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> Without weights: Gagliardo-Nirenberg inequalities and fast
diffusion flows

@ The Bakry-Emery method on the sphere

Q@ Rényi entropy powers

@ Self-similar variables and relative entropies

@ The role of the spectral gap

> Symmetry breaking and linearization

@ The critical Caffarelli-Kohn-Nirenberg inequality

@ Linearization and spectrum

@ A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities

> With weights: Caffarelli-Kohn-Nirenberg inequalities and
weighted nonlinear flows

@ Large time asymptotics and spectral gaps

@ A discussion of optimality cases
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Inequalities without weights and fast
diffusion equations

> The Bakry-Emery method on the sphere: a parabolic method

&> BEuclidean space: Rényi entropy powers

> Euclidean space: self-similar variables and relative entropies

> The role of the spectral gap
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The Bakry-Emery method on the sphere

Entropy functional
2
Eplo) = 55 {fgd p> dip— (g p du)"] if p#2

52[/)] = fgd p log (Hp\lfl@d)) du
Fisher information functional
1
Lolp) = Jsa VPP ? dp
Bakry-Emery (carré du champ) method: use the heat flow
dp
LA
ot
and compute £&,[p] = —I,[p] and LT,[p] < — d Z,[p] to get
d
dt (Zolpl —d&lp]) <0 = Iplp] = d &l

. . 2
with p = |u|P, if p < 27 := %
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The evolution under the fast diffusion flow

To overcome the limitation p < 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

Op
ot
(Demange), (JD, Esteban, Kowalczyk, Loss): for any p € [1,2*]

Kolel = 5 (Tl -~ d&50al) <0

Am

L L
25 30

(p, m) admissible region, d =5
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Cylindrical coordinates, Schwarz symmetrization,
stereographic projection...

X o, =
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. and the ultra-spherical operator

Change of variables z = cosf, v(0) = f(z), dvg == v dz/Zy,
v(z):=1-2°

The self-adjoint ultraspherical operator is
AW/ / 1" d ! gl
Lf=01-2z)f"—dzf'=vf +§I/f

which satisfies (A, L f) = f i vduy

Proposition

Let p € [1,2) U (2,2%], d > 1. For any f € HY([-1,1], dvg),

—(f .cf)‘/l F'2 v dvg > d 11t = 1Pl
) - . d Z p— 2
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The heat equation % = L g for g = fP can be rewritten in terms of f
as
of |f'|2
f -1
T =Lf+(p—-1) v

1d [, 1d B |f')?

d d 1 1
= Tlg(t, )] + 2d Z[g(t, )] = 7/ 12 v dug + 2d/ 12 v dug
dt dt |, .

1 4 12 g1
d |f'| d—1|f"|*f
—_9 f//2 1) —— -2 1) —= 2
/1(| | (p )d—|—2 f2 (p )d—|—2 f v dvg

is nonpositive if
d |f'|* ( )d—1|f’|2f”
d+2 f PmVds2 7
is pointwise nonnegative, which is granted if
d—11? d 2d% +1 2d
-1)——| <(p-1)——= <= p< = <« 25—
[(p )d+2} sP-D55 P=1d-1) Sd-2
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Bifurcation point of view

L H L L L L
2 4 6 8 10

The interpolation inequality from the point of view of bifurcations
IV ullFaggey + AMullzsay = (V) [[ullfr0)
Taylor expansion of u=1+4+¢c¢; as € = 0 with — A1 =d ¢
w(A) < A if (and only if) A > p;jz
> Improved inequalities under appropriate orthogonality constraints.?
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Integral constraints

With the heat flow...

For any p € (2,2%), the inequality

1
A A
72 25 2

1
Ve Y((-1,1),dvy) st / z|f|P dvg =0
=1l
holds with (d— 1y
> AT T ) (o# * _
A>d+ TCES) (27 —p) (A —d)

V.

.. and with a nonlinear diffusion flow ?
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Antipodal symmetry

With the additional restriction of antipodal symmetry, that is

u(—x) = u(x) Vxes?

Theorem

Ifpe(1,2)U(2,2*), we have

d (2 —4) (2" — p)
2 2 2
/Sd|vu| a2 [1+ 112 o) (el — )

for any u € HY(SY, du) with antipodal symmetry. The limit case p = 2
corresponds to the improved logarithmic Sobolev inequality

_ d(d+3) P
VuP du> 2 / juf? log
/ SFICES): TelP ey
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Entropy methods without weights
Symmetry breaking and linearization
Weighted nonlinear flows and CKN inequalities

The larger picture: branches of antipodal solutions

The Bakry-Emery method on §9, Rényi entropy powers on RY
Euclidean space: self-similar variables and relative entropies

Case d =5, p = 3: the branch () as a function of A
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The optimal constant in the antipodal framework

12e. .

l . N

10t

15 20 25 30

Numerical computation of the optimal constant when d =5 and
1 < p <10/3 = 3.33. The limiting value of the constant is numerically
found to be equal to A\, = 2'72/P d ~ 6.59754 with d =5 and p = 10/3
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Work in progress and open questions (1)

> Adding weights
Q@ fractional dimensions: in the ultraspherical setting, if one adds the

n—

weight (1 — zz)Td the wltraspherical operator becomes
2\ /! ! " d i
Lf=0-2z)f"—nzf' =vf +§Vf

The Bakry-Emery method applies only for p < 2%

The interpolation inequality is true up to p = 2* [Pearson]
Parabolic flows: [JD, Zhang] using (¢2 +1 — zz)n%d7 in progress

@ Open: general singular potentials beyond the range covered by
linear flows ?

> Constrained problems

@ The Lin-Ni problem in convex domains [JD, Kowalczyk]

@ Branches with turning points corresponding to higher Morse
index 7
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The elliptic / rigidity point of view (nonlinear flow)

712
uy = 228 (L', u+k % V) ... Which computation do we have to do ?

lu'|? A A )
_ —(B-1 = “
Lu—(-1) . 1/+p_2u p_2u

Multiply by £ v and integrate

1 | /|2
/ Euu”dud:—ﬁ// dvy
-1 J-1 u

v
Multiply by % and integrate

\’|2
..:—l—,%/ u® duvy
—1

The two terms cancel and we are left only with

1
4
/ u v dvg =0 ifp:2*andﬂ:67
-1

—p

,opt2 |uPP
6—p u
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Entropy methods without weights
Symmetry breaking and linearization
Weighted nonlinear flows and CKN inequalities

Rényi entropy powers and fast diffusion

The Bakry-Emery method on §9, Rényi entropy powers on RY
Euclidean space: self-similar variables and relative entropies

@ The Euclidean space without weights

> Rényi entropy powers, the entropy approach without rescaling:
(Savaré, Toscani): scalings, nonlinearity and a concavity property
inspired by information theory

> Faster rates of convergence: (Carrillo, Toscani), (JD, Toscani)
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The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in RY. d>1

v

— =AvT"

ot
with initial datum v(x, t = 0) = vp(x) > 0 such that [, vo dx =1 and
Jge X[ vo dx < +00. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

1 X
Uslt,%) = (s tl/u)d B*(n tl/u)
where
| 2pm Yk

=2 -1 = —
i +d(m-1), & —

and B, is the Barenblatt profile
(Co— xRV itm>1
B.(x) = n1/(m=1) .
(G + |x?) ifm<1
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The Rényi entropy power F

The entropy is defined by

E::/ v dx
Rd

and the Fisher information by

I ::/ v|Vpl? dx with p= ym—1
RY m-—1
If v solves the fast diffusion equation, then
E=(1-ml

To compute I, we will use the fact that

Ip 2

—=(m-1)pA

5 = (m—1)pAp+|Vpl

. I 2 1 2 1
F:=E° th = =1 - -1)==———-1
e d(l—m) +1—m<d+m ) dl—m

has a linear growth asymptotically as t — +oo
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The variation of the Fisher information

If v solves $¢ = Av™ with 13 < m < 1, then

d
(=5 [ vIvede=—2 [ v (ID%]? + (m 1) (8p)2) dx
Rd R4

Explicit arithmetic geometric inequality

2

1 1
0%l - & (ap = | D% -  ap1d

.... there are no boundary terms in the integrations by parts ?
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The concavity property

[Toscani-Savaré| Assume that m>1— 2 ifd >1and m>0ifd =1.
Then F(t) is increasing, (1 — m)F"(t) <0 and

) 1 o 2 o—1] __ o—1
lim ;F(t)—(l—m)at_llTooE I=(1-m)oE{ "I,

t—+o0o

[Dolbeault-Toscani] The inequality
EO- I > ETI,
is equivalent to the Gagliardo-Nirenberg inequality
IV W12y WIS ey = Coon W g

if1-2<m<1 Hint: v?1/2=__¥* g=_1

= Twieewe,’ 97 2m—1
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Euclidean space: self-similar variables and relative entropies

The large time behavior of the solution of % = Av™ is governed by
the source-type Barenblatt solutions

1 X
valtx) 1= K (p t)d/m B*(;@(M t)l/u) where i :=2+d(m—1)

where B, is the Barenblatt profile (with appropriate mass)

m—1)

B.(x) == (1+ |x])"¢

A time-dependent rescaling: self-similar variables

1 X dR 1— R(t)
V(t, X) = W U(T, /{7,"—\’) where E =R M, T(t) = % |0g (RO
Then the function u solves a Fokker-Planck type equation

%—I—V- [U(Vum_l—Zx)} =0

J. Dolbeault Entropy methods
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Free energy and Fisher information

Q@ The function u solves a Fokker-Planck type equation

%—FV- [U(Vumfl—Qx)] =0

@ (Ralston, Newman, 1984) Lyapunov functional:
Generalized entropy or Free energy

E[ul ;:/ (—u+x|2u) dx — &
Rd m

Q@ Entropy production is measured by the Generalized Fisher
information

d
Eé’[u] =—TI[u], Z[u]:= /]Rd u|Vu'"*1 + 2X|2 dx

J. Dolbeault Entropy methods



Entropy methods without weights d

The Bakry-Emery method on 9, Rényi entropy powers on R
Euclidean space: self-similar variables and relative entropies

Without weights: relative entropy, entropy production

Q@ Stationary solution: choose C such that ||usl||L: = |Jull;r =M >0

e (x) = (C + [x?) /O™

Q@ FEntropy — entropy production inequality (del Pino, JD)

d23,m6[%,+oo),m>%,m7é1

T[u] > 4 €[]

p= 2m1717 u=w?> (GN) ”VW”Lz(Rd ”WHL‘?“(Rd) = CGN ||WHL2q(Rd)

(del Pino, JD) A solution u with initial data ug € L1 (R?) such that
Ix|2 up € LY(RY), uf’ € L1(RY) satisfies E[u(t,-)] < E[ug] e~ **

J. Dolbeault Entropy methods



Entonvimethodsiuitholitieiehts ThelBaknyAEmeryimethodloniSINRenyilentropyipowersiontR Y,

Euclidean space: self-similar variables and relative entropies

A computation on a large ball, with boundary terms

ou

E+V'[U(Vum*1—2x)}:0 >0, x€Bg

where Bg is a centered ball in RY with radius R > 0, and assume that
u satisfies zero-flux boundary conditions

(Vumfl - 2X) S

|x|

With z(7, x) := VQ(7, x) := Vu™ ! — 2x, the relative Fisher
information is such that

d
— u|z\2dx+4/ ulz|? dx
dT Br Br

=0 7>0, xecdBg.

vaize [ um (D) - (- m) (A0)7) ox
Br
= / u™ (w- V|z|?) do < 0 (by Grisvard’s lemma)
9B
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Spectral gap: sharp asymptotic rates of convergence

Assumptions on the initial datum v
(Hl) \/D0 < v < VD1 fm" some Dy > Dy >0

(H2) if d > 3 and m < m,, (vy — V) is integrable for a suitable
D e [[)17 Do]

Theorem

(Blanchet, Bonforte, JD, Grillo, Vézquez) Under Assumptions
(H1)-(H2), if m < 1 and m # m, := 9=%, the entropy decays according
to

Elv(t,))] < Ce2=mAadt >0

where Ny ,g > 0 is the best constant in the Hardy—Poincaré inequality

/\W,/ | dpte—1 g/ |VfPdu, VY fe Hl(d,ua),/ fdpie_1 =0
RY Rd Rd

with o := 1/(m — 1) < 0, dpg 1= hy dx, ho(x) := (1 + |x|?)®
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Symmetry breaking and linearization
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Spectral gap and best constants

The Bakry-Emery method on §9, Rényi entropy powers on RY
Euclidean space: self-similar variables and relative entropies

y(m)
4
my = 41
did
d+6
2
e Case 1
— Cage 2
e Case 3
0 m
1
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Entropy methods without weights
Symmetry breaking and linearization
Weighted nonlinear flows and CKN inequalities

Critical Caffarelli-Kohn-Nirenberg inequality
Subcritical Caffarelli-Kohn-Nirenberg inequalities

Symmetry and symmetry breaking
results

> The critical Caffarelli-Kohn-Nirenberg inequality
> Linearization and spectrum

> A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities

J. Dolbeault Entropy methods
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Critical Caffarelli-Kohn-Nirenberg inequality

Critical Caffarelli-Kohn-Nirenberg inequality
Subcritical Caffarelli-Kohn-Nirenberg inequalities

Let D, p = { veLP(RY, [x|Pdx) : |x|7?|Vv| € L? (RY, dx) }

VP O\ [vv[?
<Ad |X‘bp dx < Ca,b |X‘2 dx VYve Da,b

holds under conditions on a and b

2d
d—2+2(b—a)

p= (critical case)

> An optimal function among radial functions:

[xI2 v I3

2
_ (p—2) (2c—2)) 72 -
Vi (x) (1 + |x] ) and Cj, v 2

Question: Cyp = Cj ) (symmetry) or C;p > Cj , (symmetry breaking) ¢
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Synnetivibreakinalandlinearization Syelrerittesl] CoErel e renttas e elies

Critical CKN: range of the parameters

Figure: d =3 b b—at
v NP %
5 dx < Cap 52 dx
e |X| re |X| 1 )
g T
/ 0 o
b=a

a<b<a+lifd>3
a<b<a+lifd=2a+1/2<b<a+lifd=1
and a < ac := (d — 2)/2
B 2d (Glaser, Martin, Grosse, Thirring (1976))
P= d—2+2(b—a) (Caffarelli, Kohn, Nirenberg (1984))
[F. Catrina, Z.-Q. Wang (2001)]
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Symmetivibecakinsjandllincarization Subcritical Caffarelli-Kohn-Nirenberg inequalities

Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve b
d(a. — a)

brs(a) = +a—a
rs(2) 2/(ac—aR +d—1 ‘

/ 0

[Smets|, [Smets, Willem], [Catrina, Wang], [Felli, Schneider]

The functional
2 p 2/p
;_b/ \V\;| dx — / |VL dx
" Jra |x]22 Rra |x[PP

is linearly instable at v = v,
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Critical Caffarelli-Kohn-Nirenberg inequality
Subcritical Caffarelli-Kohn-Nirenberg inequalities

Symmetry versus symmetry breaking:

the sharp result in the critical case "

[JD, Esteban, Loss (2016)]

Let d > 2 and p < 2*. If either a € [0,a.) and b > 0, or a < 0 and
b > bgs(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

J. Dolbeault Entropy methods
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¢ i e Critical Caffarelli-Kohn-Nirenberg inequality
NN /e Lvibrce kinciandllineatization Subcritical Caffarelli-Kohn-Nirenberg inequalities
Weighted nonlinear flows and CKN inequalities

The Emden-Fowler transformation and the cylinder

> With an Emden-Fowler transformation, critical the
Caffarelli-Kohn-Nirenberg inequality on the Fuclidean space are
equivalent to Gagliardo-Nirenberg inequalities on a cylinder

v(r,w)=r""*¢(s,w) with r=|x|, s=—logr and w= X

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as the subcritical interpolation inequality

10:211E2(cy + IVwllaiey + Alleliaey = M) Iliirey Ve € HY(C)

where A := (a — a)?, C = R x S?~! and the optimal constant u(A) is

d
uN) = c— with a=a.+ VA and b:Ei\/K
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Linearization around symmetric critical points

Critical Caffarelli-Kohn-Nirenberg inequality
Subcritical Caffarelli-Kohn-Nirenberg inequalities

Up to a normalization and a scaling
©«(s,w) = (cosh s)fﬁ
is a critical point of
HY(C) 5 ¢ = [0s0l22(c) + I Vuplliae) + Mellize
under a constraint on ||<p\|%p(c)
@« is not optimal for (CKN) if the Poschl-Teller operator
—R D+ NP P = - NN ———

has a negative eigenvalue, i.e., for A > Ay (explicit)
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Critical Caffarelli-Kohn-Nirenberg inequality

Symmetivibecakinsjandllincarization Sl Cof Al s e, Tl

The variational problem on the cylinder

A= p(A) == min 105012cy + IVwpllF2ey + Aol

peH!(C) H‘PH%;:(C)

is a concave increasing function

Restricted to symmetric functions, the variational problem becomes

'u*(/\) — min ||as§0||i2(Rd) + A ”('0”%42(]1@1) _
)

(1) A
€H(R) ||90||ip(]Rd) ( )

Symmetry means p(A) = p(A)
Symmetry breaking means p(A) < p,(A)

J. Dolbeault Entropy methods
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Numerical results

50

1
P
P
40 ! >
|
; .
P asymptotic
________ symmetric
20+
non-symmetric

100

\bifurcation
AOL

60

40

20

Parametric plot of the branch of optimal functions for p=2.8,d =5
Non-symmetric solutions bifurcate from symmetric ones at a bifurcation
point N1 computed by V. Felli and M. Schneider. The branch behaves for
large values of N\ as predicted by F. Catrina and Z.-Q. Wang
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what we have to to prove / discard...

/ 9\
I/ ) bifurcation /

. ) ! 785
sy IIHIleTIl(/ ¥4 704] / bifurcation

’ 1/Kekxli(pd) Ars(p)p)

/"
/
sy mmeuu/

/

/ .
/ / non-symmetric
/ ! 78

bifurcation /
7/ T (w)

F non-symmetric
175

170

non-symmetric

symmetric

788 symmetric

265 270 275

. .
T ; : ; ; 70 278 m 280 281 2

When the local criterion (linear stability) differs from global results in a

larger family of inequalities (center, right)...
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Weighted nonlinear flows and CKN inequalities ubcritical Caffarelli-Kohn-Nirenberg inequalities

The elliptic problem: rigidity

The symmetry issue can be reformulated as a uniqueness (rigidity)
issue. An optimal function for the inequality

p 2/p 2
/ VP s\ <, [V g
Rre |X|PP " Jre |x]22

solves the (elliptic) Euler-Lagrange equation

-V (\X|722 Vv) = \x|7bp vP1
(up to a scaling and a multiplication by a constant). Is any
nonnegative solution of such an equation equal to
2
Vie(x) = (1 + |x\(p’2)(36*3)) P2
(up to invariances) ? On the cylinder
— - Dup+Np =P

Up to a normalization and a scaling
1
o«(s,w) = (coshs) 72
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Synnetivibreakinalandlinearization Subcritical Caffarelli-Kohn-Nirenberg inequalities

Subcritical Caffarelli-Kohn-Nirenberg inequalities

_ 1
Norms: [|wl|Len (ge) = (fpo [W|7|X[77 dx) /e, [wllparay = [Iw(lLaoe)
(some) Caffarelli-Kohn-Nirenberg interpolation inequalities (1984)

1Wllzne ety < Coimop VWl Py WIS e (CKN)

Here Cg,,, denotes the optimal constant, the parameters satisfy

d>2, 7=2<fB< 92y, ye(—o0,d), pe(lp] withp, =357
and the exponent ¢ is determined by the scaling invariance, i.e.,

9 = (d=) (p—1)
p (d+ﬁ+2—2’Y—P(d—5—2))

@ Is the equality case achieved by the Barenblatt / Aubin-Talenti
type function

wi(x) = (1+ \x|2+ﬂ_7)_1/(p_1) VxeRY 7

@ Do we know (symmetry) that the equality case is achieved among

radial functions ?
J. Dolbeault Entropy methods



Symmetry breaking and linearization

Critical Caffarelli-Kohn-Nirenberg inequality
Subcritical Caffarelli-Kohn-Nirenberg inequalities

Range of the parameters

Here p is given
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Critical Caffarelli-Kohn-Nirenberg inequality

Synnetivibreakinalandlinearization Subcritical Caffarelli-Kohn-Nirenberg inequalities

Symmetry and symmetry breaking

(M. Bonforte, JD, M. Muratori and B. Nazaret, 2016) Let us define
Brs(y) :=d—2—+/(d—7)2—4(d - 1)

Symmetry breaking holds in (CKN) if

d—2
~v<0 and ﬂps('y)<,6’<T’y

Tn the range Brs(7) < 8 < 9527, w,(x) = (1 + [x[27-7) /D
not optimal

(JD, Esteban, Loss, Muratori, 2016)

Symmetry holds in (CKN) if

¥>0, o y<0 and v—2<p<frs(v)
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Critical Caffarelli-Kohn-Nirenberg inequality

Synnetivibreakinalandlinearization Subcritical Caffarelli-Kohn-Nirenberg inequalities

The green area is the region of symmetry, while the red area is the
region of symmetry breaking. The threshold is determined by the
hyperbola

(d—7)?—(B—d+2)°—4(d-1)=0

J. Dolbeault Entropy methods



Entropy methods without weights The strategy of the proof
Symmetry breaking and linearization Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

Weighted nonlinear flows:
Caffarelli-Kohn-Nirenberg
inequalities
> Entropy and Caffarelli-Kohn-Nirenberg inequalities
> Large time asymptotics and spectral gaps

> Optimality cases

J. Dolbeault Entropy methods



The strategy of the proof
Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

CKN and entropy — entropy production inequalities

When symmetry holds, (CKN) can be written as an entropy — entropy
production inequality

Lm @24 8-y €&Vl <I[v]

_1
and equality is achieved by Bz ,(x) := (1 + [x[>HF~7) "
Here the free energy and the relative Fisher information are defined by

R 1 m m m—1 dx
g[V] = m oo (V — %IB’,Y — m%ﬁﬁ (V — %ﬁ,7)> W
2 dx
— m—1 m—1
I[V] = /Rdv’Vv _V%Bv’)’ ’ W

If v solves the Fokker-Planck type equation

Ve + X[ V- [|x\_ﬂ vV (vt - |x|2+ﬂ—W)} —0  (WFDE-FP)

then %E[v(t, N == Tt )
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The strategy of the proof
Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

Proof of symmetry (1/3: changing the dimension)

We rephrase our problem in a space of higher, artificial dimension

n > d (here n is a dimension at least from the point of view of the
scaling properties), or to be precise we consider a weight |x|"~¢ which
is the same in all norms. With

_ d—
) =) a=1e Pt =2 S

we claim that Inequality (CKN) can be rewritten for a function
v(|x|*1 x) = w(x) as

HV||LQP="*"(IR") < Kanp ||Dch||E2-dfn(ugd) ||V|‘i;f?,d—n(ugd) Vve Hzfn,dfn(Rd)
with the notations s = |x|, Dav = (a %, 1V,v) and

d>2, a>0, n>d and pe(l,p].
By our change of variables, w, is changed into

vi(x) == (1+ |X|2)71/(p71) Vx € RY
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Large time asymptotics and spectral gaps
Linearization and optimality

The strategy of the proof (2/3: Rényi entropy)

g and lineariz

The derivative of the generalized Rényi entropy power functional is

o—1
Glu] = (/ u™ du) / u|DPJ? du
RY RY

where o = 2 21— — 1. Here dp = |x|"~? dx and the pressure is

P m umfl

T1-m

Looking for an optimal function in (CKN) is equivalent to minimize G
under a mass constraint
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Symmetry breaking and linearization Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

With L, = — D% D, = o? (u” + "%1 u/) + s% A, u, we consider the fast
diffusion equation

in the subcritical range 1 —1/n < m < 1. The key computation is the
proof that

2 G[u(t, )] (fpo u™ dpr)"
f]Rd u\DaP\zdu 2

2 (1 - m) (U - 1) f]Rd u™ Jod umdp
, 2
+2fRd (064 (1_%)‘P”_P?_(x2(Anw—|;)52 +

+2 [pa ((" —2) (agg — @®) [VuPP + ¢(n, m, d) %) um dp = H[u]

L,P— du

(9P ) ur

for some numerical constant c(n, m,d) > 0. Hence if a < afg, the
r.h.s. H[u] vanishes if and only if P is an affine function of |x|?, which
proves the symmetry result. A quantifier elimination problem (Tarski,
1951) ¢
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The strategy of the proof
Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

(3/3: elliptic regularity, boundary terms)

This method has a hidden difficulty: integrations by parts ! Hints:

Q@ use elliptic regularity: Moser iteration scheme, Sobolev regularity,
local Holder regularity, Harnack inequality, and get global regularity
using scalings

Q@ use the Emden-Fowler transformation, work on a cylinder,
truncate, evaluate boundary terms of high order derivatives using
Poincaré inequalities on the sphere

Summary: if u solves the Euler-Lagrange equation, we test by L,u™
0= / dG[u] - Lou™dp > H[u] > 0
Rd

H[u] is the integral of a sum of squares (with nonnegative constants in
front of each term)... or test by |x|7 div (|x|~® Vw!*P) the equation
(p—1)°

1-3p 3: =B ,,2p 1—p 1—p|2 — 1-p _
w div (|x w PV w + |Vw =+ |x caw — ) =0
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Fast diffusion equations with
weights: large time asymptotics

@ Relative uniform convergence
e Asymptotic rates of convergence

e From asymptotic to global estimates

Here v solves the Fokker-Planck type equation

Ve + X[ V- [|x\—ﬂ vV (vt - |x|2+ﬁ—7)} =0  (WFDE-FP)

Joint work with M. Bonforte, M. Muratori and B. Nazaret
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Relative uniform convergence

¢=1-(1-555) 0-30)

0= s s n he range 0 <0< 35 <1

Theorem

For “good” initial data, there exist positive constants KC and to such that,

for all g € [3=2, 00|, the function w = v /B satisfies
[w(t) = Lo rey < K e MU0yt > g
in the case v € (0, d), and

1—m)2
W (1) — Loy < Ke 2 En A0y > g

in the case v <0
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Essential spectrum

Essential spectrum

The spectrum of £ as a function of § = ﬁ, with n =5. The
essential spectrum corresponds to the grey area, and its bottom is
determined by the parabola ¢ — Aess(6). The two eigenvalues Ag 1 and
A1,0 are given by the plain, half-lines, away from the essential
spectrum. The spectral gap determines the asymptotic rate of
convergence to the Barenblatt functions
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Global vs. asymptotic estimates

Q@ FEstimates on the global rates. When symmetry holds (CKN) can
be written as an entropy — entropy production inequality

2+8-7) eV <

T LIVl

so that

AL . _(2+8—9)
Elv(t)] < E[v(0)] e 20-mAt >0 with A, =i

@ Optimal global rates. Let us consider again the entropy — entropy
production inequality

K(M)Ev] < T[v] Vv e LY (RY) such that [vlLisrey =M,
where K(M) is the best constant: with A(M) := % (1 — m)~2K(M)
E[v(t)] < E[v(0)] e~ 2A-mMAMt v >0
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Entropy methods without weights
Symmetry breaking and linearization
Weighted nonlinear flows and CKN inequalities

The strategy of the proof

Large time asymptotics and spectral gaps
Linearization and optimality

Linearization and optimality

Joint work with M.J. Esteban and M. Loss

J. Dolbeault
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Linearization and scalar products

With u. such that

u. = B, (1 +e fBi_m) and u. dx = M,
Rd
at first order in ¢ — 0 we obtain that f solves
f
% =Lf where Lf:=(1-m)BI ?|x|"D} (|x|"?B.Daf)

Using the scalar products
<f1,f2>=/ A6HB ™ x| dx and <<f1,f2>>=/ Dafi - Do B [x| 7 dx
Rd Rd

we compute

1
1d (FE)=(fLF)= [ F(LF)BZ™|x|”V dx = — / Do FI2 B, |x|7" dx
2 dt R R
for any f smooth enough: with (f,Lf) = — (f, )
1d

5 g if )= /R Do f Do (LF) By |x|% dx = — (f,LF)
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Linearization of the flow, eigenvalues and spectral gap

Now let us consider an eigenfunction associated with the smallest
positive eigenvalue \; of L

—LA=Mh
so that fi realizes the equality case in the Hardy-Poincaré inequality
(g.6) =~ (g.Le) = Mlg—&l", &:=(g1)/(L1)  (P1)

(g Lg) = M (g 8) (P2)
Proof by expansion of the square
~((e—8).L(g—8))=(L(g—&)L(g—&)=IL(g—&)
@ (P1) is associated with the symmetry breaking issue

@ (P2) is associated with the carré du champ method
The optimal constants / eigenvalues are the same

@ Key observation: \; >4 <= «a<aps: = %
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A loss of compactness...

Work in progress with N. Simonov] Case A\; > 4, i.e., a < apg

Q  free energy, or generalized relative entropy

Elv] = ﬁ/ﬂw (v =B —mB" ! (v — B))

@ relative Fisher information

Z[v] ::/Rdv’va_1 VBT 1’ x |B

dx

x|

Proposition

[JD, Simonov] In the symmetry range, for any M > 0,

' M-v p U= dx — :1—m 2
|nf{€[V]. €D+(R),/Rd Ix|™7 d M} e 2+8-7)

Conjecture: in the symmetry breaking range, inf Z g[ ] is determined by
the spectral gap
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Work in progress and open questions (2)

@ [with N. Simonov] Entropy — entropy production inequalities in
the symmetry breaking range of CKN

@ [with A. Zhang] Towards proofs in the weighted parabolic case
(sphere: BGL Sobolev inequality and CKN): regularization of the
weight 7

@ [with N. Simonov and A. Zhang] Doubly nonlinear parabolic case
(Euclidean space)

@ [with M. Garcia-Huidobro and R. Mandsevich] Doubly nonlinear
parabolic case (sphere)

@ Full (analytic) parabolic proof based on the carré du champ
method based on the analysis of the regularity of the flow in the
neighborhood of degenerate points / singularities of the potentials
[collaborators are welcome !]

@ Hypo-coercive methods and (sharp) decay rates in coupled kinetic
equations...
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@ Lecture notes on Symmetry and nonlinear diffusion flows...
a course on entropy methods (see webpage)

@ [JD, Maria J. Esteban, and Michael Loss] Symmetry and
symmetry breaking: rigidity and flows in elliptic PDEs

... the elliptic point of view: arXiv: 1711.11291

These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Conferences/
> Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list /
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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