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The fast diffusion equation

Consider the fast diffusion equation (FDE)

∂v

∂t
= ∆vm t > 0 , x ∈ R

d

with exponent m ∈ ( d−1
d
, 1), d ≥ 3, or its Fokker-Planck version

∂u

∂t
= ∆um + ∇ · (x u) t > 0 , x ∈ R

d

with u0 ∈ L1
+(Rd )) such that um

0 ∈ L1
+(Rd )) and |x |2 u0 ∈ L1

+(Rd))

Any solution converges as t → ∞ to the Barenblatt profile

u∞(x) =
(
CM + 1−m

2m
|x |2

) 1
m−1 x ∈ R

d
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Asymptotic behaviour of the solutions of FDE

[J. Ralston, W.I. Newman] Define the relative entropy (or free
energy) by

F [u] :=
1

m − 1

∫

Rd

[
um − um

∞ − m um−1
∞ (u − u∞)

]
dx

d
dt
F [u(t, ·)] = −

(
m

m−1

)2 ∫

Rd u |∇um−1 −∇um−1
∞ |2 dx =: −I[u(t, ·)]

F [u(t, ·)] ≤ 1
2 I[u(t, ·)]

if m is in the range ( d−1
d
, 1), thus showing that

F [u(t, ·)] ≤ F [u0] e
−2t ∀ t ≥ 0

With p = 1
2m−1 , the inequality F [u] ≤ 1

2 I[u] can be rewritten in

terms of f = um−1/2 as

‖f ‖L2p(Rd ) ≤ Cp,d ‖∇f ‖θ
L2(Rd ) ‖f ‖1−θ

Lp+1(Rd )

f∞ = u
m−1/2
∞ is optimal [M. del Pino, JD] [F. Otto]

[D. Cordero-Erausquin, B. Nazaret, C. Villani]
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Gagliardo-Nirenberg inequalities

Consider the following sub-family of Gagliardo-Nirenberg inequalities

‖f ‖L2p(Rd ) ≤ Cp,d ‖∇f ‖θ
L2(Rd ) ‖f ‖1−θ

Lp+1(Rd )

with θ = θ(p) := p−1
p

d
d+2−p (d−2) , p = 1

2m−1

1 < p ≤ d
d−2 if d ≥ 3, d−1

d
≤ m < 1

1 < p <∞ if d = 2, 1
2 < m < 1

[M. del Pino, JD] equality holds in if f = Fp with

Fp(x) = (1 + |x |2)− 1
p−1 ∀ x ∈ R

d

and that all extremal functions are equal to Fp up to a multiplication
by a constant, a translation and a scaling.

If d ≥ 3, the limit case p = d/(d − 2) corresponds to Sobolev’s
inequality [T. Aubin, G. Talenti]

When p → 1, we recover the euclidean logarithmic Sobolev
inequality in optimal scale invariant form [F. Weissler]

If d = 2 and p → ∞...
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d = 2, m = 1/2: the limit case

The basin of attraction of the Brenblatt self-similar profiles
[A. Blanchet, M. Bonforte, JD, G. Grillo, J.-L. Vázquez]
The fast diffusion equation (FDE)

∂v

∂t
= ∆

√
v t > 0 , x ∈ R

2

can be transformed into a Fokker-Planck version

∂u

∂t
= ∆

√
u + ∇ · (x u) t > 0 , x ∈ R

2

with u0 ∈ L1
+(Rd )) such that

√
u0 ∈ L1

+(Rd)) and |x |2 u0 ∈ L1
+(Rd ))

Any solution converges as t → ∞ to the Barenblatt profile

u∞(x) =
(
CM + 1

2 |x |2
)−2

but the inequality F [u(t, ·)] ≤ C I[u(t, ·)]
holds with C = 1

2 only as t → ∞: u = u∞ (1 + ε f
√

u∞), ε→ 0 gives

F [u] ∼ 1

4

∫

R2

|f |2 u
3
2
∞ dx ≤ 1

2

1

4

∫

R2

|∇f |2 u∞ dx ∼ 1

2
I[u]
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d = 2, m = 1/2: the linearized equation

Consider the scalar product 〈·, ·〉 such that 〈f , f 〉 =
∫

R2

|f |2

(1+|x|2)3 dx

The linearized fast diffusion equation (ℓFDE) takes the form

∂f

∂t
= L f

where L f := (1 + |x |2)3 ∇
[ ∇f

(1 + |x |2)2
]

defines self-adjoint on

L2(R2, (1 + |x |2)−3 dx). A solution of

d

dt
〈f , f 〉 = −〈L f , f 〉

has exponential decay because of the Hardy-Poincaré inequality
∫

R2

|f |2
(1 + |x |2)3 dx = 〈f , f 〉 ≤ 1

4
〈L f , f 〉 =

∫

R2

|∇f |2
(1 + |x |2)3 dx

[J. Denzler, R. McCann], [A. Blanchet, M. Bonforte, JD, G. Grillo,
J.-L. Vázquez]

... but not anymore in the framework of global functional inequalities
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Back to global estimates: d = 2, m ∈ (1/2, 1)

or d ≥ 3, m ∈ (m1, 1)

The fast diffusion equation (FDE) with m ≥ m1 := (d − 1)/d

∂v

∂t
=

1

m
∆vm t > 0 , x ∈ R

d

can be rewritten in terms of w = v2 p , p = 1
2m−1 as

∂

∂t

(
w 2 p

)
=

p + 1

2 p
∆wp+1 t > 0 , x ∈ R

d

Using ‖f ‖L2p(Rd ) ≤ Cp,d ‖∇f ‖θ
L2(Rd ) ‖f ‖

1−θ
Lp+1(Rd )

, we get

d

dt

∫

R2

wp+1 dx =
p2 − 1

4 p
(p + 1)

∫

R2

|∇w |2 dx ≥ C

(∫

R2

wp+1 dx

)− 1−θ
θ

an estimate for which Barenblatt solutions are optimal (no need of
rescaling here). What can be done for d = 2, m = 1/2 ?
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Onofri’s inequality as a limit case

When d = 2, Onofri’s inequality can be seen as an endpoint case of
the family of the Gagliardo-Nirenberg inequalities [JD]

Proposition

[JD] Assume that g ∈ D(Rd ) is such that
∫

R2 g dµ = 0 and let

fp := Fp

(

1 + g
2p

)

With µ(x) := 1
π (1 + |x |2)−2, and dµ(x) := µ(x) dx, we have

1 ≤ lim
p→∞

Cp,2

‖∇fp‖θ(p)
L2(R2) ‖fp‖

1−θ(p)
Lp+1(R2)

‖fp‖L2p(R2)
=

e
1

16 π

R

R2 |∇g |2 dx

∫

R2 e g dµ

The standard form of the euclidean version of Onofri’s inequality is

log

(∫

R2

e g dµ

)

−
∫

R2

g dµ ≤ 1

16 π

∫

R2

|∇g |2 dx
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Some details on the proof

∫

R2 |f |2p dx
∫

R2 |Fp |2p dx
≤

( ∫

R2 |∇f |2 dx
∫

R2 |∇Fp |2 dx

) p−1
2

∫

R2 |f |p+1 dx
∫

R2 |Fp|p+1 dx

limp→∞

∫

R2 |Fp |2p dx =
∫

R2
1

(1+|x|2)2 dx = π and with f = Fp (1 + g/2p)

lim
p→∞

∫

R2

|fp |2p dx =

∫

R2

F 2p
p (1 + g

2p
)2p dx =

∫

R2

eg

(1 + |x |2)2 dx = π

∫

R2

e g dµ

∫

R2 |Fp|p+1 dx = (p − 1)π/2, so that limp→∞

R

R2 |fp|
p+1 dx

R

R2 |Fp|p+1 dx
= 1

Expansion of the square with
∫

R2 g dµ = 0 gives

∫

R2

|∇fp |2 dx =
1

4p2

∫

R2

F 2
p |∇g |2 dx −

∫

R2

(1 + g
2p

)2 Fp ∆Fp dx

=
1

4p2

∫

R2

|∇g |2 dx +
2π

p + 1
+ o(p−2)

( ∫

R2 |∇fp |2 dx
∫

R2 |∇Fp |2 dx

) p−1
2

∼
(

1 +
p + 1

8π p2

∫

R2

|∇g |2 dx

) p−1
2

∼ e
1

16 π

R

R2 |∇g |2 dx
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Comments (formal level)

In dimension d = 2, Onofri’s inequality

log

(∫

R2

e g dµ

)

−
∫

R2

g dµ ≤ 1

16 π

∫

R2

|∇g |2 dx

is the endpoint of a family of Gagliardo-Nirenberg inequalities in
dimension d = 2, whose other endpoint is the logarithmic Sobolev
inequality

To which evolution equation is it associated ? Consider

∂

∂t
(eg µ) = ∆ g

With g = log( v
µ), µ(x) = 1

π (1 + |x |2)−2, this can be rewritten as

∂v

∂t
= ∆ log

(
v

µ

)

t > 0 , x ∈ R
2
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Onofri’s inequality in higher dimensions

[E. Carlen, M. Loss]
[W. Beckner]
[M. del Pino, JD]
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Higher dimensions: Gagliardo-Nirenberg inequalities

Theorem (M. del Pino, JD)

Let p ∈ (1, d ], a > 1 such that a ≤ p (d−1)
d−p

if p < d, and b = p a−1
p−1

For any function f ∈ La(Rd , dx) with ∇f ∈ Lp(Rd , dx), if a > p

‖f ‖Lb(R2) ≤ Cp,a ‖∇f ‖θ
Lp(R2) ‖f ‖1−θ

La(R2) with θ = (a−p) d

(a−1) (d p−(d−p) a)

and, if a < p,

‖f ‖La(R2) ≤ Cp,a ‖∇f ‖θ
Lp(R2) ‖f ‖1−θ

Lb(R2)
with θ = (p−a) d

a (d (p−a)+p (a−1))

In both cases, equality holds for any function taking the form

f (x) = A
(

1 + B |x − x0|
p

p−1

)− p−1
a−p

+
∀ x ∈ R

d

for some (A, B, x0) ∈ R × R × R
d , where B has the sign of a − p

J. Dolbeault Onofri type inequalities and diffusions
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Comments

‖f ‖Lb(R2) ≤ Cp,a ‖∇f ‖θ
Lp(R2) ‖f ‖1−θ

La(R2)

For a = p, inequality degenerates into an equality: as a limit case,
we get the optimal Euclidean Lp-Sobolev logarithmic inequality

For 1 < p ≤ d , and any u ∈ W1,p(Rd ) with
∫

Rd |u|p dx = 1 we have

∫

Rd

|u|p log |u|p dx ≤ d

p
log

[

βp,d

∫

Rd

|∇u|p dx

]

[M. del Pino, JD, I. Gentil], [D. Cordero-Erausquin]

When p < d , a = p (d−1)
d−p

corresponds to the Sobolev inequality

When p = d , we get a d-dimensional Onofri inequality by passing
to a limit as a → +∞

J. Dolbeault Onofri type inequalities and diffusions
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Notations

On d ≥ 2 consider the probability measure

dµd(x) :=
d

|Sd−1|
dx

(

1 + |x | d
d−1

)d

and the functions

Rd(X ,Y ) := |X + Y |d − |X |d − d |X |d−2 X · Y , (X ,Y ) ∈ R
d × R

d

which is a polynomial if d is even. With

Hd(x , p) := Rd

(

− d |x|
− d−2

d−1

1+|x|
d

d−1
x , d−1

d
p

)

(x , p) ∈ R
d × R

d

we define the quotient Qd [u] as

Qd [u] :=

∫

Rd Hd(x ,∇u) dx

log
(∫

Rd eu dµd

)
−

∫

R2 u dµ

J. Dolbeault Onofri type inequalities and diffusions
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Higher dimensions: Onofri type inequalities

Theorem (M. del Pino, JD)

Any smooth compactly supported function u satisfies

log

(∫

Rd

eu dµd

)

−
∫

R2

u dµ ≤ αd

∫

Rd

Hd (x ,∇u) dx

The optimal constant is αd = d1−d Γ(d/2)
2 (d−1) πd/2 and limε→0 Qd [ε v ] = 1

αd
with

v(x) = − d x·e

|x|
d−2
d−1

„

1+|x|
d

d−1

«

Example

If d = 2,
∫

Rd H2(x ,∇u) dx = 1
4

∫

R2 |∇u|2 dx , 1/α2 = 4 π

If d = 4, Hd(x , p) := R4

(

− 4 |x|−2/3

1+|x|4/3 x , 3 p/4
)

with

R4(X ,Y ) = 4 (X · Y )2 + |Y |2(|Y |2 + 4 X · Y + 2 |X |2)

J. Dolbeault Onofri type inequalities and diffusions
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Higher dimensions: Poincaré type inequalities

Gd (x , p) := Qd

(

− d |x|
−

d−2
d−1

1+|x|
d

d−1
x , d−1

d
p

)

(x , p) ∈ R
d × R

d

Corollary

With αd as in Theorem 2, we have
∫

Rd

|v − v |2 dµd ≤ αd

∫

Rd

Gd (x ,∇v) dx with v =

∫

R2

v dµ

for any v ∈ L1(Rd , dµd) such that ∇v ∈ L2(Rd , dx)

J. Dolbeault Onofri type inequalities and diffusions
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B – Sobolev and

Hardy-Littlewood-Sobolev

inequalities:

duality, flows
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Preliminary observations
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Legendre duality: Onofri and log HLS

Legendre’s duality: F ∗[v ] := sup
(∫

Rd u v dx − F [u]
)

F1[u] := log

(∫

R2

eu dµ

)

and F2[u] :=
1

16 π

∫

R2

|∇u|2 dx+

∫

R2

u µ dx

Onofri’s inequality amounts to F1[u] ≤ F2[u] with dµ(x) := µ(x) dx ,
µ(x) := 1

π (1+|x|2)2

Proposition

For any v ∈ L1
+(R2) with

∫

R2 v dx = 1, such that v log v and
(1 + log |x |2) v ∈ L1(R2), we have

F ∗
1 [v ]−F ∗

2 [v ] =

∫

R2

v log

(
v

µ

)

dx−4 π

∫

R2

(v − µ) (−∆)−1(v − µ) dx ≥ 0

[E. Carlen, M. Loss] [W. Beckner] [V. Calvez, L. Corrias]
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A puzzling result of E. Carlen, J.A. Carrillo and M. Loss

[E. Carlen, J.A. Carrillo and M. Loss] The fast diffusion equation

∂v

∂t
= ∆vm t > 0 , x ∈ R

d

with exponent m = d/(d + 2), when d ≥ 3, is such that

Hd [v ] :=

∫

Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Rd )

obeys to

1

2

d

dt
Hd [v(t, ·)] =

1

2

d

dt

[∫

Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Rd )

]

= d (d−2)
(d−1)2 Sd ‖u‖4/(d−1)

Lq+1(Rd )
‖∇u‖2

L2(Rd ) − ‖u‖2q

L2q(Rd )

with u = v (d−1)/(d+2) and q = d+1
d−1 . If d (d−2)

(d−1)2 Sd = (Cq,d )2q , the r.h.s.

is nonnegative. Optimality is achieved simultaneously in both
functionals (Barenblatt regime): the Hardy-Littlewood-Sobolev
inequalities can be improved by an integral remainder term

J. Dolbeault Onofri type inequalities and diffusions
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... and the two-dimensional case

Recall that (−∆)−1v = Gd ∗ v with

Gd (x) = 1
d−2 |Sd−1|−1 |x |2−d if d ≥ 3

G2(x) = 1
2 π log |x | if d = 2

Same computation in dimension d = 2 with m = 1/2 gives

‖v‖L1(R2)

8

d

dt

[
4 π

‖v‖L1(R2)

∫

R2

v (−∆)−1v dx −
∫

R2

v log v dx

]

= ‖u‖4
L4(R2) ‖∇u‖2

L2(R2) − π ‖v‖6
L6(R2)

The r.h.s. is one of the Gagliardo-Nirenberg inequalities (d = 2,
q = 3): π (C3,2)

6 = 1
The l.h.s. is bounded from below by the logarithmic
Hardy-Littlewood-Sobolev inequality and achieves its minimum if
v = µ with

µ(x) :=
1

π (1 + |x |2)2 ∀ x ∈ R
2

J. Dolbeault Onofri type inequalities and diffusions
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Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev’s inequality in R
d , d ≥ 3,

‖u‖2
L2∗ (Rd ) ≤ Sd ‖∇u‖2

L2(Rd ) ∀ u ∈ D1,2(Rd ) (1)

and the Hardy-Littlewood-Sobolev inequality

Sd ‖v‖2

L
2 d
d+2 (Rd )

≥
∫

Rd

v (−∆)−1v dx ∀ v ∈ L
2 d
d+2 (Rd) (2)

are dual of each other. Here Sd is the Aubin-Talenti constant and
2∗ = 2 d

d−2 . Can we recover this using a nonlinear flow approach ? Can
we improve it ?

Keller-Segel model: another motivation [J.A. Carrillo, E. Carlen and
M. Loss] and [A. Blanchet, E. Carlen and J.A. Carrillo]
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Using the Yamabe / Ricci flow
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Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

∂v

∂t
= ∆vm t > 0 , x ∈ R

d (3)

If we define H(t) := Hd [v(t, ·)], with

Hd [v ] :=

∫

Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Rd )

then we observe that

1

2
H′ = −

∫

Rd

vm+1 dx + Sd

(∫

Rd

v
2 d
d+2 dx

) 2
d
∫

Rd

∇vm · ∇v
d−2
d+2 dx

where v = v(t, ·) is a solution of (3). With the choice m = d−2
d+2 , we

find that m + 1 = 2 d
d+2
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A first statement

Proposition

[JD] Assume that d ≥ 3 and m = d−2
d+2 . If v is a solution of (3) with

nonnegative initial datum in L2d/(d+2)(Rd ), then

1

2

d

dt

[∫

Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Rd )

]

=

(∫

Rd

vm+1 dx

) 2
d [

Sd ‖∇u‖2
L2(Rd ) − ‖u‖2

L2∗ (Rd )

]

≥ 0

The HLS inequality amounts to H ≤ 0 and appears as a consequence
of Sobolev, that is H′ ≥ 0 if we show that lim supt>0 H(t) = 0
Notice that u = vm is an optimal function for (1) if v is optimal for (2)
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Improved Sobolev inequality

By integrating along the flow defined by (3), we can actually obtain
optimal integral remainder terms which improve on the usual Sobolev
inequality (1), but only when d ≥ 5 for integrability reasons

Theorem

[JD] Assume that d ≥ 5 and let q = d+2
d−2 . There exists a positive

constant C ≤
(
1 + 2

d

) (
1 − e−d/2

)
Sd such that

Sd ‖wq‖2

L
2 d
d+2 (Rd )

−
∫

Rd

wq (−∆)−1wq dx

≤ C ‖w‖
8

d−2

L2∗(Rd )

[

‖∇w‖2
L2(Rd ) − Sd ‖w‖2

L2∗ (Rd )

]

for any w ∈ D1,2(Rd )
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Solutions with separation of variables

Consider the solution of ∂v
∂t

= ∆vm vanishing at t = T :

vT (t, x) = c (T − t)α (F (x))
d+2
d−2

where F is the Aubin-Talenti solution of

−∆F = d (d − 2)F (d+2)/(d−2)

Let ‖v‖∗ := supx∈Rd (1 + |x |2)d+2 |v(x)|

Lemma

[M. del Pino, M. Saez], [J. L. Vázquez, J. R. Esteban, A. Rodŕıguez]
For any solution v with initial datum v0 ∈ L2d/(d+2)(Rd), v0 > 0, there
exists T > 0, λ > 0 and x0 ∈ R

d such that

lim
t→T−

(T − t)−
1

1−m ‖v(t, ·)/v(t, ·) − 1‖∗ = 0

with v (t, x) = λ(d+2)/2 vT (t, (x − x0)/λ)
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Improved inequality: proof (1/2)

J(t) :=
∫

Rd v(t, x)m+1 dx satisfies

J′ = −(m + 1) ‖∇vm‖2
L2(Rd ) ≤ −m + 1

Sd

J1− 2
d

If d ≥ 5, then we also have

J′′ = 2 m (m + 1)

∫

Rd

vm−1 (∆vm)2 dx ≥ 0

Notice that

J′

J
≤ −m + 1

Sd

J−
2
d ≤ −κ with κT =

2 d

d + 2

T

Sd

(∫

Rd

vm+1
0 dx

)− 2
d

≤ d

2
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Improved inequality: proof (2/2)

By the Cauchy-Schwarz inequality, we have

J′2

(m + 1)2
= ‖∇vm‖4

L2(Rd ) =

(∫

Rd

v (m−1)/2 ∆vm · v (m+1)/2 dx

)2

≤
∫

Rd

vm−1 (∆vm)2 dx

∫

Rd

vm+1 dx = Cst J′′ J

so that Q(t) := ‖∇vm(t, ·)‖2
L2(Rd )

(∫

Rd vm+1(t, x) dx
)−(d−2)/d

is

monotone decreasing, and

H′ = 2 J (Sd Q − 1) , H′′ =
J′

J
H′ + 2 JSd Q′ ≤ J′

J
H′ ≤ 0

H′′ ≤ −κH′ with κ =
2 d

d + 2

1

Sd

(∫

Rd

vm+1
0 dx

)−2/d

By writing that −H(0) = H(T ) − H(0) ≤ H′(0) (1 − e−κ T )/κ and
using the estimate κT ≤ d/2, the proof is completed �
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d = 2: Onofri’s and log HLS inequalities

H2[v ] :=

∫

R2

(v − µ) (−∆)−1(v − µ) dx − 1

4 π

∫

R2

v log

(
v

µ

)

dx

With µ(x) := 1
π (1 + |x |2)−2. Assume that v is a positive solution of

∂v

∂t
= ∆ log (v/µ) t > 0 , x ∈ R

2

Proposition

If v = µ eu/2 is a solution with nonnegative initial datum v0 in L1(R2)
such that

∫

R2 v0 dx = 1, v0 log v0 ∈ L1(R2) and v0 logµ ∈ L1(R2), then

d

dt
H2[v(t, ·)] =

1

16 π

∫

R2

|∇u|2 dx −
∫

R2

(
e

u
2 − 1

)
u dµ

≥ 1

16 π

∫

R2

|∇u|2 dx +

∫

R2

u dµ− log

(∫

R2

eu dµ

)

≥ 0
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C – Keller-Segel model, a functional
analysis approach

1 Introduction to the Keller-Segel model

2 Spectral analysis in the functional framework

determined by the relative entropy method

3 Collecting estimates: exponential convergence
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Introduction to the Keller-Segel model
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The parabolic-elliptic Keller and Segel system







∂u

∂t
= ∆u −∇ · (u ∇v) x ∈ R

2 , t > 0

−∆v = u x ∈ R
2 , t > 0

u(·, t = 0) = n0 ≥ 0 x ∈ R
2

We make the choice:

v(t, x) = − 1

2π

∫

R2

log |x − y | u(t, y) dy

and observe that

∇v(t, x) = − 1

2π

∫

R2

x − y

|x − y |2 u(t, y) dy

Mass conservation:
d

dt

∫

R2

u(t, x) dx = 0
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Blow-up

M =
∫

R2 n0 dx > 8π and
∫

R2 |x |2 n0 dx <∞: blow-up in finite time
a solution u of

∂u

∂t
= ∆u −∇ · (u ∇v)

satisfies

d

dt

∫

R2

|x |2 u(t, x) dx

= −
∫

R2

2 x · ∇u dx

︸ ︷︷ ︸

−4 M

+
1

2π

∫∫

R2×R2

2x·(y−x)
|x−y|2 u(t, x) u(t, y) dx dy

︸ ︷︷ ︸

(x−y)·(y−x)
|x−y|2 u(t,x) u(t,y) dx dy

= 4 M − M2

2π
< 0 if M > 8π
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Existence and free energy

M =
∫

R2 n0 dx ≤ 8π: global existence [W. Jäger, S. Luckhaus], [JD, B. Perthame]
[A. Blanchet, JD, B. Perthame], [A. Blanchet, J.A. Carrillo,
N. Masmoudi]

If u solves
∂u

∂t
= ∇ · [u (∇ (log u) −∇v)]

the free energy

F [u] :=

∫

R2

u log u dx − 1

2

∫

R2

u v dx

satisfies
d

dt
F [u(t, ·)] = −

∫

R2

u |∇ (log u) −∇v |2 dx

Log HLS inequality [E. Carlen, M. Loss]: F is bounded from below if
M < 8π
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The dimension d = 2

In dimension d , the norm Ld/2(Rd ) is critical. If d = 2, the mass
is critical

Scale invariance: if (u, v) is a solution in R
2 of the

parabolic-elliptic Keller and Segel system, then

(

λ2 u(λ2 t, λ x) , v(λ2 t, λ x)
)

is also a solution

For M < 8π, the solution vanishes as t → ∞, but saying that
diffusion dominates is not correct: to see this, study intermediate

asymptotics
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The existence setting







∂u

∂t
= ∆u −∇ · (u ∇v) x ∈ R

2 , t > 0

−∆v = u x ∈ R
2 , t > 0

u(·, t = 0) = n0 ≥ 0 x ∈ R
2

Initial conditions

n0 ∈ L1
+(R2, (1+|x |2) dx) , n0 log n0 ∈ L1(R2, dx) , M :=

∫

R2

n0(x) dx < 8 π

Global existence and mass conservation: M =
∫

R2 u(x , t) dx for any
t ≥ 0, see [W. Jäger, S. Luckhaus], [A. Blanchet, JD, B. Perthame]

v = − 1
2π log | · | ∗ u
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Time-dependent rescaling

u(x , t) =
1

R2(t)
n

(
x

R(t)
, τ(t)

)

and v(x , t) = c

(
x

R(t)
, τ(t)

)

with R(t) =
√

1 + 2t and τ(t) = log R(t)






∂n

∂t
= ∆n −∇ · (n (∇c − x)) x ∈ R

2 , t > 0

c = − 1

2π
log | · | ∗ n x ∈ R

2 , t > 0

n(·, t = 0) = n0 ≥ 0 x ∈ R
2

[A. Blanchet, JD, B. Perthame] Convergence in self-similar variables

lim
t→∞

‖n(·, · + t) − n∞‖L1(R2) = 0 and lim
t→∞

‖∇c(·, · + t) −∇c∞‖L2(R2) = 0

means intermediate asymptotics in original variables:

‖u(x , t) − 1
R2(t) n∞

(
x

R(t) , τ(t)
)

‖L1(R2) ց 0
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The stationary solution in self-similar variables

n∞ = M
e c∞−|x|2/2

∫

R2 ec∞−|x|2/2 dx
= −∆c∞ , c∞ = − 1

2π
log | · | ∗ n∞

Radial symmetry [Y. Naito]

Uniqueness [P. Biler, G. Karch, P. Laurençot, T. Nadzieja]

As |x | → +∞, n∞ is dominated by e−(1−ǫ)|x|2/2 for any ǫ ∈ (0, 1)
[A. Blanchet, JD, B. Perthame]

Bifurcation diagram of ‖n∞‖L∞(R2) as a function of M :

lim
M→0+

‖n∞‖L∞(R2) = 0

[D.D. Joseph, T.S. Lundgren] [JD, R. Stańczy]
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The free energy in self-similar variables

∂n

∂t
= ∇

[

n (log n − x + ∇c)
]

F [n] :=

∫

R2

n log n dx +

∫

R2

1

2
|x |2 n dx − 1

2

∫

R2

n c dx

satisfies
d

dt
F [n(t, ·)] = −

∫

R2

n |∇ (log n) + x −∇c |2 dx

A last remark on 8π and scalings: nλ(x) = λ2 n(λ x)

F [nλ] = F [n]+

∫

R2

n log(λ2) dx+

∫

R2

λ−2−1
2 |x |2 n dx+

1

4π

∫

R2×R2

n(x) n(y) log
1

λ
dx dy

F [nλ] − F [n] =

(

2M − M2

4π

)

︸ ︷︷ ︸

>0 if M<8π

logλ+
λ−2 − 1

2

∫

R2

|x |2 n dx
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Keller-Segel with subcritical mass in self-similar variables







∂n

∂t
= ∆n −∇ · (n (∇c − x)) x ∈ R

2 , t > 0

c = − 1

2π
log | · | ∗ n x ∈ R

2 , t > 0

n(·, t = 0) = n0 ≥ 0 x ∈ R
2

lim
t→∞

‖n(·, · + t) − n∞‖L1(R2) = 0 and lim
t→∞

‖∇c(·, · + t) −∇c∞‖L2(R2) = 0

n∞ = M
e c∞−|x|2/2

∫

R2 ec∞−|x|2/2 dx
= −∆c∞ , c∞ = − 1

2π
log | · | ∗ n∞
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A parametrization of the solutions and the linearized

operator

[J. Campos, JD]
−∆c = M

e−
1
2 |x|2+c

∫

R2 e−
1
2 |x|2+c dx

Solve

−φ′′ − 1

r
φ′ = e−

1
2 r2+φ , r > 0

with initial conditions φ(0) = a, φ′(0) = 0 and get

M(a) := 2π

∫

R2

e−
1
2 r2+φa dx

na(x) = M(a)
e−

1
2 r2+φa(r)

2π
∫

R2 r e−
1
2 r2+φa dx

= e−
1
2 r2+φa(r)

With −∆ϕf = na f , consider the operator defined by

L f :=
1

na

∇ · (na(∇(f − ϕf ))) x ∈ R
2
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Spectrum of L (lowest eigenvalues only)

5 10 15 20 25

1

2

3

4

5

6

7

Figure: The lowest eigenvalues of −L (shown as a function of the mass) are 0,
1 and 2, thus establishing that the spectral gap of −L is 1

[A. Blanchet, JD, M. Escobedo, J. Fernández], [J. Campos, JD],
[V. Calvez, J.A. Carrillo], [J. Bedrossian, N. Masmoudi]

J. Dolbeault Onofri type inequalities and diffusions



A: Onofri’s inequality as an endpoint of Gagliardo-Nirenberg inequalities
B: Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

C: Keller-Segel model, a functional analysis approach

Spectral analysis in the functional framework determined
by the relative entropy method
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Simple eigenfunctions

Kernel Let f0 = ∂
∂M

c∞ be the solution of

−∆ f0 = n∞ f0

and observe that g0 = f0/c∞ is such that

1

n∞
∇ ·

(
n∞∇(f0 − c∞ g0)

)
=: L f0 = 0

Lowest non-zero eigenvalues f1 := 1
n∞

∂n∞

∂x1
associated with

g1 = 1
c∞

∂c∞
∂x1

is an eigenfunction of L, such that −L f1 = f1

With D := x · ∇, letf2 = 1 + 1
2 D log n∞ = 1 + 1

2 n∞
D n∞. Then

−∆(D c∞) + 2 ∆c∞ = D n∞ = 2 (f2 − 1) n∞

and so g2 := 1
c∞

(−∆)−1(n∞ f2) is such that −L f2 = 2 f2
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Functional setting...

Lemma (A. Blanchet, JD, B. Perthame)

Sub-critical HLS inequality [A. Blanchet, JD, B. Perthame]

F [n] :=

∫

R2

n log

(
n

n∞

)

dx − 1

2

∫

R2

(n − n∞) (c − c∞) dx ≥ 0

achieves its minimum for n = n∞

Q1[f ] = lim
ε→0

1

ε2
F [n∞(1 + ε f )] ≥ 0

if
∫

R2 f n∞ dx = 0. Notice that f0 generates the kernel of Q1

Lemma (J. Campos, JD)

Poincaré type inequality For any f ∈ H1(R2, n∞ dx) such that
∫

R2 f n∞ dx = 0, we have∫

R2

|∇(g c∞)|2 n∞ dx ≤
∫

R2

|f |2 n∞ dx
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... and eigenvalues

With g such that −∆(g c∞) = f n∞, Q1 determines a scalar product

〈f1, f2〉 :=

∫

R2

f1 f2 n∞ dx −
∫

R2

f1 n∞ (g2 c∞) dx

on the orthogonal to f0 in L2(n∞ dx) and with G2(x) := − 1
2π log |x |

Q2[f ] :=

∫

R2

|∇(f − g c∞)|2 n∞ dx with g =
1

c∞
G2 ∗ (f n∞)

is a positive quadratic form, whose polar operator is the self-adjoint
operator L

〈f ,L f 〉 = Q2[f ] ∀ f ∈ D(L2)

Lemma (J. Campos, JD)

L has pure discrete spectrum and its lowest eigenvalue is 1
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Linearized Keller-Segel theory

L f =
1

n∞
∇ ·

(
n∞∇(f − c∞ g)

)

Corollary (J. Campos, JD)

〈f , f 〉 ≤ 〈L f , f 〉

The linearized problem takes the form

∂f

∂t
= L f

where L is a self-adjoint operator on the orthogonal of f0 equipped
with 〈·, ·〉). A solution of

d

dt
〈f , f 〉 = −2 〈L f , f 〉

has therefore exponential decay
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A new Onofri type inequality

[J. Campos, JD]

Theorem (Onofri type inequality)

For any M ∈ (0, 8π), if n∞ = M e
c∞− 1

2
|x|2

R

R2 e
c∞− 1

2
|x|2

dx
with c∞ = (−∆)−1 n∞,

dµM = 1
M

n∞ dx, we have the inequality

log

(∫

R2

eφ dµM

)

−
∫

R2

φ dµM ≤ 1

2 M

∫

R2

|∇φ|2 dx ∀ φ ∈ D1,2
0 (R2)

Corollary (J. Campos, JD)

The following Poincaré inequality holds

∫

R2

∣
∣ψ − ψ

∣
∣
2

nM dx ≤
∫

R2

|∇ψ|2 dx where ψ =

∫

R2

ψ dµM
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An improved interpolation inequality (coercivity estimate)

Lemma (J. Campos, JD)

For any f ∈ L2(R2, n∞ dx) such that
∫

R2 f f0 n∞ dx = 0 holds, we have

− 1

2π

∫∫

R2×R2

f (x) n∞(x) log |x − y | f (y) n∞(y) dx dy

≤ (1 − ε)

∫

R2

|f |2 n∞ dx

for some ε > 0, where g c∞ = G2 ∗ (f n∞) and, if
∫

R2 f n∞ dx = 0 holds,

∫

R2

|∇(g c∞)|2 dx ≤ (1 − ε)

∫

R2

|f |2 n∞ dx
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Collecting estimates: exponential convergence
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Back to Keller-Segel: exponential convergence for any

mass M ≤ 8π

If n0,∗(σ) stands for the symmetrized function associated to n0,
assume that for any s ≥ 0

∃ ε ∈ (0, 8 π−M) such that

∫ s

0

n0,∗(σ) dσ ≤
∫

B
“

0,
√

s/π
”

n∞,M+ε(x) dx

Theorem

Under the above assumption, if n0 ∈ L2
+(n−1

∞ dx) and
M :=

∫

R2 n0 dx < 8 π, then any solution of (??) with initial datum n0 is
such that

∫

R2

|n(t, x) − n∞(x)|2 dx

n∞(x)
≤ C e− 2 t ∀ t ≥ 0

for some positive constant C, where n∞ is the unique stationary solution
with mass M
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Sketch of the proof

[J. Campos, JD] Uniform convergence of n(t, ·) to n∞ can be
established for any M ∈ (0, 8π) by an adaptation of the
symmetrization techniques of [J.I. Diaz, T. Nagai, J.M. Rakotoson]

Uniform estimates (with no rates) easily result

Estimates based on Duhammel formula inspired by [M. Escobedo,
E. Zuazua] allow to prove uniform convergence

Spectral estimates can be incorporated to the relative entropy
approach

Exponential convergence of the relative entropy follows
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Thank you for your attention !
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