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Abstract

An overview of the connections between functional inequalities, nonlinear
diffusions, (transport theory) and generalized entropy functionals

@ From functional inequalities to rates in nonlinear diffusions (porous
medium equation)

@_ Functional inequalities and gradient flows

@ Large time asymptotics of nonlinear diffusions (fast diffusion
equation)
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L7 Poincare inequalities for
general measures, porous media

equation

J.D., Ivan Gentil, Arnaud Guillin and Feng-Yu Wang




Goal

Li-Poincaré inequalities, ¢ € (1/2, 1]
2 1/q
[Var, (£9)]"" = [/fQQd” (ffw) ] ) CP/|Vf|2du
Application to the weighted porous media equation, m > 1

du

5 =A™ -V -Vu™, t>0, zeR?

(Ornstein-Uhlenbeck form). With dy = dv = duy = e ¥V dz/ [ eV dx

d m+l o
G Var, () =~ [ 1V Py
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Outline

Equivalence between the following properties:

@ L9-Poincaré inequality

@ Capacity-measure criterion

@ Weak Poincaré inequality

@ BCR (Barthe-Cattiaux-Roberto) criterion

In dimension d = 1, there are necessary and sufficient conditions to
satisfy the BCR criterion

Motivation: large time asymptotics in connection with functional
iInequalities
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L?-Poincare inequality

We shall say that (i, v) satisfies a L4?-Poincaré inequality with constant
Cp if for all non-negative functions f € C'(M) one has

Var, (1)1 < G [ 1917 v

€ (0,1] (false for ¢ > 1 unless p is a Dirac measure)
2
Var, (9°) = [¢*dp — ([ g dp)” = pu(g?) — u(g)?

g — |Var,(f9)] Ha increasing wrt q € (0, 1]: L9-Poincaré inequalities form
a hierarchy
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Capacity-measure criterion

Capacity Cap, (A4, 2) of two measurable sets A and (2 such that
ACQCM

Cap, (4.9) i=int { 191 dv s 1€ C(). La < f <o}

1/(1—q) (1-9)/q
Bp = Sup{ Z [M(Qk)] }

1—
iz [Cap, (O, Qpy0)] 7

over all Q@ C M with (2) < 1/2 and all sequences (£2) ., such that for
all k € Z, Q C Qi1 C O

21/4 Cp

Kkp Op

Theorem 1 (i) Ifqe[1/2,1), then Gp

<
(iy Ifqe (0,1) and Bp < 400, then Cp <
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Weak Poincare inequalities

Definition 2 [Réckner and Wang] (u, ) satisfies a weak Poincaré inequality
if there exists a non-negative non increasing function Gwp(s) on (0,1/4)
such that, for any bounded function f € C* (M),

Vs>0, Var.(f) < Awe(s) / VF2dv + s [Oscu(f)]]

Var, (f) < pu((f —a)?) Va € R
For a = (supess,, f + infess,, f)/2, Var,(f) < [Oscu(f)f/él: s < 1/4.

Proposition 3 Letq € [1/2,1). If (u,v) satisfies the L?-Poincaré
inequality, then it also satisfies a weak Poincarée inequality with

Bwp(s) = (11+5v5) Bp s'~V1/2, K := (11 + 5/5)/2.

L4-Poincaré — BCR criterion = weak Poincaré
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Theorem 4 [Mazja] Letq € [1/2,1). For all bounded open set ) C M, if
(%) ez s @ sequence of open sets such that Q;, C Q1 C €, then

Z N(Qk)l/(l_q) . 1 M(Q)( ¢ >q/(1q) .
vez [Cap, (2, Qk+1)]Q/(1_Q) T 1-qJ ®(1)

where ®(t) := inf {Cap,(A,Q) : ACQ, u(A) >t}
As a consequence: 3p < (1 — )99t /D(t)| Lasa-o (0. u(e2))

Corollary 5 Letq € [1/2,1). If (u,v) satisfies a weak Poincare inequality
with function Gwp, then it satisfies a L?-Poincaré inequality with

1—gqg

g < S ()T /)

LT74(0,1/2)

Weak Poincaré L9 -Poincaré

Li-Poincarée — _ a1 — ,
with ﬁwp(s) =(Cs a Vq € (07Q)
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BCR criterion (1/2)

A variant of two results of [Barthe, Cattiaux, Roberto, 2005] (no absolute
continuity of the measure . with respect to the volume measure)

Theorem 6 [BCR] Let i1 be a probability measure and v a positive
measure on M such that (i, v) satisfies a weak Poincaré inequality with

function Gwe(s). Then for every measurable subsets A, B of M such that
AC Bandu(B) <1/2,

1(A) - . )
Cap, (A, B) > (A with  ~(s) := 4 Bwp(s/4)

Proof <1 Take f suchthatls < f <Ig: Osc,(f)
By Cauchy-Schwarz, ( [ fd,u) < u(B) [ f2du <

iA)

Be(s) [V dv s > Van,(f) = 5 [ £ duz "

W) = Thwe(a/m S SWPse(0,1/4) 5@2 Funts With a/2 = p(A4)/2<1/4 >
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BCR criterion (2/2)

Lemma 7 Take ;. and v as before, 6 € (0,1), v a positive non increasing
function on (0,0). IfVY A, B C M such that A C B are measurable and
u(B) <0,

p(A)
7(1(A))

then for every function f € C*(M) such that u(24) <0, Qy :={f > 0}

Cap, (A, B) >

/fi < H +25\/57(8)/Q IVfI?dv + s {supessujf}2 Vse(0,1)

Theorem 8 Same assumptions, 6 = 1/2. ThenVf € Ct(M)

. 11 +25\/5

Var,(f) 7(8)/\Vf\2du+s [Osc,(f)] Vse(0,1/4)

0 = 1/2: use the median m,,(f), u(f = m,(f)) = 1/2, u(f < m,(f)) = 1/2
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Using the BCR criterion: a “Hardy condition”

[Muckenhoupt, 1972] [Bobkov-Gotze, 1999] [Barthe-Roberto, 2003]
[Barthe-Cattiaux-Roberto, 2005]

M =R, du = p, dx with median m,,, dv = p, dz

R(z) := p([z, +00)) ,  L(z) := p((—oc, z])
r(x) ::/w 1 dx and /{(z) ::‘/mui dx

m,, Pv Pv

Proposition 9 Letq € [1/2,1]. (u,v) satisfies a L4-Poincaré inequality if

/ |7 R|V1=9 dp < o0 and/ 0LV =D dy < oo

my

L 9 Poincaré inequalities — p.10/1.



Proof

Proof <« Method: Var,(f) < u(|F-|?) + p(|F|?)) with g = (f — f(m,))+
and prove that

11+ 55
2

ullgl?) < 1(5) [1Val* o+ s [swpess,g] - ¥ € (0,1/2)
Let AC BC M = (my,o0)suchthat A C Band u(B) <1/2
CapV(A, B) = Capy (A, (mu, OO)) — Capy((a7 QQ)7 (mM7 OO)) —

where a = inf A. Change variables: t = R(a) and choose
v(t) ==t (roR)"1(t)foranyt c (0,1/2) >
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Porous media equation

With ¢ € C2(RY), dpy = —;_; define £ on C2(R%) by

VfeC*RY Lf:=Af—-Vi-Vf

Such a generator £ is symmetric in L2, (R?),
Vf,geCRY) [fLgduy=—[Vf-Vgduy
Consider for m > 1 the weighted porous media equation

([ Ou __ m
5 =Lu™ in Q

u(+,0) =ug in €
n-Vu=0 on X

_/\

\
QCRY, Q=0Qx]0,+00), X =00 x [0, +00)

w € C?, L'-contraction, existence and uniqueness
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Asymptotic behavior

Theorem 10 Letm > 1 and assume that (i, 1) Satisfies a L2-Poincare
inequality, ¢ = 2/(m + 1)

o —2/(m—1)
Var,, (u(-,t)) < ([Varw (UO)}_(m_l)/2 ™ 4(m(+ 1)21) Cp t)

Reciprocally, if the above inequality is satisfied for any wg, then (p, tt.y)
satisfies a L?-Poincare inequality with constant Cp

Proof <

d m-+1

Apply the L2-Poincaré inequality with v = f2/(m+1) ¢ =2/(m + 1)

Reciprocally, a derivation at ¢t = 0 gives the L%-Poincaré inequality >
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A conclusion on L‘-Poincareé inequalities

@ Observe that we have only algebraic rates

@ Weak logarithmic Sobolev inequalities [Cattiaux-Gentil-Guillin, 2006],
Li-logarithmic Sobolev inequalities [D.-Gentil-Guillin-Wang, 2006]

2q
(/ f2q }Ofngdu d,u) = Entu(f2q>1/q < CLS/‘V]C‘Q d,u

@_ Orlicz spaces, duality, connections with mass transport theory
[Bobkov-Gotze, 1999] [Cattiaux-Gentil-Guillin, 2006] [Wang, 2006]
[Roberto-Zegarlinski, 2003] [Barthe-Cattiaux-Roberto, 2005]
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The Bakry-Emery method
revisited

J.D., B. Nazaret, G. Savaré
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Consider a domain Q C R?, dv = gdz, g = e~ and a generalized
Ornstein-Uhlenbeck operator: A v := Av — DF' - Dv

/\Dv|2 dfy:—/fUAng dy Yve Hy(Q,dy)
Q Q

Let s:=vP/2and a := (2 —p)/p, p € (1,2]

ve=Av TN, teRT
Vo-n=0 z€0Q,teR"

1
&) = Q[UP_1—p(fU—1)} dry
4 2
I,(t) := ” Q\Ds| d~y
D 2
Kp(t) = /\Ags\2 dfy—|—04/ Ags| il dry
Q Q S
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Written in terms of s = vP/2, the entropy is

1 2 2/
= —— —1-p(s*?—1)| d
&= Q[S p(s )} g

and the evolution is governed by

D 2
st = Ags + o Ds
S
A simple computation shows that
d
%gp(t) = —Ip()
d . 8

—7Z,(t)

|
|
|
S
i
~—~
~
~—
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Using the commutation relation [D, A ] s = —D?F Ds, we get

d
/ (AQS)Q dry = / ‘D23‘2 d”Y—l—/ D?F Ds - Ds dy — Z /aQ 81'23'8 0isn,; gdH4 1
Q 0 0

i,j=1

\ 4

>0 If €2 IS convex

Let z := /s. Using : 2D?s- Dz ® Dz = D (|Dz|?) : Dz and i.p.p., we get
£, = /\AgsP dfy—|—4oz/ A,s|Dz|? dy
Q Q
> /\D23|2 d7+/ D?F Ds - Ds dry
Q Q
—|—42a/ |Dz|* d’y—2-4a/ D?s : Dz ® Dz dy
Q Q

> (1—a)/ ID*s|? dfy+/D2FDs-Ds dry
Q Q
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An extension of the criterion of Bakry-Emery

Let V(z) := infeega—1 (D*F(2) &, &) and define

Jo (252 IDwf +V ) dy
A 1= inf
RS Y Jo lw]? dry

Theorem 1 LetF € C?(Q), v =e ¥ € L} (Q), and Q2 be a convex domain
inR<. If \y(p) is positive, then

Linear diffusions: non-local criterion for the Bakry-Emery method — p.5/!



Generalized entropies

Consider the weighted porous media equation
vy = Agv™

d~ is a probability measure, p € (1, 2)

1
Emp(t) = [ mAp—1 _ 1} d
Tost) = clmp) [ D dy
. B(m—1) 2 B(m—1) |DS‘2
Kimp(t) = S |Ags|dy+a | s Ags dry
’ O 0O S
: . L L 2— __ 4dm (m+p—1)
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adapting the Bakry-Emery method...

Written in terms of s = v!/#, the evolution is governed by

1 Ds|?
— 5, = sPm=Y) [Ags + Ds| ]
m S
A computation shows that

d
ZEnp(t) = Tyt

1 d

— = Tnp(t) = —2e(m,p) Kunp(t)

Exactly as in the linear case, define for any 6 € (0, 1)

o ( 0) | Dw|* + V |w|? )
A1(m, 0) = inf
weH(Q,d~)\{0} Jo |w|? dy

Linear diffusions: non-local criterion for the Bakry-Emery method — p.7/!



The non-local condition

Assume that for some 6 € (0,1), A\1(m,0) > 0. Admissible parameters m
and p correspond to (m,p) € Eg, 1 <m < p+ 1, where the set Ey is
defined by the condition: b% — 4a(f)c < 0.

0.4 0.6 0.8 1.2 1.4 1.6
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Results for the fast diffusion equation

Lemma 1 With the above notations, if () is convex and (m, p) € Ey are
admissible, then

4—3q

1 32—q)
{(m +p—2)Enp+1 B )Km,p

Tip < 5 [Ae(m,p)] K

Wl

Theorem 2 Under the above conditions there exists a positive constant x
which depends on &, ,(0) such that any smooth solution v of the porous
media equation satisfies, for any t > 0,

Zin,p(0)

Lonp(t) < 3
{1 + 5 YT (0) t}

£ () < 3 [Im,p(())} 3 2
26 (145 /T p(0)1]

Linear diffusions: non-local criterion for the Bakry-Emery method — p.9/!



Entropies, transport and
distances between measures

J.D., B. Nazaret, G. Savaré




Wasserstein distances

p > 1, uo and p; probability measures on R¢

Q@ Transport plans between o and u1 : I'(uo, 1) is the set of probability
measures on R? x RY having o and i, as marginals.

@ Wasserstein distance between g ans juq
Wl (po, p1) = inf {/ [z —y|PdE(z,y) © X € P(uo,m)}
R4 x R4
@ The Benamou-Brenier characterization (2000)

1
Wg(luo, ,ul) = inf {/ /d |Vt|p,0td$dt . (,Ot, Vt)tE[O,l] admiSSible}
0 R

where admissible paths (p;, v¢):c[0,1] are such that
Orpt + V- (prve) = 0, po = po, p1 = i

Entropies, transport and distances between measures — p.2/!



A generalization of the Benamou-Brenier approach

Given a function h on R*, define the admissible paths by

Orpe + V- (h(pe)ve) = 0,
pPo — Ko, P1 — M1

and consider the distance

1
W7 (po, 1) = inf {/ ) (vi|Ph(pe)dxdt = (pe, Vi)ie(o] admissible}
0 JR

hip) =p*, 0<a<1

Q. o =1 : Wasserstein case

@ o = 0: homogeneous Sobolev distance on W12, With ¢ = =}

Ed(pr — po) = €€ Ccl(Rd)a /

Rd Rd

1 — pollyi 1.0 = SUP{ V¢ < 1}

Entropies, transport and distances between measures — p.3/



Gradient flows

Q_ Jordan-Kinderlehrer-Otto 98 : Formal Riemannian structure on
P(R%): the McCann interpolant is a geodesic. For an integral
functional such as

the gradient flow of F is

o _

5 =V (0V (F(p)))

@ Ambrosio-Gigli-Savaré 05 : Rigorous framework for JKO’s calculus in
the framework of length spaces (based on the optimal transportation)

@ Otto-Westdickenberg 05 : Use the Brenier-Benamou formulation to
prove

W3 (110, 1) < W (po, 1)
along the heat flow on a compact Riemannian manifold

Entropies, transport and distances between measures — p.4/!



The heat equation as gradient flow w.r.t. IV,

Denote by S; the semi-group associated to the heat equation. Let
a>1— % and consider the generalized entropy functional

1
U, (1) = 2= da, if u = pL
Theorem 1 If i € P(RY), ¥, (1) < +o0, then ¥, (S;p) < +oo for allt > 0
and
1d. ,
§%Wa(st,ua o) + Ve (Seu) < U, (o)

Corollary 2 ¥, is geodesically convex w.r.t. W,

Entropies, transport and distances between measures — p.5/



Fast diffusion equations:
entropy methods and functional
inequalities

ug = Au™ zeR? t>0

@ Entropy methods for fast diffusion and porous media equations:
iIntermediate asymptotics

@_ Entropy methods and functional inequalities

Fast diffusion equations: entropy methods and functional inequalities — p.1/!



Porous media / fast diffusion equations

Generalized entropies and nonlinear diffusions (EDP, uncomplete):

[Del Pino, J.D.], [Carrillo, Toscani], [Otto], [Juengel, Markowich, Toscani],
[Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Biler, J.D., Esteban],
[Markowich, Lederman], [Carrillo, Vazquez], [Cordero-Erausquin, Gangbo,
Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub],...
[del Pino, Saez], [Daskalopulos, Sesum]...

1) [J.D., del Pino] relate entropy and entropy-production by
Gagliardo-Nirenberg inequalities

Various alternative approaches:

2) “entropy — entropy-production method”

3) mass transport techniques

4) hypercontractivity for appropriate semi-groups

Fast diffusion equations: entropy methods and functional inequalities — p.2/!



Heat equation, porous media & fast diffusion equation

uy = Au™
r €R?
heat equation

fast diffusion equation : :
porous media equation

: ; » m

i
d—2 d—1
d d 1

extinction in finite time global existence in L!

Existence theory, critical values of the parameter m

Fast diffusion equations: entropy methods and functional inequalities — p.3/!



Intermediate asymptotics for fast diffusion & porous media

up = Au™  in RY
U|t:0 — U Z 0

uo(l + |z|*) € LY, i € L'

Intermediate asymptotics: ug € L, [ugdx =M >0

Self-similar (Barenblatt) function: U(t) = O(t=%/ (2=d1=m)))
[Friedmann, Kamin, 1980] As ¢t — 400

Ju(t, ) = U(t, )| = ot~/ AEmm)

—> What about ||u(t,-) —U(t, )|l ?

Fast diffusion equations: entropy methods and functional inequalities — p.4/!



Time-dependent rescaling

Take u(t,z) = R=4(t)v (v(t),x/R(t)) where
R=RM=™=1 " RO)=1, 7=IogR

vy = Av" + V- (zv), V=0 = Ug

[Ralston, Newman, 1984] Lyapunov functional: Entropy or Free energy

v 1, 5
Z[v]—/(m_1+§|x| v) dr — g

Fast diffusion equations: entropy methods and functional inequalities — p.5/!



Entropy and entropy production

Stationary solution: choose C' such that ||veo || = ||u||pr = M > 0

1 —1/(1—m)
(o) = (€ 4+ 55 o)
_|_

Fix 3y so that ¥[v..| = 0. The entropy can be put in an m-homogeneous
form

Sl = [ () vide with (t) = U=l

Theorem1 d >3, m e [£L +o0),m > 2, m # 1

I[v] > 23]

Fast diffusion equations: entropy methods and functional inequalities — p.6/!



An equivalent formulation

Slo] = [ (5 + 3lal?v) do = 2o < 3 [ | %7 4o do =

m—1

I{v]

1
2

v = w?, ™ = P!

1/ 2 : 1

K<0ifm<1, K> 0ifm > 1and, for some ~, K can be written as

¥
K = K, (/vdx:/wZde>
1/2p .

W= Wso = Vs 1S Optimal

m = 2=1: Sobolev, m — 1: logarithmic Sobolev

Fast diffusion equations: entropy methods and functional inequalities — p.7/!



Gagliardo-Nirenberg inequalities

Theorem 2 [Del Pino, J.D.] Assume that1 < p < -4 andd > 3

|wll2p < Al[Vwlly [lwl,3

A= (M) (0) i (r(l;(y)@) |

g_ dip—1) y:p+1
p(d+2—(d—2)p) p—1

|

Similar results for0 < p < 1

Uses [Serrin Pucci], [Serrin-Tang]

1 <p= 1= < -% < Fast diffusion case: <1 <m < 1
D<p<l<—= Porous medium case: m > 1

Fast diffusion equations: entropy methods and functional inequalities — p.8/!



Intermediate asymptotics

Y[v] < X[ug] e 27+ Csiszar-Kullback inequalities

Theorem 3 [Del Pino, J.D.]
() = <m<1ifd>3

1—d(1—m)
lim sup ¢2=20=m) ||u™ — ult||p1 < 00
t——+o00
(n1<m<2
14+d(m—1) S
lim sup t2Fdm=D || [u — Uso] Uy~ |11 < 00
t——+o00

Uoo (1, 2) = R™Ut) voo (z/R(t))

Fast diffusion equations: entropy methods and functional inequalities — p.9/!



Fast diffusion equations: the
finite mass regime

@ If m > 1: porous medium regime or m; := 41 < m < 1, the decay of

the entropy is governed by Gagliardo-Nirenberg inequalities, and to

the limiting case m = 1 corresponds the logarithmic Sobolev
iInequality

Q@ If m. := %2 < m < m;, solutions globally exist in L! and the
Barenblatt self-similar solution has finite mass

Fast diffusion equations: entropy methods and functional inequalities — p.1/:



A remark on the mass transport approach

@ The fast diffusion equation can be seen as the gradient flow of the
generalized entropy with respect to the Wasserstein distance

@_ Displacement convexity holds in the same range of exponents,
m € ((d —1)/d, 1), as for the Gagliardo-Nirenberg inequalities

= How to extend to m. < m < mq what has been done for m > my ?

Fast diffusion equations: entropy methods and functional inequalities — p.2/:



Fast diffusion: finite mass regime

Inequalities...

Sobolev
logarithmic Sobolev
/ Gagliardo-Nirenberg

>

‘ ™ e LY, 1’y e [

Bakry-Emery method (relative entropy)

global existence in L'

... existence of solutions of u; = Au™

Fast diffusion equations: entropy methods and functional inequalities — p.3/:



Extensions and related results

@ Mass transport methods: inequalities / rates [Cordero-Erausquin,
Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Aguenh,
Ghoussoub, Kang]

@ General nonlinearities [Biler, J.D., Esteban], [Carrillo-DiFrancesco],
[Carrillo-duengel-Markowich-Toscani-Unterreiter] and gradient flows
[Jordan-Kinderlehrer-Otto], [Ambrosio-Savareé-Gigli],
[Otto-Westdickenberg] [J.D.-Nazaret-Savaré], etc

@ Non-homogeneous nonlinear diffusion equations [Biler, J.D.,
Esteban], [Carrillo, DiFrancesco]

Extension to systems and connection with Lieb-Thirring inequalities
[J.D.-Felmer-Loss-Paturel, 2006], [J.D.-Felmer-Mayorga]

@ Drift-diffusion problems with mean-field terms. An example: the
Keller-Segel model [J.D-Perthame, 2004], [Blanchet-J.D-Perthame,
2006], [Biler-Karch-Laurencot-Nadzieja, 2006],
[Blanchet-Carrillo-Masmoudi, 2007], etc

@_ ... connection with linearized problems [Markowich-Lederman],
[Carrillo-Vazquez], [Denzler-McCann], [McCann, Slepcev]

©
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Fast diffusion equations: the
infinite mass regime

Q@  If m > m.:= %2 < m < m, solutions globally exist in L! and the
Barenblatt self-similar solution has finite mass.

Q_ For m < m,, the Barenblatt self-similar solution has infinite mass

= How to extend to m < m. what has been done for m > m. ? Work in
relative variables !

Fast diffusion equations: Entropy methods and linearization, intermediate asymptotics, vanishing — p.1/1¢



Fast diffusion: infinite mass regime

Z[VDl\VDo] — O ‘ Vb, — Vp, € L1
vo — Vp, € L! X[VD,1 VD, ] < o0
VDl — VDO Q/ L ‘ V0, Vb € Lt
: : : — > m
d—4 d—2 _d_ a—1 1 . .
d—-2 d - di2 d Gagliardo-Nirenberg
N ‘ ] v e L ity e I

Bakry-Emery method (relative entropy)

global existence in L'

n» me mi
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Entropy methods and linearization...

... intermediate asymptotics, vanishing

A. Blanchet, M. Bonforte, J.D., G. Girillo, J.L. Vazquez

@_ use the properties of the flow
@_ write everything as relative quantities (to the Barenblatt profile)

@_ compare the functionals (entropy, Fisher information) to their
linearized counterparts

—> Extend the domain of validity of the method to the price of a restriction

of the set of admissible solutions

Fast diffusion equations: Entropy methods and linearization, intermediate asymptotics, vanishing — p.3/1¢



Setting of the problem

We consider the solutions u(7,y) of
O-u = Au™
u(0,-) = ug

where m € (0,1) (fast diffusion) and (7,y) € Q7 = (0,T) x R?
Two parameter ranges: m. < m < 1 and 0 < m < m., where

Q@ m.<m<1, T = +oco: intermediate asymptotics, 7 — +oo
Q@ 0<m<meT < +oc: vanishing in finite time

I =
lim u(7,y) =0
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Barenblatt solutions

with
@ R(r) = [d(m —me) (r+T)] 7779 if my <m < 1

@_ (vanishing in finite time) if 0 < m < m.

Time-dependent rescaling: ¢ := log (ggg;) and z:= %. The

function v(¢, z) := R(7)?u(r,y) solves a nonlinear Fokker-Planck type equation

Ov(t,x) = Av™(t,x) + V - (zv(t, x)) (t,z) € (0,+00) x R4

v(0,2) = vo(x) = R(0)% ug(R(0) z) r € R¢
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Assumptions

(H1) ug is @ non-negative function in L. _(R?) and there exist positive
constants 7" and Dy > D; such that

Upo7(0,y) <uo(y) <Up, 7(0,y) YyeR

(H2) If m € (0, m.], there exist D, € [D1, Do) and f € L'(R?) such that

w(y) =Up. r(0,y)+ f(y) VyeR?

(H1’) vo is @ non-negative function in L. _(R?) and there exist positive
constants Dy > D; such that

Vo, (x) <vo(z) < Vp,(x) VaeR?
(H2) If m € (0,m,], there exist D, € [Dy, D] and f € L'(R?) such that

vo(x) =Vp, (z)+ f(x) Vace RY
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Convergence to the asymptotic profile (without rate)

mem O e m 822 )._d(l—m)
T g ST Ty PO e T
Theorem 1 Letd > 3, m € (0,1). Consider a solution v with initial data
satisfying (H1’)-(H2’)
(i) For anym > m., there exists a unique D, such that

Jpa(v(t) = Vp,) dz =0 for any t > 0. Moreover, for any p € (p(m), oo},
hmt_>OO Ja |v t) —Vp,|Pder =0

(i) Form < m,, v(t) — Vp, is integrable, [,.(v(t) — Vp,) dx = [, [ dx
and v(t) converges to Vp_ in LP(RY) ast — oo, for any p € (1, oc]
(iif) (Convergence in Relative Error) For any p € (d/2, o],

lim [[v(t)/ VD, = 1], =

t— o0

[Daskalopoulos-Sesum, 06], [Blanchet-Bonforte-J.D.-Grillo-Vazquez, 06]

Fast diffusion equations: Entropy methods and linearization, intermediate asymptotics, vanishing — p.7/1¢



Convergence with rate

2d(1—m)
22—m)+d(1—m)

Qx =
Theorem 2 [fm # m,, there existt, > 0 and A\, 4 > 0 such that

() Forany q € (q., 00|, there exists a positive constant C, such that

[v(t) — Vp,|lq < Cq e mdt Vi >t

(iy Foranyd € [0,(2—m)/(1 —m)), there exists a positive constant Cy
such that

[ 1z]”(v(t) = Vp,)||, < Cy et Vi >t

(i) Forany j € N, there exists a positive constant H; such that

>‘m,d

lo(t) = Vb, |lciray < Hje” #2600 " V¢ > ¢
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Intermediate asymptotics

Corollary 3 Letd > 3, m € (0,1), m # m,. Consider a solution v with
initial data satisfying (H1)-(H2). For T large enough, for any q € (q., o],
there exists a positive constant C' such that

lu(m) = Up,(7)llq < CR(T)™"

where o = \,,, 4 +d(q—1)/q and large means T — t > 0, small, if m < m.,
andr — oo Ifm > m,

For any p € (d/2, x|, there exists a positive constant C and~ > 0 such that

|v(t)/ Vo, = 1| gay SCe7" V>0
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Rewriting the equation in relative variables

L*-contraction, Maximum Principle, conservation of relative mass...

Passing to the quotient: the function w(t, ) := -7 solves

1
( Wy = 7 \Y [w VD*V<L(wm_1 —1) VDm_l)] in (0, +00) x R4
D,

m — 1 -
\
Yo :
O <) = = — Rd
\ w(0, ) = wo 7 in
with
V V
0< inf =2 < w(t,z) < sup —2 < 00
x€ER4 VD* xERA VD*

... Harnack Principle

Jwt)lor@ay < Hy <400 Vit >t
319 > 0s.t. (H1) holds if 3 R > 0, sup,~ g uo(y) \y\ﬁ < oo, and m > m,

Fast diffusion equations: Entropy methods and linearization, intermediate asymptotics, vanishing — p.10/1'



Relative entropy

Relative entropy

Flu] = —— | [(w-1)— ~@™ 1)V da

I —m Jpa m

Relative Fisher information

Thol = /Rd}V[(wm_ Ve PV, de

Proposition 1 Under assumptions (H1)-(H2),

d

()] =—Jw()

Proposition 2 Under assumptions (H1)-(H2), there exists a constant
A > 0 such that

Flw®)] < A7 Tw(?)]
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Heuristics: linearization

Take w(t,z) =1+¢ Vg,qff—’f()x) and formally consider the limit e — 0 in

( 1 m :
Wy = V—D* v . [’U} VD*V(m(wm_l _ 1) Vl’gfi—1>] in (07 —I—OO) X Rd

Yo :
) = = — RY
\ w(0, ) = wy 7 in

*

Then g solves
ge =mVp 2(x) V- [Vp.(z) Vg(t, z)]

and the entropy and Fisher information functionals

1
Flg] := 5 g2 Vg:m dr and llg] :=m Vgl? Vb, dx
Rd Rd

consistently verify % Flg(t)] = — 1]g(t)]
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Comparison of the functionals

Lemma 3 Letm € (0,1) and assume that u, satisfies (H1)-(H2)
[Relative entropy]

C lw— 17 VA dz < Flw] < Cq lw—1° VS da
Rd Rd

[Fisher information]
lg) < B Tlw] + B2 Flg] with g:=(w—1) V5™

Theorem 4 (Hardy-Poincare) There exists a positive constant A, 4 such
that for any m # m, = (d — 4)/(d — 2), m € (0,1), for any g € D(RY),

g —g)° VA de < Crma | V|’ Vb, do
Rd Rd

withg = Ja 9 Vg:m dx if m > m,, g = 0 otherwise
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Hardy-Poincareé inequalities

Witha = -, o, = —1 :1—%

m—1 My —1

Theorem 5 Assume thatd > 3, « € R\ {a*}, dua(z) := ho(x) dx,
ho(x) := (1 + |z]?)*. Then

|U‘2 2
/Rle:vP proo < Cova | VO d

holds for some positive constant C,, 4, for any v € D(R?), under the
additional condition |, vdpa—1 =0 ifa € (—oo, a*)

... Hardy-Poincaré inequalities = weighted Poincaré inequalities
corresponding to generalized Cauchy distributions (fat tails)... [Bobkov,
Ledoux] [Cattiaux, Gozlan, Guillin, Roberto]
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Limit cases

Poincaré inequality: take o = —1/e? to v.(z) := e~ %2 v(xz/e) and lete — 0
1 , 2
/ W dv, < —/ Voldve, with dus(z) = e=1o da
Rd 2 R4

... under the additional condition [, v e~1*I"dz = 0

Hardy’s inequality: take vy /. (z) := %2 v(cx) and let e — 0

2 1 .
/ Gl dvg o < / Vul?dvg.e With  dyg o(z) = |z|** dz
R R4

@ |z]? (@ = o)

.. under the additional condition v, := [, vdvy o =0if a < o
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Some estimates of C, 4

Q —o<a< —d| d<a<a® | a<a<l
1 4
Cad 2]af Ca,a2 (d+20—2)2 (d+20—2)2
Optimality - - YES
Q l<a<ald | ald <a< d a>d
C 4 1 1 1
a,d d(d+20—2) a(d+a—2) 2d(d—1) | d(d+a—2)
Optimality - - yeS -
a, = —%2 a(d) € (1,d)
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—(L+ |z[*)7oV - (L + |2[f)*V) in LA((L + [2]*)* ™ da)
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Hardy’s inequality: the “completing the square method”

Let v € D(R?) with supp(v) € R4\ {0} if o < o*

o<
Rd

2

Vo + Ao z|* da

]2

|z |* d

2
IVol? |2]?* dx + [AZ —A(d+2a — 2)} / Jvl*

Rd R4 |'CE|2

An optimization of the right hand side with respect to A\ gives A = a — a*,
that is (d + 2a — 2)?/4 = A2. Such an inequality is optimal, with optimal
constant \?, as follows by considering the test functions:
1) ifa > a*: v.(z) = min{e™?, (|z|=* — M)}
2) if o < a*:v.(x) = |z|t 72 for |z] < 1
ve(x) = (2 — |z|) for |z > 1
and letting £ — 0 in both cases
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An optimality case

Proposition 4 Letd > 3, a € (a*,0). Then the Hardy-Poincare
inequality holds for any v € D(RY) withCp g :=4/(d — 2+ 2a)? if

a€ (a*,1]landCy q:=4/ld(d—2+2a)] ifa > 1. The constantC,, 4 is
optimal for any o € (a*, 1].

Proof [Davies]: h, = (1 + |z|*)%, Vho =22 he—1,
Ahgy =2ahg_2ld + 2(a — a*) |z]?] > 0

By Cauchy-Schwarz
2
< 4(/ |v\|w|rm|dx)
Rd

/\fu|2Ahada:
Rd
< 4 \v|2|Aha\da;/ IVv|? [Vha|? |[ARg| ™! da
Rd

Rd

2

|Ahy| > 2|al min{d, (d—2+2a)} ha(z)

1+|z|?
[Vhal? 2 |of
Aha] S do21%a ha ()
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