Stability estimates in some classical functional inequalities

Jean Dolbeault

Ceremade, CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/~dolbeaul

September 28, 2022

Differential Equation seminar

Roma 2 Tor Vergata

< □ > < □ > < □ > < □ > < □ > < □ > = Ξ

Outline

- 1 An introduction to entropy methods
 - The carré du champ method: φ -entropies
 - φ -entropies and diffusions
 - Interpolation inequalities on the sphere
- 2 Stability, fast diffusion equation and entropy methods
 - Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities
 - The threshold time and the improved entropy entropy production inequality (subcritical case)
 - Stability results (subcritical and critical case)
- Stability in Caffarelli-Kohn-Nirenberg inequalities ?

・ 同 ト ・ ヨ ト ・ ヨ ト

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

An introduction to entropy methods

- $\textcircled{\sc l}$ Entropies and diffusions on \mathbb{R}^d (linear case)
- $\triangleright \varphi$ -entropies and entropy-entropy production inequalities
- > The Bakry-Emery or carré du champ method
- Improvements and stability
- Interpolation inequalities on the sphere
- > From linear to nonlinear diffusion flows
- > Improved entropy-entropy production inequalities
- Stability results

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

The Fokker-Planck equation (domain in \mathbb{R}^d)

The linear Fokker-Planck (FP) equation

$$\frac{\partial u}{\partial t} = \Delta u + \nabla \cdot \left(u \nabla \psi \right)$$

on a domain $\Omega \subset \mathbb{R}^d$, with no-flux boundary conditions

$$(\nabla u + u \nabla \psi) \cdot v = 0$$
 on $\partial \Omega$

is equivalent to the Ornstein-Uhlenbeck (OU) equation

$$\frac{\partial v}{\partial t} = \Delta v - \nabla \psi \cdot \nabla v =: \mathscr{L} v$$

[Bakry, Emery, 1985], [Arnold, Markowich, Toscani, Unterreiter, 2001] With mass normalized to 1, the unique stationary solution of (FP) is

$$u_s = e^{-\psi} \iff v_s = 1$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

Definition of the φ -entropies

If $d\gamma = e^{-\psi} dx$ is the invariant probability measure, let

$$\mathscr{E}[v] := \int_{\mathbb{R}^d} \varphi(v) \, d\gamma$$

 φ is a nonnegative convex continuous function on \mathbb{R}^+ such that $\varphi(1) = 0$ and $1/\varphi''$ is concave on $(0, +\infty)$:

$$\varphi'' \ge 0$$
, $\varphi \ge \varphi(1) = 0$ and $(1/\varphi'')'' \le 0$

Classical examples

$$\varphi_{p}(v) := \frac{1}{p-1} \left(v^{p} - 1 - p(v-1) \right) \quad p \in (1,2]$$

$$\varphi_{1}(v) := v \log v - (v-1), \qquad \varphi_{2}(v) := |v-1|^{2}$$

The invariant measure

$$d\gamma = e^{-\psi} dx$$

where ψ is a *potential* such that $e^{-\psi}$ is in $L^1(\mathbb{R}^d, dx)$ $d\gamma$ is a probability measure

・吊り ・ラト ・ラト

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

Entropy – entropy production inequalities, linear flows

Case of a smooth convex bounded domain Ω

$$\frac{\partial v}{\partial t} = \mathcal{L} v := \Delta v - \nabla \psi \cdot \nabla v, \quad \nabla v \cdot v = 0 \quad \text{on} \quad \partial \Omega$$
$$\frac{d}{dt} \int_{\Omega} \frac{v^q - 1}{q - 1} \, d\gamma = -\frac{4}{q} \int_{\Omega} |\nabla w|^2 \, d\gamma \quad \text{and} \quad w = v^{q/2}$$
$$\frac{d}{dt} \int_{\Omega} |\nabla w|^2 \, d\gamma \le -2\Lambda(q) \int_{\Omega} |\nabla w|^2 \, d\gamma$$

where $\Lambda(q) > 0$ is the best constant in the inequality

$$\frac{2}{q}(q-1)\int_{\Omega}|\nabla X|^2\,d\gamma+\int_{\Omega}\operatorname{Hess}\psi:X\otimes X\,d\gamma\geq\Lambda(q)\int_{\Omega}|X|^2\,d\gamma$$

Proposition

$$\int_{\Omega} \frac{v^q - 1}{q - 1} \, d\gamma \le \frac{4}{q \Lambda(q)} \int_{\Omega} \left| \nabla v^{q/2} \right|^2 d\gamma \quad \text{for any } v \text{ s.t.} \quad \int_{\Omega} v \, d\gamma = 1$$

[Bakry, Emery, 1984] [JD, Nazaret, Savaré, 2008] 🔍 🖙 🖉 🗠

J. Dolbeault

Stability estimates in some classical functional inequalities

< ∃ >

э

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

The Bakry-Emery method (domain in \mathbb{R}^d)

With $d\gamma = u_s dx$ and v such that $\int_{\Omega} v d\gamma = 1$, $q \in (1, 2]$ $\square q$ -entropy

$$\mathscr{E}_{q}[v] := \frac{1}{q-1} \int_{\Omega} \left(v^{q} - 1 - q(v-1) \right) d\gamma$$

• *q*-*Fisher information* with $w = v^{q/2}$

$$\mathscr{I}_q[v] := \frac{4}{q} \int_{\Omega} |\nabla w|^2 \, d\gamma$$

 \triangleright The strategy

$$\frac{d}{dt}\mathcal{E}_q[v(t,\cdot)] = -\mathcal{I}_q[v(t,\cdot)] \quad \text{and} \quad \frac{d}{dt}\Big(\mathcal{I}_q[v] - 2\lambda\mathcal{E}_q[v]\Big) \le 0$$

▷ The decay rates

$$\mathscr{I}_q[v(t,\cdot)] \le \mathscr{I}_q[v(0,\cdot)] e^{-2\lambda t}$$
 and $\mathscr{E}_q[v(t,\cdot)] \le \mathscr{E}_q[v(0,\cdot)] e^{-2\lambda t}$

> The entropy-entropy production inequality

$$\mathscr{I}_{q}[v] \geq 2\lambda \mathscr{E}_{q}[v] \quad \forall v \in \mathrm{H}^{1}(\Omega, d\gamma)$$

ヨート

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

Properties of the φ -entropies

• Generalized Csiszár-Kullback-Pinsker inequality: [Pinsker], [Csiszár 1967], [Kullback 1967], [Cáceres, Carrillo, JD, 2002]

$$\mathscr{E}[v] \ge \mathscr{C}_q \|v - 1\|_{L^q(\mathbb{R}^d, d\gamma)}^2, \quad \mathscr{C}_q = \inf_{s \in (0, \infty)} \frac{s^{2-q} \varphi''(s)}{2^{2/q}} \min\left\{1, \|v\|_{L^q(\mathbb{R}^d, d\gamma)}^{q-2}\right\}$$

Tensorization and sub-additivity

$$\iint_{\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}} \varphi''(v) |\nabla v|^2 d\gamma_1 d\gamma_2 \ge \min\{\Lambda_1, \Lambda_2\} \mathscr{E}_{\gamma_1 \otimes \gamma_2}[v]$$

■ Holley-Stroock type perturbation results: if for some constants *a*, *b* ∈ \mathbb{R} , $e^{-b} d\gamma \le d\mu \le e^{-a} d\gamma$, then

$$e^{a-b} \Lambda \int_{\mathbb{R}^d} \left[\varphi(v) - \varphi(\widetilde{v}) - \varphi'(\widetilde{v})(v-\widetilde{v}) \right] d\mu \leq \int_{\mathbb{R}^d} \varphi''(v) \left| \nabla v \right|^2 d\mu$$

Improved entropy – entropy production inequalities

In the special case $\psi(x) = |x|^2/2 + \frac{d}{2}\log(2\pi)$, with $w = v^{q/2}$, we obtain that

$$\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} |\nabla w|^2 \, d\gamma + \int_{\mathbb{R}^d} |\nabla w|^2 \, d\gamma \leq -\frac{2}{q} \kappa_q \int_{\mathbb{R}^d} \frac{|\nabla w|^4}{w^2} \, d\gamma$$

with $\kappa_q = (q-1)(2-q)/q$ Cauchy-Schwarz: $\left(\int_{\mathbb{R}^d} |\nabla w|^2 d\gamma\right)^2 \leq \int_{\mathbb{R}^d} \frac{|\nabla w|^4}{w^2} d\gamma \int_{\mathbb{R}^d} w^2 d\gamma$

$$\frac{d}{dt}\mathscr{I}[v] + 2\mathscr{I}[v] \le -\kappa_q \frac{\mathscr{I}[v]^2}{1 + (q-1)\mathscr{E}[v]}$$

Proposition

Assume that $q \in (1,2)$ and $d\gamma = (2\pi)^{-d/2} e^{-|x|^2/2} dx$. There exists a strictly convex function Ψ such that $\Psi(0) = 0$ and $\Psi'(0) = 1$ and

$$\Psi\left(\left\|f\right\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d},d\gamma\right)}^{2}-1\right)\leq\left\|\nabla f\right\|_{\mathrm{L}^{2}\left(\mathbb{R}^{d},d\gamma\right)}^{2}\quad if\quad\left\|f\right\|_{\mathrm{L}^{q}\left(\mathbb{R}^{d},d\gamma\right)}=1$$

Two references

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

■ J.D. and X. Li. Phi-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations. Mathematical Models and Methods in Applied Sciences, 28 (13): 2637-2666, 2018.

• D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of Markov diffusion operators, volume 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham, 2014.

マロト イラト イラト

Improved inequalities and stability results

Entropy – entropy production inequality

 $\mathcal{I}[u] \geq \Lambda \mathcal{E}[u]$

> Improved entropy – entropy production inequality (weaker form)

 $\mathcal{I} \geq \Lambda \Psi(\mathcal{E})$

for some Ψ such that $\Psi(0) = 0$, $\Psi'(0) = 1$ and $\Psi'' > 0$

 $\mathcal{I} - \Lambda \mathcal{E} \geq \Lambda (\Psi(\mathcal{E}) - \mathcal{E}) \geq 0$

> *Improved constant* means *stability*

Under some restrictions on the functions, there is some $\Lambda_{\star} > \Lambda$ such that

$$\mathscr{I} - \Lambda \mathscr{E} \ge (\Lambda_{\star} - \Lambda) \mathscr{E} \ge 0 \quad \text{or} \quad \mathscr{I} - \Lambda \mathscr{E} \ge \left(1 - \frac{\Lambda}{\Lambda_{\star}}\right) \mathscr{I} \ge 0$$

イロト イポト イヨト イヨト

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

Interpolation inequalities on the sphere

Interpolation inequalities on the sphere

- ▷ From linear to nonlinear diffusion flows
- > Improved entropy-entropy production inequalities
- ▷ Stability results

イロト イポト イヨト イヨト

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

A result of uniqueness on a classical example

On the sphere \mathbb{S}^d , let us consider the positive solutions of

$$-\Delta u + \lambda u = u^{p-1}$$

 $p \in [1,2) \cup (2,2^*]$ if $d \ge 3, 2^* = \frac{2d}{d-2}$

 $p \in [1,2) \cup (2,+\infty)$ if d = 1,2

Theorem

If $\lambda \leq d$, $u \equiv \lambda^{1/(p-2)}$ is the unique solution

[Gidas, Spruck, 1981], [Bidaut-Véron, Véron, 1991]

・ 同 ト ・ ヨ ト ・ ヨ ト

An introduction to entropy methods

Stability, fast diffusion equation and entropy methods Stability in Caffarelli-Kohn-Nirenberg inequalities ? The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

Bifurcation point of view and symmetry breaking

 \triangleright The inequality holds with $\mu(\lambda) = \lambda = \frac{d}{p-2}$ [Bakry, Emery, 1985] [Beckner, 1993], [Bidaut-Véron, Véron, 1991, Corollary 6,1]

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

The Bakry-Emery method on the sphere

Entropy functional

$$\mathcal{E}_{p}[\rho] := \frac{1}{p-2} \left[\int_{\mathbb{S}^{d}} \rho^{\frac{2}{p}} d\mu - \left(\int_{\mathbb{S}^{d}} \rho d\mu \right)^{\frac{2}{p}} \right] \quad \text{if} \quad p \neq 2$$
$$\mathcal{E}_{2}[\rho] := \int_{\mathbb{S}^{d}} \rho \log \left(\frac{\rho}{\|\rho\|_{L^{1}(\mathbb{S}^{d})}} \right) d\mu$$

Fisher information functional

$$\mathscr{I}_p[\rho] := \int_{\mathbb{S}^d} |\nabla \rho^{\frac{1}{p}}|^2 d\mu$$

[Bakry, Emery, 1985] carré du champ method: use the heat flow

$$\frac{\partial \rho}{\partial t} = \Delta \rho$$

and observe that $\frac{d}{dt}\mathcal{E}_{\rho}[\rho] = -\mathcal{I}_{\rho}[\rho]$

$$\frac{d}{dt} \Big(\mathscr{I}_{\rho}[\rho] - d\mathscr{E}_{\rho}[\rho] \Big) \le 0 \quad \Longrightarrow \quad \mathscr{I}_{\rho}[\rho] \ge d\mathscr{E}_{\rho}[\rho]$$

with
$$\rho = |u|^p$$
, if $p \le 2^{\#} := \frac{2d^2 + 1}{(d-1)^2}$

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

The evolution under the fast diffusion flow

To overcome the limitation $p \le 2^{\#}$, one can consider a nonlinear diffusion of fast diffusion / porous medium type

$$\frac{\partial \rho}{\partial t} = \Delta \rho^{\prime\prime}$$

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any $p \in [1, 2^*]$

$$\mathscr{K}_{p}[\rho] := \frac{d}{dt} \Big(\mathscr{I}_{p}[\rho] - d \mathscr{E}_{p}[\rho] \Big) \le 0$$

(p, m) admissible region, d = 5

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

Computation of the admissible region

With
$$\rho = |u|^{\beta p}$$
 and $m = 1 + \frac{2}{p} \left(\frac{1}{\beta} - 1\right)$, $\kappa = \beta (p - 2) + 1$, with the *trace free*
Hessian
 $Lu := Hu - \frac{1}{d} (\Delta u) g_d$

and the trace free tensor

$$\mathbf{M}u := \frac{\nabla u \otimes \nabla u}{u} - \frac{1}{d} \frac{|\nabla u|^2}{u} g_d$$

we have

$$\frac{d}{dt} \left(\mathscr{I}_{p}[\rho] - d\mathscr{E}_{p}[\rho] \right) = -\frac{d}{d-1} \left(a \|Lu\|^{2} - 2 b Lu : Mu + c \|Mu\|^{2} \right)$$
$$a = 1, \quad b = (\kappa + \beta - 1) \frac{d-1}{d+2}, \quad c = (\kappa + \beta - 1) \frac{d}{d+2} + \kappa (\beta - 1)$$

so that the *admissible region* is defined by $b^2 - ac \le 0$

・吊り ・ラト ・ラト

э

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

The proof: two identities

Let us denote the *Hessian* by Hv and define the *trace free Hessian* by

$$\mathrm{L}\mathbf{v} := \mathrm{H}\mathbf{v} - \frac{1}{d} \left(\Delta \mathbf{v} \right) g_d$$

We also consider the following trace free tensor

$$\mathbf{M}\mathbf{v} := \frac{\nabla \mathbf{v} \otimes \nabla \mathbf{v}}{\mathbf{v}} - \frac{1}{d} \frac{|\nabla \mathbf{v}|^2}{\mathbf{v}} g_d$$

first identity

$$\int_{\mathbb{S}^d} \Delta v \, \frac{|\nabla v|^2}{v} \, d\mu = \frac{d}{d+2} \left(\frac{d}{d-1} \int_{\mathbb{S}^d} \|\mathbf{M}v\|^2 \, d\mu - 2 \int_{\mathbb{S}^d} \mathbf{L}v : \mathbf{M}v \, d\mu \right).$$

second identity

$$\int_{\mathbb{S}^d} (\Delta v)^2 d\mu = \frac{d}{d-1} \int_{\mathbb{S}^d} \|\mathbf{L}v\|^2 d\mu + d \int_{\mathbb{S}^d} |\nabla v|^2 d\mu$$

arises as a consequence of the Bochner-Lichnerowicz-Weitzenböck formula on \mathbb{S}^d

$$\frac{1}{2}\Delta(|\nabla v|^2) = ||Hv||^2 + \nabla(\Delta v) \cdot \nabla v + (d_{\overline{a}}, 1) |\nabla v|^2 = 1 \quad \text{and} \quad \forall v \in \mathbb{R}$$

An introduction to entropy methods

Stability, fast diffusion equation and entropy methods Stability in Caffarelli-Kohn-Nirenberg inequalities ? The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

The admissible range for d = 1, 2, 3 (first line), and d = 4, 5 and 10 (from left to right)

< ロ > < 同 > < 回 > < 回 >

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

Improved inequalities

 \triangleright the monotonicity result

$$\frac{d}{dt}\left(\mathscr{I}_{\rho}[\rho] - d\mathscr{E}_{\rho}[\rho]\right) = -\frac{d}{d-1} \operatorname{a} \left\| \operatorname{L} u - \frac{\operatorname{b}}{\operatorname{a}} \operatorname{M} \right\|^{2} - \frac{d}{d-1} \left(\operatorname{c} - \frac{\operatorname{b}^{2}}{\operatorname{a}} \right) \left\| \operatorname{M} u \right\|^{2}$$

improved inequalities [Arnold, JD, 2005], [JD, Nazaret, Savaré, 2008],
 [JD, Toscani, 2013], [JD, Esteban, Kowalczyk, Loss, 2014], [JD, Esteban, 2020]

 $\mathscr{I}_{p}[\rho] \geq d \Psi (\mathscr{E}_{p}[\rho])$

for some convex Φ with $\Phi(0) = 0$ and $\Phi'(0) = 1$ \triangleright Application: with $d \ge 2$, $2 - p \ne \gamma := \left(\frac{d-1}{d+2}\right)^2 (p-1)(2^{\#}-p) > 0$, we have

$$\|\nabla u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \geq \frac{d}{2-p-\gamma} \left(\|u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} - \|u\|_{\mathrm{L}^{p}(\mathbb{S}^{d})}^{2-\frac{2\gamma}{2-p}} \|u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{\frac{2\gamma}{2-p}} \right) \quad \forall \, u \in \mathrm{H}^{1}(\mathbb{S}^{d})$$

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

Cylindrical coordinates, Schwarz symmetrization, stereographic projection...

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

... and the ultra-spherical operator

Change of variables
$$z = \cos\theta$$
, $v(\theta) = f(z)$, $dv_d := v^{\frac{d}{2}-1} dz/Z_d$
 $v(z) := 1 - z^2$

The self-adjoint ultraspherical operator is

$$\mathcal{L}f := (1 - z^2)f'' - dzf' = vf'' + \frac{d}{2}v'f'$$

which satisfies
$$\langle f_1, \mathcal{L} f_2 \rangle = -\int_{-1}^1 f'_1 f'_2 v dv_d$$

Proposition

Let $p \in [1,2) \cup (2,2^*]$, $d \ge 1$. For any $f \in H^1([-1,1], dv_d)$,

$$-\langle f, \mathcal{L}f \rangle = \int_{-1}^{1} |f'|^2 \, v \, dv_d \ge d \, \frac{\|f\|_{\mathrm{L}^p(\mathbb{S}^d)}^2 - \|f\|_{\mathrm{L}^2(\mathbb{S}^d)}^2}{p-2}$$

A (1) > A (1) > A

34.16

The heat equation $\frac{\partial g}{\partial t} = \mathcal{L}g$ for $g = f^p$ can be rewritten in terms of f as

$$\frac{\partial f}{\partial t} = \mathcal{L}f + (p-1)\frac{|f'|^2}{f}v$$

$$-\frac{1}{2}\frac{d}{dt}\int_{-1}^{1}|f'|^{2}v\,dv_{d} = \frac{1}{2}\frac{d}{dt}\langle f,\mathscr{L}f\rangle = \langle \mathscr{L}f,\mathscr{L}f\rangle + (p-1)\left\langle \frac{|f'|^{2}}{f}v,\mathscr{L}f\right\rangle$$

$$\frac{d}{dt}\mathscr{I}[g(t,\cdot)] + 2d\mathscr{I}[g(t,\cdot)] = \frac{d}{dt}\int_{-1}^{1} |f'|^2 v \, dv_d + 2d\int_{-1}^{1} |f'|^2 v \, dv_d$$
$$= -2\int_{-1}^{1} \left(|f''|^2 + (p-1)\frac{d}{d+2}\frac{|f'|^4}{f^2} - 2(p-1)\frac{d-1}{d+2}\frac{|f'|^2 f''}{f} \right) v^2 \, dv_d$$

is nonpositive if

-

$$|f''|^2 + (p-1)\frac{d}{d+2}\frac{|f'|^4}{f^2} - 2(p-1)\frac{d-1}{d+2}\frac{|f'|^2f''}{f}$$

is pointwise nonnegative, which is granted if

$$\left[(p-1)\frac{d-1}{d+2} \right]^2 \le (p-1)\frac{d}{d+2} \iff p \le \frac{2d^2+1}{(d-1)^2} = 2^{\#} < \frac{2d}{d-2} = 2^*$$

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

With integral constraints

With the heat flow ...

Proposition

For any $p \in (2, 2^{\#})$, the inequality

$$\int_{-1}^{1} |f'|^2 v \, dv_d + \frac{\lambda}{p-2} \, \|f\|_2^2 \ge \frac{\lambda}{p-2} \, \|f\|_p^2$$

$$\forall f \in \mathrm{H}^1((-1,1), dv_d) \, s.t. \, \int_{-1}^{1} z \, |f|^p \, dv_d = 0$$

holds with

$$\lambda \ge d + \frac{(d-1)^2}{d(d+2)} \left(2^{\#} - p\right) \left(\lambda^{\star} - d\right)$$

... and with a nonlinear diffusion flow?

э

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

With antipodal symmetry

With the additional restriction of antipodal symmetry, that is

$$u(-x) = u(x) \quad \forall x \in \mathbb{S}^d$$

Theorem

If
$$p \in (1,2) \cup (2,2^*)$$
, we have

$$\int_{\mathbb{S}^d} |\nabla u|^2 \, d\mu \ge \frac{d}{p-2} \left[1 + \frac{(d^2-4)(2^*-p)}{d(d+2)+p-1} \right] \left(\|u\|_{L^p(\mathbb{S}^d)}^2 - \|u\|_{L^2(\mathbb{S}^d)}^2 \right)$$

for any $u \in H^1(S^d, d\mu)$ with antipodal symmetry. The limit case p = 2 corresponds to the improved logarithmic Sobolev inequality

$$\int_{\mathbb{S}^d} |\nabla u|^2 \, d\mu \ge \frac{d}{2} \frac{(d+3)^2}{(d+1)^2} \int_{\mathbb{S}^d} |u|^2 \log\left(\frac{|u|^2}{\|u\|_{L^2(\mathbb{S}^d)}^2}\right) d\mu$$

References

The carré du champ method: φ -entropies φ -entropies and diffusions Interpolation inequalities on the sphere

❑ JD, M. J. Esteban, M. Kowalczyk, and M. Loss. Improved interpolation inequalities on the sphere. Discrete and Continuous Dynamical Systems Series S, 7 (4): 695-724, 2014.

❑ JD, M.J. Esteban, and M. Loss. Interpolation inequalities on the sphere: linear *versus* nonlinear flows. Annales de la faculté des sciences de Toulouse Sér. 6, 26 (2): 351-379, 2017

JD, M.J. Esteban. Improved interpolation inequalities and stability. Advanced Nonlinear Studies, 20 (2): 277-291, 2020.

マロト イラト イラト

Subcritical interpolation inequalities on the sphere: stability

[Frank, 2022] Degenerate stability of some Sobolev inequalities Annales IHP C (2022), arXiv:2107.11608 If $d \ge 2$ and $2 , there is <math>c_{d,p} > 0$ such that, if $\int_{\mathbb{S}^d} u \, d\mu = 1$

$$\|\nabla u\|_{L^{2}(\mathbb{S}^{d})}^{2} + d \frac{\|u\|_{L^{p}(\mathbb{S}^{d})}^{2} - \|u\|_{L^{2}(\mathbb{S}^{d})}^{2}}{p-2} \ge c_{d,p} \frac{\left(\|\nabla u\|_{L^{2}(\mathbb{S}^{d})}^{2} + \frac{d}{p-2} \|u-1\|_{L^{2}(\mathbb{S}^{d})}^{2}\right)^{2}}{\|\nabla u\|_{L^{2}(\mathbb{S}^{d})}^{2} + \frac{d}{p-2} \|u\|_{L^{2}(\mathbb{S}^{d})}^{2}}$$

An optimal result: take $u(x) = 1 + \varepsilon z$

Theorem

If $d \ge 2$ and $2 , there is <math>\mathscr{C}_{d,p} > 0$ such that for any $u \in H^1(\mathbb{S}^d, d\mu)$

$$\|\nabla u\|_{L^{2}(\mathbb{S}^{d})}^{2} + d \frac{\|u\|_{L^{p}(\mathbb{S}^{d})}^{2} - \|u\|_{L^{2}(\mathbb{S}^{d})}^{2}}{p-2} \ge \mathcal{C}_{d,p} \int_{\mathbb{S}^{d}} |\nabla u^{\perp}|^{2} d\mu$$

with optimal constant $\mathscr{C}_{d,p} = \frac{2d-p(d-2)}{2d(d+p)}$

[Brigati, JD, Simonov]

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy –entropy production inequality (subcr Stability results (subcritical and critical case)

Constructive stability results in Gagliardo-Nirenberg-Sobolev inequalities

A joint project with M. Bonforte, B. Nazaret and N. Simonov Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows, regularity and the entropy method

arXiv:2007.03674, to appear in Memoirs of the AMS

・吊り ・ラト ・ラト

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy – entropy production inequality (subcr Stability results (subcritical and critical case)

Fast diffusion equation and entropy methods

$$\frac{\partial u}{\partial t} = \Delta u^m \tag{FDE}$$

- The Rényi entropy powers and the Gagliardo-Nirenberg inequalities
- Self-similar solutions and the entropy entropy production method
- Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)
- Initial time layer: improved entropy entropy production estimates

イロト イポト イヨト イヨト

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy –entropy production inequality (subcr Stability results (subcritical and critical case)

Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities

[Toscani, Savaré, 2014] [JD, Toscani, 2016] [JD, Esteban, Loss, 2016]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy –entropy production inequality (subcr Stability results (subcritical and critical case)

(周) (日) (日)

Mass, moment, entropy and Fisher information

(i) Mass conservation. With $m \ge m_c := (d-2)/d$ and $u_0 \in L^1_+(\mathbb{R}^d)$

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^d}u(t,x)\,dx=0$$

(ii) Second moment. With m > d/(d+2) and $u_0 \in L^1_+(\mathbb{R}^d, (1+|x|^2) dx)$

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^d}|x|^2\,u(t,x)\,dx=2\,d\int_{\mathbb{R}^d}u^m(t,x)\,dx$$

(iii) Entropy estimate. With $m \ge m_1 := (d-1)/d$, $u_0^m \in L^1(\mathbb{R}^d)$ and $u_0 \in L^1_+(\mathbb{R}^d, (1+|x|^2) dx)$

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^d} u^m(t,x)\,dx = \frac{m^2}{1-m}\int_{\mathbb{R}^d} u\,|\nabla u^{m-1}|^2\,dx$$

Entropy functional and Fisher information functional

$$\mathsf{E}[u] := \int_{\mathbb{R}^d} u^m \, dx \quad \text{and} \quad \mathsf{I}[u] := \frac{m^2}{(1-m)^2} \int_{\mathbb{R}^d} u \, |\nabla u^{m-1}|^2 \, dx$$

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy –entropy production inequality (subcr Stability results (subcritical and critical case)

Entropy growth rate

Gagliardo-Nirenberg-Sobolev inequalities

$$\|\nabla f\|_{2}^{\theta} \|f\|_{p+1}^{1-\theta} \ge \mathscr{C}_{\text{GNS}}(p) \|f\|_{2p}$$
 (GNS)

$$p = \frac{1}{2m-1} \quad \Longleftrightarrow \quad m = \frac{p+1}{2p} \in [m_1, 1)$$

 $u=f^{2p}$ so that $u^m=f^{p+1}$ and $u|\nabla u^{m-1}|^2=(p-1)^2\,|\nabla f|^2$

$$\mathcal{M} = \|f\|_{2p}^{2p}, \quad \mathsf{E}[u] = \|f\|_{p+1}^{p+1}, \quad \mathsf{I}[u] = (p+1)^2 \|\nabla f\|_2^2$$

If *u* solves (FDE) $\frac{\partial u}{\partial t} = \Delta u^m$

$$\mathsf{E}' \ge \frac{p-1}{2p} (p+1)^2 \left(\mathscr{C}_{\mathrm{GNS}(p)} \right)^{\frac{2}{\theta}} \|f\|_{2p}^{\frac{2}{\theta}} \|f\|_{p+1}^{-\frac{2(1-\theta)}{\theta}} = C_0 \mathsf{E}^{1-\frac{m-m_c}{1-m}}$$
$$\int_{\mathbb{R}^d} u^m(t,x) \, dx \ge \left(\int_{\mathbb{R}^d} u_0^m \, dx + \frac{(1-m)C_0}{m-m_c} t \right)^{\frac{1-m}{m-m_c}} \quad \forall t \ge 0$$
Equality case: $u(t,x) = \frac{c_1}{R(t)^d} \, \mathscr{B}\left(\frac{c_2x}{R(t)}\right), \, \mathscr{B}(x) := (1+|x|^2)^{\frac{1}{m-1}}$

-

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy –entropy production inequality (subcr Stability results (subcritical and critical case)

Pressure variable and decay of the Fisher information

The *t*-derivative of the *Rényi entropy power* $E^{\frac{2}{d}} \frac{1}{1-m} - 1$ is proportional to

 $I^{\theta} E^{2\frac{1-\theta}{p+1}}$

The nonlinear carré du champ method can be used to prove (GNS) :

> Pressure variable

$$\mathsf{P} := \frac{m}{1-m} u^{m-1}$$

▷ Fisher information

$$\mathsf{I}[u] = \int_{\mathbb{R}^d} u \, |\nabla\mathsf{P}|^2 \, dx$$

If *u* solves (FDE), then

$$I' = \int_{\mathbb{R}^d} \Delta(u^m) |\nabla \mathsf{P}|^2 \, dx + 2 \int_{\mathbb{R}^d} u \, \nabla \mathsf{P} \cdot \nabla \left((m-1) \,\mathsf{P} \,\Delta \mathsf{P} + |\nabla \mathsf{P}|^2 \right) \, dx$$
$$= -2 \int_{\mathbb{R}^d} u^m \left(\|\mathsf{D}^2\mathsf{P}\|^2 - (1-m) \,(\Delta \mathsf{P})^2 \right) \, dx$$

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy –entropy production inequality (subcr Stability results (subcritical and critical case)

Rényi entropy powers and interpolation inequalities

▷ Integrations by parts and completion of squares: with $m_1 = \frac{d-1}{d}$

$$-\frac{1}{2\theta}\frac{d}{dt}\log\left(I^{\theta}E^{2\frac{1-\theta}{p+1}}\right)$$
$$=\int_{\mathbb{R}^{d}}u^{m}\left\|D^{2}P-\frac{1}{d}\Delta P \operatorname{Id}\right\|^{2}dx+(m-m_{1})\int_{\mathbb{R}^{d}}u^{m}\left|\Delta P+\frac{1}{E}\right|^{2}dx$$

 \triangleright Analysis of the asymptotic regime as $t \rightarrow +\infty$

$$\lim_{t \to +\infty} \frac{\mathsf{I}[u(t,\cdot)]^{\theta} \mathsf{E}[u(t,\cdot)]^{2\frac{1-\theta}{p+1}}}{\mathcal{M}^{\frac{2\theta}{p}}} = \frac{\mathsf{I}[\mathscr{B}]^{\theta} \mathsf{E}[\mathscr{B}]^{2\frac{1-\theta}{p+1}}}{\|\mathscr{B}\|_{1}^{\frac{2\theta}{p}}} = (p+1)^{2\theta} \left(\mathscr{C}_{\mathrm{GNS}}(p)\right)^{2\theta}$$

We recover the (GNS) Gagliardo-Nirenberg-Sobolev inequalities

$$\mathsf{I}[u]^{\theta} \mathsf{E}[u]^{2\frac{1-\theta}{p+1}} \ge (p+1)^{2\theta} \left(\mathscr{C}_{\mathrm{GNS}}(p) \right)^{2\theta} \mathcal{M}^{\frac{2\theta}{p}}$$

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy –entropy production inequality (subcr Stability results (subcritical and critical case)

The fast diffusion equation in self-similar variables

- ▷ Rescaling and self-similar variables
- > Relative entropy and the entropy entropy production inequality
- Large time asymptotics and spectral gaps

イロト イポト イヨト イヨト

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy –entropy production inequality (subcr Stability results (subcritical and critical case)

Entropy – entropy production inequality

With a time-dependent rescaling based on *self-similar variables*

$$u(t,x) = \frac{1}{\kappa^d R^d} v\left(\tau, \frac{x}{\kappa R}\right) \quad \text{where} \quad \frac{dR}{dt} = R^{1-\mu}, \quad \tau(t) := \frac{1}{2} \log R(t)$$

 $\frac{\partial u}{\partial t} = \Delta u^m$ is changed into *a Fokker-Planck type equation*

$$\frac{\partial v}{\partial \tau} + \nabla \cdot \left[v \left(\nabla v^{m-1} - 2x \right) \right] = 0 \qquad (r \text{ FDE})$$

Generalized entropy (free energy) and Fisher information

$$\mathscr{F}[v] := -\frac{1}{m} \int_{\mathbb{R}^d} \left(v^m - \mathscr{B}^m - m \mathscr{B}^{m-1} \left(v - \mathscr{B} \right) \right) dx$$
$$\mathscr{F}[v] := \int_{\mathbb{R}^d} v \left| \nabla v^{m-1} + 2x \right|^2 dx$$

are such that $\mathcal{I}[v] \ge 4\mathcal{F}[v]$ by (GNS) [del Pino, JD, 2002] so that

 $\mathscr{F}[v(t,\cdot)] \leq \mathscr{F}[v_0] e^{-4t}$

イロト イポト イラト イラト

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy –entropy production inequality (subcr Stability results (subcritical and critical case)

Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vázquez, 2009]

$$\left(C_{0}+|x|^{2}\right)^{-\frac{1}{1-m}} \leq v_{0} \leq \left(C_{1}+|x|^{2}\right)^{-\frac{1}{1-m}} \tag{H}$$

Let $\Lambda_{\alpha,d} > 0$ be the best constant in the Hardy–Poincaré inequality

$$\begin{split} \Lambda_{\alpha,d} \int_{\mathbb{R}^d} f^2 \, \mathrm{d}\mu_{\alpha-1} &\leq \int_{\mathbb{R}^d} |\nabla f|^2 \, \mathrm{d}\mu_{\alpha} \quad \forall \, f \in \mathrm{H}^1(\mathrm{d}\mu_{\alpha}), \quad \int_{\mathbb{R}^d} f \, \mathrm{d}\mu_{\alpha-1} = 0 \\ \text{with } \mathrm{d}\mu_{\alpha} &:= (1+|x|^2)^{\alpha} \, dx, \, \text{for } \alpha < 0 \end{split}$$

Lemma

Under assumption (H),

 $\mathscr{F}[v(t,\cdot)] \leq C e^{-2\gamma(m)t} \quad \forall t \geq 0, \quad \gamma(m) := (1-m)\Lambda_{1/(m-1),d}$

Moreover $\gamma(m) := 2$ if $\frac{d-1}{d} = m_1 \le m < 1$

(日) (同) (三) (三)

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy –entropy production inequality (subcr Stability results (subcritical and critical case)

Spectral gap

[Denzler, McCann, 2005] [BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2010-2015] Much more is know, *e.g.*, [Denzler, Koch, McCann, 2015]

э

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy –entropy production inequality (subcr Stability results (subcritical and critical case)

Initial and asymptotic time layers

▷ Asymptotic time layer: constraint, spectral gap and improved entropy – entropy production inequality

▷ Initial time layer: the carré du champ inequality and a backward estimate

イロト イポト イヨト イヨト

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy – entropy production inequality (subcr Stability results (subcritical and critical case)

The asymptotic time layer improvement

Linearized free energy and linearized Fisher information

$$\mathsf{F}[g] := \frac{m}{2} \int_{\mathbb{R}^d} g^2 \mathscr{B}^{2-m} \, dx \quad \text{and} \quad \mathsf{I}[g] := m(1-m) \int_{\mathbb{R}^d} |\nabla g|^2 \mathscr{B} \, dx$$

Hardy-Poincaré inequality. Let $d \ge 1$, $m \in (m_1, 1)$ and $g \in L^2(\mathbb{R}^d, \mathscr{B}^{2-m} dx)$ such that $\nabla g \in L^2(\mathbb{R}^d, \mathscr{B} dx)$, $\int_{\mathbb{R}^d} g \mathscr{B}^{2-m} dx = 0$ and $\int_{\mathbb{R}^d} x g \mathscr{B}^{2-m} dx = 0$

 $I[g] \ge 4 \alpha F[g]$ where $\alpha = 2 - d(1 - m)$

Proposition

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/3, 1)$ if d = 1, $\eta = 2(dm - d + 1)$ and $\chi = m/(266 + 56m)$. If $\int_{\mathbb{R}^d} v \, dx = \mathcal{M}$, $\int_{\mathbb{R}^d} x \, v \, dx = 0$ and

 $(1-\varepsilon)\mathcal{B} \le v \le (1+\varepsilon)\mathcal{B}$

for some $\varepsilon \in (0, \chi \eta)$, then

 $\mathcal{I}[v] \ge (4+\eta)\mathcal{F}[v]$

e

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy – entropy production inequality (subcr Stability results (subcritical and critical case)

The initial time layer improvement: backward estimate

Hint: for some strictly convex function ψ with $\psi(0) = 0$, $\psi'(0) = 1$, we have

$$\mathscr{I} - 4\mathscr{F} \ge 4(\psi(\mathscr{F}) - \mathscr{F}) \ge 0$$

Far from the equality case (*i.e.*, close to an initial datum away from the Barenblatt solutions) for (FDE), we expect some improvement Rephrasing the *carré du champ* method, $\mathscr{Q}[v] := \frac{\mathscr{I}[v]}{\mathscr{F}[v]}$ is such that

$$\frac{d\mathcal{Q}}{dt} \leq \mathcal{Q}\left(\mathcal{Q} - 4\right)$$

Lemma

Assume that $m > m_1$ and v is a solution to (r FDE) with nonnegative initial datum v_0 . If for some $\eta > 0$ and $t_* > 0$, we have $\mathscr{Q}[v(t_*, \cdot)] \ge 4 + \eta$, then

$$\mathscr{Q}[v(t,\cdot)] \ge 4 + \frac{4\eta e^{-4t_{\star}}}{4+\eta - \eta e^{-4t_{\star}}} \quad \forall t \in [0, t_{\star}]$$

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy –entropy production inequality (subcr Stability results (subcritical and critical case)

Stability in Gagliardo-Nirenberg-Sobolev inequalities

Our strategy

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy -entropy production inequality (subcr Stability results (subcritical and critical case)

The threshold time and the uniform convergence in relative error

 \triangleright The regularity results allow us to glue the initial time layer estimates with the asymptotic time layer estimates

The improved entropy – entropy production inequality holds for any time along the evolution along (r FDE)

(and in particular for the initial datum)

イロト イポト イヨト イヨト

If *v* is a solves (*r* FDE) for some nonnegative initial datum $v_0 \in L^1(\mathbb{R}^d)$ satisfying

$$\sup_{r>0} r^{\frac{d(m-m_c)}{(1-m)}} \int_{|x|>r} v_0 \, dx \le A < \infty \tag{H}_A$$

then

$$(1-\varepsilon)\mathscr{B} \leq v(t,\cdot) \leq (1+\varepsilon)\mathscr{B} \quad \forall t \geq t_{\star}$$

for some *explicit* t_{\star} depending only on ε and A

3

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy – entropy production inequality (subcr Stability results (subcritical and critical case)

Global Harnack Principle

The Global Harnack Principle holds if for some t > 0 large enough

$$\mathscr{B}_{M_1}(t-\tau_1, x) \le u(t, x) \le \mathscr{B}_{M_2}(t+\tau_2, x)$$
 (GHP)

[Vázquez, 2003], [Bonforte, Vázquez, 2006]: (GHP) holds if $u_0 \leq |x|^{-\frac{2}{1-m}}$ [Vázquez, 2003], [Bonforte, Simonov, 2020]: (GHP) holds if

$$A[u_0] := \sup_{R>0} R^{\frac{2}{1-m}-d} \int_{\mathbb{R}^d \setminus B_R(0)} |u_0| \, dx < \infty$$

Theorem

[Bonforte, Simonov, 2020] If $M + A[u_0] < \infty$, then

$$\lim_{t\to\infty}\left\|\frac{u(t)-B(t)}{B(t)}\right\|_{\infty}=0$$

イロト イポト イヨト イヨト

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy – entropy production inequality (subcr Stability results (subcritical and critical case)

Uniform convergence in relative error

Theorem

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/3, 1)$ if d = 1 and let $\varepsilon \in (0, 1/2)$, small enough, A > 0, and G > 0 be given. There exists an explicit threshold time $T \ge 0$ such that, if u is a solution of

$$\frac{\partial u}{\partial t} = \Delta u^m \tag{FDE}$$

with nonnegative initial datum $u_0 \in L^1(\mathbb{R}^d)$ satisfying

$$A[u_0] = \sup_{r>0} r^{\frac{d(m-m_c)}{(1-m)}} \int_{|x|>r} u_0 \, dx \le A < \infty \tag{H}_A$$

 $\int_{\mathbb{R}^d} u_0 \, dx = \int_{\mathbb{R}^d} B \, dx = \mathcal{M} \text{ and } \mathscr{F}[u_0] \leq G, \text{ then}$

$$\sup_{x \in \mathbb{R}^d} \left| \frac{u(t,x)}{B(t,x)} - 1 \right| \le \varepsilon \quad \forall t \ge T$$

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy-entropy production inequality (subcr Stability results (subcritical and critical case)

The threshold time

Proposition

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/3, 1)$ if d = 1, $\varepsilon \in (0, \varepsilon_{m,d})$, A > 0 and G > 0

$$T = \mathbf{c}_{\star} \frac{1 + A^{1-m} + G^{\frac{\alpha}{2}}}{\varepsilon^{\mathsf{a}}}$$

where $a = \frac{\alpha}{\vartheta} \frac{2-m}{1-m}$, $\alpha = d(m-m_c)$ and $\vartheta = v/(d+v)$

$$c_{\star} = c_{\star}(m, d) = \sup_{\varepsilon \in (0, \varepsilon_{m, d})} \max \{ \varepsilon \kappa_1(\varepsilon, m), \varepsilon^a \kappa_2(\varepsilon, m), \varepsilon \kappa_3(\varepsilon, m) \}$$

$$\kappa_{1}(\varepsilon,m) := \max\left\{\frac{8c}{(1+\varepsilon)^{1-m}-1}, \frac{2^{3-m}\kappa_{\star}}{1-(1-\varepsilon)^{1-m}}\right\}$$
$$\kappa_{2}(\varepsilon,m) := \frac{(4\alpha)^{\alpha-1} K^{\frac{\alpha}{\vartheta}}}{\varepsilon^{\frac{2-m}{1-m}\frac{\alpha}{\vartheta}}} \quad \text{and} \quad \kappa_{3}(\varepsilon,m) := \frac{8\alpha^{-1}}{1-(1-\varepsilon)^{1-m}}$$

J. Dolbeault

Stability estimates in some classical functional inequalities

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy – entropy production inequality (subcr Stability results (subcritical and critical case)

Improved entropy – entropy production inequality (subcritical case)

- 4 同 ト - 4 目 ト - 4 目 ト

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy – entropy production inequality (subcr Stability results (subcritical and critical case)

Theorem

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/2, 1)$ if d = 1, A > 0 and G > 0. Then there is a positive number ζ such that

 $\mathcal{I}[v] \ge (4+\zeta)\mathcal{F}[v]$

for any nonnegative function $v \in L^1(\mathbb{R}^d)$ such that $\mathscr{F}[v] = G$, $\int_{\mathbb{R}^d} v \, dx = \mathscr{M}$, $\int_{\mathbb{R}^d} x \, v \, dx = 0$ and v satisfies (H_A)

We have the *asymptotic time layer estimate*

$$\varepsilon \in (0, 2\varepsilon_{\star}), \quad \varepsilon_{\star} := \frac{1}{2} \min \{\varepsilon_{m,d}, \chi\eta\} \quad \text{with} \quad t_{\star} = t_{\star}(\varepsilon) = \frac{1}{2} \log R(T)$$
$$(1 - \varepsilon) \mathscr{B} \le v(t, \cdot) \le (1 + \varepsilon) \mathscr{B} \quad \forall t \ge t_{\star}$$

and, as a consequence, the *initial time layer estimate*

$$\mathscr{I}[v(t,.)] \ge (4+\zeta) \mathscr{F}[v(t,.)] \quad \forall t \in [0, t_{\star}] \quad \text{where} \quad \zeta = \frac{4\eta e^{-4t_{\star}}}{4+\eta-\eta e^{-4t_{\star}}}$$

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy – entropy production inequality (subcr Stability results (subcritical and critical case)

2

Two consequences

$$\zeta = Z(A, \mathscr{F}[u_0]), \quad Z(A, G) := \frac{\zeta_{\star}}{1 + A^{(1-m)\frac{2}{\alpha}} + G}, \quad \zeta_{\star} := \frac{4\eta c_{\alpha}}{4+\eta} \left(\frac{\varepsilon_{\star}^{a}}{2\alpha c_{\star}}\right)^{\frac{z}{\alpha}}$$

> Improved decay rate for the fast diffusion equation in rescaled variables

Corollary

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/2, 1)$ if d = 1, A > 0 and G > 0. If v is a solution of $(r \ \mathsf{FDE})$ with nonnegative initial datum $v_0 \in L^1(\mathbb{R}^d)$ such that $\mathscr{F}[v_0] = G$, $\int_{\mathbb{R}^d} v_0 \, dx = \mathcal{M}$, $\int_{\mathbb{R}^d} x_{v_0} \, dx = 0$ and v_0 satisfies (H_A) , then

$$\mathscr{F}[v(t,.)] \leq \mathscr{F}[v_0] e^{-(4+\zeta)t} \quad \forall t \geq 0$$

▷ The *stability in the entropy - entropy production estimate* $\mathscr{I}[v] - 4\mathscr{F}[v] \ge \zeta \mathscr{F}[v]$ also holds in a stronger sense

$$\mathscr{I}[v] - 4\mathscr{F}[v] \ge \frac{\zeta}{4+\zeta} \mathscr{I}[v]$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy –entropy production inequality (subcr Stability results (subcritical and critical case)

Stability results (subcritical case)

▷ We rephrase the results obtained by entropy methods in the language of stability *à la* Bianchi-Egnell

Subcritical range

$$p^* = +\infty$$
 if $d = 1$ or 2, $p^* = \frac{d}{d-2}$ if $d \ge 3$

イロト イポト イヨト イヨト

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy – entropy production inequality (subcr Stability results (subcritical and critical case)

$$\lambda[f] := \left(\frac{2d\kappa[f]^{p-1}}{p^2 - 1} \frac{\|f\|_{p+1}^{p+1}}{\|\nabla f\|_2^2}\right)^{\frac{2p}{d-p(d-4)}}, \quad \kappa[f] := \frac{\mathcal{M}^{\frac{1}{2p}}}{\|f\|_{2p}}$$
$$A[f] := \frac{\mathcal{M}}{\lambda[f]^{\frac{d-p(d-4)}{p-1}} \|f\|_{2p}^{2p}} \sup_{r>0} r^{\frac{d-p(d-4)}{p-1}} \int_{|x|>r} |f(x+x_f)|^{2p} dx$$

$$\mathsf{E}[f] := \frac{2p}{1-p} \int_{\mathbb{R}^d} \left(\frac{\kappa[f]^{p+1}}{\lambda[f]^{d\frac{p-1}{2p}}} f^{p+1} - \mathsf{g}^{p+1} - \frac{1+p}{2p} \mathsf{g}^{1-p} \left(\frac{\kappa[f]^{2p}}{\lambda[f]^2} f^{2p} - \mathsf{g}^{2p} \right) \right) dx$$
$$\mathfrak{S}[f] := \frac{\mathscr{M}^{\frac{p-1}{2p}}}{p^{2-1}} \frac{1}{C(p,d)} \mathsf{Z}(\mathsf{A}[f],\mathsf{E}[f])$$

Theorem

Let
$$d \ge 1$$
, $p \in (1, p^*)$

$$If f \in \mathcal{W}_p(\mathbb{R}^d) := \{ f \in L^{2p}(\mathbb{R}^d) : \nabla f \in L^2(\mathbb{R}^d), |x| f^p \in L^2(\mathbb{R}^d) \},$$

$$\left(\|\nabla f\|_2^{\theta} \|f\|_{p+1}^{1-\theta} \right)^{2p\gamma} - (\mathcal{C}_{\mathrm{GN}} \|f\|_{2p})^{2p\gamma} \ge \mathfrak{S}[f] \|f\|_{2p}^{2p\gamma} \mathsf{E}[f]$$

With
$$\mathcal{K}_{\text{GNS}} = C(p, d) \mathcal{C}_{\text{GNS}}^{2p\gamma}$$
, $\gamma = \frac{d+2-p(d-2)}{d-p(d-4)}$, consider the *deficit functional*

$$\delta[f] := (p-1)^2 \|\nabla f\|_2^2 + 4 \frac{d-p(d-2)}{p+1} \|f\|_{p+1}^{p+1} - \mathcal{K}_{\text{GNS}} \|f\|_{2p}^{2p\gamma}$$

Theorem

Let $d \ge 1$ and $p \in (1, p^*)$. There is an explicit $\mathscr{C} = \mathscr{C}[f]$ such that, for any $f \in L^{2p}(\mathbb{R}^d, (1+|x|^2) dx)$ such that $\nabla f \in L^2(\mathbb{R}^d)$ and $A[f^{2p}] < \infty$,

$$\delta[f] \geq \mathscr{C}[f] \inf_{\varphi \in \mathfrak{M}} \int_{\mathbb{R}^d} \left| (p-1) \nabla f + f^p \nabla \varphi^{1-p} \right|^2 dx$$

▷ The dependence of $\mathscr{C}[f]$ on $A[f^{2p}]$ and $\mathscr{F}[f^{2p}]$ is explicit and does not degenerate if $f \in \mathfrak{M}$

▷ Can we remove the condition $A[f^{2p}] < \infty$?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy – entropy production inequality (subcr Stability results (subcritical and critical case)

Stability in Sobolev's inequality (critical case)

▷ A constructive stability result

▷ The main ingredient of the proof

イロト イポト イヨト イヨト

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy – entropy production inequality (subcr Stability results (subcritical and critical case)

A constructive stability result

Let
$$2p^* = 2d/(d-2) = 2^*$$
, $d \ge 3$ and
 $\mathcal{W}_{p^*}(\mathbb{R}^d) = \left\{ f \in L^{p^*+1}(\mathbb{R}^d) : \nabla f \in L^2(\mathbb{R}^d), |x| f^{p^*} \in L^2(\mathbb{R}^d) \right\}$

Theorem

Let $d \ge 3$ and A > 0. Then for any nonnegative $f \in \mathcal{W}_{p^*}(\mathbb{R}^d)$ such that

$$\int_{\mathbb{R}^d} (1, x, |x|^2) f^{2^*} dx = \int_{\mathbb{R}^d} (1, x, |x|^2) g dx \quad and \quad \sup_{r>0} r^d \int_{|x|>r} f^{2^*} dx \le A$$

we have

$$\delta[f] := \|\nabla f\|_2^2 - \mathsf{S}_d^2 \|f\|_{2^*}^2 \ge \frac{\mathscr{C}_{\star}(A)}{4 + \mathscr{C}_{\star}(A)} \int_{\mathbb{R}^d} \left|\nabla f + \frac{d-2}{2} f \frac{d}{d-2} \nabla \mathsf{g}^{-\frac{2}{d-2}}\right|^2 d\mathsf{x}$$

 $\mathscr{C}_{\star}(A) = \mathfrak{C}_{\star} \left(1 + A^{1/(2d)}\right)^{-1}$ and $\mathfrak{C}_{\star} > 0$ depends only on d

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy – entropy production inequality (subcr Stability results (subcritical and critical case)

Peculiarities of the critical case

 \triangleright We can remove the normalization of f, use the r.h.s. to measure the distance to the Aubin-Talenti manifold of optimal functions (in relative Fisher information) and obtain for

$$A[f] := \sup_{r>0} r^d \int_{r>0} |f|^{2^*} (x + x_f) \text{ and } Z[f] := \left(1 + \mu[f]^{-d} \lambda[f]^d A[f]\right)$$

the Bianchi-Egnell type result

$$\delta[f] \ge \frac{\mathfrak{C}_{\star} Z[f]}{4 + Z[f]} \inf_{g \in \mathfrak{M}} \mathscr{J}[f|g]$$

with x_f , $\lambda[f]$ and $\mu[f]$ as in the subcritical case

▷ Notion of time delay [JD, Toscani, 2014, 2015]

- 4 同 2 4 日 2 4 日 2

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities The threshold time and the improved entropy – entropy production inequality (subcr Stability results (subcritical and critical case)

Extending the subcritical result in the critical case

To improve the spectral gap for $m = m_1$, we need to adjust the Barenblatt function $\mathscr{B}_{\lambda}(x) = \lambda^{-d/2} \mathscr{B}\left(x/\sqrt{\lambda}\right)$ in order to match $\int_{\mathbb{R}^d} |x|^2 v \, dx$ where the function v solves (r FDE) or to further rescale v according to

$$v(t,x) = \frac{1}{\Re(t)^d} w\left(t + \tau(t), \frac{x}{\Re(t)}\right),$$

$$\frac{\mathrm{d}\tau}{\mathrm{d}t} = \left(\frac{1}{\mathcal{K}_{\star}} \int_{\mathbb{R}^d} |x|^2 \, v \, dx\right)^{-\frac{d}{2}(m-m_c)} - 1, \quad \tau(0) = 0 \quad \text{and} \quad \mathfrak{R}(t) = e^{2\tau(t)}$$

Lemma

$$t\mapsto\lambda(t)$$
 and $t\mapsto au(t)$ are bounded on \mathbb{R}^+

Stability in Caffarelli-Kohn-Nirenberg inequalities ?

イロト イポト イヨト イヨト

Caffarelli-Kohn-Nirenberg inequalities

$$\det \mathcal{D}_{a,b} := \left\{ v \in \mathrm{L}^p \left(\mathbb{R}^d, |x|^{-b} \, dx \right) : |x|^{-a} |\nabla v| \in \mathrm{L}^2 \left(\mathbb{R}^d, dx \right) \right\}$$
$$\left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{bp}} \, dx \right)^{2/p} \le \mathrm{C}_{a,b} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2a}} \, dx \quad \forall \, v \in \mathcal{D}_{a,b}$$

hold under the conditions that $a \le b \le a + 1$ if $d \ge 3$, $a < b \le a + 1$ if d = 2, $a + 1/2 < b \le a + 1$ if d = 1, and $a < a_c := (d - 2)/2$ $p = \frac{2d}{d - 2 + 2(b - a)}$

> An optimal function among radial functions:

$$v_{\star}(x) = \left(1 + |x|^{(p-2)(a_c-a)}\right)^{-\frac{2}{p-2}} \text{ and } C_{a,b}^{\star} = \frac{\||x|^{-b}v_{\star}\|_{p}^{2}}{\||x|^{-a}\nabla v_{\star}\|_{2}^{2}}$$

Theorem

I

Let $d \ge 2$ and $p < 2^*$. $C_{a,b} = C_{a,b}^*$ (symmetry) if and only if either $a \in [0, a_c)$ and b > 0, or a < 0 and $b \ge b_{FS}(a)$ [JD, Esteban, Loss, 2016]

More Caffarelli-Kohn-Nirenberg inequalities

On \mathbb{R}^d with $d \ge 1$, let us consider the *Caffarelli-Kohn-Nirenberg interpolation inequalities*

$$\|f\|_{2p,\gamma} \leq \mathscr{C}_{\beta,\gamma,p} \|\nabla f\|_{2,\beta}^{\theta} \|f\|_{p+1,\gamma}^{1-\theta}$$

$$\gamma - 2 < \beta < \frac{d-2}{d}\gamma, \quad \gamma \in (-\infty, d), \quad p \in (1, p_{\star}] \quad \text{with} \quad p_{\star} := \frac{d-\gamma}{d-\beta-2},$$

with $\theta = \frac{(d-\gamma)(p-1)}{(d-\beta-2)}$ and $\|f\|_{q,\gamma} := (\int_{\mathbb{R}^d} |f|^q |x|^{-\gamma} dx)^{1/q}$

 $p(d+\beta+2-2\gamma-p(d-\beta-2))$ Symmetry means that equality is achieved by the *Aubin-Talenti type functions*

$$g(x) = (1 + |x|^{2+\beta-\gamma})^{-\frac{1}{p-1}}$$

[JD, Esteban, Loss, Muratori, 2017] Symmetry holds if and only if

$$\gamma < d$$
, and $\gamma - 2 < \beta < \frac{d-2}{d}\gamma$ and $\beta \le \beta_{\text{FS}}(\gamma)$

・ 同 ト ・ ヨ ト ・ ヨ ト

d = 4 and p = 6/5: (γ , β) admissible region

(日) (四) (王) (王)

æ

An improved decay rate along the flow

In self-similar variables, with m = (p+1)/(2p)

$$|x|^{-\gamma} \frac{\partial v}{\partial t} + \nabla \cdot \left(|x|^{-\beta} v \nabla v^{m-1} \right) = \sigma \nabla \cdot \left(x |x|^{-\gamma} v \right)$$
$$\mathscr{F}[v] = \frac{2p}{1-p} \int_{\mathbb{R}^d} \left(v^{\frac{p+1}{2p}} - g^{p+1} - \frac{p+1}{2p} g^{1-p} \left(v - g^{2p} \right) \right) |x|^{-\gamma} dx$$

Theorem

In the symmetry region, if $v \ge 0$ is a solution with a initial datum v_0 s.t.

$$A[v_0] := \sup_{R>0} R^{\frac{2+\beta-\gamma}{1-m} - (d-\gamma)} \int_{|x|>R} v_0(x) |x|^{-\gamma} dx < \infty$$

then there are some $\zeta > 0$ and some T > 0 such that

$$\mathscr{F}[v(t,.)] \leq \mathscr{F}[v_0] e^{-(4\alpha^2 + \zeta)t} \quad \forall t \geq 2 T$$

[Bonforte, JD, Nazaret, Simonov, 2022]

A (1) > A (2) > A

ヨート

These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul/Lectures/ > Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/ > Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

イロト イポト イラト イラト

Thank you for your attention !