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Abstract

Many new results on asymptotic behavior, sharp rates, optimal regulariza-
tion effects, etc. have been achieved for the solutions of nonlinear diffu-
sion equations over the last few years. By (generalized) entropy, we mean
special Lyapunov functionals which have a probabilistic interpretation or a
physical meaning. Such entropies also have deep connections with the
(nonlinear) structure of the equation. The key underlying estimate is usu-
ally a functional inequality which relates the entropy with its time derivative.
In the case of fast diffusion equations, the functional inequality is an inter-
polation inequality of Gagliardo-Nirenberg type. The talk will be devoted to

a review of some recent results.
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Intermediate asymptotics of
linear diffusion equations

Consider the heat equation:

ur = Au reRY teRT
u(,t=0)=wug >0 /uodaczl
R4

ozl /4t

As t — —+00, u(m,t) NU(ZL‘,t) = W

What is the (optimal) rate of convergence of |ju(:,t) — U(-,t)|| L1 (ra) ?
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Time dependent rescaling: Fokker-Planck equation

u(x, t) = Rdl(t) v (5 = %,T = log R(t) + T(O))

allows to transform this question into that of the convergence to the
stationary solution v. (¢) = (27)~4/2 e~ 161°/2,

e Ansatz: ¢f = L  R(0)=1 7(0)=0:

R(t)=v1+2t, 7(t)=logR(t)
As a consequence: v(T = 0) = uyp.
e Fokker-Planck equation:

vy = Av + V(&) EcRY, T eRT
v(-,7=0)=wup >0 /uodle
Rd
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Entropy (relative to the stationary solution v_.)

S[v] = /Rdfvlog (é) da

If v is a solution of (2), then (I is the Fisher information)

2l = - [ v |viog (;)

e Euclidean logarithmic Sobolev inequality If ||v]|: = 1, then

1 Vol|?
/ vlogw dx—|—d(1—|——log(27r)) < — / Vol
R4 2 2 Rd (%

S[o(,7)] < $[o(-, 7)), Equality: v(f)zvm<§>=<2w>—d/2e—'€'2/2

2

drx =: —I[v(-,7)]

S[o(-,7)] < e 2 Sug) = e /R up log (“ ) dz

Voo
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Csiszar-Kullback inequality

Consider v > 0, v > 0 such that [, vdz = [, 0dz =M >0

v 1 19
/Rd v log (5> dx = WHU — 0|71 (e

:> ||U - UOOHil(Rd) S 4ME['U;O] 6_27_

oo (2, 1) = Rdl(t) v (%,T(t))

The proof of the Csiszar-Kullback inequality is given by a Taylor develop-

ment at second order.
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Logarithmic Sobolev inequalities

1) independent of the dimension [Gross, 75]: gaussian form

1
/ wlog w d,u(x)g—/ w |V log w|? du(x)
o 2 e

with w = 375—, [[vl[pr = M, du(z) = v () dx

2) invariant under scaling [Weissler, 78]

d 2
/ v?logv? dx < = log ( / Vol? dx)
Rd 2 mTde Rd

for any v € H'(R?) such that [v*dz =1

Proof: optimize for vy (z) = A%2v(Az) w.rt. A > 0
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Entropy-entropy production / Bakry-Emery method

.. a proof of the Euclidean logarithmic Sobolev inequality:

(1o, 7)] ~25(7)]) =

fwwj

+bwd;; d:z: <0

1,7=1

forsome C > 0,a,b € Rand w = /v

Iw(,7)] = 2%, 7)] \ M [veo] — 2X[vee] =0
—  VYug, Ilug—2%ug]>TIw(-,7)]—-2%v(,7]>0 V7>0
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Entropy-entropy production method

Goal: large time behavior of parabolic equations:

(v =divy[D(z) (Vov+ vV, A(z))] = divie AV (ve?)]
) t>0, zeR? (3)
v(z,t =0) = vo(z) € LL(RY)

A(x) ... given ‘potential

Voo (x) = e~ 4 ¢ L1 (unique) steady state

mass conservation: [, v(t) dz = [ Voo dz =1

questions: exponential rate ? connection to logarithmic Sobolev
inequalities ? [Bakry-Emery ‘84, Gross '75, Toscani ’96, ...]
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Entropy-entropy production method

[Bakry, Emery, 84]
[Arnold, Markowich, Toscani, Unterreiter, 01]
Relative entropy of v w.r.t. v.:

Y [v|vso] = /Rdw (vi) Voo dx > 0

with Y(w) > 0forw >0, convex
(1) = ¢P'(1)=0
(w///)Q S w//¢lv
Examples:

1 =whw—w+1, ¥ (v|vs) fvln( )da:

by = w —ngftfl—l)—l, 1<p<2, |’Uoo fRd

OO

. physical entropy

207 dx

OO
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Exponential decay of entropy production

d
I(v(t)|veo) := dtz t)|veo] = /w" - |V— *Voedz< 0

=:u

Assume: D =1, 2 e 4> \Id, A >0 (A(z) ... unif. convex)
entropy production rate:

Ox?

7

/ e Y T 82A
I'=2 [y (—)u" - — U/Uoodx+2 Tr (XY)veedr > —2 M1
Voo

~

>0

X‘<Wi) e )20, Y‘(Z“(%V " 2’;-1&)20
voo) u- -5, " u ‘U’|4

w///(%) %wIV(L T gg

Exponential decay of relative entropy: [Arnold, Markowich, Toscani,
Unterreiter]
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Convex Sobolev inequalities

[Arnold, Markowich, Toscani, Unterreiter]: Entropy—entropy production
estimate for A(x) = — In v, uniformly convex:

1
Y[v|vee] < ﬁlf(v\voo)\

Example 1: logarithmic entropy 1 (w) = wlnw — w + 1

1
/vln(voo)da;<2—>\l oV In(—) [2dz

Voo

Vv, oo € LL(RY), [vdr = [voodz =1
Set f* = ;- =

2
/f2 In f2dvee < )\—1/|Vf|2dvoo
Vi e L*(RY, dvy), [ fdve =1

logarithmic Sobolev inequality—dv., measure version [Gross ’75]
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Convex Sobolev inequalities (continued)

Example 2: non-logarithmic entropies:

Pp(w) = L= o <2
p
p 2 2 2 9
B, —t— _ 2 < =
I Re— Ve L7 (R, veda)

< JIfIPdus

Poincare-type inequality [Beckner '89], (B,) = (B2), 1<p<2
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Refined convex Sobolev inequalities

Estimate of entropy production rate / entropy production:

0% A
I = 9 1 2T /
/?,b (Uoo Ju 52 W dr+2 [ Tr (XY )veodx

7

Ve

>0

> —2)M1

[Arnold, JD]: Observe that for 1), (w) = L2202 ] < p < 2:

P() ()
X = = oo 0
( Py LIV () ) g
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Refined Beckner / generalized Poincareé inequalities

° Assume 2 Ald = Y7 > -2\ Z’+/e|1§jr|2, K = 2%9 <1
= k(E[|vec]) < 537 |2 = o7 [ 9" (35)IV 5= Pdve

“refined convex Sobolev inequality” with x < k( ) = 1*“’:9:”3)H
o Setv/ve = |fI7/ [ |f|7 dvee

Theorem 1 (Arnold, JD)

) [ (o) ()

<3 /|Vf\2dvoo Vf e Ly (RY, dvo)
1

(rBp) = (rB2) = (B2), 1<p<2
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The Bakry-Emery method
revisited

[Gianazza, Savaré, Toscani]

[J.D., Nazaret, Savaré]
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Consider on adomain Q c R* and dy = gdz, g = e~ ¥
Generalized Ornstein-Uhlenbeck operator: A v := Av — DF' - Do

/\Dv|2 dfy:—/fUAng dy Vv e Hy(Q,dy)
Q Q

Let s:=vP/2and a := (2 —p)/p, p € (1, 2]

ve=A,v TN, teRT
Vo-n=0 z€0Q,teR"

1
&) = = Q[UP_1—p(fU—1)} dry
4 2
I,(t) := 5 Q\Ds| d~y
D 2
Kp(t) = /\Ags\2 dfy—|—04/ Ags| i dry
Q Q S
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Written in terms of s = vP/2, the entropy is

1 2 2/
= —— —1-p(s*?—1)| d
&= Q[S p(s )} g

and the evolution is governed by

D 2
st = Ags + o Ds
S
A simple computation shows that
d
%gp(t) = —Ip()
d . 8

—7Z,(t)

|
|
|
S
i
~—~
~
~—
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Using the commutation relation [D, A ] s = —D?F Ds, we get

d
/ (AQS)Q dry = / ‘D23‘2 d”Y—l—/ D?F Ds - Ds dy — Z /aQ 81'23'8 0isn,; gdH4 1
Q 0 0

i,j=1

\ 4

>0 If €2 IS convex

Let z := /s. Using : 2D?s- Dz ® Dz = D (|Dz|?) : Dz and i.p.p., we get
£, = /\AgsP dfy—|—4oz/ A,s|Dz|? dy
Q Q
> /\D23|2 d7+/ D?F Ds - Ds dry
Q Q
—|—42a/ |Dz|* d’y—2-4a/ D?s : Dz ® Dz dy
Q Q

> (1—a)/ ID*s|? dfy+/D2FDs-Ds dry
Q Q
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An extension of the criterion of Bakry-Emery

Let V(z) := infeega—1 (D*F(2) &, &) and define

Jo (252 IDwf +V ) dy
A 1= inf
RS Y Jo lw]? dry

Theorem 1 LetF € C?(Q), v =e ¥ € L} (Q), and Q2 be a convex domain
inR<. If \y(p) is positive, then
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Fast diffusion equations:
entropy methods and functional
inequalities

ug = Au™ zeR? t>0

@ Entropy methods for fast diffusion and porous media equations:
iIntermediate asymptotics

@_ Entropy methods and functional inequalities
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Porous media / fast diffusion equations

Generalized entropies and nonlinear diffusions (EDP, uncomplete):

[Del Pino, J.D.], [Carrillo, Toscani], [Otto], [Juengel, Markowich, Toscani],
[Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Biler, J.D., Esteban],
[Markowich, Lederman], [Carrillo, Vazquez], [Cordero-Erausquin, Gangbo,
Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub],...
[del Pino, Saez], [Daskalopulos, Sesum]...

1) [J.D., del Pino] relate entropy and entropy-production by
Gagliardo-Nirenberg inequalities

Various approaches:

2) “entropy — entropy-production method”

3) mass transport techniques

4) hypercontractivity for appropriate semi-groups
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Heat equation, porous media & fast diffusion equation

uy = Au™
r €R?
heat equation

fast diffusion equation : :
porous media equation

: ; » m

i
d—2 d—1
d d 1

extinction in finite time global existence in L!

Existence theory, critical values of the parameter m
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Intermediate asymptotics for fast diffusion & porous media

uy = Au™ in RY

U|t:0 — U Z 0

uo(l + |z|*) € LY, i € L'

Intermediate asymptotics: ug € L, [ugdx =M >0

Self-similar (Barenblatt) function: U(t) = O(t=%/ (2=d1=m)))
As t — +oo, [Friedmann, Kamin, 1980]

Ju(t,) = U(t, )| = ot~/ EmdEmm)

—> What about ||u(t, ) —U(t,-)||Lr ?
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Time-dependent rescaling

Take u(t,z) = R=4(t)v (v(t),x/R(t)) where
R=RM=™=1 " RO)=1, 7=IogR

vy = Av" + V- (zv), V=0 = Ug

[Ralston, Newman, 1984] Lyapunov functional: Entropy or Free energy

v 1, 5
Z[v]—/(m_1+§|x| v) dr — g
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Entropy and entropy production

Stationary solution: choose C' such that ||veo || = ||u||pr = M > 0

1 —1/(1—m)
(o) = (€ 4+ 55 o)
_|_

Fix 3y so that ¥[v..| = 0. The entropy can be put in an m-homogeneous
form

Sl = [ () vide with (t) = U=l

Theorem1 d >3, m e [£L +o0),m > 2, m # 1

I[v] > 23]
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An equivalent formulation

Slo] = [ (5 + 3lal?v) do = 2o < 3 [ | %7 4o do =

m—1

I{v]

1
2

v = w?, ™ = P!

1/ 2 : 1

K<0ifm<1, K> 0ifm > 1and, for some ~, K can be written as

¥
K = K, (/vdx:/wZde>
1/2p .

W= Wso = Vs 1S Optimal

m = 2=1: Sobolev, m — 1: logarithmic Sobolev
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Gagliardo-Nirenberg inequalities

Theorem 2 [Del Pino, J.D.] Assume that1 < p < -4 andd > 3

|wll2p < Al[Vwlly [lwl,3

A= (M) (0) i (r(l;(y)gl)) |

g_ dip—1) y:p+1
p(d+2—(d—2)p) p—1

|

Similar results for0 < p < 1

Uses [Serrin Pucci], [Serrin-Tang]

1 <p= 1= < -% < Fast diffusion case: <1 <m < 1
D<p<l<—= Porous medium case: m > 1
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Intermediate asymptotics

Y[v] < X[ug] e 27+ Csiszar-Kullback inequalities

Theorem 3 [Del Pino, J.D.]
() = <m<1ifd>3

1—d(1—m)
lim sup ¢2=20=m) ||u™ — ult||p1 < 00
t——+o00
(n1<m<2
14+d(m—1) S
lim sup t2Fdm=D || [u — Uso] Uy~ |11 < 00
t——+o00

Uoo (1, 2) = R™Ut) voo (z/R(t))
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Fast diffusion equations: the
finite mass regime

@ If m > 1: porous medium regime or m; := 41 < m < 1, the decay of

the entropy is governed by Gagliardo-Nirenberg inequalities, and to

the limiting case m = 1 corresponds the logarithmic Sobolev
iInequality

Q@ If m. := %2 < m < m;, solutions globally exist in L! and the
Barenblatt self-similar solution has finite mass.
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A remark on the mass transport approach

@ The fast diffusion equation can be seen as the gradient flow of the
generalized entropy with respect to the Wasserstein distance

@_ Displacement convexity holds in the same range of exponents,
m € ((d —1)/d, 1), as for the Gagliardo-Nirenberg inequalities

= How to extend to m. < m < mq what has been done for m > my ?
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Fast diffusion: finite mass regime

Inequalities...

Sobolev
logarithmic Sobolev
/ Gagliardo-Nirenberg

>

‘ ™ e LY, 1’y e [

Bakry-Emery method (relative entropy)

global existence in L'

... existence of solutions of u; = Au™

Fast diffusion equations: entropy methods and functional inequalities — p.3/:



Extensions and related results

@ Mass transport methods: inequalities / rates [Cordero-Erausquin,
Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Aguenh,
Ghoussoub, Kang]

@ General nonlinearities [Biler, J.D., Esteban], [Carrillo-DiFrancesco],
[Carrillo-duengel-Markowich-Toscani-Unterreiter] and gradient flows
[Jordan-Kinderlehrer-Otto], [Ambrosio-Savareé-Gigli],
[Otto-Westdickenberg], etc + [J.D.-Nazaret-Savaré, in progress]

@ Non-homogeneous nonlinear diffusion equations [Biler, J.D.,
Esteban], [Carrillo, DiFrancesco]

Extension to systems and connection with Lieb-Thirring inequalities
[J.D.-Felmer-Loss-Paturel, 2006], [J.D.-Felmer-Mayorga]

@ Drift-diffusion problems with mean-field terms. An example: the
Keller-Segel model [J.D-Perthame, 2004], [Blanchet-J.D-Perthame,
2006], [Biler-Karch-Laurencot-Nadzieja, 2006],
[Blanchet-Carrillo-Masmoudi, 2007], etc

@_ ... connection with linearized problems [Markowich-Lederman],
[Carrillo-Vazquez], [Denzler-McCann], [McCann, Slepcev]

©
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Fast diffusion equations: the
infinite mass regime

Q@  If m > m.:= %2 < m < m, solutions globally exist in L! and the
Barenblatt self-similar solution has finite mass.

Q_ For m < m,, the Barenblatt self-similar solution has finite mass

= How to extend to m < m. what has been done for m > m. ? Work in
relative variables !
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Fast diffusion: infinite mass regime

Z[VDl\VDo] — O ‘ Vb, — Vp, € L1
vo — Vp, € L! X[VD,1 VD, ] < o0
VDl — VDO Q/ L ‘ V0, Vb € Lt
: : : — > m
d—4 d—2 _d_ a—1 1 . .
d—-2 d - di2 d Gagliardo-Nirenberg
N ‘ ] v e L ity e I

Bakry-Emery method (relative entropy)

global existence in L'

n» me mi
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Entropy methods and linearization...

... intermediate asymptotics, vanishing

A. Blanchet, M. Bonforte, J.D., G. Girillo, J.L. Vazquez

@_ use the properties of the flow
@_ write everything as relative quantities (to the Barenblatt profile)

@_ compare the functionals (entropy, Fisher information) to their
linearized counterparts

—> Extend the domain of validity of the method to the price of a restriction

of the set of admissible solutions
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Setting of the problem

We consider the solutions u(7,y) of
O-u = Au™
u(0,-) = ug

where m € (0,1) (fast diffusion) and (7,y) € Q7 = (0,T) x R?
Two parameter ranges: m. < m < 1 and 0 < m < m., where

Q@ m.<m<1, T = +oco: intermediate asymptotics, 7 — +oo
Q@ 0<m<meT < +oc: vanishing in finite time

I =
lim u(7,y) =0
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Barenblatt solutions

with
@ R(r) = [d(m —me) (r+T)] 7779 if my <m < 1

@_ (vanishing in finite time) if 0 < m < m.

Time-dependent rescaling: ¢ := log (ggg;) and z:= %. The

function v(¢, z) := R(7)?u(r,y) solves a nonlinear Fokker-Planck type equation

Ov(t,x) = Av™(t,x) + V - (zv(t, x)) (t,z) € (0,+00) x R4

v(0,2) = vo(x) = R(0)% ug(R(0) z) r € R¢
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Assumptions

(H1) ug is a non-negative function in L] (R?) and that there exist positive
constants 7" and Dy > D; such that

Upo7(0,y) <uo(y) <Up, 7(0,y) YyeR

(H2) If m € (0, m.], there exist D, € [D1, Do) and f € L'(R?) such that

w(y) =Up. r(0,y)+ f(y) VyeR?

(H1’) vy is @ non-negative function in L}, .(R%) and there exist positive
constants Dy > D; such that

Vo, (x) <vo(z) < Vp,(x) VaeR?
(H2) If m € (0,m,], there exist D, € [Dy, D] and f € L'(R?) such that

vo(x) =Vp, (z)+ f(x) Vace RY
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Convergence to the asymptotic profile (without rate)

mem O e m 822 )._d(l—m)
T g ST Ty PO e T
Theorem 1 Letd > 3, m € (0,1). Consider a solution v with initial data
satisfying (H1’)-(H2’)
(i) For anym > m., there exists a unique D, such that

Jpa(v(t) = Vp,) dz =0 for any t > 0. Moreover, for any p € (p(m), oo},
hmt_>OO Ja |v t) —Vp,|Pder =0

(i) Form < m,, v(t) — Vp, is integrable, [,.(v(t) — Vp,) dx = [, [ dx
and v(t) converges to Vp_ in LP(RY) ast — oo, for any p € (1, oc]
(iif) (Convergence in Relative Error) For any p € (d/2, o],

lim [[v(t)/ VD, = 1], =

t— o0

[Daskalopoulos-Sesum, 06], [Blanchet-Bonforte-Grillo-Vazquez, 06-07]
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Convergence with rate

2d(1—m)
22—m)+d(1—m)

Qx =
Theorem 2 [fm # m,, there existt, > 0 and A\, 4 > 0 such that

() Forany q € (q., 00|, there exists a positive constant C, such that

[v(t) — Vp,|lq < Cq e mdt Vi >t

(iy Foranyd € [0,(2—m)/(1 —m)), there exists a positive constant Cy
such that

[ 1z]”(v(t) = Vp,)||, < Cy et Vi >t

(i) Forany j € N, there exists a positive constant H; such that

>‘m,d

lo(t) = Vb, |lciray < Hje” #2600 " V¢ > ¢
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Intermediate asymptotics

Corollary 3 Letd > 3, m € (0,1), m # m,. Consider a solution v with
initial data satisfying (H1)-(H2). For T large enough, for any q € (q., o],
there exists a positive constant C' such that

lu(m) = Up,(7)llq < CR(T)™"

where o = \,,, 4 +d(q—1)/q and large means T — t > 0, small, if m < m.,
andr — oo Ifm > m,

For any p € (d/2, x|, there exists a positive constant C and~ > 0 such that

|v(t)/ Vo, = 1| gay SCe7" V>0
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Rewriting the equation in relative variables

L*-contraction, Maximum Principle, conservation of relative mass...

Passing to the quotient: the function w(t, ) := -7 solves

1
( Wy = 7 \Y [w VD*V<L(wm_1 —1) VDm_l)] in (0, +00) x R4
D,

m — 1 -
\
Yo :
O <) = = — Rd
\ w(0, ) = wo 7 in
with
V V
0< inf =2 < w(t,z) < sup —2 < 00
x€ER4 VD* xERA VD*

... Harnack Principle

Jwt)lor@ay < Hy <400 Vit >t
319 > 0s.t. (H1) holds if 3 R > 0, sup,~ g uo(y) \y\ﬁ < oo, and m > m,
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Relative entropy

Relative entropy

Flu] = —— | [(w-1)— ~@™ 1)V da

I —m Jpa m

Relative Fisher information

Thol = /Rd}V[(wm_ Ve PV, de

Proposition 1 Under assumptions (H1)-(H2),

d

()] =—Jw()

Proposition 2 Under assumptions (H1)-(H2), there exists a constant
A > 0 such that

Flw®)] < A7 Tw(?)]
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Heuristics: linearization

Take w(t,z) =1+¢ Vg,qff—’f()x) and formally consider the limit e — 0 in

( 1 m :
Wy = V—D* v . [’U} VD*V(m(wm_l _ 1) Vl’gfi—1>] in (07 —I—OO) X Rd

Yo :
) = = — RY
\ w(0, ) = wy 7 in

*

Then g solves
ge =mVp 2(x) V- [Vp.(z) Vg(t, z)]

and the entropy and Fisher information functionals

1
Flg] := 5 g2 Vg:m dr and llg] :=m Vgl? Vb, dx
Rd Rd

consistently verify % Flg(t)] = — 1]g(t)]
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Comparison of the functionals

Lemma 3 Letm € (0,1) and assume that u, satisfies (H1)-(H2)
[Relative entropy]

C lw— 17 VA dz < Flw] < Cq lw—1° VS da
Rd Rd

[Fisher information]
lg) < B Tlw] + B2 Flg] with g:=(w—1) V5™

Theorem 4 (Hardy-Poincare) There exists a positive constant A, 4 such
that for any m # m, = (d — 4)/(d — 2), m € (0,1), for any g € D(RY),

g —g)° VA de < Crma | V|’ Vb, do
Rd Rd

withg = Ja 9 Vg:m dx if m > m,, g = 0 otherwise
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Hardy-Poincareé inequalities

Witha = -, o, = —1 :1—%

m—1 My —1

Theorem 5 Assume thatd > 3, « € R\ {a*}, dua(z) := ho(x) dx,
ho(x) := (1 + |z]?)*. Then

|U‘2 2
/RMHZC‘Q too < Cad Rdl v|* dp

holds for some positive constant C,, 4, for any v € D(R?), under the
additional condition |, vdpa—1 =0 ifa € (—oo, a*)

Fast diffusion equations: Entropy methods and linearization, intermediate asymptotics, vanishing — p.14/1



Limit cases

Poincaré inequality: take o = —1/e? to v.(z) := e~ %2 v(xz/e) and lete — 0
1 , 2
/ W dv, < —/ Voldve, with dus(z) = e=1o da
Rd 2 R4

... under the additional condition [, v e~1*I"dz = 0

Hardy’s inequality: take vy /. (z) := %2 v(cx) and let e — 0

2 1 .
/ Gl dvg o < / Vul?dvg.e With  dyg o(z) = |z|** dz
R R4

@ |z]? (@ = o)

.. under the additional condition v, := [, vdvy o =0if a < o
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Some estimates of C, 4

Q —o<a< —d| d<a<a® | a<a<l
1 4
Cad 2]af Ca,a2 (d+20—2)2 (d+20—2)2
Optimality ? ? YES
Q <a<ald | ald <a< d a>d
C 4 1 1 1
a,d d(d+20—2) a(d+a—2) 2d(d—1) | d(d+a—2)
Optimality ? ? yeS ?

()é*:_

2

=2 " a(d) € (1,d)
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Hardy’s inequality: the “completing the square method”

Let v € D(R?) with supp(v) € R4\ {0} if o < o*

o<
Rd

2

Vo + Ao z|* da

]2

|z |* d

2
IVol? |2]?* dx + [AZ —A(d+2a — 2)} / Jvl*

Rd R4 |'CE|2

An optimization of the right hand side with respect to A\ gives A = a — a*,
that is (d + 2a — 2)?/4 = A2. Such an inequality is optimal, with optimal
constant \?, as follows by considering the test functions:
1) ifa > a*: v.(z) = min{e™?, (|z|=* — M)}
2) if o < a*:v.(x) = |z|t 72 for |z] < 1
ve(x) = (2 — |z|) for |z > 1
and letting £ — 0 in both cases

Fast diffusion equations: Entropy methods and linearization, intermediate asymptotics, vanishing — p.17/1:



The optimality case: Davies’ method

Proposition 4 Letd > 3, a € (a*,0). Then the Hardy-Poincare
inequality holds for any v € D(RY) withCp g :=4/(d — 2+ 2a)? if

a€ (a*,1]landCy q:=4/ld(d—2+2a)] ifa > 1. The constantC,, 4 is
optimal for any o € (a*, 1].

Proof: ho = (1 + |z|?)®, Vhe = 207 he_1,
Ahgy =2ahg_2ld + 2(a — a*) |z]?] > 0

By Cauchy-Schwarz
2
< 4(/ |v\|w|rm|dx)
Rd

/|U|2Ahad£€
Rd
< 4 |v|2|Aha|d:c/ IVv|? [Vha|? |[ARg| ™! da
Rd

Rd

2

|Ahy| > 2|al min{d, (d—2+2a)} ha(z)

1+|z|?
[Vhal? 2 |of
Aha] S do21%a ha ()
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Generalized Poincare
inequalities

Coll. J. Carrillo, J.D. , I. Gentil, A. Jingel




Higher order diffusion equations

The one dimensional porous medium/fast diffusion equation

%:(um)m, recSt, t>0

The thin film equation
ur = —(u" Uggg)e , T E St t>0
The Derrida-Lebowitz-Speer-Spohn (DLSS) equation
ur = —(u(logw) e )es , T € St t>0

... with initial condition w(-,0) = ug > 0in St =(0,1)
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Entropies and energies

Averages:

p
tplv] = </ pl/P da:) and v ::/ v dx
St St

Entropies: p € (0,4+00), ¢ € R, v € H}(S'), v Z Oa.e.

Xp,qlv] = pq(pz =y [/S vl dz — (1)) ]
21 /q.qlv] = /S v? log (f517;i dx) I

Spolil 1= =, | 1o (m) d‘”

fpg#1andq#0,

fpg=1andq#0,

ifqg=0
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Convexity

>p.qv] IS non-negative by convexity of

w1 -1 pq(u-1)
u =: 0p 4(u)
pq(pqg—1)

By Jensen’s inequality,

ot = it o )

letton( [ s de) = il (1) =0

fp[v])

Vv
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Limit cases

pq=1:
pErlr}q Yipqlv] = X1/q4lv] forg>0
q=0:
;i_r% Yp.qlv] = Xpolv] forp >0
p=q=0

20,0[?)] = —/ log Y dx
S HUHOO

Some references (>2005):

M. J. Caceres, J. A. Carrillo, and G. Toscani]
| M. Gualdani, A. Jingel, and G. Toscani]

[ A. Jungel and D. Matthes]

' R. Laugesen]
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Global functional inequalities

Theorem 1 Forallp € (0,+00) and q € (0,2), there exists a positive
constant k,, , such that, for any v € Hy (S),

1 1
S, ] < — Ji[v] == — | dx
e Rp,q Rp,q Jst

Corollary 1 Letp € (0,+c0) and g € (0,2). Then, forany v € HL(S'),

1 1
5 ]2/ < Tolv] /S P da

= 5 —~ 1.2
A Kp.q A7t Kp.q
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A minimizing sequence (v, )nen is bounded in H1(S?)
v, = v inHY(SY) and X, ,v,] — Z,4v] as n— o

If £, ,[v] = 0, lim, o Ji[v,] = 0. Let e, := Ji[v,], wy, := ”“—\/8;73 and make a
Taylor expansion

(1+\/Eg;)1/p_1—£x < —r(eg,p)e V(w,s)é(—%,\%)x(o,so)

1
D p

En = J1 [Un] 3 Zp,q[vn] < 0(507]97 Q) En
Hence, since ¢ < 2,

J1|Un] en J1|wp] —2/q 1-2
— > [6(807297 q)] /4 €n /4 — C
Ep,q[vn]Z/q Zp,q[vn]Q/q

gives a contradiction
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Asymptotic functional inequalities

The regime of small entropies:

xP1:={ve H (SY) : B, 4v] <eand p,v] =1}

Theorem 2 Foranyp > 0,q € R andey > 0, there exists a positive
constant C' such that, for any € € (0, e¢],

1+ Cy/e
Yipqlv] < 322 Jilv] Yove xP1

Without the condition p,[v] = 1:

Yp,qlv] < 187;207;§E (Mp[v])q_Q J1|v]
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If Ji[v] < 8p* 72, define w := (v —1)/(k5° /e): Ji[w] < 1.

2,4 = pq(p;_ 0 [Ll(l+mg°\@w)qu— (/91(1+ﬁ§°ﬁw)1/pdx)pq]

(k) 2 dy — w do ’ 3/2
— e [/Slwd (/S d) L O(e3?)
= e(K;O)Q w —w)? de g3/2
=5 /51( )= dx 4+ O(e”'?)

6(“3;0)2 J1|w] 3/2) _ J1[v] 3/2
- 2p? (277)2+O( )_8p27r2+0( )

using Poincaré’s inequality
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15 application: Porous media

8u_

=
A one parameter family of entropies :

(u"™) a

reSt t>0

( 1 k41 —k+1 :
_ dr if EeR\{—1,0
k(k+1)/51(u ) do VL0
Y] =4 | ulog (%) dz if k=0
Sl
U
— 1 — | d if k=-1
. /51 05 (ﬂ) . !
With v := P, p:= 245 ¢ .= % :2717211]{, Ylul = 2, 4]
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Lemma1 Letk € R. Ifu is a smooth positive solution

Lo 014 [

(U<k+m)/2)x)2 dx =0
S1

with X :== 4m/(m + k)? whenever k +m # 0, and

d
—Sulu(, O]+ A | |logu)e|® dz =0
di g1

with \ :=m fork +m = 0.
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Decay rates

Proposition1 Letm € (0,+00), k € R\ {—-m},q=2(k+1)/(m+ k),
p=(m+ k)/2 and u be a smooth positive solution

i) Short-time Algebraic Decay: If m > 1 and k > —1, then

2 _ q —q/(2—q)
Sefule 0] < [Salua 1+ 2D

ii) Asymptotically Exponential Decay: If m > 0 andm + k > 0, there
exists C' > 0 andt, > 0 such that fort > t4,

22 NP2 (¢t — ¢4
mmuM<zwm@nwp(@p Aw ) (1 tv

1+ Cy/Zku(-, t1)]
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2nd Application: fourth order equations

Up = —(um (ufcm +au "t uy ug, + bu_2u§)> . oxeSt t>0
Example 1. The thin film equation: a = b =0

U = — (U™ Ugga )z

Example 2. The DLSS equation: m =0,a = —2,and b =1

Up = —(u (logu)m) :

rr

Ly:=%0Ba+5)*+2/(a—1)2—-8b

A=((k+m+1)?*-9k+m—-12%+12a(k+m—2)—36b
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Theorem 3 Assume (a —1)* > 8b

i) Entropy production: IfL_ < k+m < L,

d
—2 1) < t>0

ii) Entropy production: Ifk+m+1#0andL_ < k+m < L,

o)+ [

Sl

2
(ukm+D/2 1 de <0 Vi>0

Ifk+m+1=0anda+b+2—u<0forsomel < u <1, then

d
- Sefu( )] + [(log t)pe|* dz <0 V>0
Sl
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Decay rates

Theorem 4 Letk, meRbesuchthatL_ <k+m < Ly
i) Short-time Algebraic Decay: If k > —1 and m > 0, then

2 _Q/(Q_Q)
Yilu(t)] < Ek[uo]_(Q_Q)/q + 47? U Ep.q (— — 1) t]

q

ii) Asymptotically Exponential Decay: If m + k + 1 > 0, then there exists
C > 0 andt; > 0 such that

204 aP(C—9) (¢ — ¢4
Splu(-, )] < Splul-, t1)] exp (3219 H (t—t ))

1+ Cy/Zk[u(-, t1)]
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Thin film equation: range of the parameters

k k
Q2 N
~J1 1
~
™ 2 3 . 2 3 R
\ 4 5 M T 4 5. M
-1 1

Left: algebraic decay
Right: asymptotic exponential decay
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... further references end directions of research

@ [J.D., Nazaret, Savaré], preliminary (formal): what has been done in
terms of gradient flows for the linear case (Fokker-Planck equation)
seems generalizable to the porous medium case

@_ Forth higher order equations: not much is understood from the
entropy (PDE) point of view, [Jungel, Matthes], [Laugesen], or from
the gradient flow point of view. Gradient flow of the Fisher
information: [Gianazza-Savaré-Toscani]
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L7 Poincare inequalities for
general measures and
consequences for the porous
medium equation

J.D., Ivan Gentil, Arnaud Guillin and Feng-Yu Wang




Goal

Li-Poincaré inequalities, ¢ € (1/2, 1]
2 1/q
[Var, (£9)]"" = [/fQQd” (ffw) ] ) CP/|Vf|2du
Application to the weighted porous media equation, m > 1

du

5 =A™ -V -Vu™, t>0, zeR?

(Ornstein-Uhlenbeck form). With dy = dv = duy = e ¥V dz/ [ eV dx

d m+l o
G Var, () =~ [ 1V Py
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Outline

Equivalence between the following properties:

@ L9-Poincaré inequality

@ Capacity-measure criterion

@ Weak Poincaré inequality

@ BCR (Barthe-Cattiaux-Roberto) criterion

In dimension d = 1, there are necessary and sufficient conditions to
satisfy the BCR criterion

Motivation: large time asymptotics in connection with functional
iInequalities
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L?-Poincare inequality

M Riemanian manifold
Let 1 a probability measure, v a positive measure on M

We shall say that (i, v) satisfies a L4-Poincaré inequality with constant Cyp if
for all non-negative functions f € C!'(M) one has

Var, (1)) < Cp [ (91 v

€ (0,1] (false for ¢ > 1 unless p is a Dirac measure)
2
Var,, (g2) = fgz dp — (fg d,u) = 1u(g?) — n(g)?

g — |Var,(f9)] He increasing wrt ¢ € (0, 1]: L?-Poincaré inequalities form
a hierarchy
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Capacity-measure criterion

Capacity Cap, (A4, 2) of two measurable sets A and (2 such that
ACQCM

Cap, (4.9) i=int { 191 dv s 1€ C(). La < f <o}

1/(1—q) (1-9)/q
Bp = Sup{ Z [M(Qk)] }

1—
iz [Cap, (O, Qpy0)] 7

over all Q@ C M with (2) < 1/2 and all sequences (£2) ., such that for
all k € Z, Q C Qi1 C O

21/4 Cp

Kkp Op

Theorem 1 (i) Ifqe[1/2,1), then Gp

<
(iy Ifqe (0,1) and Bp < 400, then Cp <

L 9 Poincaré inequalities — p.5/1-



Weak Poincare inequalities

Definition 2 [Réckner and Wang] (u, ) satisfies a weak Poincaré inequality
if there exists a non-negative non increasing function Gwp(s) on (0,1/4)
such that, for any bounded function f € C* (M),

Vs>0, Var.(f) < Awe(s) / VF2dv + s [Oscu(f)]]

Var, (f) < pu((f —a)?) Va € R
For a = (supess,, f + infess,, f)/2, Var,(f) < [Oscu(f)f/él: s < 1/4.

Proposition 3 Letq € [1/2,1). If (u,v) satisfies the L?-Poincaré
inequality, then it also satisfies a weak Poincarée inequality with

Bwp(s) = (11+5v5) Bp s'~V1/2, K := (11 + 5/5)/2.

L4-Poincaré — BCR criterion = weak Poincaré

L 9 Poincaré inequalities — p.6/1-



Theorem 4 [Mazja] Letq € [1/2,1). For all bounded open set ) C M, if
(%) ez s @ sequence of open sets such that Q;, C Q1 C €, then

Z N(Qk)l/(l_q) . 1 M(Q)( ¢ >q/(1q) .
vez [Cap, (2, Qk+1)]Q/(1_Q) T 1-qJ ®(1)

where ®(t) := inf {Cap,(A,Q) : ACQ, u(A) >t}
As a consequence: 3p < (1 — )99t /D(t)| Lasa-o (0. u(e2))

Corollary 5 Letq € [1/2,1). If (u,v) satisfies a weak Poincare inequality
with function Gwp, then it satisfies a L?-Poincaré inequality with

1—gqg

g < S ()T /)

LT74(0,1/2)

Weak Poincaré L9 -Poincaré

Li-Poincarée — _ a1 — ,
with ﬁwp(s) =(Cs a Vq € (07Q)

L 9 Poincaré inequalities — p.7/1-



BCR criterion (1/2)

A variant of two results of [Barthe, Cattiaux, Roberto, 2005] (no absolute
continuity of the measure . with respect to the volume measure)

Theorem 6 [BCR] Let i1 be a probability measure and v a positive
measure on M such that (i, v) satisfies a weak Poincaré inequality with

function Gwe(s). Then for every measurable subsets A, B of M such that
AC Bandu(B) <1/2,

1(A) - . )
Cap, (A, B) > (A with  ~(s) := 4 Bwp(s/4)

Proof <1 Take f suchthatls < f <Ig: Osc,(f)
By Cauchy-Schwarz, ( [ fd,u) < u(B) [ f2du <

iA)

Be(s) [V dv s > Van,(f) = 5 [ £ duz "

W) = Thwe(a/m S SWPse(0,1/4) 5@2 Funts With a/2 = p(A4)/2<1/4 >

L 9 Poincaré inequalities — p.8/1:



BCR criterion (2/2)

Lemma 7 Take ;. and v as before, 6 € (0,1), v a positive non increasing
function on (0,0). IfVY A, B C M such that A C B are measurable and
u(B) <0,

p(A)
7(1(A))

then for every function f € C*(M) such that u(24) <0, Qy :={f > 0}

Cap, (A, B) >

/fi < H +25\/57(8)/Q IVfI?dv + s {supessujf}2 Vse(0,1)

Theorem 8 Same assumptions, 6 = 1/2. ThenVf € Ct(M)

. 11 +25\/5

Var,(f) 7(8)/\Vf\2du+s [Osc,(f)] Vse(0,1/4)

0 = 1/2: use the median m,,(f), u(f = m,(f)) = 1/2, u(f < m,(f)) = 1/2
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Using the BCR criterion: a “Hardy condition”

[Muckenhoupt, 1972] [Bobkov-Gotze, 1999] [Barthe-Roberto, 2003]
[Barthe-Cattiaux-Roberto, 2005]

M =R, du = p, dx with median m,,, dv = p, dz

R(z) := p([z, +00)) ,  L(z) := p((—oc, z])
r(x) ::/w 1 dx and /{(z) ::‘/mui dx

m,, Pv Pv

Proposition 9 Letq € [1/2,1]. (u,v) satisfies a L4-Poincaré inequality if

/ |7 R|V1=9 dp < o0 and/ 0LV =D dy < oo

my

L 9 Poincaré inequalities — p.10/1.



Proof

Proof <« Method: Var,(f) < u(|F-|?) + p(|F|?)) with g = (f — f(m,))+
and prove that

11+ 55
2

ullgl?) < 1(5) [1Val* o+ s [swpess,g] - ¥ € (0,1/2)
Let AC BC M = (my,o0)suchthat A C Band u(B) <1/2
CapV(A, B) = Capy (A, (mu, OO)) — Capy((a7 QQ)7 (mM7 OO)) —

where a = inf A. Change variables: t = R(a) and choose
v(t) ==t (roR)"1(t)foranyt c (0,1/2) >
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Porous media equation

With ¢ € C2(RY), dpy = —;_; define £ on C2(R%) by

VfeC*RY Lf:=Af—-Vi-Vf

Such a generator £ is symmetric in L2, (R?),
Vf,geCRY) [fLgduy=—[Vf-Vgduy
Consider for m > 1 the weighted porous media equation

([ Ou __ m
5 =Lu™ in Q

u(+,0) =ug in €
n-Vu=0 on X

_/\

\
QCRY, Q=0Qx]0,+00), X =00 x [0, +00)

w € C?, L'-contraction, existence and uniqueness
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Asymptotic behavior

Theorem 10 Letm > 1 and assume that (i, 1) Satisfies a L2-Poincare
inequality, ¢ = 2/(m + 1)

o —2/(m—1)
Var,, (u(-,t)) < ([Varw (UO)}_(m_l)/2 ™ 4(m(+ 1)21) Cp t)

Reciprocally, if the above inequality is satisfied for any wg, then (p, tt.y)
satisfies a L?-Poincare inequality with constant Cp

Proof <

d m-+1

Apply the L2-Poincaré inequality with v = f2/(m+1) ¢ =2/(m + 1)

Reciprocally, a derivation at ¢t = 0 gives the L%-Poincaré inequality >

L 9 Poincaré inequalities — p.13/1



A conclusion on L‘-Poincareé inequalities

@_ The Hardy criterion makes the link with mass transport in
dimension 1

@ Observe that we have only algebraic rates

©

Weak logarithmic Sobolev inequalities [Cattiaux-Gentil-Guillin, 2006],
Li-logarithmic Sobolev inequalities [D.-Gentil-Guillin-Wang, 2006]

2
(/ f2q }szfdl d,u) =5 Entu(f2q>1/q < OLg / \Vf\2 dy

@_ Orlicz spaces, duality, connections with mass transport theory
[Bobkov-Gotze, 1999] [Cattiaux-Gentil-Guillin, 2006] [Wang, 2006]
[Roberto-Zegarlinski, 2003] [Barthe-Cattiaux-Roberto, 2005]
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Conclusion

@ Entropy methods for higher order equations are not yet well
understood, except from an algebraic point of view: [Jungel, Matthes]

@ Mass transport: ongoing work [J.D., Nazaret, Savaré]
@_ Diffusion limits: [J.D., Markowich, Olz, Schmeiser]
@ Applications to models in gravitation [McCann], [J.D., Fernandez]

@ Keller-Segel model: [Blanchet, J.D., Perthame], [J.D., Schmeiser],
[Blanchet, Carrillo, Calvez]
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