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The Fokker-Planck equation (domain in Rd )

The linear Fokker-Planck (FP) equation

∂u

∂t
=∆u+∇· (u∇ψ)

on a domainΩ⊂Rd , with no-flux boundary conditions

(∇u+u∇ψ) ·ν= 0 on ∂Ω

is equivalent to the Ornstein-Uhlenbeck (OU) equation

∂v

∂t
=∆v −∇ψ ·∇v =:L v

[Bakry, Emery, 1985], [Arnold, Markowich, Toscani, Unterreiter, 2001]
With mass normalized to 1, the unique stationary solution of (FP) is

us = e−ψ ⇐⇒ vs = 1

J. Dolbeault Stability estimates in some classical functional inequalities



An introduction to entropy methods
Stability, fast diffusion equation and entropy methods

Stability in Caffarelli-Kohn-Nirenberg inequalities ?

The carré du champ method: ϕ-entropies
ϕ-entropies and diffusions
Interpolation inequalities on the sphere

Definition of the ϕ-entropies

If dγ= e−ψdx is the invariant probability measure, let

E [v ] :=
∫
Rd
ϕ(v)dγ

ϕ is a nonnegative convex continuous function on R+ such that ϕ(1)= 0
and 1/ϕ′′ is concave on (0,+∞):

ϕ′′ ≥ 0 , ϕ≥ϕ(1)= 0 and (1/ϕ′′)′′ ≤ 0

Classical examples

ϕp(v) := 1
p−1

(
vp −1−p (v −1)

)
p ∈ (1,2]

ϕ1(v) := v logv − (v −1) , ϕ2(v) := |v −1|2

The invariant measure
dγ= e−ψdx

where ψ is a potential such that e−ψ is in L1(Rd ,dx)
dγ is a probability measure
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Entropy – entropy production inequalities, linear flows

Case of a smooth convex bounded domainΩ
∂v

∂t
=L v :=∆v −∇ψ ·∇v , ∇v ·ν= 0 on ∂Ω

d

dt

∫
Ω

vq −1
q−1

dγ=−4
q

∫
Ω
|∇w |2dγ and w = vq/2

d

dt

∫
Ω
|∇w |2dγ≤−2Λ(q)

∫
Ω
|∇w |2dγ

whereΛ(q)> 0 is the best constant in the inequality

2
q
(q−1)

∫
Ω
|∇X |2dγ+

∫
Ω

Hessψ :X ⊗X dγ≥Λ(q)
∫
Ω
|X |2dγ

Proposition

∫
Ω

vq −1
q−1

dγ≤ 4
qΛ(q)

∫
Ω

∣∣∇vq/2∣∣2dγ for any v s.t.
∫
Ω
v dγ= 1

[Bakry, Emery, 1984] [JD, Nazaret, Savaré, 2008]
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The Bakry-Emery method (domain in Rd )

With dγ= us dx and v such that
∫
Ω v dγ= 1, q ∈ (1,2]

q-entropy

Eq[v ] :=
1

q−1

∫
Ω
(vq −1−q (v −1))dγ

q-Fisher information with w = vq/2

Iq[v ] :=
4
q

∫
Ω
|∇w |2dγ

B The strategy

d

dt
Eq[v(t, ·)]=−Iq[v(t, ·)] and

d

dt

(
Iq[v ]− 2λEq[v ]

)
≤ 0

B The decay rates

Iq[v(t, ·)]≤Iq[v(0, ·)]e−2λt and Eq[v(t, ·)]≤ Eq[v(0, ·)]e−2λt

B The entropy-entropy production inequality

Iq[v ]≥ 2λEq[v ] ∀v ∈ H1(Ω,dγ)
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Properties of the ϕ-entropies

Generalized Csiszár-Kullback-Pinsker inequality: [Pinsker], [Csiszár
1967], [Kullback 1967], [Cáceres, Carrillo, JD, 2002]

E [v ]≥Cq ‖v −1‖2
Lq(Rd ,dγ)

, Cq = inf
s∈(0,∞)

s2−qϕ′′(s)

22/q
min

{
1,‖v‖q−2

Lq(Rd ,dγ)

}
Tensorization and sub-additivityÏ

Rd1×Rd2
ϕ′′(v) |∇v |2dγ1dγ2 ≥min{Λ1,Λ2}Eγ1⊗γ2 [v ]

Holley-Stroock type perturbation results: if for some constants a, b ∈R,
e−b dγ≤ dµ≤ e−adγ, then

ea−bΛ
∫
Rd

[
ϕ(v)−ϕ(ṽ)−ϕ′(ṽ)(v − ṽ)

]
dµ≤

∫
Rd
ϕ′′(v) |∇v |2dµ
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Improved entropy – entropy production inequalities

In the special case ψ(x)= |x |2/2+ d
2 log(2π), with w = vq/2, we obtain

that
1
2

d

dt

∫
Rd

|∇w |2dγ+
∫
Rd

|∇w |2dγ≤− 2
q
κq

∫
Rd

|∇w |4
w2 dγ

with κq = (q−1)(2−q)/q

Cauchy-Schwarz:
(∫
Rd |∇w |2dγ)2 ≤ ∫

Rd
|∇w |4
w2 dγ

∫
Rd w

2dγ

d

dt
I [v ]+2I [v ]≤−κq

I [v ]2

1+ (q−1)E [v ]

Proposition

Assume that q ∈ (1,2) and dγ= (2π)−d/2 e−|x |
2/2dx . There exists a

strictly convex function Ψ such that Ψ(0)= 0 and Ψ′(0)= 1 and

Ψ
(
‖f ‖2

L2(Rd ,dγ)
−1

)
≤ ‖∇f ‖2

L2(Rd ,dγ)
if ‖f ‖Lq(Rd ,dγ) = 1
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Two references

J.D. and X. Li. Phi-Entropies: convexity, coercivity and hypocoercivity
for Fokker-Planck and kinetic Fokker-Planck equations. Mathematical
Models and Methods in Applied Sciences, 28 (13): 2637-2666, 2018.

D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of Markov
diffusion operators, volume 348 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer, Cham, 2014.
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Improved inequalities and stability results

Entropy – entropy production inequality

I [u]≥ ΛE [u]

B Improved entropy – entropy production inequality (weaker form)

I ≥ ΛΨ(E )

for someΨ such thatΨ(0)= 0,Ψ′(0)= 1 andΨ′′ > 0

I −ΛE ≥ Λ(Ψ(E )−E )≥ 0

B Improved constant means stability
Under some restrictions on the functions, there is someΛ? >Λ such that

I −ΛE ≥ (Λ?−Λ)E ≥ 0 or I −ΛE ≥
(
1− Λ

Λ?

)
I ≥ 0
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A result of uniqueness on a classical example

On the sphere Sd , let us consider the positive solutions of

−∆u+λu = up−1

p ∈ [1,2)∪ (2,2∗] if d ≥ 3, 2∗ = 2d
d−2

p ∈ [1,2)∪ (2,+∞) if d = 1, 2

Theorem

If λ≤ d , u ≡λ1/(p−2) is the unique solution

[Gidas, Spruck, 1981], [Bidaut-Véron, Véron, 1991]
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Bifurcation point of view and symmetry breaking

2 4 6 8 10

2

4

6

8

Figure: (p−2)λ 7→ (p−2)µ(λ) with d = 3

‖∇u‖2
L2(Sd )

+λ‖u‖2
L2(Sd )

≥µ(λ)‖u‖2
Lp(Sd )

Taylor expansion of u = 1+εϕ1 as ε→ 0 with −∆ϕ1 = dϕ1

µ(λ)<λ if and only if λ> d
p−2

B The inequality holds with µ(λ)=λ= d
p−2 [Bakry, Emery, 1985]

[Beckner, 1993], [Bidaut-Véron, Véron, 1991, Corollary 6.1]
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The Bakry-Emery method on the sphere

Entropy functional

Ep[ρ] := 1
p−2

[∫
Sd ρ

2
p dµ− (

∫
Sd ρ dµ)

2
p

]
if p 6= 2

E2[ρ] :=
∫
Sd ρ log

(
ρ

‖ρ‖
L1(Sd )

)
dµ

Fisher information functional

Ip[ρ] :=
∫
Sd |∇ρ

1
p |2 dµ

[Bakry, Emery, 1985] carré du champ method: use the heat flow

∂ρ

∂t
=∆ρ

and observe that d
dt Ep[ρ]=−Ip[ρ]

d

dt

(
Ip[ρ]−d Ep[ρ]

)
≤ 0 =⇒ Ip[ρ]≥ d Ep[ρ]

with ρ = |u|p , if p ≤ 2# := 2d2+1
(d−1)2
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The evolution under the fast diffusion flow

To overcome the limitation p ≤ 2#, one can consider a nonlinear diffusion
of fast diffusion / porous medium type

∂ρ

∂t
=∆ρm

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any p ∈ [1,2∗]

Kp[ρ] :=
d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0

1.0 1.5 2.5 3.0

0.0

0.5

1.5

2.0

(p,m) admissible region, d = 5
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Computation of the admissible region

With ρ = |u|βp and m= 1+ 2
p

(
1
β −1

)
, κ=β(p−2)+1, with the trace free

Hessian

Lu := Hu− 1
d
(∆u)gd

and the trace free tensor

Mu := ∇u⊗∇u
u

− 1
d

|∇u|2
u

gd

we have

d

dt

(
Ip[ρ]− d Ep[ρ]

)
=− d

d −1

(
a‖Lu‖2−2bLu :Mu+c‖Mu‖2

)
a= 1 , b= (κ+β−1)

d −1
d +2

, c= (κ+β−1)
d

d +2
+κ(β−1)

so that the admissible region is defined by b2−ac≤ 0

J. Dolbeault Stability estimates in some classical functional inequalities
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The proof: two identities

Let us denote the Hessian by Hv and define the trace free Hessian by

Lv := Hv − 1
d
(∆v)gd

We also consider the following trace free tensor

Mv := ∇v ⊗∇v
v

− 1
d

|∇v |2
v

gd

first identity∫
Sd
∆v

|∇v |2
v

dµ= d

d +2

(
d

d −1

∫
Sd

‖Mv‖2dµ−2
∫
Sd

Lv :Mv dµ

)
.

second identity∫
Sd

(∆v)2dµ= d

d −1

∫
Sd

‖Lv‖2dµ+d

∫
Sd

|∇v |2dµ

arises as a consequence of the Bochner-Lichnerowicz-Weitzenböck
formula on Sd

1
2 ∆(|∇v |2)= ‖Hv‖2+∇(∆v) ·∇v + (d −1) |∇v |2

J. Dolbeault Stability estimates in some classical functional inequalities
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0.5
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0.5
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0.5

1.0

1.5

1 2 3 4 5

0.5

1.0

1.5

1 2 3 4

0.5

1.0

1.5

1 2 3 4

0.5

1.0

1.5

The admissible range for d = 1, 2, 3 (first line), and d = 4, 5 and 10 (from
left to right)
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Improved inequalities

B the monotonicity result

d

dt

(
Ip[ρ]− d Ep[ρ]

)
=− d

d −1
a

∥∥∥∥Lu− b
a

M

∥∥∥∥2
− d

d −1

(
c− b2

a

)
‖Mu‖2

B improved inequalities [Arnold, JD, 2005], [JD, Nazaret, Savaré, 2008],
[JD, Toscani, 2013], [JD, Esteban, Kowalczyk, Loss, 2014], [JD, Esteban,
2020]

Ip[ρ]≥ dΨ
(
Ep[ρ]

)
for some convexΦwithΦ(0)= 0 andΦ′(0)= 1

B Application: with d ≥ 2, 2−p 6= γ :=
(
d−1
d+2

)2
(p−1)(2#−p)> 0, we have

‖∇u‖2
L2(Sd )

≥ d

2−p−γ

(
‖u‖2

L2(Sd )
−‖u‖2−

2γ
2−p

Lp(Sd )
‖u‖

2γ
2−p
L2(Sd )

)
∀u ∈ H1(Sd )

J. Dolbeault Stability estimates in some classical functional inequalities
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... and the ultra-spherical operator

Change of variables z = cosθ, v(θ)= f (z), dνd := ν
d
2−1dz/Zd

ν(z) := 1−z2

The self-adjoint ultraspherical operator is

L f := (1−z2) f ′′−d z f ′ = ν f ′′+ d

2
ν′ f ′

which satisfies 〈f1,L f2〉 =−∫ 1
−1 f

′
1 f

′
2 νdνd

Proposition

Let p ∈ [1,2)∪ (2,2∗], d ≥ 1. For any f ∈ H1([−1,1],dνd ),

−〈f ,L f 〉 =
∫ 1

−1
|f ′|2 νdνd ≥ d

‖f ‖2
Lp(Sd )

−‖f ‖2
L2(Sd )

p−2

J. Dolbeault Stability estimates in some classical functional inequalities
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The heat equation ∂g
∂t =L g for g = f p can be rewritten in terms of f as

∂f

∂t
=L f + (p−1)

|f ′|2
f

ν

−1
2

d

dt

∫ 1

−1
|f ′|2 νdνd = 1

2
d

dt
〈f ,L f 〉 = 〈L f ,L f 〉+ (p−1)

〈
|f ′|2
f

ν,L f

〉

d

dt
I [g(t, ·)]+ 2dI [g(t, ·)]= d

dt

∫ 1

−1
|f ′|2 νdνd + 2d

∫ 1

−1
|f ′|2 νdνd

=−2
∫ 1

−1

(
|f ′′|2+ (p−1)

d

d +2
|f ′|4
f 2 − 2(p−1)

d −1
d +2

|f ′|2 f ′′
f

)
ν2dνd

is nonpositive if

|f ′′|2+ (p−1)
d

d +2
|f ′|4
f 2 − 2(p−1)

d −1
d +2

|f ′|2 f ′′
f

is pointwise nonnegative, which is granted if[
(p−1)

d −1
d +2

]2
≤ (p−1)

d

d +2
⇐⇒ p ≤ 2d2+1

(d −1)2
= 2# < 2d

d −2
= 2∗

J. Dolbeault Stability estimates in some classical functional inequalities
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With integral constraints

With the heat flow...

Proposition

For any p ∈ (2,2#), the inequality

∫ 1

−1
|f ′|2 νdνd +

λ

p−2
‖f ‖22 ≥ λ

p−2
‖f ‖2p

∀ f ∈ H1((−1,1),dνd ) s.t.
∫ 1

−1
z |f |p dνd = 0

holds with

λ≥ d + (d −1)2

d (d +2)
(2#−p)(λ?−d)

... and with a nonlinear diffusion flow ?
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With antipodal symmetry

With the additional restriction of antipodal symmetry, that is

u(−x)= u(x) ∀x ∈Sd

Theorem

If p ∈ (1,2)∪ (2,2∗), we have∫
Sd

|∇u|2 dµ≥ d

p−2

[
1+ (d2−4)(2∗−p)

d (d +2)+p−1

](
‖u‖2

Lp(Sd )
−‖u‖2

L2(Sd )

)
for any u ∈ H1(Sd ,dµ) with antipodal symmetry. The limit case p = 2
corresponds to the improved logarithmic Sobolev inequality

∫
Sd

|∇u|2 dµ≥ d

2
(d +3)2

(d +1)2

∫
Sd

|u|2 log

 |u|2
‖u‖2

L2(Sd )

 dµ

J. Dolbeault Stability estimates in some classical functional inequalities
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Subcritical interpolation inequalities on the sphere: stability

[Frank, 2022] Degenerate stability of some Sobolev inequalities
Annales IHP C (2022), arXiv:2107.11608
If d ≥ 2 and 2< p < 2∗, there is cd ,p > 0 such that, if

∫
Sd u dµ= 1

‖∇u‖2
L2(Sd )

+d
‖u‖2

Lp(Sd )
−‖u‖2

L2(Sd )

p−2
≥ cd ,p

(
‖∇u‖2

L2(Sd )
+ d

p−2 ‖u−1‖2
L2(Sd )

)2
‖∇u‖2

L2(Sd )
+ d

p−2 ‖u‖2L2(Sd )

An optimal result: take u(x)= 1+εz
Theorem

If d ≥ 2 and 2< p < 2∗, there is Cd ,p > 0 such that for any u ∈ H1(Sd ,dµ)

‖∇u‖2
L2(Sd )

+d
‖u‖2

Lp(Sd )
−‖u‖2

L2(Sd )

p−2
≥Cd ,p

∫
Sd

|∇u⊥|2dµ

with optimal constant Cd ,p = 2d−p (d−2)
2d (d+p) [Brigati, JD, Simonov]
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Constructive stability results

in Gagliardo-Nirenberg-Sobolev

inequalities

A joint project with M. Bonforte, B. Nazaret and N. Simonov
Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows, regularity

and the entropy method
arXiv:2007.03674, to appear in Memoirs of the AMS
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Fast diffusion equation
and entropy methods

∂u

∂t
=∆um (FDE)

The Rényi entropy powers and the Gagliardo-Nirenberg inequalities

Self-similar solutions and the entropy – entropy production method

Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)

Initial time layer: improved entropy – entropy production estimates
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Rényi entropy powers
and

Gagliardo-Nirenberg-Sobolev
inequalities

[Toscani, Savaré, 2014]
[JD, Toscani, 2016]
[JD, Esteban, Loss, 2016]
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Mass, moment, entropy and Fisher information

(i) Mass conservation. With m≥mc := (d −2)/d and u0 ∈ L1
+(R

d )

d

dt

∫
Rd

u(t,x)dx = 0

(ii) Second moment. With m> d/(d +2) and u0 ∈ L1
+
(
Rd ,(1+|x |2) dx)

d

dt

∫
Rd

|x |2u(t,x)dx = 2d
∫
Rd

um(t,x)dx

(iii) Entropy estimate. With m≥m1 := (d −1)/d , um0 ∈ L1(Rd ) and

u0 ∈ L1
+
(
Rd ,(1+|x |2) dx)

d

dt

∫
Rd

um(t,x)dx = m2

1−m

∫
Rd

u |∇um−1|2dx

Entropy functional and Fisher information functional

E[u] :=
∫
Rd

um dx and I[u] := m2

(1−m)2

∫
Rd

u |∇um−1|2dx
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Entropy growth rate

Gagliardo-Nirenberg-Sobolev inequalities

‖∇f ‖θ2 ‖f ‖1−θp+1 ≥CGNS(p) ‖f ‖2p (GNS)

p = 1
2m−1 ⇐⇒ m= p+1

2p ∈ [m1,1)

u = f 2p so that um = f p+1 and u |∇um−1|2 = (p−1)2 |∇f |2

M = ‖f ‖2p2p , E[u]= ‖f ‖p+1
p+1 , I[u]= (p+1)2 ‖∇f ‖22

If u solves (FDE) ∂u
∂t =∆um

E′ ≥ p−1
2p

(p+1)2
(
CGNS(p)

) 2
θ ‖f ‖

2
θ

2p ‖f ‖−
2(1−θ)

θ

p+1 =C0E1− m−mc
1−m

∫
Rd

um(t,x)dx ≥
(∫
Rd

um0 dx + (1−m)C0
m−mc

t

) 1−m
m−mc ∀t ≥ 0

Equality case: u(t,x)= c1
R(t)d

B
(
c2 x
R(t)

)
, B(x) := (

1+|x |2) 1
m−1
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Pressure variable and decay of the Fisher information

The t-derivative of the Rényi entropy power E
2
d

1
1−m−1 is proportional to

IθE2 1−θ
p+1

The nonlinear carré du champ method can be used to prove (GNS) :

B Pressure variable
P := m

1−m
um−1

B Fisher information

I[u]=
∫
Rd

u |∇P|2dx

If u solves (FDE), then

I′ =
∫
Rd
∆(um) |∇P|2dx + 2

∫
Rd

u∇P ·∇
(
(m−1)P∆P+|∇P|2

)
dx

=−2
∫
Rd

um
(
‖D2P‖2− (1−m)(∆P)2

)
dx
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Rényi entropy powers and interpolation inequalities

B Integrations by parts and completion of squares: with m1 = d−1
d

− I
2θ

d

dt
log

(
IθE2 1−θ

p+1
)

=
∫
Rd

um
∥∥∥∥D2P− 1

d
∆P Id

∥∥∥∥2
dx + (m−m1)

∫
Rd

um
∣∣∣∣∆P+ I

E

∣∣∣∣2dx
B Analysis of the asymptotic regime as t →+∞

lim
t→+∞

I[u(t, ·)]θE[u(t, ·)]2
1−θ
p+1

M
2θ
p

= I[B]θE[B]2
1−θ
p+1

‖B‖
2θ
p

1

= (p+1)2θ (CGNS(p))
2θ

We recover the (GNS) Gagliardo-Nirenberg-Sobolev inequalities

I[u]θE[u]2
1−θ
p+1 ≥ (p+1)2θ

(
CGNS(p)

)2θ
M

2θ
p
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The fast diffusion equation
in self-similar variables

B Rescaling and self-similar variables

B Relative entropy and the entropy – entropy production inequality

B Large time asymptotics and spectral gaps
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Entropy – entropy production inequality

With a time-dependent rescaling based on self-similar variables

u(t,x)= 1
κd Rd

v
(
τ,

x

κR

)
where

dR

dt
=R1−µ , τ(t) := 1

2 logR(t)

∂u
∂t =∆um is changed into a Fokker-Planck type equation

∂v

∂τ
+∇·

[
v

(
∇vm−1− 2x

)]
= 0 (r FDE)

Generalized entropy (free energy) and Fisher information

F [v ] :=− 1
m

∫
Rd

(
vm−Bm−mBm−1 (v −B)

)
dx

I [v ] :=
∫
Rd

v
∣∣∣∇vm−1+ 2x

∣∣∣2 dx
are such that I [v ]≥ 4F [v ] by (GNS) [del Pino, JD, 2002] so that

F [v(t, ·)]≤F [v0]e
−4t
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Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vázquez, 2009]

(
C0+|x |2)− 1

1−m ≤ v0 ≤ (
C1+|x |2)− 1

1−m (H)

LetΛα,d > 0 be the best constant in the Hardy–Poincaré inequality

Λα,d

∫
Rd

f 2 dµα−1 ≤
∫
Rd

|∇f |2 dµα ∀ f ∈ H1(dµα) ,
∫
Rd

f dµα−1 = 0

with dµα := (1+|x |2)αdx , for α< 0

Lemma

Under assumption (H),

F [v(t, ·)]≤C e−2γ(m)t ∀ t ≥ 0 , γ(m) := (1−m)Λ1/(m−1),d

Moreover γ(m) := 2 if d−1
d =m1 ≤m< 1
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Spectral gap

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

[Denzler, McCann, 2005]
[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2010-2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]
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Initial and asymptotic time layers
B Asymptotic time layer: constraint, spectral gap and improved entropy –
entropy production inequality

B Initial time layer: the carré du champ inequality and a backward
estimate
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The asymptotic time layer improvement

Linearized free energy and linearized Fisher information

F[g ] := m

2

∫
Rd

g2 B2−m dx and I[g ] :=m(1−m)

∫
Rd

|∇g |2 Bdx

Hardy-Poincaré inequality. Let d ≥ 1, m ∈ (m1,1) and g ∈ L2(Rd ,B2−m dx)
such that ∇g ∈ L2(Rd ,Bdx),

∫
Rd g B2−m dx = 0 and

∫
Rd x g B2−m dx = 0

I[g ]≥ 4αF[g ] where α= 2−d (1−m)

Proposition

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/3,1) if d = 1, η= 2(dm−d +1) and
χ=m/(266+56m). If

∫
Rd v dx =M ,

∫
Rd x v dx = 0 and

(1−ε)B ≤ v ≤ (1+ε)B

for some ε ∈ (0,χη), then
I [v ]≥ (4+η)F [v ]
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The initial time layer improvement: backward estimate

Hint: for some strictly convex function ψ with ψ(0)= 0, ψ′(0)= 1, we have

I −4F ≥ 4(ψ(F )−F )≥ 0

Far from the equality case (i.e., close to an initial datum away from the
Barenblatt solutions) for (FDE), we expect some improvement

Rephrasing the carré du champ method, Q[v ] := I [v ]
F [v ]

is such that

dQ

dt
≤Q (Q−4)

Lemma

Assume that m>m1 and v is a solution to (r FDE) with nonnegative
initial datum v0. If for some η> 0 and t? > 0, we have Q[v(t?, ·)]≥ 4+η,
then

Q[v(t, ·)]≥ 4+ 4ηe−4t?

4+η−ηe−4t?
∀t ∈ [0,t?]
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Stability in
Gagliardo-Nirenberg-Sobolev

inequalities
Our strategy

Regularity and stability

Our strategy

Choose "> 0, small enough

Get a threshold time t?(")

0 t?(") t
Backward estimate

by entropy methods

Forward estimate

based on a spectral gap

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

E
s

⇐
#↳

Initial time layer Asymptotic time layer
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The threshold time
and the uniform convergence

in relative error
B The regularity results allow us to glue the initial time layer estimates
with the asymptotic time layer estimates

The improved entropy – entropy production inequality holds for any time
along the evolution along (r FDE)

(and in particular for the initial datum)
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If v is a solves (r FDE) for some nonnegative initial datum v0 ∈ L1(Rd )
satisfying

sup
r>0

r
d (m−mc )
(1−m)

∫
|x |>r

v0dx ≤A<∞ (HA)

then
(1−ε)B ≤ v(t, ·)≤ (1+ε)B ∀t ≥ t?

for some explicit t? depending only on ε and A
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Global Harnack Principle

The Global Harnack Principle holds if for some t > 0 large enough

BM1(t−τ1,x)≤ u(t,x)≤BM2(t+τ2,x) (GHP)

[Vázquez, 2003], [Bonforte, Vázquez, 2006]: (GHP) holds if u0 . |x |− 2
1−m

[Vázquez, 2003], [Bonforte, Simonov, 2020]: (GHP) holds if

A[u0] := sup
R>0

R
2

1−m−d
∫
Rd \BR(0)

|u0|dx <∞

Theorem

[Bonforte, Simonov, 2020] If M +A[u0]<∞, then

lim
t→∞

∥∥∥∥u(t)−B(t)

B(t)

∥∥∥∥
∞

= 0
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Uniform convergence in relative error

Theorem

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that m ∈ (m1,1) if d ≥ 2,
m ∈ (1/3,1) if d = 1 and let ε ∈ (0,1/2), small enough, A> 0, and G > 0
be given. There exists an explicit threshold time T ≥ 0 such that, if u is a
solution of

∂u

∂t
=∆um (FDE)

with nonnegative initial datum u0 ∈ L1(Rd ) satisfying

A[u0]= sup
r>0

r
d (m−mc )
(1−m)

∫
|x |>r

u0dx ≤A<∞ (HA)

∫
Rd u0dx = ∫

Rd B dx =M and F [u0]≤G , then

sup
x∈Rd

∣∣∣∣ u(t,x)

B(t,x)
−1

∣∣∣∣≤ ε ∀t ≥T
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The threshold time

Proposition

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/3,1) if d = 1, ε ∈ (0,εm,d ), A> 0 and G > 0

T = c?
1+A1−m+G

α
2

εa

where a= α
ϑ

2−m
1−m , α= d (m−mc) and ϑ= ν/(d +ν)

c? = c?(m,d)= sup
ε∈(0,εm,d )

max
{
εκ1(ε,m), εaκ2(ε,m), εκ3(ε,m)

}

κ1(ε,m) :=max

{
8c

(1+ε)1−m−1
,

23−mκ?
1− (1−ε)1−m

}

κ2(ε,m) := (4α)α−1 K
α
ϑ

ε
2−m
1−m

α
ϑ

and κ3(ε,m) := 8α−1

1− (1−ε)1−m
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Improved entropy – entropy
production inequality

(subcritical case)
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Theorem

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/2,1) if d = 1, A> 0 and G > 0. Then
there is a positive number ζ such that

I [v ]≥ (4+ζ)F [v ]

for any nonnegative function v ∈ L1(Rd ) such that F [v ]=G ,∫
Rd v dx =M ,

∫
Rd x v dx = 0 and v satisfies (HA)

We have the asymptotic time layer estimate

ε ∈ (0, 2ε?) , ε? :=
1
2

min
{
εm,d , χη

}
with t? = t?(ε)=

1
2

logR(T )

(1−ε)B ≤ v(t, ·)≤ (1+ε)B ∀t ≥ t?

and, as a consequence, the initial time layer estimate

I [v(t, .)]≥ (4+ζ)F [v(t, .)] ∀t ∈ [0,t?] where ζ= 4ηe−4t?

4+η−ηe−4t?
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Two consequences

ζ=Z
(
A,F [u0]

)
, Z(A,G ) := ζ?

1+A(1−m) 2
α +G

, ζ? :=
4ηcα
4+η

(
εa?

2αc?

) 2
α

B Improved decay rate for the fast diffusion equation in rescaled variables

Corollary

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/2,1) if d = 1, A> 0 and G > 0. If v is a
solution of (r FDE) with nonnegative initial datum v0 ∈ L1(Rd ) such that
F [v0]=G ,

∫
Rd v0dx =M ,

∫
Rd x v0dx = 0 and v0 satisfies (HA), then

F [v(t, .)]≤F [v0]e
−(4+ζ)t ∀t ≥ 0

B The stability in the entropy - entropy production estimate
I [v ]−4F [v ]≥ ζF [v ] also holds in a stronger sense

I [v ]− 4F [v ]≥ ζ

4+ζI [v ]
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Stability results
(subcritical case)

B We rephrase the results obtained by entropy methods in the language of
stability à la Bianchi-Egnell

Subcritical range

p∗ =+∞ if d = 1 or 2, p∗ = d
d−2 if d ≥ 3
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λ[f ] :=
(
2d κ[f ]p−1

p2−1
‖f ‖p+1

p+1

‖∇f ‖22

) 2p
d−p (d−4)

, κ[f ] := M
1
2p

‖f ‖2p

A[f ] := M

λ[f ]
d−p (d−4)

p−1 ‖f ‖2p2p

supr>0 r
d−p (d−4)

p−1
∫
|x |>r |f (x +xf )|2p dx

E[f ] := 2p
1−p

∫
Rd

(
κ[f ]p+1

λ[f ]
d
p−1
2p

f p+1−gp+1− 1+p
2p g1−p

(
κ[f ]2p

λ[f ]2
f 2p −g2p

))
dx

S[f ] := M
p−1
2p

p2−1
1

C(p,d)
Z(A[f ], E[f ])

Theorem

Let d ≥ 1, p ∈ (1,p∗)

If f ∈Wp(R
d ) := {

f ∈ L2p(Rd ) : ∇f ∈ L2(Rd ) , |x | f p ∈ L2(Rd )
}
,(

‖∇f ‖θ2 ‖f ‖1−θp+1

)2pγ
− (CGN ‖f ‖2p)2pγ ≥S[f ] ‖f ‖2pγ2p E[f ]
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With KGNS =C (p,d)C 2pγ
GNS , γ= d+2−p (d−2)

d−p (d−4) , consider the deficit functional

δ[f ] := (p−1)2 ‖∇f ‖22+4
d −p (d −2)

p+1
‖f ‖p+1

p+1−KGNS ‖f ‖2pγ2p

Theorem

Let d ≥ 1 and p ∈ (1,p∗). There is an explicit C =C [f ] such that, for any
f ∈ L2p(

Rd ,(1+|x |2)dx)
such that ∇f ∈ L2(Rd ) and A

[
f 2p]<∞,

δ[f ]≥C [f ] inf
ϕ∈M

∫
Rd

∣∣∣(p−1)∇f + f p∇ϕ1−p
∣∣∣2dx

B The dependence of C [f ] on A
[
f 2p]

and F
[
f 2p]

is explicit and does not
degenerate if f ∈M
B Can we remove the condition A

[
f 2p]<∞ ?
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Stability in Sobolev’s inequality
(critical case)

B A constructive stability result

B The main ingredient of the proof
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A constructive stability result

Let 2p? = 2d/(d −2)= 2∗, d ≥ 3 and

Wp?(R
d )=

{
f ∈ Lp

?+1(Rd ) : ∇f ∈ L2(Rd ) , |x | f p? ∈ L2(Rd )
}

Theorem

Let d ≥ 3 and A> 0. Then for any nonnegative f ∈Wp?(R
d ) such that∫

Rd
(1,x , |x |2) f 2∗

dx =
∫
Rd

(1,x , |x |2)gdx and sup
r>0

rd
∫
|x |>r

f 2∗
dx ≤A

we have

δ[f ] := ‖∇f ‖22−S2
d ‖f ‖22∗ ≥

C?(A)

4+C?(A)

∫
Rd

∣∣∣∇f + d−2
2 f

d
d−2 ∇g−

2
d−2

∣∣∣2dx
C?(A)=C?

(
1+A1/(2d))−1 and C? > 0 depends only on d
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Peculiarities of the critical case

B We can remove the normalization of f , use the r.h.s. to measure the
distance to the Aubin-Talenti manifold of optimal functions (in relative
Fisher information) and obtain for

A[f ] := sup
r>0

rd
∫
r>0

|f |2∗
(x +xf ) and Z [f ] :=

(
1+µ[f ]−d λ[f ]d A[f ]

)
the Bianchi-Egnell type result

δ[f ]≥ C?Z [f ]

4+Z [f ]
inf
g∈M

J [f |g ]

with xf , λ[f ] and µ[f ] as in the subcritical case

B Notion of time delay [JD, Toscani, 2014, 2015]
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Extending the subcritical result in the critical case

To improve the spectral gap
for m = m1, we need to ad-
just the Barenblatt function

Bλ(x) = λ−d/2 B
(
x/

p
λ
)

in order

to match
∫
Rd |x |2 v dx where the

function v solves (r FDE) or to
further rescale v according to

v(t,x)= 1
R(t)d

w
(
t+τ(t), x

R(t)

)
,

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

dτ
dt =

(
1

K?

∫
Rd |x |2 v dx

)− d
2 (m−mc )−1 , τ(0)= 0 and R(t)= e2τ(t)

Lemma

t 7→λ(t) and t 7→ τ(t) are bounded on R+
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Caffarelli-Kohn-Nirenberg inequalities

Let Da,b :=
{
v ∈ Lp

(
Rd , |x |−b dx)

: |x |−a |∇v | ∈ L2 (
Rd ,dx

)}
(∫
Rd

|v |p
|x |bp dx

)2/p
≤ Ca,b

∫
Rd

|∇v |2
|x |2a dx ∀v ∈Da,b

hold under the conditions that a≤ b ≤ a+1 if d ≥ 3, a< b ≤ a+1 if d = 2,
a+1/2< b ≤ a+1 if d = 1, and a< ac := (d −2)/2

p = 2d
d −2+2(b−a)

B An optimal function among radial functions:

v?(x)=
(
1+|x |(p−2)(ac−a)

)− 2
p−2

and C?a,b =
‖|x |−b v? ‖2p
‖|x |−a∇v? ‖22

Theorem

Let d ≥ 2 and p < 2∗. Ca,b =C?a,b (symmetry) if and only if
either a ∈ [0,ac) and b > 0, or a< 0 and b ≥ bFS(a)

[JD, Esteban, Loss, 2016]
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More Caffarelli-Kohn-Nirenberg inequalities

On Rd with d ≥ 1, let us consider the Caffarelli-Kohn-Nirenberg
interpolation inequalities

‖f ‖2p,γ ≤Cβ,γ,p ‖∇f ‖θ2,β ‖f ‖1−θp+1,γ

γ−2<β< d −2
d

γ , γ ∈ (−∞,d) , p ∈ (1,p?] with p? :=
d −γ

d −β−2
,

with θ = (d−γ)(p−1)
p
(
d+β+2−2γ−p (d−β−2)

) and ‖f ‖q,γ := (
∫
Rd |f |q |x |−γdx)1/q

Symmetry means that equality is achieved by the Aubin-Talenti type
functions

g(x)= (
1+|x |2+β−γ)− 1

p−1

[JD, Esteban, Loss, Muratori, 2017] Symmetry holds if and only if

γ< d , and γ−2<β< d −2
d

γ and β≤βFS(γ)
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p

:
d

y

d = 4 and p = 6/5: (γ,β) admissible region
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An improved decay rate along the flow

In self-similar variables, with m= (p+1)/(2p)

|x |−γ ∂v
∂t

+∇·
(
|x |−β v ∇vm−1

)
=σ∇· (x |x |−γ v)

F [v ]= 2p
1−p

∫
Rd

(
v

p+1
2p −gp+1− p+1

2p
g1−p

(
v −g2p

))
|x |−γdx

Theorem

In the symmetry region, if v ≥ 0 is a solution with a initial datum v0 s.t.

A[v0] := sup
R>0

R
2+β−γ
1−m −(d−γ)

∫
|x |>R

v0(x) |x |−γ dx <∞

then there are some ζ> 0 and some T > 0such that

F [v(t, .)]≤F [v0]e
−(4α2+ζ)t ∀t ≥ 2T

[Bonforte, JD, Nazaret, Simonov, 2022]
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Lectures/
B Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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