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An introduction
to entropy methods

@ Entropies and diffusions on R (linear case)

> -entropies and entropy-entropy production inequalities
> The Bakry-Emery or carré du champ method
> Improvements and stability

Q@ Interpolation inequalities on the sphere
> From linear to nonlinear diffusion flows

> Improved entropy-entropy production inequalities
o> Stability results
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The Fokker-Planck equation (domain in R9)

The linear Fokker-Planck (FP) equation

a—u—Au+V (uVy)
ot v

on a domain Q c R?, with no-flux boundary conditions
(Vu+uVy)-v=0 on 8Q

is equivalent to the Ornstein-Uhlenbeck (OU) equation

0
a—‘;:Av—Vw-Vv::ZV

[Bakry, Emery, 1985], [Arnold, Markowich, Toscani, Unterreiter, 2001]
With mass normalized to 1, the unique stationary solution of (FP) is

us=e VvV = v.=1
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Definition of the ¢-entropies

If dy = e™¥ dx is the invariant probability measure, let

s1:= [ o(v)dy

¢ is a nonnegative convex continuous function on R* such that ¢(1) =0
and 1/¢" is concave on (0, +o0):

¢"=0, ¢=¢(1)=0 and (1/¢")" <0
Classical examples

@p(v):= ﬁ[vp—l—p(v—l)) pe(L,2]

p1(v):=viogv—(v-1),  @a(v):=lv-1
The invariant measure
dy=eVdx

where 1 is a potential such that e~V is in L1 (R, dx)
dy is a probability measure
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Entropy — entropy production inequalities, linear flows

Case of a smooth convex bounded domain Q

0

0\;_2‘/ =Av-Vy-Vv, Vv-v=0 on 0Q
df Vq—]. 4f 2 2
— dy=—-—| |Vw|*dy and w =9/
dtJo g-1 Y qJa Y

d
—f |VW|2dy5—2A(q)f IVwl|? dy
dt Ja Q

where A(q) > 0 is the best constant in the inequality

2
—(q—l)f |VX|2dy+fHessu/:X®Xdy2A(q)f |X|2dy
q Q Q Q

Proposition

qu 1dy f|Vvq/2| dy foranyv s.t. fvdy:l
2 q-1 qA () 0

[Bakry, Emery, 1984] [JD, Nazaret, Savaré, 2008]
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The Bakry-Emery method (domain in R?)

With dy = us dx and v such that [ vdy =1, ge(1,2]
Q g-entropy

salvli=— [ (vI=1-a(v-1)dy

Q q-Fisher information with w = va/2

Iqlv] = f|VW| dy

> The strategy

SEMEI = -6 )] and S(A11-216,0) =

> The decay rates
Falv(t,)] = Iav(0,)] e 2A and  84[v(t, )] < 64 [v(0,)] e 2t
> The entropy-entropy production inequality
TVl = 21&,[v] VveHY(Q dy)
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Properties of the ¢p-entropies

Q@ Generalized Csiszar-Kullback-Pinsker inequality: [Pinsker], [Csiszar
1967], [Kullback 1967], [Caceres, Carrillo, JD, 2002]

2—q
Gq= inf S—‘p(s)min{l i

Elvl=€6,1lv-1 =
[V]= %4l It se(0,00)  22/4

LI(RY,dy) ’ Lq(Rd dY)}

@ Tensorization and sub-additivity

jjl‘xdl dez |VV| dy1dy2 2min{A1, A2} &) ey, (V]

Q@ Holley-Stroock type perturbation results: if for some constants a, b € R,
e Pdy <du<e?dy, then

e n [ lo(V) = p(?) - @' D) v -] dpu= [ ¢ (1) 19w d
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Improved entropy — entropy production inequalities

In the special case y/(x) = |x12/2 + § log(27), with w = v9/2, we obtain
that
Vwi*

2
2 dt/ IVw| d}’+f IVw| d’}/<—aKqL 76]}’

withxg = (9-1) 2~ a)/q 4
Cauchy-Schwarz: (fpa [Vw|? d}/)2 < Jpd 'vm‘f;' dy Jpa w2 dy

J IV
e U T oy sy

Proposition

Assume that g€ (1,2) and dy = (21)~9/2 e X?/2 dx. There exists a
strictly convex function ¥ such that ¥(0) =0 and ¥'(0) =1 and

(1122 o gy = 1) < WV F 122 gy i 1 Diare,ay) = 1
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Two references

Q@ J.D. and X. Li. Phi-Entropies: convexity, coercivity and hypocoercivity
for Fokker-Planck and kinetic Fokker-Planck equations. Mathematical
Models and Methods in Applied Sciences, 28 (13): 2637-2666, 2018.

@ D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of Markov
diffusion operators, volume 348 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer, Cham, 2014.
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Improved inequalities and stability results

Entropy - entropy production inequality
> Improved entropy — entropy production inequality (weaker form)
I =AY(8)
for some ¥ such that ¥(0) =0, ¥'(0) =1and ¥’ >0
F-ANE=AN(Y(E)-8)=0

> Improved constant means stability
Under some restrictions on the functions, there is some A > A such that

A
F-AE=(Av—A)E=0 or y—Agz(l—A—)yzo

*
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Interpolation inequalities on the sphere

Stability in Caffarelli-Kohn-Nirenberg inequalities ?

Interpolation inequalities on the sphere
> From linear to nonlinear diffusion flows

> Improved entropy-entropy production inequalities
o> Stability results
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A result of uniqueness on a classical example

On the sphere $7, let us consider the positive solutions of
~Au+Au=uPt
pe(l,2)u(2,2*]ifd=3,2" = 2%

pe[l,2)u(2,+00)ifd=1,2

IfA<d, u=AY(P=2) js the unique solution

[Gidas, Spruck, 1981], [Bidaut-Véron, Véron, 1991]
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Bifurcation point of view and symmetry breaking

L L L
2 6 10

Figure: (p—2)A— (p—2)u(A) with d =3

IVUIEs oy + AUl g0y = p(A) 1017, 50

Taylor expansion of u=1+¢e¢@j ase — 0Owith —Agp; =d¢;
w(A)<A ifandonlyif A > ,%2

> The inequality holds with p(1) =1 = pL—Iz [Bakry, Emery, 1985]
[Beckner, 1993], [Bidaut-Véron, Véron, 1991, Corollary 6.1]
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The Bakry-Emery method on the sphere

Entropy functional
2 2 .
8ol =25 | fse 07 du—(Jsap dp)?| if p#2

— p
&2[p]:= Jsa p log ( ”p”Ll(§d)) du
Fisher information functional
1
Iplp]:= Jsa VPP * dp
[Bakry, Emery, 1985] carré du champ method: use the heat flow

op
ot
and observe that < Z6plp] = —I|p]

:Ap

d
—(Zlol-d&lpl) <0 = Slp] = d6l0]
with p = [ulP, if p < 27 := (de21+)1
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The evolution under the fast diffusion flow

To overcome the limitation p < 2#, one can consider a nonlinear diffusion
of fast diffusion / porous medium type

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any p € [1,2%]

Holp)= < (lo] - d8,00]) =0

(p, m) admissible region, d =5
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Computation of the admissible region

With p = ulfP and m =1+ 2 (% - 1), x = B(p—2) +1, with the trace free
Hessian

1
Lu:=Hu- 5 (Au) gy
and the trace free tensor

VueVu 1 |Vul?
Mu:= - = &d
u d u

we have

d d
E(.ﬂp[p] - déplp]) = o (alLul? - 2bLu: Mu+cMu|?)

d- d
a=1, b=(x+p- l)d ; c=(x+p- 1)d+ x(B-1)

so that the admissible region is defined by b?—ac<0
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The proof: two identities

Let us denote the Hessian by Hv and define the trace free Hessian by
1
Lv:=Hv- 5 (Av) gy
We also consider the following trace free tensor

_VveVy 1 IVVI2

Mv
v d v

8d

Q first identity

V|2 d (d ’ f )
A = M -2 Lv:M .
Ld v— du d+2(d_1f§dll vi©du Y vdu

Q@ second identity

d
2 _ 2 2
Ld(Av) d'u__d—lfgd IILv]| d,u+df§d|Vv| du

arises as a consequence of the Bochner-Lichnerowicz-Weitzenb6ck
formula on S¢

A(IVvI?) = |HVI? +V(Av) - Vv +(d=1)|Vv|?
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1
N (\ ) [\
7
os
os o
b § 0 0 W
H 0 0 i 5 R 3 g i g 0 g
15 b [\ ) (\
p
) | u 0s| u
f 3 g 0 g f 3 g 0 f 3 3 5

The admissible range for d = 1, 2, 3 (first line), and d = 4, 5 and 10 (from

left to right)

J. Dolbeault
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Improved inequalities

> the monotonicity result

2 (#vle1 - 6001 = -

2|t _EMﬂz_ G P PV
-1 Y a d-1 a

> improved inequalities [Arnold, JD, 2005], [JD, Nazaret, Savaré, 2008],
[JD, Toscani, 2013], [JD, Esteban, Kowalczyk, Loss, 2014], [JD, Esteban,
2020]

Tolo] = ¥(8p1])
for some convex ® with ®(0) =0 and ®'(0) =
> Application: with d =2,2—-p#y:= (d+2) (p-1)(2# - p) >0, we have

27 Y

d
||Vu||L2(§d) T(”“”L2(§d) [[ull (Sd)llul E’ )) VUEH1(§d)
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Cylindrical coordinates, Schwarz symmetrization,
stereographic projection...

X =

J. Dolbeault Stability estimates in some classical functional inequalities



An introduction to entropy methods The carré du champ method: ¢-entropies
(-entropies and diffusions
Interpolation inequalities on the sphere

and the ultra-spherical operator

Change of variables z = cos6, v(0) = (z) d::vg’l dz/Z,
v(z):=1-

The self-adjoint ultraspherical operator is
2\ o1 ! 1 d I ol
Lf=1-z)f"-dzf'=vf +5v f

which satisfies (f;, £ f>) = —f_ll fl’ f2’ vdvy

Proposition

Let pe[1,2)u(2,2*], d=1. For any f e H'([-1,1],dvy),

I1£112 —~IF12

L2(§d)

1 d
-<f,5£f>=f IF'2vdvy = d—2 )
-1 p—2
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The heat equation g—t = % g for g = fP can be rewritten in terms of f as

of 12
—=%f+
5 - Zf+(p-1)—
1d o, 1 EYalis
2dtf ] dd— <fgf> (Lf,L6)+(p 1)< Lt
d

d 1 1
—nﬁgﬁyﬂ+2¢¢gﬁyﬂ:EL[NFFVMQ+2df|Fdem

dt
1 d |f'/|4 d 1 |f/|2 f/l
_ 1,2 _ _ 2
- 2[¢bf|*%p Va7 2Dy |V dve

is nonpositive if

d If* d-11f2f"
F12+(p-1)— — - 2(p-1

is pointwise nonnegative, which is granted if

2
2d2+1 .,  2d
1) —— _ — #Fe Z2
(p )d+2] =P-Vgm =Py~ “a=2

=2*
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With integral constraints

With the heat flow...

For any pe€ (2,2%#), the inequality

1 A A
2 2 2
f_1|f’| vdvg+ =5 IFI3= S IFI

1

VFeHY((=1,1),dvy)s.t f ZIFIP dvg =0
1

holds with
(d-1)?

Azd+—d(d+2)

(2% -p)(A* - d)

v

... and with a nonlinear diffusion flow ?
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With antipodal symmetry

With the additional restriction of antipodal symmetry, that is

u(-x)=u(x) ¥xeS?

Theorem

If pe(1,2)u(2,2*), we have

d
Vul? du>
Ldl uldp b2

for any ue HY(S9, du) with antipodal symmetry. The limit case p =2
corresponds to the improved logarithmic Sobolev inequality

(2-4)2" -p)

1
" d(d+2)+p-1

(102, g0y = NP2 )

d(d+3)2 lu|?
2 el Sl 2 L
deVul du= 2 (d+1)2 Ldllﬂ log
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Subcritical interpolation inequalities on the sphere: stability

[Frank, 2022] Degenerate stability of some Sobolev inequalities
Annales IHP C (2022), arXiv:2107.11608
Ifd=2and 2 < p<2% thereis ¢y, > 0 such that, if [qaudu=1
2
Jul? 5 lu=11% o)

2,60~ 12 g0 (||Vu||L2(§d)
p-2 IVull2

||Vu||fz(§d)+d =Cdp

Lz(Sd) p- 2 "u”Lz(Sd)

An optimal result: take u(x)=1+¢z

Theorem

If d=2 and 2 < p<?2*, there is €4, >0 such that for any ue H1(§d,d,u)

[l
+d

12(s9) p—2

sd
IVull? (&%) Z%dprdIVuJ‘lzdu

with optimal constant €y, = %{S[j;) [Brigati, JD, Simonov]

v
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Constructive stability results
in Gagliardo-Nirenberg-Sobolev
inequalities

A joint project with M. Bonforte, B. Nazaret and N. Simonov

Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows, regularity
and the entropy method

arXiv:2007.03674, to appear in Memoirs of the AMS
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Fast diffusion equation
and entropy methods

ou
— =Auy™ FDE
3 = A (FDE)
@ The Rényi entropy powers and the Gagliardo-Nirenberg inequalities

@ Self-similar solutions and the entropy - entropy production method

@ Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)

@ Initial time layer: improved entropy — entropy production estimates
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Rényi entropy powers
and

Gagliardo-Nirenberg-Sobolev
inequalities

[Toscani, Savaré, 2014]
[JD, Toscani, 2016]
[JD, Esteban, Loss, 2016]
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Mass, moment, entropy and Fisher information

(i) Mass conservation. With m = m := (d —2)/d and ug € L (R9)
d
afu@d u(t,x)dx=0

(i) Second moment. With m>d/(d +2) and ug € L (R9, (1 +|x|?) dx)
%f u(t,x)dx = 2d/ (t,x)dx
(ili) Entropy estimate. With m=my :=(d-1)/d, uj’ € L'(R?) and
up € LY (RY, (1 +1xI2) dx)
2

d m m -1,.2
— t,x)dx = Vu™ % d
dtf[Rdu (t,x)dx 1_mfRdul u™ | dx
Entropy functional and Fisher information functional
2

u:n—mFLd U|vum_1|2dX

J. Dolbeault Stability estimates in some classical functional inequalities
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Entropy growth rate

Gagliardo-Nirenberg-Sobolev inequalities

IVFISIFIL = ans(p) IFll2p (GNS)

1
p=sis = m=F5em,1)

u=f2Pgothat u™ = fP*! and u|Vu™ 12 = (p- 1)2|Vf|2

A= NF15E, B[] =IF12TT, W[u]= (p+1)2 19F13

If u solves (FDE) 9% = Au™
p— 2(1-6)

1 5 2 2 - -
5, (P 1) (Gans(ey) IF13, 1F1 17 = CoE

mmc

E'=>

1-m
fRdum(t,X)dxz(fRdug’dx+%t)m " vt=z0

Equality case: u(t,x) = ﬁ@(%) , B(x) = (L+Ix2) ™1
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Pressure variable and decay of the Fisher information

Stability, fast diffusion equation and entropy methods

21
The t-derivative of the Rényi entropy power Ed T-m “Lis proportional to
|9 E2 Fl)%g
The nonlinear carré du champ method can be used to prove (GNS) :

> Pressure variable

> Fisher information
I[u] :f u|VP|? dx
RrRd
If u solves (FDE), then

I :fdA(um)IVPlzdx+ 2[ uVP-V((m=1)PAP+|VPP2) dx
R

_—2f ||D2P|| -1 m)(AP)z)dX
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Rényi entropy powers and interpolation inequalities

o> Integrations by parts and completion of squares: with m; = %

< log (125
T20dt og( )
1 2 I ?
:/[Red u™ HD2P—3APId” dx+(m—m1)fRdum 'AP+E‘ dx
> Analysis of the asymptotic regime as t — +o0
1-60 1-0
u(t, )1’ Efu(t, )1*#7 _ 1[28)° E[8] 71 26
0 = s = (p+1)** (cns(p))

t—+oo

M P Il

We recover the (GNS) Gagliardo-Nirenberg-Sobolev inequalities

I[u)? E[u)> 771 = (p+1)20 (Gans(p)) 2t 7
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The fast diffusion equation
in self-similar variables

> Rescaling and self-similar variables
> Relative entropy and the entropy — entropy production inequality

> Large time asymptotics and spectral gaps
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Entropy — entropy production inequality

With a time-dependent rescaling based on self-similar variables
1 X dR 1-
=— - - = 0 _1
u(t,x)—Kde V(T’KR) where 7 =R"7H, 1(t):=5 logR(t)

g—‘t’ = Au™ is changed into a Fokker-Planck type equation

g—:+v- V(va_l—ZX)] =0 (r FDE)

Generalized entropy (free energy) and Fisher information
— 1 m m m-1
g[v].——;fRd(v -B"-mAB (v—%))dx
m-1 2
Fv] :=[ v’Vv + 2x’ dx
RrRd

are such that .#[v] = 4 Z[v] by (GNS) [del Pino, JD, 2002] so that
Fv(t,)] s Fvole
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Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vazquez, 2009]
oy - oy -
(Go+IxI7) TP <vp < (Cr+IxI7) 7 (H)
Let Ag 4 > 0 be the best constant in the Hardy-Poincaré inequality

Aa'df f2d,ua_1sf VA2 due ¥ FeHY(dpa), ffdya_lzo
R R4 R

with dpg = (1 +|x]%)% dx, for & < 0

Under assumption (H),

Flv(t,")] = Ce 2r(mt yi>o, y(m):=(1-m)A1/(m-1),d

Moreover y(m) :=2 if% =mp<m<l
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Spectral gap

+(m)
4
my = %
_ e
2
Case 1
— Case 2
e Case 3
me = 422 ,
m
1

[Denzler, McCann, 2005]
[BBDGYV, 2009] [BDGYV, 2010] [JD, Toscani, 2010-2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]
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Initial and asymptotic time layers

> Asymptotic time layer: constraint, spectral gap and improved entropy —
entropy production inequality

o> Initial time layer: the carré du champ inequality and a backward
estimate
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The asymptotic time layer improvement

Linearized free energy and linearized Fisher information
F[g]::mf g2 B> Mdx and I[g]::m(l—m)f IVg|? B dx
2 Jrd Rd

Hardy-Poincaré inequality. Let d =1, me (m1,1) and g € L?(R?, 8%~™ dx)
such that Vg € L2(R?, B dx), [pd g B> M dx =0and [paxg B> Mdx =0

l[g] =4aF[g] where a=2-d(1-m)

Proposition

Let me(my,1) ifd=2, me(1/3,1) ifd=1,n=2(dm-d+1) and
x=m/(266+56m). If [pavdx =4, [paxvdx=0 and

(1-e)B=vs(l+e)RB

for some € € (0,xn), then

sz (4+1)F[V]
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The initial time layer improvement: backward estimate

Hint: for some strictly convex function ¢ with w(0) =0, ¢'(0) = 1, we have
I-4F =4 (y(F)-F)=0

Far from the equality case (i.e., close to an initial datum away from the
Barenblatt solutions) for (FDE), we expect some improvement

[ I

Rephrasing the carré du champ method, 2|v] := F] is such that
d2
—=2(2-4
7 =2(2-4)

Assume that m> my and v is a solution to (r FDE) with nonnegative
initial datum vy. If for some >0 and t, >0, we have 2[v(t4,")] =4+,
then

2[v(t,")] =4+ Vite[0,t]

4+n-nettx
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Stability in
Gagliardo-Nirenberg-Sobolev
inequalities
Our strategy

Choosde > 0, small enough

Get a threshold time ty (€)

0 3 txl€ . t
| Backward estimate | Forward estimate
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se)

The threshold time

and the uniform convergence
in relative error

> The regularity results allow us to glue the initial time layer estimates
with the asymptotic time layer estimates

The improved entropy — entropy production inequality holds for any time
along the evolution along (r FDE)

(and in particular for the initial datum)
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If v is a solves (r FDE) for some nonnegative initial datum vg € L1 (R9)
satisfying
d(m-m¢)
supr (I-m f vodx < A<oo (Ha)
r>0 Ix|>r

then
(1-e)B<v(t,)<s(1+e)B Vit=t,

for some explicit t, depending only on € and A
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Global Harnack Principle

The Global Harnack Principle holds if for some t >0 large enough
B, (t—71,x) < u(t,x) < B, (t+712,x) (GHP)

[Vazquez, 2003], [Bonforte, Vazquez, 2006]: (GHP) holds if ug < le_ﬁ
[Vazquez, 2003], [Bonforte, Simonov, 2020]: (GHP) holds if

Alug] := supRﬁ_d[ |ug| dx < co
R>0 Rd\BR(O)

[Bonforte, Simonov, 2020] If M + A[ug] < oo, then

)-8

lim B()

t—oo
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Uniform convergence in relative error

Stability, fast diffusion equation and entropy methods

Theorem

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that me (my,1) if d =2,
me (1/3,1) ifd=1 and let e€(0,1/2), small enough, A>0, and G >0
be given. There exists an explicit threshold time T =0 such that, if u is a

solution of
ou

5 =" (FDE)

with nonnegative initial datum ug € LX(RY) satisfying

d(m-mc)

Alug] =supr (@=m) f updx<A<oo (Ha)
[x|>r

r>0

Jpd Uo dx = [pa Bdx = 4 and F[ug) < G, then

u(t,x) i

*P IB(t,x)

xeRd

‘se Vt=T
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The threshold time

Let me(my,1) ifd=2, me(1/3,1) ifd=1, e€(0,emq), A>0 and G>0

1+Al-m 4+ G2

T:C*
ga

Wherea:%%:—m, a=d(m-mc) and 9=v/(d+v)

cx =cx(m,d)= sup max{exi(e,m), e¥x2(e, m), ex3(e, m)}
SE(ngm,d)
x1(€, m) := max 8¢ 27"k
nea= (l+e)lm-1'1-(1-¢)l-m
(4a)* 1 K3 8al
y = d , e —
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Improved entropy — entropy
production inequality
(subcritical case)
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Theorem

Let me(my,1) ifd=2, me(1/2,1) ifd=1, A>0 and G>0. Then
there is a positive number { such that

Flv] = (4+) F|v]

for any nonnegative function v € L1(R?) such that Z[v]=G,
Jpa vdx =, [paxvdx=0 and v satisfies (Ha)

We have the asymptotic time layer estimate
1 1
€€(0,2¢&4), Exi= 5 min{emq, xn} with t,=t.(e)= 5 log R(T)

(1-e)B=<v(t,)=s(l+e)B Vt=t,
and, as a consequence, the initial time layer estimate

4ne—4t*
ﬂ[V(t,.)]Z(4+()g/’~[V(f,.)] VtE[O,t*] where (Zm
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Two consequences

(=Z(AZlu), Z(AG):=

2
(x . 4nca( & )a
1+ A2 o 7" 4+ (2ac,

> Improved decay rate for the fast diffusion equation in rescaled variables

Let me (my,1) ifd=2, me(1/2,1) ifd=1, A>0and G>0. Ifv is a
solution of (r FDE) with nonnegative initial datum vy € L1(R?) such that
Flwl=G, [gavodx =M, [paxvodx=0 and vy satisfies (Ha), then

Flv(t,)] < Flwle #Dt vi=0

> The stability in the entropy - entropy production estimate
F|v]-4F|v] = Z[v] also holds in a stronger sense

V] - 4F[v] = 4L+(f[v]
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Stability results
(subcritical case)

> We rephrase the results obtained by entropy methods in the language of
stability a la Bianchi-Egnell

Subcritical range

p*=+ooifd=1lor2, p*=g%5ifd=3
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Stability, fast diffusion equation and entropy methods

2p

I\ T 57— 1
._ 2d1([f]p71 Hf\lgil d-p(d-4) __,ﬂﬁ
Alf] '—( 2T A2 o Klfl= g,
d-p(d-4)
—_ M e 2
Alf]:= e Sup,sgf P I flxl>r|f(x+Xf)| P dx
A[f] P 1T ||f|\2f;

f1P _p [«[F1?P
E[ﬂ:%fw(—;{i] frrl_gptl_ L2l ”(—’;[[f]]z f2p—g2”))dx

S[f]:= 525 ey Z (AL EIF])

Letd=1, pe(1,p*)
If f e Wp(RY):={f e L2P(RY) : VF e L2(RY), |x|FP e L2(RY)},

(1918 ||f||p+1) = (on I1f12,)°P7 = S[f] IF1557 E[f]
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With #gns = C(p, d) %égg Y = %, consider the deficit functional

d—p(d-2
8[f]:=(p-1)? ||Vf||§+4% IFIPY] = Hans 11557

Let d=1 and pe(1,p*). There is an explicit € = €[f] such that, for any
f e L2P(RY, (1+1x1%) dx) such that Vf e L>(RY) and A[f?P] < oo,

2
5[F] = 6[f] inff |(p-1) V7 + FPVgP [ dx
Qe Jrd

= The dependence of €[] on A[f?P] and % [£2P] is explicit and does not
degenerate if f € M

= Can we remove the condition A[f2P] < 0o ?
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Stability in Sobolev’s inequality
(critical case)

> A constructive stability result

> The main ingredient of the proof
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A constructive stability result

Stability, fast diffusion equation and entropy methods

Let2p* =2d/(d-2)=2%d=3and

Wor (RY) = {F e LPL(RY) : VF e L2(RY), IxIFP" € L2(RY)}

Theorem

Let d=3 and A>0. Then for any nonnegative f € W,,*(Rd) such that

f(l,x,|x|2)f2*dx=f (1,x,|x|2)gdx and suprdf 2 dx< A
Rd R4 [x|>r

r>0

we have
d 2 12
8[f]:= IVFI3-S3 ||f||§*_ fRd| REEY ﬂvg-ﬂ| e

Cx(A) =€, (1+A1/(2d))_:l and €, >0 depends only on d
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Peculiarities of the critical case

> We can remove the normalization of f, use the r.h.s. to measure the
distance to the Aubin-Talenti manifold of optimal functions (in relative
Fisher information) and obtain for

A[f];=suprdfr>0|f|2*(x+xf) and  Z[f]:= (L+u[f]9 ALY A[F])

r>0
the Bianchi-Egnell type result

¢, Z[f]

o[f] = 2+ Z[] gienggtf[ﬂg]

with x¢, A[f] and pu[f] as in the subcritical case

> Notion of time delay [JD, Toscani, 2014, 2015]
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Extending the subcritical result in the critical case

To improve the spectral gap
for m = m;, we need to ad-
just the Barenblatt function

B(x)= A" (x/\/I) in order
to match [ga Ix|2vdx where the

function v solves (rFDE) or to
further rescale v according to

v(t,X)ZwW(tJFT(t)’m)((t))’ — .

-4 (m-mc
)2( )21, 7(0)=0 and %(¢)=e2(0)

1
% = (T*IIR" Ix|2 v dx

t— A(t) and t — 1(t) are bounded on R*
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Stability in
Caffarelli-Kohn-Nirenberg
inequalities ?
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Caffarelli-Kohn-Nirenberg inequalities

LetD,p:= { veLP ([Rd, |x|_bdx) S xI7?|Vv| e L2 (IRd,dx) }
v|P )2/" IVv|2
—dX < C —CIX VVE@
Uuw Ix|bP b Jra x|22 b

hold under the conditionsthata<b<a+1lifd=3,a<b=<a+1lifd=2,
a+1/2<b<a+lifd=1,anda<a, :2=C$d—2)/2

P4 2+2(b-a)

> An optimal function among radial functions:

_ 2
Vie(x) = (1+|x|(P_2)(af_a)) % and C},=

X172 v 13

YA

Let d=2 and p<2*. C,p=C5, (symmetry) if and only if
either a€[0,a.) and b>0, or a<0 and b= bps(a)
[JD, Esteban, Loss, 2016]
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More Caffarelli-Kohn-Nirenberg inequalities

On RY with d = 1, let us consider the Caffarelli-Kohn-Nirenberg
interpolation inequalities

1Fll2py < Cpyp IVFIS 5 IFILS

d-2 d-
Y_2<ﬁ<TYY YE(_OOrd)r Pe(l,P*] with p*::d_—ﬁy_zr

with = —@DCL_ang )= (fo IF191x17 dx) /9
p(d+p+2-2y-p(d-p-2)) aiy = (Jpd )
Symmetry means that equality is achieved by the Aubin-Talenti type

functions

1

g(x) = (L+ |x>F77) 77t
[JD, Esteban, Loss, Muratori, 2017] Symmetry holds if and only if

-2
y<d, and y—2<,6<dTY and f < Brs(y)
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d=4and p=6/5: (y, ) admissible region
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An improved decay rate along the flow

In self-similar variables, with m= (p+1)/(2p)
4]
[x|™Y 6_‘; +V- (|X|_ﬁ vva_l) =oV-(xIx|7"v)

2 p+l +1 4_ _
g[v]:%fﬂd (v 2p _gp+1_F’2_pg1 P(v—g2p))lxl Y dx

Theorem

In the symmetry region, if v =0 is a solution with a initial datum vy s.t.

2+p—
Alvo]:=supR 1= ~(d-7) vo(x)1x]7" dx < oo
R>0 Ix|>R

then there are some { >0 and some T > Osuch that

Fv(t,)] = Flwle GOt yiz2T

[Bonforte, JD, Nazaret, Simonov, 2022]
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These slides can be found at

http://www.ceremade.dauphine.fr/ ~dolbeaul/Lectures/
> Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/ ~dolbeaul/Preprints/list/
> Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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