{D_1,T}(0,y) \quad \forall \ y \in \mathbb{R}^d$$

(H2) If $m \in (0, m_*]$, there exist $D_* \in [D_1, D_0]$ and $f \in L^1(\mathbb{R}^d)$ such that

$$u_0(y) = U_{D_*,T}(0,y) + f(y) \quad \forall \ y \in \mathbb{R}^d$$

(H1') v_0 is a non-negative function in $L^1_{loc}(\mathbb{R}^d)$ and there exist positive constants $D_0 > D_1$ such that

$$V_{D_0}(x) \le v_0(x) \le V_{D_1}(x) \quad \forall \ x \in \mathbb{R}^d$$

(H2') If $m \in (0, m_*]$, there exist $D_* \in [D_1, D_0]$ and $f \in L^1(\mathbb{R}^d)$ such that

$$v_0(x) = V_{D_*}(x) + f(x) \quad \forall \ x \in \mathbb{R}^d$$

Convergence to the asymptotic profile (without rate)

$$m_* := \frac{d-4}{d-2} < m_c := \frac{d-2}{2}, \quad p(m) := \frac{d(1-m)}{2(2-m)}$$

Theorem 1 Let $d \ge 3$, $m \in (0,1)$. Consider a solution v with initial data satisfying (H1')-(H2')

- (i) For any $m>m_*$, there exists a unique D_* such that $\int_{\mathbb{R}^d} (v(t)-V_{D_*}) \ dx = 0 \text{ for any } t>0. \text{ Moreover, for any } p \in (p(m),\infty], \\ \lim_{t\to\infty} \int_{\mathbb{R}^d} |v(t)-V_{D_*}|^p \ dx = 0$
- (ii) For $m \leq m_*$, $v(t) V_{D_*}$ is integrable, $\int_{\mathbb{R}^d} (v(t) V_{D_*}) \ dx = \int_{\mathbb{R}^d} f \ dx$ and v(t) converges to V_{D_*} in $L^p(\mathbb{R}^d)$ as $t \to \infty$, for any $p \in (1, \infty]$
- (iii) (Convergence in Relative Error) For any $p \in (d/2, \infty]$,

$$\lim_{t \to \infty} \|v(t)/V_{D_*} - 1\|_p = 0$$

[Daskalopoulos-Sesum, 06], [Blanchet-Bonforte-J.D.-Grillo-Vázquez, 06]

Convergence with rate

$$q_* := \frac{2d(1-m)}{2(2-m) + d(1-m)}$$

Theorem 2 If $m \neq m_*$, there exist $t_0 \geq 0$ and $\lambda_{m,d} > 0$ such that

(i) For any $q \in (q_*, \infty]$, there exists a positive constant C_q such that

$$||v(t) - V_{D_*}||_q \le C_q e^{-\lambda_{m,d} t} \quad \forall \ t \ge t_0$$

(ii) For any $\vartheta \in [0, (2-m)/(1-m))$, there exists a positive constant C_{ϑ} such that

$$\||x|^{\vartheta}(v(t)-V_{D_*})\|_2 \leq C_{\vartheta} e^{-\lambda_{m,d} t} \quad \forall t \geq t_0$$

(iii) For any $j \in \mathbb{N}$, there exists a positive constant H_j such that

$$||v(t) - V_{D_*}||_{C^{j}(\mathbb{R}^d)} \le H_j e^{-\frac{\lambda_{m,d}}{d+2(j+1)}t} \quad \forall \ t \ge t_0$$

Intermediate asymptotics

Corollary 3 Let $d \geq 3$, $m \in (0,1)$, $m \neq m_*$. Consider a solution u with initial data satisfying (H1)-(H2). For τ large enough, for any $q \in (q_*, \infty]$, there exists a positive constant C such that

$$||u(\tau) - U_{D_*}(\tau)||_q \le C R(\tau)^{-\alpha}$$

where $\alpha = \lambda_{m,d} + d(q-1)/q$ and large means $T - \tau > 0$, small, if $m < m_c$, and $\tau \to \infty$ if $m \ge m_c$

For any $p \in (d/2, \infty]$, there exists a positive constant C and $\gamma > 0$ such that

$$\|v(t)/V_{D_*} - 1\|_{L^p(\mathbb{R}^d)} \le \mathcal{C} e^{-\gamma t} \quad \forall t \ge 0$$

Rewriting the equation in relative variables

 L^1 -contraction, Maximum Principle, conservation of relative mass...

Passing to the quotient: the function $w(t,x):=\frac{v(t,x)}{V_{D_x}(x)}$ solves

$$\begin{cases} w_t = \frac{1}{V_{D_*}} \nabla \cdot \left[w V_{D_*} \nabla \left(\frac{m}{m-1} (w^{m-1} - 1) V_{D_*}^{m-1} \right) \right] & \text{in } (0, +\infty) \times \mathbb{R}^d \\ w(0, \cdot) = w_0 := \frac{v_0}{V_{D_*}} & \text{in } \mathbb{R}^d \end{cases}$$

with

$$0 < \inf_{x \in \mathbb{R}^d} \frac{V_{D_0}}{V_{D_*}} \le w(t, x) \le \sup_{x \in \mathbb{R}^d} \frac{V_{D_1}}{V_{D_*}} < \infty$$

... Harnack Principle

$$\|w(t)\|_{C^k(\mathbb{R}^d)} \leq \overline{H}_k < +\infty \quad \forall \ t \geq t_0$$

$$\exists \ t_0 \geq 0 \text{ s.t. (H1) holds if } \exists \ R > 0 \text{, } \sup_{|y| > R} u_0(y) \, |y|^{\frac{2}{1-m}} < \infty \text{, and } m > m_c$$

Relative entropy

Relative entropy

$$\mathcal{F}[w] := \frac{1}{1-m} \int_{\mathbb{R}^d} \left[(w-1) - \frac{1}{m} (w^m - 1) \right] V_{D_*}^m dx$$

Relative Fisher information

$$\mathcal{J}[w] := \frac{m}{(m-1)^2} \int_{\mathbb{R}^d} \left| \nabla \left[\left(w^{m-1} - 1 \right) V_{D_*}^{m-1} \right] \right|^2 w \, V_{D_*} \, dx$$

Proposition 1 Under assumptions (H1)-(H2),

$$\frac{d}{dt}\mathcal{F}[w(t)] = -\mathcal{J}[w(t)]$$

Proposition 2 Under assumptions (H1)-(H2), there exists a constant $\lambda > 0$ such that

$$\mathcal{F}[w(t)] \le \lambda^{-1} \, \mathcal{J}[w(t)]$$

Heuristics: linearization

Take $w(t,x)=1+\varepsilon\,\frac{g(t,x)}{V_{D_*}^{m-1}(x)}$ and formally consider the limit $\varepsilon\to 0$ in

$$\begin{cases} w_t = \frac{1}{V_{D_*}} \nabla \cdot \left[w V_{D_*} \nabla \left(\frac{m}{m-1} (w^{m-1} - 1) V_{D_*}^{m-1} \right) \right] & \text{in } (0, +\infty) \times \mathbb{R}^d \\ w(0, \cdot) = w_0 := \frac{v_0}{V_{D_*}} & \text{in } \mathbb{R}^d \end{cases}$$

Then g solves

$$g_t = m V_{D_*}^{m-2}(x) \nabla \cdot [V_{D_*}(x) \nabla g(t, x)]$$

and the entropy and Fisher information functionals

$$\begin{aligned} \operatorname{F}[g] := \frac{1}{2} \int_{\mathbb{R}^d} |g|^2 \, V_{D_*}^{2-m} \, \, dx \quad \text{and} \quad \operatorname{I}[g] := m \int_{\mathbb{R}^d} |\nabla g|^2 \, V_{D_*} \, \, dx \\ \operatorname{consistently verify} \, \frac{d}{dt} \, \operatorname{F}[g(t)] = - \, \operatorname{I}[g(t)] \end{aligned}$$

Comparison of the functionals

Lemma 3 Let $m \in (0,1)$ and assume that u_0 satisfies (H1)-(H2) [Relative entropy]

$$C_1 \int_{\mathbb{R}^d} |w-1|^2 V_{D_*}^m dx \le \mathcal{F}[w] \le C_2 \int_{\mathbb{R}^d} |w-1|^2 V_{D_*}^m dx$$

[Fisher information]

$$I[g] \leq \beta_1 \, \mathcal{J}[w] + \beta_2 \, F[g]$$
 with $g := (w-1) \, V_{D_*}^{m-1}$

Theorem 4 (Hardy-Poincaré) There exists a positive constant $\lambda_{m,d}$ such that for any $m \neq m_* = (d-4)/(d-2)$, $m \in (0,1)$, for any $g \in \mathcal{D}(\mathbb{R}^d)$,

$$\int_{\mathbb{R}^d} |g - \overline{g}|^2 |V_{D_*}^{2-m}| dx \le \mathcal{C}_{m,d} \int_{\mathbb{R}^d} |\nabla g|^2 |V_{D_*}| dx$$

with
$$\overline{g} = \int_{\mathbb{R}^d} g \ V_{D_*}^{2-m} \ dx$$
 if $m > m_*$, $\overline{g} = 0$ otherwise

Hardy-Poincaré inequalities

With
$$\alpha = \frac{1}{m-1}$$
, $\alpha_* = \frac{1}{m_*-1} = 1 - \frac{d}{2}$

Theorem 5 Assume that $d \geq 3$, $\alpha \in \mathbb{R} \setminus \{\alpha^*\}$, $d\mu_{\alpha}(x) := h_{\alpha}(x) dx$, $h_{\alpha}(x) := (1 + |x|^2)^{\alpha}$. Then

$$\int_{\mathbb{R}^d} \frac{|v|^2}{1+|x|^2} d\mu_{\alpha} \le \mathcal{C}_{\alpha,d} \int_{\mathbb{R}^d} |\nabla v|^2 d\mu_{\alpha}$$

holds for some positive constant $C_{\alpha,d}$, for any $v \in \mathcal{D}(\mathbb{R}^d)$, under the additional condition $\int_{\mathbb{R}^d} v \, d\mu_{\alpha-1} = 0$ if $\alpha \in (-\infty, \alpha^*)$

... Hardy-Poincaré inequalities = weighted Poincaré inequalities corresponding to generalized Cauchy distributions (fat tails)... [Bobkov, Ledoux] [Cattiaux, Gozlan, Guillin, Roberto]

Limit cases

Poincaré inequality: take $\alpha = -1/\varepsilon^2$ to $v_{\varepsilon}(x) := \varepsilon^{-d/2} \, v(x/\varepsilon)$ and let $\varepsilon \to 0$

$$\int_{\mathbb{R}^d} |v|^2 d\nu_\infty \le \frac{1}{2} \int_{\mathbb{R}^d} |\nabla v|^2 d\nu_\infty \quad \text{with} \quad d\nu_\infty(x) := e^{-|x|^2} dx$$

... under the additional condition $\int_{\mathbb{R}^d} v \ e^{-|x|^2} dx = 0$

Hardy's inequality: take $v_{1/\varepsilon}(x) := \varepsilon^{d/2} \, v(\varepsilon \, x)$ and let $\varepsilon \to 0$

$$\int_{\mathbb{R}^d} \frac{|v|^2}{|x|^2} \, d\nu_{0,\alpha} \le \frac{1}{(\alpha - \alpha_*)^2} \int_{\mathbb{R}^d} |\nabla v|^2 \, d\nu_{0,\alpha} \quad \text{with} \quad d\nu_{0,\alpha}(x) := |x|^{2\alpha} \, dx$$

... under the additional condition $\bar{v}_{\alpha}:=\int_{\mathbb{R}^d}v\,d\nu_{0,\alpha}=0$ if $\alpha<\alpha^*$

Some estimates of $\mathcal{C}_{lpha,d}$

α	$-\infty < \alpha \le -d$	$-d < \alpha < \alpha^*$	$\alpha^* < \alpha \le 1$
$\mathcal{C}_{lpha,d}$	$\frac{1}{2\left lpha ight }$	$\mathcal{C}_{\alpha,d} \ge \frac{4}{(d+2\alpha-2)^2}$	$\frac{4}{(d+2\alpha-2)^2}$
Optimality	-	-	yes

α	$1 \le \alpha \le \bar{\alpha}(d)$	$\bar{\alpha}(d) \le \alpha \le d$	d	$\alpha > d$
$\mathcal{C}_{lpha,d}$	$\frac{4}{d(d+2\alpha-2)}$	$\frac{1}{\alpha(d+\alpha-2)}$	$\frac{1}{2d(d-1)}$	$\frac{1}{d(d+\alpha-2)}$
Optimality	-	-	yes	ı

$$\alpha_* = -\frac{d-2}{2}$$
, $\bar{\alpha}(d) \in (1,d)$

$$-(1+|x|^2)^{1-\alpha}\nabla\cdot((1+|x|^2)^{\alpha}\nabla)$$
 in $L^2((1+|x|^2)^{\alpha-1}dx)$

Taken from [J. Denzler & R. J. McCann, PNAS 100 (2003)], $p = \frac{2}{2-m} - d$

Hardy's inequality: the "completing the square method"

Let $v \in \mathcal{D}(\mathbb{R}^d)$ with $\operatorname{supp}(v) \subset \mathbb{R}^d \setminus \{0\}$ if $\alpha < \alpha^*$

$$0 \leq \int_{\mathbb{R}^d} \left| \nabla v + \lambda \frac{x}{|x|^2} v \right|^2 |x|^{2\alpha} dx$$

$$= \int_{\mathbb{R}^d} |\nabla v|^2 |x|^{2\alpha} dx + \left[\lambda^2 - \lambda \left(d + 2\alpha - 2 \right) \right] \int_{\mathbb{R}^d} \frac{|v|^2}{|x|^2} |x|^{2\alpha} dx$$

An optimization of the right hand side with respect to λ gives $\lambda = \alpha - \alpha^*$, that is $(d + 2\alpha - 2)^2/4 = \lambda^2$. Such an inequality is optimal, with optimal constant λ^2 , as follows by considering the test functions:

1) if
$$\alpha > \alpha^*$$
: $v_{\varepsilon}(x) = \min\{\varepsilon^{-\lambda}, (|x|^{-\lambda} - \varepsilon^{\lambda})_+\}$

2) if
$$\alpha < \alpha^*$$
: $v_{\varepsilon}(x) = |x|^{1-\alpha-d/2+\varepsilon}$ for $|x| < 1$ $v_{\varepsilon}(x) = (2-|x|)_+$ for $|x| \ge 1$

and letting $\varepsilon \to 0$ in both cases

An optimality case

Proposition 4 Let $d \geq 3$, $\alpha \in (\alpha^*, \infty)$. Then the Hardy-Poincaré inequality holds for any $v \in \mathcal{D}(\mathbb{R}^d)$ with $\mathcal{C}_{\alpha,d} := 4/(d-2+2\alpha)^2$ if $\alpha \in (\alpha^*,1]$ and $\mathcal{C}_{\alpha,d} := 4/[d(d-2+2\alpha)]$ if $\alpha \geq 1$. The constant $\mathcal{C}_{\alpha,d}$ is optimal for any $\alpha \in (\alpha^*,1]$.

Proof [Davies]: $h_{\alpha}=(1+|x|^2)^{\alpha}$, $\nabla h_{\alpha}=2\alpha\,x\,h_{\alpha-1}$, $\Delta h_{\alpha}=2\alpha\,h_{\alpha-2}[d+2(\alpha-\alpha^*)\,|x|^2]>0$ By Cauchy-Schwarz

$$\left| \int_{\mathbb{R}^d} |v|^2 \, \Delta h_{\alpha} \, dx \right|^2 \leq 4 \left(\int_{\mathbb{R}^d} |v| \, |\nabla v| \, |\nabla h_{\alpha}| \, dx \right)^2$$

$$\leq 4 \int_{\mathbb{R}^d} |v|^2 \, |\Delta h_{\alpha}| \, dx \int_{\mathbb{R}^d} |\nabla v|^2 \, |\nabla h_{\alpha}|^2 \, |\Delta h_{\alpha}|^{-1} \, dx$$

$$\begin{aligned} |\Delta h_{\alpha}| &\geq 2 |\alpha| \min\{d, (d-2+2\alpha)\} \frac{h_{\alpha}(x)}{1+|x|^2} \\ &\frac{|\nabla h_{\alpha}|^2}{|\Delta h_{\alpha}|} &\leq \frac{2 |\alpha|}{d-2+2\alpha} h_{\alpha}(x) \end{aligned}$$