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The Fokker-Planck equation (domain in Rd )

The linear Fokker-Planck (FP) equation

∂u

∂t
=∆u+∇· (u∇φ)

on a domainΩ⊂Rd , with no-flux boundary conditions

(∇u+u∇φ) ·ν= 0 on ∂Ω

is equivalent to the Ornstein-Uhlenbeck (OU) equation

∂v

∂t
=∆v −∇φ ·∇v =:L v

[Bakry, Emery, 1985], [Arnold, Markowich, Toscani, Unterreiter, 2001]
With mass normalized to 1, the unique stationary solution of (FP) is

us =
e−φ∫

Ω e
−φdx

⇐⇒ vs = 1
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The Bakry-Emery method (domain in Rd )

With dγ= us dx and v such that
∫
Ω v dγ= 1, q ∈ (1,2], the q-entropy is

defined by

Eq[v ] :=
1

q−1

∫
Ω
(vq −1−q (v −1))dγ

Under the action of (OU), with w = vq/2, Iq[v ] := 4
q

∫
Ω |∇w |2dγ,

d

dt
Eq[v(t, ·)]=−Iq[v(t, ·)] and

d

dt

(
Iq[v ]− 2λEq[v ]

)
≤ 0

with λ := inf
w∈H1(Ω,dγ)\{0}

∫
Ω (2

q−1
q ‖Hessw‖2+Hessφ:∇w⊗∇w)dγ∫

Ω |∇w |2dγ

Proposition

[Bakry, Emery, 1984] [JD, Nazaret, Savaré, 2008] Let Ω be convex.
If λ> 0 and v is a solution of (OU), then Iq[v(t, ·)]≤Iq[v(0, ·)]e−2λt

and Eq[v(t, ·)]≤ Eq[v(0, ·)]e−2λt for any t ≥ 0 and, as a consequence,

Iq[v ]≥ 2λEq[v ] ∀v ∈ H1(Ω,dγ) (Entropy-entropy production ineq.)
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Figure: (p−2)λ 7→ (p−2)µ(λ) with d = 3

‖∇u‖2
L2(Sd )

+λ‖u‖2
L2(Sd )

≥µ(λ)‖u‖2
Lp(Sd )

Taylor expansion of u = 1+εϕ1 as ε→ 0 with −∆ϕ1 = dϕ1

µ(λ)<λ if and only if λ> d

p−2
B The inequality holds with µ(λ)=λ= d

p−2 [Bakry, Emery, 1985]
[Beckner, 1993], [Bidaut-Véron, Véron, 1991, Corollary 6.1]
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Interpolation inequalities and a rigidity result on Sd

p ∈ [1,2)∪ (2,2∗] if d ≥ 3, 2∗ = 2d
d−2 ; p ∈ [1,2)∪ (2,+∞) if d = 1, 2

B Optimal Gagliardo-Nirenberg-Sobolev interpolation inequalities

‖∇u‖2
L2(Sd )

≥ d

p−2

(
‖u‖2

Lp(Sd )
−‖u‖2

L2(Sd )

)
∀u ∈ H1(Sd )

B A result of uniqueness on a classical example
On the sphere Sd , let us consider the positive solutions of

−∆u+λu = up−1

Theorem

If λ≤ d , u ≡λ1/(p−2) is the unique solution

[Gidas, Spruck, 1981], [Bidaut-Véron, Véron, 1991]
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The Bakry-Emery method on the sphere

Entropy functional

Ep[ρ] := 1
p−2

[∫
Sd ρ

2
p dµ− (

∫
Sd ρ dµ)

2
p

]
if p 6= 2

E2[ρ] :=
∫
Sd ρ log

(
ρ

‖ρ‖
L1(Sd )

)
dµ

Fisher information functional

Ip[ρ] :=
∫
Sd |∇ρ

1
p |2 dµ

[Bakry, Emery, 1985] carré du champ method: use the heat flow

∂ρ

∂t
=∆ρ

and observe that d
dt Ep[ρ]=−Ip[ρ],

d

dt

(
Ip[ρ]−d Ep[ρ]

)
≤ 0 =⇒ Ip[ρ]≥ d Ep[ρ]

with ρ = |u|p , if p ≤ 2# := 2d2+1
(d−1)2
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The evolution under the fast diffusion flow

To overcome the limitation p ≤ 2#, one can consider a nonlinear diffusion
of fast diffusion / porous medium type

∂ρ

∂t
=∆ρm

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any p ∈ [1,2∗]

d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0

1.0 1.5 2.5 3.0

0.0

0.5

1.5

2.0

(p,m) admissible region, d = 5
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Computation of the admissible region

With ρ = |u|βp and m= 1+ 2
p

(
1
β −1

)
, κ=β(p−2)+1, with the trace free

Hessian

Lu := Hu− 1
d −1

(∆u)gd

and the trace free tensor

Mu := ∇u⊗∇u
u

− 1
d −1

|∇u|2
u

gd

we have

d

dt

(
Ip[ρ]− d Ep[ρ]

)
=− d

d −1

(
a‖Lu‖2−2bLu :Mu+c‖Mu‖2

)
a= 1 , b= (κ+β−1)

d −1
d +2

, c= (κ+β−1)
d

d +2
+κ(β−1)

so that the admissible region is defined by b2−ac< 0
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Improved inequalities

B the monotonicity result

d

dt

(
Ip[ρ]− d Ep[ρ]

)
=− d

d −1
a

∥∥∥∥Lu− b
a

M

∥∥∥∥2
− d

d −1

(
c− b2

a

)
‖Mu‖2

B improved inequalities [Arnold, JD, 2005], [JD, Nazaret, Savaré, 2008],
[JD, Toscani, 2013], [JD, Esteban, Kowalczyk, Loss, 2014], [JD, Esteban,
2020]

Ip[ρ]≥ dΦ
(
Ep[ρ]

)
for some convexΦwithΦ(0)= 0 andΦ′(0)= 1

Application: with d ≥ 2, 2−p 6= γ :=
(
d−1
d+2

)2
(p−1)(2#−p)> 0, we have

‖∇u‖2
L2(Sd )

≥ d

2−p−γ

(
‖u‖2

L2(Sd )
−‖u‖2−

2γ
2−p

Lp(Sd )
‖u‖

2γ
2−p
L2(Sd )

)
∀u ∈ H1(Sd )
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Constructive stability results

in Gagliardo-Nirenberg-Sobolev

inequalities

Stability, a joint project with M. Bonforte, B. Nazaret and N. Simonov
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Fast diffusion equation
and entropy methods

∂u

∂t
=∆um (FDE)

The Rényi entropy powers and the Gagliardo-Nirenberg inequalities

Self-similar solutions and the entropy – entropy production method

Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)

Initial time layer: improved entropy – entropy production estimates
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Rényi entropy powers
and

Gagliardo-Nirenberg-Sobolev
inequalities

[Toscani, Savaré, 2014]
[JD, Toscani, 2016]
[JD, Esteban, Loss, 2016]
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The fast diffusion equation in original variables

Consider the fast diffusion equation in Rd , d ≥ 1, m ∈ (0,1)

∂u

∂t
=∆um

with initial datum u(t = 0,x)= u0(x)≥ 0 such that∫
Rd

u0dx =M > 0 and
∫
Rd

|x |2u0dx <+∞

The large time behavior is governed by the self-similar Barenblatt
solutions

B(t,x) := 1(
κt1/µ

)d B

(
x

κt1/µ

)
where µ := 2+d (m−1) and B is the Barenblatt profile with

∫
Rd Bdx =M

B(x) := (
1+|x |2)− 1

1−m

J. Dolbeault Entropy methods and applications to diffusions
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The Rényi entropy power F

The entropy is defined by

E :=
∫
Rd

vm dx

and the Fisher information by

I :=
∫
Rd

v |∇p|2dx with p= m

m−1
vm−1

If v solves the fast diffusion equation, then

E′ = (1−m) I

To compute I′, we will use the fact that

∂p
∂t

= (m−1)p∆p+|∇p|2

F :=Eσ with σ= µ

d (1−m)
= 1+ 2

1−m

(
1
d
+m−1

)
= 2
d

1
1−m

−1

has a linear growth asymptotically as t →+∞
J. Dolbeault Entropy methods and applications to diffusions
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The variation of the Fisher information

Lemma

If v solves ∂v
∂t =∆vm with 1− 1

d ≤m< 1, then

I′ = d

dt

∫
Rd

v |∇p|2dx =−2
∫
Rd

vm
(
‖D2p‖2+ (m−1)(∆p)2

)
dx

Explicit arithmetic geometric inequality

‖D2p‖2− 1
d
(∆p)2 =

∥∥∥∥D2p− 1
d
∆p Id

∥∥∥∥2

.... there are no boundary terms in the integrations by parts ?
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The concavity property

Theorem

[Toscani, Savaré] Assume that m≥ 1− 1
d if d > 1 and m> 0 if d = 1. Then

F (t) is increasing, (1−m)F′′(t)≤ 0 and

lim
t→+∞

1
t

F(t)= (1−m)σ lim
t→+∞Eσ−1 I= (1−m)σEσ−1

? I?

[JD, Toscani] The inequality

Eσ−1 I≥Eσ−1
? I?

is equivalent to the Gagliardo-Nirenberg inequality

‖∇w‖θ2 ‖w‖1−θq+1 ≥CGN ‖w‖2q

if 1− 1
d ≤m< 1. Correspondance: vm−1/2 = w

‖w‖2q , q = 1
2m−1

J. Dolbeault Entropy methods and applications to diffusions
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The fast diffusion equation
in self-similar variables

B Rescaling and self-similar variables

B Relative entropy and the entropy – entropy production inequality

B Large time asymptotics and spectral gaps
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Entropy – entropy production inequality

With a time-dependent rescaling based on self-similar variables

u(t,x)= 1
κd Rd

v
(
τ,

x

κR

)
where

dR

dt
=R1−µ , τ(t) := 1

2 logR(t)

∂u
∂t =∆um is changed into a Fokker-Planck type equation

∂v

∂τ
+∇·

[
v

(
∇vm−1− 2x

)]
= 0 (r FDE)

Generalized entropy (free energy) and Fisher information

F [v ] :=− 1
m

∫
Rd

(
vm−Bm−mBm−1 (v −B)

)
dx

I [v ] :=
∫
Rd

v
∣∣∣∇vm−1+ 2x

∣∣∣2 dx
are such that I [v ]≥ 4F [v ] by (GNS) [del Pino, JD, 2002] so that

F [v(t, ·)]≤F [v0]e
−4t

J. Dolbeault Entropy methods and applications to diffusions
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Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vázquez, 2009]

(
C0+|x |2)− 1

1−m ≤ v0 ≤ (
C1+|x |2)− 1

1−m (H)

LetΛα,d > 0 be the best constant in the Hardy–Poincaré inequality

Λα,d

∫
Rd

f 2 dµα−1 ≤
∫
Rd

|∇f |2 dµα ∀ f ∈ H1(dµα) ,
∫
Rd

f dµα−1 = 0

with dµα := (1+|x |2)αdx , for α< 0

Lemma

Under assumption (H),

F [v(t, ·)]≤C e−2γ(m)t ∀ t ≥ 0 , γ(m) := (1−m)Λ1/(m−1),d

Moreover γ(m) := 2 if 1−1/d ≤m< 1

J. Dolbeault Entropy methods and applications to diffusions
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Spectral gap

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

[Denzler, McCann, 2005]
[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2010-2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]
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Initial and asymptotic time layers
B Asymptotic time layer: constraint, spectral gap and improved entropy –
entropy production inequality

B Initial time layer: the carré du champ inequality and a backward
estimate

J. Dolbeault Entropy methods and applications to diffusions



A brief introduction to entropy methods
Stability, fast diffusion equation and entropy methods

Symmetry and symmetry breaking

Entropy methods and fast diffusion inRd

The threshold time and the improved entropy – entropy production inequality (subcritical case)
Stability results (subcritical and critical case)

The asymptotic time layer improvement

Linearized free energy and linearized Fisher information

F[g ] := m

2

∫
Rd

g2 B2−m dx and I[g ] :=m(1−m)

∫
Rd

|∇g |2 Bdx

Hardy-Poincaré inequality. Let d ≥ 1, m ∈ (m1,1) and g ∈ L2(Rd ,B2−m dx)
such that ∇g ∈ L2(Rd ,Bdx),

∫
Rd g B2−m dx = 0 and

∫
Rd x g B2−m dx = 0

I[g ]≥ 4αF[g ] where α= 2−d (1−m)

Proposition

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/3,1) if d = 1, η= 2(dm−d +1) and
χ=m/(266+56m). If

∫
Rd v dx =M ,

∫
Rd x v dx = 0 and

(1−ε)B ≤ v ≤ (1+ε)B

for some ε ∈ (0,χη), then
I [v ]≥ (4+η)F [v ]

J. Dolbeault Entropy methods and applications to diffusions
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The initial time layer improvement: backward estimate

Hint: for some strictly convex function ψ with ψ(0)=ψ′(0)= 0, we have

I −4F ≥ 4(ψ(F )−F )≥ 0

Far from the equality case (i.e., close to an initial datum away from the
Barenblatt solutions) for (FDE), we expect some improvement

Rephrasing the carré du champ method, Q[v ] := I [v ]
F [v ]

is such that

dQ

dt
≤Q (Q−4)

Lemma

Assume that m>m1 and v is a solution to (r FDE) with nonnegative
initial datum v0. If for some η> 0 and t? > 0, we have Q[v(t?, ·)]≥ 4+η,
then

Q[v(t, ·)]≥ 4+ 4ηe−4t?

4+η−ηe−4t?
∀t ∈ [0,t?]

J. Dolbeault Entropy methods and applications to diffusions
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Stability in
Gagliardo-Nirenberg-Sobolev

inequalities
Our strategy

Regularity and stability

Our strategy

Choose "> 0, small enough

Get a threshold time t?(")

0 t?(") t
Backward estimate

by entropy methods

Forward estimate

based on a spectral gap

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

E
s

⇐
#↳

Initial time layer Asymptotic time layer
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The threshold time
and the uniform convergence

in relative error
B The regularity results allow us to glue the initial time layer estimates
with the asymptotic time layer estimates

The improved entropy – entropy production inequality holds for any time
along the evolution along (r FDE)

(and in particular for the initial datum)

J. Dolbeault Entropy methods and applications to diffusions



A brief introduction to entropy methods
Stability, fast diffusion equation and entropy methods

Symmetry and symmetry breaking

Entropy methods and fast diffusion inRd

The threshold time and the improved entropy – entropy production inequality (subcritical case)
Stability results (subcritical and critical case)

If v is a solves (r FDE) for some nonnegative initial datum v0 ∈ L1(Rd )
satisfying

sup
r>0

r
d (m−mc )
(1−m)

∫
|x |>r

v0dx ≤A<∞ (HA)

then
(1−ε)B ≤ v(t, ·)≤ (1+ε)B ∀t ≥ t?

for some explicit t? depending only on ε and A

J. Dolbeault Entropy methods and applications to diffusions
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Global Harnack Principle

The Global Harnack Principle holds if for some t > 0 large enough

BM1(t−τ1,x)≤ u(t,x)≤BM2(t+τ2,x) (GHP)

[Vázquez, 2003], [Bonforte, Vázquez, 2006]: (GHP) holds if u0 . |x |− 2
1−m

[Vázquez, 2003], [Bonforte, Simonov, 2020]: (GHP) holds if

A[u0] := sup
R>0

R
2

1−m−d
∫
Rd \BR(0)

|u0|dx <∞

Theorem

[Bonforte, Simonov, 2020] If M +A[u0]<∞, then

lim
t→∞

∥∥∥∥u(t)−B(t)

B(t)

∥∥∥∥
∞

= 0

J. Dolbeault Entropy methods and applications to diffusions
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Uniform convergence in relative error

Theorem

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that m ∈ (m1,1) if d ≥ 2,
m ∈ (1/3,1) if d = 1 and let ε ∈ (0,1/2), small enough, A> 0, and G > 0
be given. There exists an explicit threshold time T ≥ 0 such that, if u is a
solution of

∂u

∂t
=∆um (FDE)

with nonnegative initial datum u0 ∈ L1(Rd ) satisfying

A[u0]= sup
r>0

r
d (m−mc )
(1−m)

∫
|x |>r

u0dx ≤A<∞ (HA)

∫
Rd u0dx = ∫

Rd B dx =M and F [u0]≤G , then

sup
x∈Rd

∣∣∣∣ u(t,x)

B(t,x)
−1

∣∣∣∣≤ ε ∀t ≥T

J. Dolbeault Entropy methods and applications to diffusions
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The threshold time

Proposition

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/3,1) if d = 1, ε ∈ (0,εm,d ), A> 0 and G > 0

T = c?
1+A1−m+G

α
2

εa

where a= α
ϑ

2−m
1−m , α= d (m−mc) and ϑ= ν/(d +ν)

c? = c?(m,d)= sup
ε∈(0,εm,d )

max
{
εκ1(ε,m), εaκ2(ε,m), εκ3(ε,m)

}

κ1(ε,m) :=max

{
8c

(1+ε)1−m−1
,

23−mκ?
1− (1−ε)1−m

}

κ2(ε,m) := (4α)α−1 K
α
ϑ

ε
2−m
1−m

α
ϑ

and κ3(ε,m) := 8α−1

1− (1−ε)1−m
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Theorem

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/2,1) if d = 1, A> 0 and G > 0. Then
there is a positive number ζ such that

I [v ]≥ (4+ζ)F [v ]

for any nonnegative function v ∈ L1(Rd ) such that F [v ]=G ,∫
Rd v dx =M ,

∫
Rd x v dx = 0 and v satisfies (HA)

We have the asymptotic time layer estimate

ε ∈ (0, 2ε?) , ε? :=
1
2

min
{
εm,d , χη

}
with t? = t?(ε)=

1
2

logR(T )

(1−ε)B ≤ v(t, ·)≤ (1+ε)B ∀t ≥ t?

and, as a consequence, the initial time layer estimate

I [v(t, .)]≥ (4+ζ)F [v(t, .)] ∀t ∈ [0,t?] where ζ= 4ηe−4t?

4+η−ηe−4t?
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Two consequences

ζ=Z
(
A,F [u0]

)
, Z(A,G ) := ζ?

1+A(1−m) 2
α +G

, ζ? :=
4ηcα
4+η

(
εa?

2αc?

) 2
α

B Improved decay rate for the fast diffusion equation in rescaled variables

Corollary

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/2,1) if d = 1, A> 0 and G > 0. If v is a
solution of (r FDE) with nonnegative initial datum v0 ∈ L1(Rd ) such that
F [v0]=G ,

∫
Rd v0dx =M ,

∫
Rd x v0dx = 0 and v0 satisfies (HA), then

F [v(t, .)]≤F [v0]e
−(4+ζ)t ∀t ≥ 0

B The stability in the entropy - entropy production estimate
I [v ]−4F [v ]≥ ζF [v ] also holds in a stronger sense

I [v ]− 4F [v ]≥ ζ

4+ζI [v ]
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Stability results
(subcritical case)

B We rephrase the results obtained by entropy methods in the language of
stability à la Bianchi-Egnell

Subcritical range

p∗ =+∞ if d = 1 or 2, p∗ = d
d−2 if d ≥ 3
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λ[f ] :=
(
2d κ[f ]p−1

p2−1
‖f ‖p+1

p+1

‖∇f ‖22

) 2p
d−p (d−4)

, κ[f ] := M
1
2p

‖f ‖2p

A[f ] := M

λ[f ]
d−p (d−4)

p−1 ‖f ‖2p2p

supr>0 r
d−p (d−4)

p−1
∫
|x |>r |f (x +xf )|2p dx

E[f ] := 2p
1−p

∫
Rd

(
κ[f ]p+1

λ[f ]
d
p−1
2p

f p+1−gp+1− 1+p
2p g1−p

(
κ[f ]2p

λ[f ]2
f 2p −g2p

))
dx

S[f ] := M
p−1
2p

p2−1
1

C(p,d)
Z(A[f ], E[f ])

Theorem

Let d ≥ 1, p ∈ (1,p∗)

If f ∈Wp(R
d ) := {

f ∈ L2p(Rd ) : ∇f ∈ L2(Rd ) , |x | f p ∈ L2(Rd )
}
,(

‖∇f ‖θ2 ‖f ‖1−θp+1

)2pγ
− (CGN ‖f ‖2p)2pγ ≥S[f ] ‖f ‖2pγ2p E[f ]
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With KGNS =C (p,d)C 2pγ
GNS , γ= d+2−p (d−2)

d−p (d−4) , consider the deficit functional

δ[f ] := (p−1)2 ‖∇f ‖22+4
d −p (d −2)

p+1
‖f ‖p+1

p+1−KGNS ‖f ‖2pγ2p

Theorem

Let d ≥ 1 and p ∈ (1,p∗). There is an explicit C =C [f ] such that, for any
f ∈ L2p(

Rd ,(1+|x |2)dx)
such that ∇f ∈ L2(Rd ) and A

[
f 2p]<∞,

δ[f ]≥C [f ] inf
ϕ∈M

∫
Rd

∣∣∣(p−1)∇f + f p∇ϕ1−p
∣∣∣2dx

B The dependence of C [f ] on A
[
f 2p]

and F
[
f 2p]

is explicit and does not
degenerate if f ∈M
B Can we remove the condition A

[
f 2p]<∞ ?
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Stability in Sobolev’s inequality
(critical case)

B A constructive stability result

B The main ingredient of the proof
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A constructive stability result

Let 2p? = 2d/(d −2)= 2∗, d ≥ 3 and

Wp?(R
d )=

{
f ∈ Lp

?+1(Rd ) : ∇f ∈ L2(Rd ) , |x | f p? ∈ L2(Rd )
}

Theorem

Let d ≥ 3 and A> 0. Then for any nonnegative f ∈Wp?(R
d ) such that∫

Rd
(1,x , |x |2) f 2∗

dx =
∫
Rd

(1,x , |x |2)gdx and sup
r>0

rd
∫
|x |>r

f 2∗
dx ≤A

we have

δ[f ] := ‖∇f ‖22−S2
d ‖f ‖22∗ ≥

C?(A)

4+C?(A)

∫
Rd

∣∣∣∇f + d−2
2 f

d
d−2 ∇g−

2
d−2

∣∣∣2dx
C?(A)=C?

(
1+A1/(2d))−1 and C? > 0 depends only on d
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Peculiarities of the critical case

B We can remove the normalization of f , use the r.h.s. to measure the
distance to the Aubin-Talenti manifold of optimal functions (in relative
Fisher information) and obtain for

A[f ] := sup
r>0

rd
∫
r>0

|f |2∗
(x +xf ) and Z [f ] :=

(
1+µ[f ]−d λ[f ]d A[f ]

)
the Bianchi-Egnell type result

δ[f ]≥ C?Z [f ]

4+Z [f ]
inf
g∈M

J [f |g ]

with xf , λ[f ] and µ[f ] as in the subcritical case

B Notion of time delay [JD, Toscani, 2014 & 2015]
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Extending the subcritical result in the critical case

To improve the spectral gap
for m = m1, we need to ad-
just the Barenblatt function

Bλ(x) = λ−d/2 B
(
x/

p
λ
)

in order

to match
∫
Rd |x |2 v dx where the

function v solves (r FDE) or to
further rescale v according to

v(t,x)= 1
R(t)d

w
(
t+τ(t), x

R(t)

)
,

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

dτ
dt =

(
1

K?

∫
Rd |x |2 v dx

)− d
2 (m−mc )−1 , τ(0)= 0 and R(t)= e2τ(t)

Lemma

t 7→λ(t) and t 7→ τ(t) are bounded on R+

J. Dolbeault Entropy methods and applications to diffusions
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Symmetry and symmetry breaking
in Caffarelli-Kohn-Nirenberg

inequalities

Joint work with M.J. Esteban and M. Loss
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Caffarelli-Kohn-Nirenberg inequalities

Let Da,b :=
{
v ∈ Lp

(
Rd , |x |−b dx)

: |x |−a |∇v | ∈ L2 (
Rd ,dx

)}
(∫
Rd

|v |p
|x |bp dx

)2/p
≤ Ca,b

∫
Rd

|∇v |2
|x |2a dx ∀v ∈Da,b

hold under the conditions that a≤ b ≤ a+1 if d ≥ 3, a< b ≤ a+1 if d = 2,
a+1/2< b ≤ a+1 if d = 1, and a< ac := (d −2)/2

p = 2d
d −2+2(b−a)

B An optimal function among radial functions:

v?(x)=
(
1+|x |(p−2)(ac−a)

)− 2
p−2

and C?a,b =
‖|x |−b v? ‖2p
‖|x |−a∇v? ‖22

Question: Ca,b =C?a,b (symmetry) or Ca,b >C?a,b (symmetry breaking) ?

J. Dolbeault Entropy methods and applications to diffusions
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CKN: range of the parameters

Figure: d = 3(∫
Rd

|v |p
|x |bp dx

)2/p
≤ Ca,b

∫
Rd

|∇v |2
|x |2a dx

a

b

0

1

−1

b = a

b= a+ 1

a = d−2
2

p

a≤ b ≤ a+1 if d ≥ 3
a< b ≤ a+1 if d = 2, a+1/2< b ≤ a+1 if d = 1
and a< ac := (d −2)/2

p = 2d
d −2+2(b−a)

[Glaser, Martin, Grosse, Thirring (1976)]
[F. Catrina, Z.-Q. Wang (2001)]
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B Proving symmetry breaking
[F. Catrina, Z.-Q. Wang], [V. Felli, M. Schneider (2003)]
[J.D., Esteban, Loss, Tarantello, 2009] There is a curve...

B Moving planes and symmetrization techniques
[Chou, Chu], [Horiuchi]
[Betta, Brock, Mercaldo, Posteraro]
+ Perturbation results: [CS Lin, ZQ Wang], [Smets, Willem], [JD, Esteban,
Tarantello 2007], [J.D., Esteban, Loss, Tarantello, 2009]

B Linear instability of radial minimizers: the Felli-Schneider curve
[Catrina, Wang], [Felli, Schneider]

B Direct spectral estimates
[J.D., Esteban, Loss, 2011]: sharp interpolation on the sphere and a
Keller-Lieb-Thirring spectral estimate on the line
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Symmetry versus symmetry breaking:
the sharp result in the critical case

[JD, Esteban, Loss, 2016]

a

b

0

Theorem

Let d ≥ 2 and p < 2∗. If either a ∈ [0,ac) and b > 0, or a< 0 and
b ≥ bFS(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

J. Dolbeault Entropy methods and applications to diffusions
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The symmetry proof in one slide

A change of variables: v(|x |α−1 x)=w(x), Dαv =
(
α ∂v

∂s , 1
s ∇ωv

)
‖v‖2p,d−n ≤Kα,n,p ‖Dαv‖ϑ2,d−n ‖v‖1−ϑp+1,d−n ∀v ∈ Hp

d−n,d−n(R
d )

The Felli & Schneider condition becomes α>αFS :=
√

d−1
n−1 and p = 2n

n−2
Concavity of the Rényi entropy power: with

Lα =−D∗
αDα =α2

(
u′′+ n−1

s u′
)
+ 1

s2
∆ωu and ∂u

∂t =Lαu
m

− d
dt G [u(t, ·)](∫Rd um |x |n−d dx)1−σ
≥+2

∫
Rd

(
α4

(
1− 1

n

)∣∣∣P′′− P′
s − ∆ωP

α2 (n−1)s2

∣∣∣2+ 2α2

s2

∣∣∣∇ωP′− ∇ωP
s

∣∣∣2)
um |x |n−d dx

+2
∫
Rd

(
(n−2)

(
α2

FS −α2) |∇ωP|2+c(n,m,d) |∇ωP|4
P2

)
um |x |n−d dx

Elliptic regularity and the Emden-Fowler transformation: justifying the
integrations by parts
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The variational problem on the cylinder

B With the Emden-Fowler transformation

v(r ,ω)= ra−ac ϕ(s ,ω) with r = |x | , s =− log r and ω= x

r

the variational problem becomes

Λ 7→µ(Λ) := min
ϕ∈H1(C )

‖∂sϕ‖2L2(C )
+‖∇ωϕ‖2L2(C )

+Λ‖ϕ‖2
L2(C )

‖ϕ‖2
Lp(C )

is a concave increasing function

Restricted to symmetric functions, the variational problem becomes

µ?(Λ) := min
ϕ∈H1(R)

∥∥∂sϕ∥∥2
2+Λ

∥∥ϕ∥∥2
2∥∥ϕ∥∥2

p

=µ?(1)Λα

Symmetry means µ(Λ)=µ?(Λ)
Symmetry breaking means µ(Λ)<µ?(Λ)

J. Dolbeault Entropy methods and applications to diffusions
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Numerical results

20 40 60 80 100

10

20

30

40

50

symmetric

non-symmetric

asymptotic

bifurcation

µ

Λα

µ(Λ)

�(Λ) = µ�(1) Λ
α

Parametric plot of the branch of optimal functions for p = 2.8, d = 5.

Non-symmetric solutions bifurcate from symmetric ones at a bifurcation pointΛ1
computed by V. Felli and M. Schneider. The branch behaves for large values ofΛ as

shown by F. Catrina and Z.-Q. Wang

J. Dolbeault Entropy methods and applications to diffusions



A brief introduction to entropy methods
Stability, fast diffusion equation and entropy methods

Symmetry and symmetry breaking

Caffarelli-Kohn-Nirenberg inequalities
Sharp symmetry versus symmetry breaking results
Scheme of the proof

These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Lectures/
B Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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