A: Onofri's inequality a
B: Sobolev and Hardy-Li
C: Keller:

iardo-Nirenberg inequalities
inequalities: duality, flows
el model, a functional analysis approach

Onofri type inequalities and diffusions

Jean Dolbeault

http://www.ceremade.dauphine.fr/~dolbeaul
Ceremade, Université Paris-Dauphine

July 4, 2012
Recent Trends in Nonlinear Diffusion, Pisa (July 2-7, 2012)

J. Dolbeault Onofri type inequalities and diffusions



A: Onofri's inequality as an end
B: Sobolev and Hardy-L
C: Keller

int of Gagliardo-Nirenberg inequalities
ity, flows

d-Sobolev inequalities: dualit;
odel, a functional analysis :

Outline

@ Onofri’s inequality as an endpoint of Gagliardo-Nirenberg
inequalities [M. del Pino, JD]

@ Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows
[JD]

© Keller-Segel model, a functional analysis approach
[J. Campos, JD]

J. Dolbeault Onofri type inequalities and diffusions



A: Onofri'sinequ lity as dp nt fG gl d -Nire b erg inequalitie:
B: Sobolev and Hardy.Littlew d neq ities: du \ H
C: Keller sg\ H f ctional analysis appr oh

A — Onofri’s inequality as an
endpoint

of Gagliardo-Nirenberg inequalities

J. Dolbeault Onofri type inequalities and diffusions



A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities

The fast diffusion equation

Consider the fast diffusion equation (FDE)

av

=Av" t>0, xeR?
ot
with exponent m € (%, 1), d > 3, or its Fokker-Planck version

@
ot

with ug € L1 (R?)) such that uf’ € L} (R9)) and |x|? up € L1 (RY))

=Au"+V-(xu) t>0, xecR?

Any solution converges as t — oo to the Barenblatt profile

1
Uso(X) = (CM + 1{—mm |X|2) m1 xeRY
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities

Asymptotic behaviour of the solutions of FDE

[J. Ralston, W.I. Newman]| Define the relative entropy (or free
energy) by
1

Flu] == —— 1

[u™ —uZ — muZ (U — ux)] dx

I Fu(t, )] = = (527)° foo u|Vum™t = Vum R dx = ~T[u(t, )]
Flu(t, )] < 3 Z[u(t, )]
if m is in the range (451, 1), thus showing that
Flu(t,)] < Flule™® Vt>0

With p = 52—, the 1nequahty Flu] € 3Z[u] can be rewritten in

terms of f = u™1/2 4

Hf”L?P(]Rd < Cod [V FlIEaee) 1555 e

foo = uT *? is optimal [M. del Pino, JD] [F. Otto]
[D. Cordero-Erausquin, B. Nazaret, C. Villani]
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities

Gagliardo-Nirenberg inequalities

Consider the following sub-family of Gagliardo-Nirenberg inequalities
1fllznzay < Cpa I VFIIT 2y I FIITrE gy
with 8 = 6(p) := ;1 Fo—aaa g(d 2 P = "
9 1<p§ﬁ1fd23,%§m<l
ol<p<xifd=23<m<1
[M. del Pino, JD] equality holds in if f = F, with

Fo(x) = (1+|x[?) 771 VxeR?

and that all extremal functions are equal to F, up to a multiplication
by a constant, a translation and a scaling.
o If d > 3, the limit case p = d/(d — 2) corresponds to Sobolev’s
inequality [T. Aubin, G. Talenti]
@ When p — 1, we recover the euclidean logarithmic Sobolev
inequality in optimal scale invariant form [F. Weissler]
e Ifd=2and p— c0...
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities

d =2, m=1/2: the limit case

The basin of attraction of the Brenblatt self-similar profiles
[A. Blanchet, M. Bonforte, JD, G. Grillo, J.-L. Vazquez|
The fast diffusion equation (FDE)

0
Y_ AN t>0, xeR?
ot
can be transformed into a Fokker-Planck version
0
a—ttl:A\/ﬂ—i—V-(xu) t>0, xcR?

with up € L% (R?)) such that \/ug € L (R?)) and |x|? up € L (R?))
Any solution converges as t — oo to the Barenblatt profile

Uso(x) = (Cm +3 L1x2) 2 but the inequality Flu(t, )] < CZ[u(t,-)]
holds with C = J only as t — 00t u= U (1 +&f/lx), € — 0 gives

f[U]~—/ |F]? ud dx<——/ |Vf|2uoodx~—I[u]
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities

d =2, m=1/2: the linearized equation

Consider the scalar product (-, -) such that ( = Jp a Hffl 7 dx
The linearized fast diffusion equation (¢ FDE) takes the form
of
Y rF
ot £
where £ := (1+ |x]*)}V [L] defines self-adjoint on
- (L+XPY? :

L2(R?, (1 + |x|?)~3 dx). A solution of
d
dt

has exponential decay because of the Hardy-Poincaré inequality

2 1 [ v
=A< cr = Ty
/Rz @ e = s LD = | T EE &

[J. Denzler, R. McCann], [A. Blanchet, M. Bonforte, JD, G. Grillo,
J.-L. Vazquez]

.. but not anymore in the framework of global functional inequalities

(f, fy=—(Lf,f)
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities

Back to global estimates: d =2, m € (1/2,1)
ord>3 me (mg1)

The fast diffusion equation (FDE) with m > my := (d — 1)/d

ov 1
— =—Av" t>0, xeR?
ot m

can be rewritten in terms of w = v?P, p = 2m1_1 as

1
%(W2P):%Awp+:l t>0, xeR

Using ||f||L2P(R" < CP7d HVfHLZ Rd) ||f||Lp+1(]Rd we get

i/ wPT dx = Pl (p+ 1)/ IVw|? dx > C / wPldx)
dt R2 4p R2 - R2

an estimate for which Barenblatt solutions are optimal (no need of
rescaling here). What can be done for d =2, m=1/27
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities

Onofri's inequality as a limit case

When d = 2, Onofri’s inequality can be seen as an endpoint case of
the family of the Gagliardo-Nirenberg inequalities [JD]

Proposition

[JD] Assume that g € D(R?) is such that [, g dp =0 and let
foi=Fp (1+ £)
With p(x) :== 2 (1 + [x[?)72, and du(x) := p(x) dx, we have

IV 6|15 Sekey ol otngery  emie Joe 191" ax

1<I|mC2 =
A, o2 T ey Toes dn

The standard form of the euclidean version of Onofri’s inequality is

1
log / et du —/ gduﬁ—/ |Vgl|? dx
R2 R2 16w R2
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities

Some details on the proof

f]RZ |f|2p dx < ( f]RZ |Vf|2 dx > f]RZ |f|pJrl dx
fRZ |Fp |2p dx — fRZ |VFP|2 dx fRZ |Fp|p+1 dx

Ilmp_>oo I]RZ |F | fRz W dX =T and Wlth f = Fp(l +g/2P)

g
li f 2p dx = F2P 1 £\2p dx = / ei dx = / & du

. |f,|PHL d
Jge |FolPtt dx = (p — 1) /2, so that limy_.o % =1

Expansion of the square with [, g du = 0 gives

/|Vf|2dx—ﬁ 2F§|Vg|2dx—/Rz(Hzg—p)?FpAdex

1 2 2w )
= — d _—
4p2/Rz'Vg' X+ 2 o(p?)

1 p—1

5 p—1
(fR2 V1] dx) : (1 p+1 dc) o~ et Ji2 Vsl dx
[ IV Fol? dx 8 p?
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities

Comments (formal level)

In dimension d = 2, Onofri’s inequality

1
log /egdu —/gduS—/ [Vg[? dx
R2 R2 167 R2

is the endpoint of a family of Gagliardo-Nirenberg inequalities in
dimension d = 2, whose other endpoint is the logarithmic Sobolev
inequality

To which evolution equation is it associated ? Consider

d
5 (e =N0g

With g = log(3), pu(x) = L (1+|x[?)72, this can be rewritten as

ov v
— =Alog(—) t>0 R?
ot og (H) >0, xe¢
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities
B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

C: Keller-Segel model, a functional analysis approach

[W. Beckner]

Onofri’s inequality in higher dimensions
[E. Carlen, M. Loss]
[M. del Pino, JD]

m]
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities

Higher dimensions: Gagliardo-Nirenberg inequalities

Theorem (M. del Pino, JD)

Let p€ (1,d], a>1 such that a < 2421 if p < d, and b= p =1
For any function f € L3(RY, dx) with Vf € LP(RY, dx), ifa> p

a—p)d
I fllLeey < Cpa ||Vf||Lv R?) [kl Lo( ]RZ) with 0 = G=ya5-@=m 3 1)(( p)(d P)a)
and, if a < p,
d
1llLseey < Coo IVFIEnimzy [FllEocRey  With 0 = sl

In both cases, equality holds for any function taking the form

p—1

f(x)=A (1+ le—xo|#)+” Vx € RY

for some (A, B, xp) € R x R x RY, where B has the sign of a— p
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities

Comments

1 fllLeeey < Cpa HVfHLP R?) Il

La( RZ)

@ TFor a = p, inequality degenerates into an equality: as a limit case,
we get the optimal Euclidean LP-Sobolev logarithmic inequality
For 1 < p < d, and any u € WHP(R?) with [5, |u[P dx = 1 we have

d
/ |ulPlog |ulP dx < — log [ﬂp,d/ [VulP dx]
RY p RY

[M. del Pino, JD, I. Gentil], [D. Cordero-Erausquin)]
@ Whenp<d,a=2 (d 1) corresponds to the Sobolev inequality
@ When p = d, we get a d-dimensional Onofri inequality by passing

to a limit as a — 400
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities

Notations

On d > 2 consider the probability measure

d dx
) = L T
+ x|t

Ra(X,Y):= [ X+ Y|[F = |X|9=d|X|2X-Y, (X,Y)eR?xR?

and the functions

which is a polynomial if d is even. With

_d=2
ol p) i= R (-2 x 453p)  (xp) € R O

we define the quotient Qq[u] as

Jga Ha(x, Vu) dx
log (frs € dpta) — Joa v dps

Qqlu] ==
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities

Higher dimensions: Onofri type inequalities

Theorem (M. del Pino, JD)

Any smooth compactly supported function u satisfies

log </ e" dud> —/ udp < ad/ Ha(x, Vu) dx
RY R2 R

- - _ dr(d/2)
The optimal constant is ag = @D and lim._,o Qqle v] = a—d with

V(X): —d d—2 = _d_
X571 (1177 )

Q Ifd=2, [psHa(x,Vu) dx =3 fRZ |Vul?dx, 1/as = 47
Q If d =4, Hy(x,p) :=Rq4 ( 1J‘rx||x\4/3 X 3p/4) with
Ra(X,Y)=4(X- Y2+ |YP(|Y?+4X Y +2]X]?)
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B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Higher dimensions: Poincaré type inequalities

_d—2
Gd(Xap) = Qg (_(14'::%11 X,%P) (X7P)GRdXRd

Corollary

With ag as in Theorem 2, we have

/|V—V|2dud§ad/ Gy(x,Vv) dx with V:/ vdu
]Rd Rd ]RZ

for any v € LY(RY, dpug) such that Vv € L2(RY, dx)
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities
B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

C: Keller-Segel model, a functional analysis approach

B — Sobolev and
Hardy-Littlewood-Sobolev
inequalities:

duality, flows
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B: Sobolev and Hardy-Littlewood-Sobolev inequalities:
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duality, flows
C: Keller-Segel model, a functional analysis approach

Preliminary observations
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B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Legendre duality: Onofri and log HLS

Legendre’s duality: F*[v] := sup ( [pa uv dx — F[u])

Fi[u] := log / e'du | and Ffu] = L/ |Vul? dx+/ up dx
R2 167 R2 R2

Onofri’s inequality amounts to F1[u] < Fy[u] with du(x) := p(x) dx,
Hx) = FrRee

Proposition

For any v € LY (R?) with [g, v dx = 1, such that v log v and
(1 + log |x|?) v € LY(R?), we have

Ffv]-F5[v] = -/]R2 v log (5) dx—47r/]Rz (v—p)(=A) v —p)dx>0

[E. Carlen, M. Loss] [W. Beckner] [V. Calvez, L. Corrias]
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B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

A puzzling result of E. Carlen, J.A. Carrillo and M. Loss

[E. Carlen, J.A. Carrillo and M. Loss| The fast diffusion equation

@:Avm t>0, xeR
ot

with exponent m = d/(d + 2), when d > 3, is such that
Hylv] = /Rd v(=A)tvdx — Sy HVHLW(Rd)
obeys to
1d 1d
EEHd[V(L)]: §d_ |:/ V(—A) VdX—Sd ||V||L112d2(]Rd)

d d—2 4/(d—1)
= L83 Sa lulli @) 1Vl oy — 1l ge

with u = vd=1/(d+2) and g = HL If d(d 2 ) Sy = (Cq.q), the r.hs.
is nonnegative. Optimality is achleved blmultaneously in both
functionals (Barenblatt regime): the Hardy-Littlewood-Sobolev
inequalities can be improved by an integral remainder, term
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B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

. and the two-dimensional case

Recall that (—A)~tv = Gy x v with
0 Gy(x) = 75 S x|2difd >3
0 Go(x) = 5= log x| if d =2

Same computation in dimension d = 2 with m = 1/2 gives

vz d [ 4 / 1 / }
— v(=A)""vdx — v log v dx
8 dt ”VHLl(RZ) R2 ( ) R2 &

= ulltame) IV UllZoey — 7 1VISse)

The r.h.s. is one of the Gagliardo-Nirenberg inequalities (d = 2,
q= 3) 71'((:3’2)6 =1

The Lh.s. is bounded from below by the logarithmic
Hardy-Littlewood-Sobolev inequality and achieves its minimum if
v = p with

._ 1 2
p(x) = T X VxeR
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B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev’s inequality in R?, d > 3,
[l 2+ oy < Sa IVUlfagay ¥ u€ DV?(RY) (1)

and the Hardy-Littlewood-Sobolev inequality

2 AVl 2d md
S"”V”L%W)Z/Rdv( Ay lvds VveL#®Y) (2)

are dual of each other. Here S, is the Aubin-Talenti constant and
2* = d2__dz- Can we recover this using a nonlinear flow approach ? Can
we improve it 7

Keller-Segel model: another motivation [J.A. Carrillo, E. Carlen and
M. Loss| and [A. Blanchet, E. Carlen and J.A. Carrillo]
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Using the Yamabe / Ricci flow
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B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

@:Av’" t>0, xeR
ot

If we define H(t) := Hqy[v(t,-)], with

Hy[v] = /R V(=AM S vl gy

then we observe that

2
1 q -
_H/:_/ VT g 1S, (/ L3 dx> o T dx
2 Rd Rd Rd

where v = v(t,-) is a solution of (3). With the choice m = Z—Ig,

find that m+1 = 2%
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B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

A first statement

[JD] Assume that d > 3 and m = % If v is a solution of (3) with
nonnegative initial datum in 1.24/(4+2)(R9), then

v(=A)"tv dx — Sy |lv]?,
[ vea)r IV d(Rd)]

2
d
m 2 5
= (/I%d v +1 dX) |:Sd HVUHLZ(Rd) - ||u||L2*(Rd):| > 0

The HLS inequality amounts to H < 0 and appears as a consequence
of Sobolev, that is H" > 0 if we show that limsup,.oH(t) =0
Notice that u = v™ is an optimal function for (1) if v is optimal for (2)
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B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Improved Sobolev inequality

By integrating along the flow defined by (3), we can actually obtain
optimal integral remainder terms which improve on the usual Sobolev
inequality (1), but only when d > 5 for integrability reasons

Theorem

[JD] Assume that d > 5 and let q = 923. There exists a positive

constant C < (14 2) (1 — e~9/2) Sy such that

q|2 _ a(_AY1,9
Sa 171 54,y = [, w7 (-8) 7w e

< C W2 gy [I 71y = Sa w122 )

for any w € D?(RY)
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B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Solutions with separation of variables

Consider the solution of % = Av" vanishing at t = T:
Vr(t,x) = c(T — )" (F(x))7>
where F is the Aubin-Talenti solution of
—AF =d(d —2) Flat2/(d=2)
Let [[v[l+ 1= sup,cra(1 + |x|2)7*? |v(x)]

[M. del Pino, M. Saez], [J. L. Vazquez, J. R. Esteban, A. Rodriguez]
For any solution v with initial datum vy € 124/(d+2)(R9), vy > 0, there
exists T >0, A > 0 and xp € RY such that

lim (T —t)" ™% ||v(t,)/V(t,") — 1], =0

t—T_

with V(t, x) = Nd+t2/291(t, (x — x0)/)\)
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities
B: Sobolev and Hardy- tht\ewood Sobolev mequam.es duallty ﬂows

C: Keller-Segel r el, a functio

Improved inequality: proof (1/2)

J(t) == [go v(t,x)™ T dx satisfies
m+1 1
J = —(m + ].) ||va||iz(Rd) < - m

If d > 5, then we also have
J'=2m(m+ 1)/ v (AVT)? dx >0
Rd
Notice that

i
Jjg—m+1J—5<

2d 1T m
_ : _ <9 +1
S, Kk with kT = 25, (/d 173 dx)

aln

J. Dolbeault Onofri type inequalities and diffusions
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B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Improved inequality: proof (2/2)

By the Cauchy-Schwarz inequality, we have

J/2 m m— m m 2
CES Vv [T 2(rey = (/Rd (m=1/2 pgym . (mt1)/2 dx)
< / ym—t (Avm)2 dx/ vl dx = Cst )" )
R4 R4
s0 that Q(£) = [ Vv™(£,) 22 zey (Jra V(2. x) dx) ™7 55

monotone decreasing, and

! !
H' =2J(5,Q-1), H”:JTH'+2JSdQ’§JjH’§0
2d 1 —2/d
"< _ l : _ il m+1
H" < —xH with & d125, </Rdv0 dx)

By writing that —H(0) = H(T) — H(0) < H'(0) (1 — e™*T)/k and
using the estimate k T < d/2, the proof is completed 0
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C: Keller-Segel model, a functional analysis approach

d = 2: Onofri’s and log HLS inequalities

Ha[v] := /RZ(V_M)(_A)A(V_M) dx_%/wmog (5) dx

With zi(x) := 2 (14 |x|?)72. Assume that v is a positive solution of

%:Alog(v/u) t>0, xcR?

Proposition

If v = pe“? is a solution with nonnegative initial datum v in L'(R?)
such that [g, vo dx =1, vo log v € L}(R?) and vp log pu € L*(IR?), then

EHz[v(t, )] = — /R2 |Vul® dx — /]R2 (e 1) udu

1
> — |Vu|2dx+/ udyp —log / e'du) >0
167T R2 R2 R2

J. Dolbeault Onofri type inequalities and diffusions
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C — Keller-Segel model, a functional
analysis approach

Q9 Introduction to the Keller-Segel model

@ Spectral analysis in the functional framework
determined by the relative entropy method

9 Collecting estimates: exponential convergence
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A: Onofri's inequality as an endpoint of Gagliardo-Nirenberg inequalities
B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

C: Keller-Segel model, a functional analysis approach

Introduction to the Keller-Segel model

m]
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C: Keller-Segel model, a functional analysis approach

The parabolic-elliptic Keller and Segel system

0

a_‘t’:Au_v-(uvv) x€ER?, t>0
—Av=u xeR?, t>0
u(-,t=0)=ng >0 x € R?

We make the choice:
1
v(tx) = —5= [ Toglx—ylu(t.y) dy

and observe that

1 X—y

Vv(t,x)=—— | —= u(t,y) d
. d
Mass conservation: — [ wu(t,x) dx =0
dt Jpe

J. Dolbeault Onofri type inequalities and diffusions



C: Keller-Segel model, a functional analysis approach

Blow-up

M = [, no dx > 87 and [g, |x|? ng dx < co: blow-up in finite time
a solution u of

du =Au—-V-(uVv)

ot

satisfies

dt/ |x|2 u(t, x)

1 (y=x
= /}R2 2x - Vudx+5- // - Z\XX(_ny) u(t,x) u(t,y) dx dy
—_——

_4M % u(t,x) u(t,y) dx dy

2
:4/\/1—%<0 if M>38r
2

J. Dolbeault Onofri type inequalities and diffusions



C: Keller-Segel model, a functional analysis approach

Existence and free energy

M =[5, no dx < 87: global existence [W. Jager, S. Luckhaus|, [JD, B. Perth:
[A. Blanchet, JD, B. Perthame], [A. Blanchet, J.A. Carrillo,
N. Masmoudi]

If u solves

5 = V- [u (V (logu) — V)]

the free energy

satisfies

Flu] ::/ ulogu d —l/ uv dx
R2 2 R2
d

& Flu(z, )] = —/RQ 0|V (log u) — Vv|? dx

Log HLS inequality [E. Carlen, M. Loss]: F is bounded from below if
M < 8w

J. Dolbeault Onofri type inequalities and diffusions



C: Keller-Segel model, a functional analysis approach

The dimension d = 2

@ In dimension d, the norm L9/2(R9) is critical. If d = 2, the mass
is critical

@ Scale invariance: if (u, v) is a solution in R? of the
parabolic-elliptic Keller and Segel system, then

()\2 u(\2t,Ax), v(A2t, )\x))

is also a solution

@ For M < 8w, the solution vanishes as t — oo, but saying that
diffusion dominates is not correct: to see this, study intermediate
asymptotics

J. Dolbeault Onofri type inequalities and diffusions



C: Keller-Segel model, a functional analysis approach

The existence setting

%:AU—V-(UVV) xe€R?, t>0
—Av=u xeR?, t>0
u(t=0)=ng >0 x € R?
Initial conditions
no € LY (R?, (1+|x[*) dx), nologno € LY(R?,dx), M := . no(x) dx < 8w

Global existence and mass conservation: M = [o, u(x, t) dx for any
t > 0, see [W. Jdger, S. Luckhaus], [A. Blanchet, JD, B. Perthame]

v:—% log|-|*u
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Time-dependent rescaling

X

1 X
u(x, t) = 0] n <W,T(t)) and v(x,t)=c¢ (m, T(t))
with R(t) = v/1+ 2t and 7(t) = log R(t)

0

a_::An—V-(n(Vc—x)) x€R?, t>0

c=——log|-|*n x€R2, t>0
2m

n(-,t=0)=ng >0 x € R?

[A. Blanchet, JD, B. Perthame| Convergence in self-similar variables
Jim [In(, 4 £) = noclliay =0 and fim [Ve(, -+ £) ~ Vew | zgaz) = 0
means intermediate asymptotics in original variables:

lu(x, ) = g moo (o 7(8)) sy N O
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The stationary solution in self-similar variables

@ Radial symmetry [Y. Naito]
@ Uniqueness [P. Biler, G. Karch, P. Laurengot, T. Nadzieja]

o As |x| — 400, Ny is dominated by e~ 1=9IX/2 for any € € (0,1)
[A. Blanchet, JD, B. Perthame]
@ Bifurcation diagram of ||| (ge) @s a function of M:

M|ij?)+ Mool L g2y = O

[D.D. Joseph, T.S. Lundgren] [JD, R. Staczy]
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The free energy in self-similar variables

an
ot

1 1
F[n] ::/ nlogndx+/ —|x|2ndx——/ nc dx
R2 RZZ 2 R2

S (e ) = - /R n|V (log n) + x — Ve|? dx

:V[n(logn—x—ch)}

satisfies

A last remark on 87 and scalings: n*(x) = A2 n(A x)

Fln'] = F[n]+/n|og(/\2) dx+/ 1 Ix|2n dx—|—41 /]R n(x) n(y) Iogi dx dy

2% R2

2

M 21
F[n] — F[n] = (2M——> Iog)\+/\ 5 / |x|? n dx
—_—— R

>0if M<8r
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Keller-Segel with subcritical mass in self-similar variables

%:An—v-(n(VC—x)) XER?, t>0

c=——log|-|*n xeR?, t>0
T

n(t=0)=ny >0 x € R?

Jim [[n(- -+ 1) = ool 1g2y = 0 and Jim IVe(, 4+ 1) = Vo 2gey = 0

ecoo_‘X|2/2

1
Moo = M e prge — A o= mpploel |
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A parametrization of the solutions and the linearized
operator

[J. Campos, JD] —1x]%+c
Ae=M—2"
fRz e~ 2 XP*He dx
Solve
—¢" - %W =e 170 r>0
with initial conditions ¢(0) = a, ¢'(0) = 0 and get
M(a) := 27T/ e 20 dy
R2

e*% r2+¢a(r)

T = e7% r2+¢a(r)
27 [pareT2 "o dx

na(x) = M(a)

With —A ¢f = n, f, consider the operator defined by

cf=Ltv. (n(V(f —¢f))) x€R?

na
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Spectrum of L (lowest eigenvalues only)

I L L I L
5 10 15 20 25

Figure: The lowest eigenvalues of —L (shown as a function of the mass) are 0,
1 and 2, thus establishing that the spectral gap of —L is 1

[A. Blanchet, JD, M. Escobedo, J. Ferndndez|, [J. Campos, JD],
[V. Calvez, J.A. Carrillo], [J. Bedrossian, N. Masmoudli]
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B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

C: Keller-Segel model, a functional analysis approach

Spectral analysis in the functional framework determined
by the relative entropy method

m]
J. Dolbeault
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Simple eigenfunctions

Kernel Let fy = 8%%0 be the solution of
—Afy = nx fo

and observe that gy = fy/cso is such that

1
—V - (N V(fy — coo 80)) =1 Lo =0
Noo
Lowest non-zero eigenvalues f; := ; 86”;’ associated with

n
g = é %CX‘T is an eigenfunction of £, such that —Lf = f

With D :=x-V, letf2—1—|— Dlognoo—l—i—2 D n,.. Then
—A(Dcx)+2Ac0 =Dng =2(fr — 1) neo

and so g := i (—A) Yns h) is such that —L H =21
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Functional setting...

Lemma (A. Blanchet, JD, B. Perthame)

Sub-critical HLS inequality [A. Blanchet, JD, B. Perthame]

Fln] :—/Rznlog<é> dx—%/Rz(n—noo)(c—coo)dXZO

achieves its minimum for n = ns

o1
Qi[f] = lemo = Flnee(14+cf)] >0
if fRZ f ns dx = 0. Notice that fy generates the kernel of Q

Lemma (J. Campos, JD)

Poincaré type inequality For any f € HY(R2, n., dx) such that
fR2 f noo dx = 0, we have

V(g coo)|2 Noo dx < / |f|2 Noo dx
R2 R2
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. and eigenvalues

With g such that —A(g cx) = f noo, Q1 determines a scalar product
(i, 5) ::/ i oo dx—/ fi oo (g2 Co0)
R2 R2

on the orthogonal to fy in L?(nu dx) and with Gy(x) := —5= log |x|

Coo

Q2[f] ::/ |V(f —gcoo)|2 Ny dx with g = * G * (f nyo)
RZ

is a positive quadratic form, whose polar operator is the self-adjoint
operator L

(f,Lf)=Q[f] VfeD(L)

Lemma (J. Campos, JD)

L has pure discrete spectrum and its lowest eigenvalue is 1
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Linearized Keller-Segel theory

Lf= iv (nOOV(f— Coog))

Neo

Corollary (J. Campos, JD)

(f,f) < (Lf,f)

The linearized problem takes the form
of
ot

where L is a self-adjoint operator on the orthogonal of f; equipped

with (-,-)). A solution of

Lf

d

o () = —2(LF.)

has therefore exponential decay
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A new Onofri type inequality

@ [J. Campos, JD]

Theorem (Onofri type inequality)

coo— 1L |x|2
For any M € (0,87), if noo = M —= i

_1 52
I]RZ et Q\X\ dx

dpm = 5 nec dx, we have the inequality

1
log ( / o dw) - / 6 dyim < — / VP dx V¢ € DEA(R?)
R2 R2 2 M R2

with coo = (—=A) 7! ne,

Corollary (J. Campos, JD)

The following Poincaré inequality holds

/ W"EF nMdXS/ |Vo|? dx  where Y= [ ¢ dum
R2 R2 R2

\

J. Dolbeault Onofri type inequalities and diffusions



C: Keller-Segel model, a functional analysis approach

An improved interpolation inequality (coercivity estimate)

Lemma (J. Campos, JD)

For any f € [*(R?, ny dx) such that [g, f fy ne dx =0 holds, we have

//RQXRZ (x) log [x = y| f(y) neo(y) dx dy

<(1 —5)/ I oo dx
RZ

for some € > 0, where g coo = Gy * (f noo) and, if fR2 f neo dx = 0 holds,

/ V(g coo)|? dx < (1—5)/ 12 oo dx
R2 R2
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Collecting estimates: exponential convergence

m]
J. Dolbeault
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C: Keller-Segel model, a functional analysis approach
Back to Keller-Segel: exponential convergence for any
mass M < 8«

If no,. (o) stands for the symmetrized function associated to no,
assume that for any s > 0

s
Je € (0,8m—M) such that / no,«(0) do < / Noo,M+e(X) dx
0 B(o, 5/71')

Theorem

Under the above assumption, if ng € L2 (n} dx) and
M := [z, no dx < 8, then any solution of (??) with initial datum ng is
such that

dx
”OO(X)

for some positive constant C, where n., is the unique stationary solution
with mass M

(t,x) — noo(x)[? <Ce 2 Vt>0

[n
RZ
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Sketch of the proof

@ [J. Campos, JD] Uniform convergence of n(t,-) to ne can be
established for any M € (0,87) by an adaptation of the
symmetrization techniques of [J.I. Diaz, T. Nagai, J.M. Rakotoson]

Q@ Uniform estimates (with no rates) easily result

@ Estimates based on Duhammel formula inspired by [M. Escobedo,
E. Zuazua) allow to prove uniform convergence

Q@ Spectral estimates can be incorporated to the relative entropy
approach

@ Exponential convergence of the relative entropy follows

J. Dolbeault Onofri type inequalities and diffusions
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Thank you for your attention !

J. Dolbeault
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