Entropy methods and applications to diffusions J

Jean Dolbeault
http://www.ceremade.dauphine.fr/ ~dolbeaul
July 11, 2022
Workshop on Contemporary Trends in Kinetic Theory and PDEs

Pavia, July 11-12, 2022


http://www.ceremade.dauphine.fr/~dolbeaul

Outline

© Anbrief introduction to entropy methods
e Entropies for the Fokker-Planck equation on a domain in R?
e A proof of the interpolation inequalities on S¢ by the carré du
champ method

© stability, fast diffusion equation and entropy methods
e Entropy methods and fast diffusion in RY
@ The threshold time and the improved entropy - entropy production
inequality (subcritical case)
@ Stability results (subcritical and critical case)

© Symmetry and symmetry breaking
o Caffarelli-Kohn-Nirenberg inequalities
@ Sharp symmetry versus symmetry breaking results
@ Scheme of the proof
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A brief introduction
to entropy methods

= The Bakry-Emery method: Fokker-Planck equation on R

= Entropies and flows on the sphere $¢: bifurcations, rigidity, inequalities

Three points of view

Q@ decay rates in diffusion equations

Q@ entropy - entropy production inequalities and functional inequalities
Q@ rigidity problems in elliptic equations, bifurcation problems
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The Fokker-Planck equation (domain in R9)

The linear Fokker-Planck (FP) equation

ou _

3t Au+V-(uVe)

on a domain Q < RY, with no-flux boundary conditions
(Vu+uVeg)-v=0 on 0Q

is equivalent to the Ornstein-Uhlenbeck (OU) equation

O Av-Vp-Vv= 2
— =Av-— -Vv=ZLv
ot
[Bakry, Emery, 1985], [Arnold, Markowich, Toscani, Unterreiter, 2001]

With mass normalized to 1, the unique stationary solution of (FP) is
eftp

= & v.=1
Joe ?dx s

Us
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A proof of the interpolation inequalities on S* by the carré du champ method

The Bakry-Emery method (domain in R?)

With dy = us dx and v such that [, vdy =1, g€ (1,2], the g-entropy s
defined by

salvli= = [ (v -1-q(v-1))ay

Under the action of (OU), with w = v9/2, ., [v] := %fg IVw|? dy,

9 oo l(t,)] = = Ia[v(t)] and %(ﬂq[v]—2/1éaq[v])50

ith A inf Jao (2‘%1 IHess w2 +Hess ¢: VweVw ) dy
‘W1 = In
weH(Q,dy)\(0} JoVwi*dy

Proposition

[Bakry, Emery, 1984] [JD, Nazaret, Savaré, 2008] Let Q be convex.
If A>0 and v is a solution of (OU), then F4[v(t,-)] < Z4[v(0,-)] e 27t
and &4[v(t,-)] < E4[v(0,)] e 2At for any t =0 and, as a consequence,

Flv]=21&[v] VYveH(Q,dy) (Entropy-entropy production ineq.)
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A brief introduction to entropy methods
Stability, fast diffusion equation and entropy methods
Symmetry and symmetry breaking

A bifurcation problem on the sphere S¢

Entropies for the Fokker-Planck equation on @ fomain in R
A proof of the interpolation inequalities on S by the carré du champ method
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Figure: (p=2)A— (p—2)u(A) with d=3
190122 g0y + A2 g0y = B 1012, g0y
Taylor expansion of u=1+¢e¢@1 ase — 0with —Ap; =dp;
d
u(A)< A ifandonlyif A> P

> The inequality holds with p(1) =1 = pL—Iz [Bakry, Emery, 1985]
[Beckner, 1993], [Bidaut-Véron, Véron, 1991, Corollary 6.1]
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Interpolation inequalities and a rigidity result on S¢

pell,2)u(2,2°]ifd 23,2" = 2% pe[1,2) U(2, +o0) if d = 1,2

> Optimal Gagliardo-Nirenberg-Sobolev interpolation inequalities
IVul? >i(||u||2 —llul? ) VueH(SY)
12(s9) = p—2 Lr(s9) 12(s9)

> A result of uniqueness on a classical example
On the sphere $7, let us consider the positive solutions of

~Au+Au=uPl

IfA<d, u=AY(P=2) is the unique solution

[Gidas, Spruck, 1981], [Bidaut-Véron, Véron, 1991]
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The Bakry-Emery method on the sphere

Entropy functional
2 2 .
8ol =25 | fse 07 du—(Jsap dp)?| if p#2

&a2[p]:= fsap |og(W) du

(s9
Fisher information functional

1
Iplp]:= Jsa VPP * dp
[Bakry, Emery, 1985] carré du champ method: use the heat flow

op
ot
and observe that %éap [p] = —Fplp],

Ap

& (#olol-d8plol) <0 = S0l = d&,lo]

. . 2
w1thp:|u|p,1fp52# = %
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: ast diffusion equation and entropy methods " - o .
St mu‘ " — " s A proof of the interpolation inequalities on S by the carré du champ method
1€ 1d symmetry breaking

The evolution under the fast diffusion flow

To overcome the limitation p < 2#, one can consider a nonlinear diffusion
of fast diffusion / porous medium type

)
P _ppm

ot
[Demange], [JD, Esteban, Kowalczyk, Loss]: for any p € [1,2*]

2 nle1 - daylot) <0

L
15 25 30

00}

(p, m) admissible region, d =5
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A proof of the interpolation inequalities on S by the carré du champ method

Computation of the admissible region

With p = ulfP and m =1+ 2 (% - 1), x = B(p—2) +1, with the trace free
Hessian

Lu:=Hu- 1 (Auv)
u:=Hu-——(Au)gd

and the trace free tensor

_VueVu 1 [Vuf?

M
Y u d-1 u £d
we have
i(y [o] - d&plp]) = - d (alLul? - 2bLu: Mu+cMu|?)
de\"P P d-1 '
d-1 d
a—1, b—(K+ﬁ—1)m, C—(‘K+ﬁ—1)m+1{(ﬁ—1)

so that the admissible region is defined by b% —ac <0
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Improved inequalities

> the monotonicity result

2 2
Lu—EM” _ (c—b—)uMun2
a a

& (olol- d8lp]) = - = <

> improved inequalities [Arnold, JD, 2005], [JD, Nazaret, Savaré, 2008],
[JD, Toscani, 2013], [JD, Esteban, Kowalczyk, Loss, 2014], [JD, Esteban,
2020]

Tplp] = d@(&p[p])

for some convex ® with ®(0) =0 and ®'(0) =1
2
Application: with d 22,2—p#y:= (Z—;%) (p—1)(2# - p) >0, we have

2y 2y

2-55 -
IVulEs gay = pap— (n U2 sy = 1l o | u||jzg§d)) vueH(s)
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Constructive stability results

in Gagliardo-Nirenberg-Sobolev
inequalities

Stability, a joint project with M. Bonforte, B. Nazaret and N. Simonov
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- entropy production inequality (subcr

Fast diffusion equation
and entropy methods

ou
— =Auy™ FDE
3 = A (FDE)
@ The Rényi entropy powers and the Gagliardo-Nirenberg inequalities

@ Self-similar solutions and the entropy - entropy production method

@ Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)

@ Initial time layer: improved entropy — entropy production estimates

J. Dolbeault Entropy methods and applications to diffusions



A brief introduction to entropy methods Entropy methods and fast diffusion in RY
Stability, fast diffusion equation and entropy methods The threshold time and the improved entropy - entropy production inequality (subcr
Symmetry and symmetry breaking Stability results (subcritical and critical case)

Rényi entropy powers
and

Gagliardo-Nirenberg-Sobolev
inequalities

[Toscani, Savaré, 2014]
[JD, Toscani, 2016]
[JD, Esteban, Loss, 2016]
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The fast diffusion equation in original variables

Consider the fast diffusion equation in R, d > 1, me (0,1)

ou
— =Auy™
ot 1
with initial datum u(t = 0, x) = up(x) = 0 such that
f updx=.4>0 and f |x|2uodx<+oo
Rd Rd

The large time behavior is governed by the self-similar Barenblatt

solutions 1
X
B(t,x):= ,%( )
(£:) (Ktl/ﬂ)d xti/n

where p:=2+d(m—1) and 2 is the Barenblatt profile with [ps 9 dx = .4

B(x):=(1+ |x|2)7ﬁ
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The Rényi entropy power F

The entropyis defined by
E:= f v™ dx
RrRd
and the Fisher information by

I::f vIVpl?dx with p= m_,m-1
Rd m-1

If v solves the fast diffusion equation, then
E'=(1-m)l

To compute I, we will use the fact that

0

6—‘Z:(m—1)pAp+|Vp|2
e i om P2 (L) 21
F:=E% with U_d(l—m)_1+1—m(d+ 1_d1—m

has alinear growth asymptotically as t — +oo
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The variation of the Fisher information

If v solves g—‘; =Av™ with 1- % <=m<1, then

d
"=EfR v IVpl dx—-zf (ID2p12 + (m—1) (ap)2) dx

Explicit arithmetic geometric inequality

1 1 2
ID%p|? - 5 (Ap)? = H D%p— aAplol

.. there are no boundary terms in the integrations by parts ?
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The concavity property

[Toscani, Savaré] Assume that m=1- % ifd>1and m>0ifd=1. Then
F(t) is increasing, (1—m)F"(t)<0 and

1 . _ _
lim —F(t)=(1-m)o lim E7"M=(1-m)oE] I,

t—+oo t

[JD, Toscani] The inequality
ECL1=ES 7,
is equivalent to the Gagliardo-Nirenberg inequality
IIVW|I2 ||W||q+1 > Con lwll2g

m-1/2 _ _w 1
Twizg’ 9= 2m-1

if1- % < m < 1. Correspondance: v
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The fast diffusion equation
in self-similar variables

> Rescaling and self-similar variables
> Relative entropy and the entropy — entropy production inequality

> Large time asymptotics and spectral gaps
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Entropy — entropy production inequality

With a time-dependent rescaling based on self-similar variables
1 X dR 1-
=— - - = 0 _1
u(t,x)—Kde V(T’KR) where 7 =R"7H, 1(t):=5 logR(t)

g—‘t’ = Au™ is changed into a Fokker-Planck type equation

g—:+v- V(va_l—ZX)] =0 (r FDE)

Generalized entropy (free energy) and Fisher information
— 1 m m m-1
g[v].——;fRd(v -B"-mAB (v—%))dx
m-1 2
Fv] :=[ v’Vv + 2x’ dx
RrRd

are such that .#[v] = 4 Z[v] by (GNS) [del Pino, JD, 2002] so that
Fv(t,)] s Fvole
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Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vazquez, 2009]

1 1

(Co+Ix12) T < vg< (Cp +Ix?) T (H)
Let Ag 4 > 0 be the best constant in the Hardy-Poincaré inequality

Aa,df f2d,ua_1s/ IVF2du, ¥ FfeHY (dug), /fdua_lzo
R R4 Rd

with dptg = (1 +|x]%)% dx, for & < 0

Under assumption (H),

Flv(t,")] = Ce 2r(mt yi>o, y(m):=(1-m)A1/(m-1),d

Moreover y(m):=2 if1-1/d<m<1

J. Dolbeault Entropy methods and applications to diffusions
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Spectral gap

+(m)
4
my = %
_ e
2
Case 1
— Case 2
e Case 3
me = 422 ,
m
1

[Denzler, McCann, 2005]
[BBDGYV, 2009] [BDGYV, 2010] [JD, Toscani, 2010-2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]
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Initial and asymptotic time layers

> Asymptotic time layer: constraint, spectral gap and improved entropy —
entropy production inequality

o> Initial time layer: the carré du champ inequality and a backward
estimate
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The asymptotic time layer improvement

Linearized free energy and linearized Fisher information
F[g]::mf g2 B> Mdx and I[g]::m(l—m)f IVg|? B dx
2 Jrd Rd

Hardy-Poincaré inequality. Let d =1, me (m1,1) and g € L?(R?, 8%~™ dx)
such that Vg € L2(R?, B dx), [pd g B> M dx =0and [paxg B> Mdx =0

l[g] =4aF[g] where a=2-d(1-m)

Proposition

Let me(my,1) ifd=2, me(1/3,1) ifd=1,n=2(dm-d+1) and
x=m/(266+56m). If [pavdx =4, [paxvdx=0 and

(1-e)B=vs(l+e)RB

for some € € (0,xn), then
G|z (4+n)F|v]
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The initial time layer improvement: backward estimate

Hint: for some strictly convex function ¢ with w(0) = v’(0) = 0, we have
I-4F =4 (y(F)-F)=0

Far from the equality case (i.e., close to an initial datum away from the
Barenblatt solutions) for (FDE), we expect some improvement

[ I

Rephrasing the carré du champ method, 2|[v] := F] is such that
d2
—=2(2-4
7 =2(2-4)

Assume that m> my and v is a solution to (r FDE) with nonnegative
initial datum vy. If for some >0 and t, >0, we have 2[v(t4,")] =4+,
then

2[v(t,")] =4+ Vite[0,t]

4+n-nettx
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Stability in
Gagliardo-Nirenberg-Sobolev
inequalities
Our strategy

Choosde > 0, small enough

Get a threshold time ty (€)

0 3 txl€ . t
| Backward estimate | Forward estimate

J. Dolbeault Entropy methods and applications to diffusions
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The threshold time

and the uniform convergence
in relative error

> The regularity results allow us to glue the initial time layer estimates
with the asymptotic time layer estimates

The improved entropy — entropy production inequality holds for any time
along the evolution along (r FDE)

(and in particular for the initial datum)

J. Dolbeault Entropy methods and applications to diffusions
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lity (subcr

If v is a solves (r FDE) for some nonnegative initial datum vg € L1 (R9)
satisfying
d(m-m¢)
supr (I-m f vodx < A<oo (Ha)
r>0 Ix|>r

then
(1-e)B=v(t,)<s(1+e)B Vt=t,

for some explicit t, depending only on € and A
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Global Harnack Principle

The Global Harnack Principle holds if for some t >0 large enough
B, (t—71,x) < u(t,x) < B, (t+712,x) (GHP)

[Vazquez, 2003], [Bonforte, Vazquez, 2006]: (GHP) holds if ug < le_ﬁ
[Vazquez, 2003], [Bonforte, Simonov, 2020]: (GHP) holds if

Alug] := supRﬁ_d[ |ug| dx < co
R>0 Rd\BR(O)

[Bonforte, Simonov, 2020] If M + A[ug] < oo, then

)-8

lim B()

t—oo
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Stability, fast diffusion equation and entropy methods

Uniform convergence in relative error

Theorem

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that me (my,1) if d =2,
me (1/3,1) ifd=1 and let e€(0,1/2), small enough, A>0, and G >0
be given. There exists an explicit threshold time T =0 such that, if u is a

solution of
ou

5 =" (FDE)

with nonnegative initial datum ug € LX(RY) satisfying

d(m-mc)

Alug] =supr (@=m) f updx<A<oo (Ha)
[x|>r

r>0

Jpd Uo dx = [pa Bdx = 4 and F[ug) < G, then

u(t,x) i

*P IB(t,x)

xeRd

‘se Vt=T
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Stability, fast diffusion equation and entropy methods

The threshold time

Let me(my,1) ifd=2, me(1/3,1) ifd=1, e€(0,emq), A>0 and G>0

1+Al-m 4+ G2

T:C*
ga

Wherea:%zz—m, a=d(m-mc) and 9=v/(d+v)

cx =cx(m,d)= sup max{exi(e,m), e¥x2(e, m), ex3(e, m)}
SE(ngm,d)
x1(€, m) := max 8¢ 27"k
nea= (l+e)lm-1'1-(1-¢)l-m
(4a)* 1 K3 8al
,m)i=-—7F—— d ,m)i= ———————
xo(g,m) =T and «3(e,m) (e
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(suber

Improved entropy — entropy
production inequality
(subcritical case)
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Theorem

Let me(my,1) ifd=2, me(1/2,1) ifd=1, A>0 and G>0. Then
there is a positive number { such that

Flv] = (4+) F|v]

for any nonnegative function v € L1(R?) such that Z[v]=G,
Jpa vdx =, [paxvdx=0 and v satisfies (Ha)

We have the asymptotic time layer estimate
1 1
€€(0,2¢&4), Exi= 5 min{emq, xn} with t,=t.(e)= 5 log R(T)

(1-e)B=<v(t,)=s(l+e)B Vt=t,
and, as a consequence, the initial time layer estimate

4ne—4t*
ﬂ[V(t,.)]Z(4+()g/’~[V(f,.)] VtE[O,t*] where (Zm

J. Dolbeault Entropy methods and applications to diffusions
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Two consequences

(=Z(AFuw)), Z(AG):= {x __417ca( & )E

1+ A2 o 7" 4+ (2ac,

> Improved decay rate for the fast diffusion equation in rescaled variables

Let me (my,1) ifd=2, me(1/2,1) ifd=1, A>0and G>0. Ifv is a
solution of (r FDE) with nonnegative initial datum vy € L1(R?) such that
Flwl=G, [gavodx =M, [paxvodx=0 and vy satisfies (Ha), then

Flv(t,)] < Flwle #Dt vi=0

> The stability in the entropy - entropy production estimate
F|v]-4F|v] = Z[v] also holds in a stronger sense

V] - 4F[v] = 4L+(f[v]

J. Dolbeault Entropy methods and applications to diffusions
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Stability results
(subcritical case)

> We rephrase the results obtained by entropy methods in the language of
stability a la Bianchi-Egnell

Subcritical range

p*=+ooifd=1lor2, p*=g%5ifd=3

J. Dolbeault Entropy methods and applications to diffusions
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Stability, fast diffusion equation and entropy methods

2p

I\ T 57— 1
._ 2d1([f]p71 Hf\lgil d-p(d-4) __,ﬂﬁ
Alf] '—( 2T A2 o Klfl= g,
d-p(d-4)
—_ M e 2
Alf]:= e Sup,sgf P I flxl>r|f(x+Xf)| P dx
A[f] P 1T ||f|\2f;

f1P _p [«[F1?P
E[ﬂ:%fw(—;{i] frrl_gptl_ L2l ”(—’;[[f]]z f2p—g2”))dx

S[f]:= 525 ey Z (AL EIF])

Letd=1, pe(1,p*)
If f e Wp(RY):={f e L2P(RY) : VF e L2(RY), |x|FP e L2(RY)},

(1918 ||f||p+1) = (on I1f12,)°P7 = S[f] IF1557 E[f]
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With #gns = C(p, d) %égg Y = %, consider the deficit functional

d—p(d-2
8[f]:=(p-1)? ||Vf||§+4% IFIPY] = Hans 11557

Let d=1 and pe(1,p*). There is an explicit € = €[f] such that, for any
f e L2P(RY, (1+1x1%) dx) such that Vf e L>(RY) and A[f?P] < oo,

2
5[F] = 6[f] inff |(p-1) V7 + FPVgP [ dx
Qe Jrd

= The dependence of €[] on A[f?P] and % [£2P] is explicit and does not
degenerate if f € M

= Can we remove the condition A[f2P] < 0o ?
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Stability in Sobolev’s inequality
(critical case)

> A constructive stability result

> The main ingredient of the proof
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Stability, fast diffusion equation and entropy methods

A constructive stability result

Let2p* =2d/(d-2)=2%d=3and

Wor (RY) = {F e LPL(RY) : VF e L2(RY), IxIFP" € L2(RY)}

Theorem

Let d=3 and A>0. Then for any nonnegative f € W,,*(Rd) such that

f(l,x,|x|2)f2*dx=f (1,x,|x|2)gdx and suprdf 2 dx< A
Rd R4 [x|>r

r>0

we have
o 2 2 2 d_i _%2
11 1:=INFIB-S3 713, = o (g* fRd| 22 vg 73 dx

Cx(A) =€, (1+A1/(2d))_:l and €, >0 depends only on d
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Peculiarities of the critical case

> We can remove the normalization of f, use the r.h.s. to measure the
distance to the Aubin-Talenti manifold of optimal functions (in relative
Fisher information) and obtain for

A[f];=suprdfr>0|f|2*(x+xf) and  Z[f]:= (L+u[f]9 ALY A[F])

r>0
the Bianchi-Egnell type result

¢, Z[f]

o[f] = 2+ Z[] gienggtf[ﬂg]

with x¢, A[f] and pu[f] as in the subcritical case

> Notion of time delay [JD, Toscani, 2014 & 2015]
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Extending the subcritical result in the critical case

To improve the spectral gap
for m = m;, we need to ad-
just the Barenblatt function

B(x)= A" (x/\/I) in order
to match [ga Ix|2vdx where the

function v solves (rFDE) or to
further rescale v according to

v(t,X)ZwW(tJFT(t)’m)((t))’ — .

-4 (m-mc
)2( )21, 7(0)=0 and %(¢)=e2(0)

1
% = (ZIIR" Ix|2 v dx

t— A(t) and t — 1(t) are bounded on R*
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Symmetry and symmetry breaking
in Caffarelli-Kohn-Nirenberg
inequalities

Joint work with M.]. Esteban and M. Loss
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Caffarelli-Kohn-Nirenberg inequalities

Let D, p = { velLP ([Rd, |X|_bdX) x| |Vv| e L2 ([Rd,dx)}

vl \2/P IVv|2
(ﬁq{d—M'deX) sCa,bf” |2ad VVE@ab

hold under the conditionsthata<b<a+lifd=3,a<b<a+1lifd=2,
a+1/2<b=<a+lifd=1,anda<a.:=(d-2)/2

B 2d
P=d-2+2(b-a)
> An optimal function among radial functions:
A

__2_
ve(x) = 1+|x|(p_2)(ac_a) P2 and C*, =— TP
0= ) 2B X Vva |12

Question: Cyp = C7 , (symmetry) or C, p > C} | (symmetry breaking) ?

J. Dolbeault Entropy methods and applications to diffusions



A brief introduction to entropy methods Caffarelli-Kohn-Nirenberg inequalities
Stability, fast diffusion equation and entropy methods Sharp symmetry versus symmetry breaking results
Symmetry and symmetry breaking Scheme of the proof

CKN: range of the parameters

Figure: d =3

vIP P V]2
(fu@d b dx) < Ca'bj;@d NEE dx

-1 = "5
/ 0 a

b=a

asb=a+lifd=3

a<b=sa+lifd=2,a+1/2<b=<a+lifd=1

anda<ac:=(d-2)/2
2d [Glaser, Martin, Grosse, Thirring (1976)]

p= d—2+2(b-a) [E Catrina, Z.-Q. Wang (2001)]
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> Proving symmetry breaking
[E Catrina, Z.-Q. Wang], [V. Felli, M. Schneider (2003)]
[J.D., Esteban, Loss, Tarantello, 2009] There is a curve...

> Moving planes and symmetrization techniques

[Chou, Chu], [Horiuchi]

[Betta, Brock, Mercaldo, Posteraro]

+ Perturbation results: [CS Lin, ZQ Wang], [Smets, Willem], [JD, Esteban,
Tarantello 2007], [J.D., Esteban, Loss, Tarantello, 2009]

> Linear instability of radial minimizers: the Felli-Schneider curve
[Catrina, Wang], [Felli, Schneider]

> Direct spectral estimates
[].D., Esteban, Loss, 2011]: sharp interpolation on the sphere and a
Keller-Lieb-Thirring spectral estimate on the line
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Symmetry versus symmetry breaking:
the sharp result in the critical case

[b

[JD, Esteban, Loss, 2016]

Let d =2 and p<2*. If either a€[0,a.) and b>0, or a<0 and
b= bgs(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric
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The symmetry proof in one slide

@ A change of variables: v(IXI“’lx) =w(x), Dgv = (a ov. % Vi v)

>3]
0

P d
||V||2pd nSKanp”D V”2d n”v||p+ld n VVEHd nd— n(R )

The Felli & Schneider condition becomes @ > a g := 1/ ‘;%% and p= %
Q@ Concavity of the Rényi entropy power: with

265:_D;Da:a (u + = 1u/)+sl2Awuandg—‘t’:$au’”
- 1-o
— 55 9Mu(t, )] (Jao u™Ix1"9 dx)
: P2
Z+2fRd (a4( )’P// P’ aZ(An_l)sz

+2f[R{d ((n—Z) (“12:5—652) |VwP|2 +c(n,m,d) \V(I‘:))_2P|4) u™ x| dx

P/ Lu

2
) u™Ix|"9 dx

Q@ Elliptic regularity and the Emden-Fowler transformation: justifying the
integrations by parts
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The variational problem on the cylinder

> With the Emden-Fowler transformation
X
v(r,w)=r"<¢(s,w) with r=|x|, s=-logr and w=-
p
the variational problem becomes

105017 gy + IValZ2 ) + ANOIT

A~ pu(A):= min
p(A) et (%) 1212,

is a concave increasing function
Restricted to symmetric functions, the variational problem becomes

2 2
x(A) = min M:
welt! (%) lel,

px (1) A

Symmetry means p(A) = ux(A)
Symmetry breaking means p(A) < p+(A)
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Numerical results

S50-

P asymptotic

-------- symmetric
20

non-symmetric

Parametric plot of the branch of optimal functions for p=2.8, d =5.
Non-symmetric solutions bifurcate from symmetric ones at a bifurcation point A1
computed by V. Felli and M. Schneider. The branch behaves for large values of A as
shown by E Catrina and Z.-Q. Wang
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These slides can be found at

http://www.ceremade.dauphine.fr/ ~dolbeaul/Lectures/
> Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/ ~dolbeaul/Preprints/list/
> Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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