Stability estimates in critical functional inequalities

Jean Dolbeault

Ceremade, CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/~dolbeaul

September 29, 2022

Workshop on Partial differential equations and related functional inequalities

> Accademia dei Lincei, Rome 29-30 September 2022

Outline

Sobolev and HLS inequalities

- Duality
- Yamabe flow
- Entropy methods, improvements
- 2 A constructive Bianchi-Egnell stability result
 - Constructive stability for Sobolev: a statement
 - A flow based on competing symmetries
 - Analysis close to the manifold of optimizers
- Stability, fast diffusion equation and entropy methods
 - GNS inequality and the fast diffusion equation
 - The threshold time and consequences (subcritical case)
 - Stability results (subcritical and critical case)

< 回 > < 三 > < 三 >

Duality Yamabe flow Entropy methods, improvements

Sobolev and Hardy-Littlewood-Sobolev inequalities

 \rhd Stability in a weaker norm, with explicit constants

 \rhd From duality to improved estimates based on Yamabe's flow

(人間) システン イラン

э

Duality Yamabe flow Entropy methods, improvements

Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev's inequality in \mathbb{R}^d , $d \geq 3$,

$$\|u\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^2 \leq \mathsf{S}_d \, \|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \quad \forall \ u \in \dot{\mathrm{H}}^1(\mathbb{R}^d) \tag{S}$$

and the Hardy-Littlewood-Sobolev inequality

$$\mathsf{S}_{d} \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} \geq \int_{\mathbb{R}^{d}} v \, (-\Delta)^{-1} v \, dx \quad \forall \ v \in \mathcal{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d}) \tag{HLS}$$

are dual of each other. Here S_d is the Aubin-Talenti constant and $2^*=\frac{2\,d}{d-2}$

(人間) とくほう くほう

-

Duality Yamabe flow Entropy methods, improvements

Improved Sobolev inequality by duality

Theorem

[JD, Jankowiak] Assume that $d \ge 3$ and let $q = \frac{d+2}{d-2}$. There exists a positive constant $\mathcal{C} \le 1$ such that

$$S_{d} \|w^{q}\|_{L^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} - \int_{\mathbb{R}^{d}} w^{q} (-\Delta)^{-1} w^{q} dx$$

$$\leq \mathcal{C} S_{d} \|w\|_{L^{2^{*}}(\mathbb{R}^{d})}^{\frac{8}{d-2}} \left[\|\nabla w\|_{L^{2}(\mathbb{R}^{d})}^{2} - S_{d} \|w\|_{L^{2^{*}}(\mathbb{R}^{d})}^{2} \right]$$

for any $w \in \dot{\mathrm{H}}^1(\mathbb{R}^d)$

イロン 不同 とくほう イロン

-

Duality Yamabe flow Entropy methods, improvements

Proof: the completion of a square

Integrations by parts show that

$$\int_{\mathbb{R}^d} |\nabla (-\Delta)^{-1} v|^2 dx = \int_{\mathbb{R}^d} v (-\Delta)^{-1} v dx$$

and, if $v=u^q$ with $q=\frac{d+2}{d-2},$

$$\int_{\mathbb{R}^d} \nabla u \cdot \nabla (-\Delta)^{-1} \, v \, dx = \int_{\mathbb{R}^d} u \, v \, dx = \int_{\mathbb{R}^d} u^{2^*} \, dx$$

Hence the expansion of the square

$$0 \leq \int_{\mathbb{R}^d} \left| \mathsf{S}_d \, \|u\|_{\mathrm{L}^{2*}(\mathbb{R}^d)}^{\frac{4}{d-2}} \nabla u - \nabla (-\Delta)^{-1} \, v \right|^2 \, dx$$

shows that

$$0 \leq \mathsf{S}_{d} \|u\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{\frac{8}{d-2}} \left[\mathsf{S}_{d} \|\nabla u\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - \|u\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{2}\right] \\ - \left[\mathsf{S}_{d} \|u^{q}\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} - \int_{\mathbb{R}^{d}} u^{q} (-\Delta)^{-1} u^{q} dx\right]$$

Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

$$\frac{\partial v}{\partial t} = \Delta v^m \quad t > 0 , \quad x \in \mathbb{R}^d$$
 (FDE)

If we define $H(t) := H_d[v(t, \cdot)]$, with

$$\mathsf{H}_{d}[v] := \int_{\mathbb{R}^{d}} v \, (-\Delta)^{-1} v \, dx - \mathsf{S}_{d} \, \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2}$$

then we observe that

$$\frac{1}{2}\mathsf{H}' = -\int_{\mathbb{R}^d} v^{m+1} \, dx + \mathsf{S}_d \left(\int_{\mathbb{R}^d} v^{\frac{2d}{d+2}} \, dx\right)^{\frac{2}{d}} \int_{\mathbb{R}^d} \nabla v^m \cdot \nabla v^{\frac{d-2}{d+2}} \, dx$$

where $v = v(t, \cdot)$ is a solution of (FDE). With the choice $m = \frac{d-2}{d+2}$, we find that $m + 1 = \frac{2d}{d+2}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Duality Yamabe flow Entropy methods, improvements

A simple observation

Proposition

[JD] Assume that $d \ge 3$ and $m = \frac{d-2}{d+2}$. If v is a solution of (FDE) with nonnegative initial datum in $L^{2d/(d+2)}(\mathbb{R}^d)$, then

$$\frac{1}{2} \frac{d}{dt} \left[\int_{\mathbb{R}^d} v \, (-\Delta)^{-1} v \, dx - \mathsf{S}_d \, \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 \right] \\ = \left(\int_{\mathbb{R}^d} v^{m+1} \, dx \right)^{\frac{2}{d}} \left[\mathsf{S}_d \, \|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 - \|u\|_{\mathrm{L}^{2*}(\mathbb{R}^d)}^2 \right] \ge 0$$

The HLS inequality amounts to $H \le 0$ and appears as a consequence of Sobolev, that is $H' \ge 0$ if we show that $\limsup_{t>0} H(t) = 0$ Notice that $u = v^m$ is an optimal function for (S) if v is optimal for (HLS)

Duality Yamabe flow Entropy methods, improvements

Improved Sobolev inequality

By integrating along the flow defined by (FDE), we can actually obtain optimal integral remainder terms which improve on the usual Sobolev inequality (S), but only when $d \ge 5$ for integrability reasons

Theorem

[JD] Assume that $d \ge 5$ and let $q = \frac{d+2}{d-2}$. There exists a positive constant $C \le (1 + \frac{2}{d}) (1 - e^{-d/2}) S_d$ such that

$$\begin{aligned} S_{d} \|w^{q}\|_{L^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} &- \int_{\mathbb{R}^{d}} w^{q} (-\Delta)^{-1} w^{q} dx \\ &\leq \mathcal{C} \|w\|_{L^{2^{*}}(\mathbb{R}^{d})}^{\frac{8}{d-2}} \left[\|\nabla w\|_{L^{2}(\mathbb{R}^{d})}^{2} - S_{d} \|w\|_{L^{2^{*}}(\mathbb{R}^{d})}^{2} \right] \end{aligned}$$

for any $w \in \dot{\mathrm{H}}^1(\mathbb{R}^d)$

Proof: use the convexity properties of $t \mapsto J(t) := \int_{\mathbb{R}^d} v(t, x)^{m+1} dx$ to get an estimate of the *extinction time* and combine with a differential inequality for $t \mapsto H(t)$

Duality Yamabe flow Entropy methods, improvements

Solutions with separation of variables

Consider the solution of $\frac{\partial v}{\partial t} = \Delta v^m$ vanishing at t = T:

$$\overline{v}_T(t,x) = c \, (T-t)^{\alpha} \, (F(x))^{\frac{d+2}{d-2}}$$

where ${\cal F}$ is the Aubin-Talenti solution of

$$-\Delta F = d (d-2) F^{(d+2)/(d-2)}$$

Let $\|v\|_* := \sup_{x \in \mathbb{R}^d} (1 + |x|^2)^{d+2} |v(x)|$

Lemma

[del Pino, Saez], [Vázquez, Esteban, Rodriguez] For any solution v with initial datum $v_0 \in L^{2d/(d+2)}(\mathbb{R}^d)$, $v_0 > 0$, there exists T > 0, $\lambda > 0$ and $x_0 \in \mathbb{R}^d$ such that

$$\lim_{t \to T_{-}} (T - t)^{-\frac{1}{1 - m}} \|v(t, \cdot) / \overline{v}(t, \cdot) - 1\|_{*} = 0$$

with $\overline{v}(t,x) = \lambda^{(d+2)/2} \overline{v}_T(t,(x-x_0)/\lambda)$

Duality Yamabe flow Entropy methods, improvements

Another improvement

$$\mathsf{J}_d[v] := \int_{\mathbb{R}^d} v^{\frac{2d}{d+2}} \, dx \quad \text{and} \quad \mathsf{H}_d[v] := \int_{\mathbb{R}^d} v \, (-\Delta)^{-1} v \, dx - \mathsf{S}_d \, \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2$$

Theorem

[JD, Jankowiak] Assume that $d \ge 3$. Then we have

$$0 \leq \mathsf{H}_{d}[v] + \mathsf{S}_{d} \mathsf{J}_{d}[v]^{1+\frac{2}{d}} \varphi \left(\mathsf{J}_{d}[v]^{\frac{2}{d}-1} \left[\mathsf{S}_{d} \|\nabla u\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - \|u\|_{\mathrm{L}^{2*}(\mathbb{R}^{d})}^{2} \right] \right)$$
$$\forall u \in \mathcal{D}, \ v = u^{\frac{d+2}{d-2}}$$

where
$$\varphi(x) := \sqrt{\mathcal{C}^2 + 2\mathcal{C}x} - \mathcal{C}$$
 for any $x \ge 0$

Proof: $H(t) = -Y(J(t)) \forall t \in [0, T), \kappa_0 := \frac{H'_0}{J_0}$ and consider the differential inequality

$$\mathsf{Y}'\left(\mathcal{C}\,\mathsf{S}_d\,s^{1+\frac{2}{d}}+\mathsf{Y}\right) \leq \frac{d+2}{2\,d}\,\mathcal{C}\,\kappa_0\,\mathsf{S}_d^2\,s^{1+\frac{4}{d}}\,,\quad\mathsf{Y}(0)=0\,,\quad\mathsf{Y}(\mathsf{J}_0)=-\,\mathsf{H}_0$$

Duality Yamabe flow Entropy methods, improvements

$\mathcal{C} = 1$ is not optimal

 $\mathcal{C}=1$ is the constant in the expansion of the square method

Theorem

[JD, Jankowiak] In the inequality

$$\begin{split} \mathsf{S}_{d} \|w^{q}\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} &- \int_{\mathbb{R}^{d}} w^{q} \, (-\Delta)^{-1} w^{q} \, dx \\ &\leq \mathcal{C}_{d} \, \mathsf{S}_{d} \, \|w\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{\frac{3}{d-2}} \left[\|\nabla w\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - \mathsf{S}_{d} \, \|w\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{2} \right] \end{split}$$

we have

$$\frac{d}{d+4} \leq \mathcal{C}_d < 1$$

based on a (painful) linearization

Extensions:

- Moser-Trudinger-Onofri inequality

э

SOG

Towards a constructive Bianchi-Egnell stability result

- \triangleright A constructive estimate for the Bianchi-Egnell stability result
- \triangleright Competing symmetries and the construction of a flow
- \triangleright Explicit estimates close to the manifold of optimizers

- 4 回 ト - 4 回 ト

Stability for Sobolev

With $d \ge 3$, $2^* = 2 d/(d-2)$, we consider the *stability* inequality

$$\|\nabla f\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - \mathcal{S}_{d} \|f\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{2} \geq c_{\mathrm{BE}} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}$$

for functions in $\dot{\mathrm{H}}^1(\mathbb{R}^d) = \{f \in \mathrm{L}^q(\mathbb{R}^d) : \nabla f \in \mathrm{L}^2(\mathbb{R}^d)\}\$ $S_d = \frac{1}{4} d(d-2) |\mathbb{S}^d|^{2/d}$ is the optimal constant in Sobolev's inequality \mathcal{M} is the manifold of the optimal *Aubin-Talenti* functions

$$f(x) = c (a + |x - b|^2)^{-\frac{d-2}{2}}$$

> Results in collaboration with M.J. Esteban, A. Figalli, R.L. Frank, M. Loss

> > ・ 同 ト ・ ヨ ト ・ ヨ ト

Constructive stability for Sobolev: a statement A flow based on competing symmetries Analysis close to the manifold of optimizers

Main result

$$\mathcal{E}(f) := \frac{\|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 - \mathcal{S}_d \, \|f\|_{\mathrm{L}^{2*}(\mathbb{R}^d)}^2}{\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{\mathrm{L}^2(\mathbb{R}^d)}^2}, \quad \nu(\delta) := \sqrt{\frac{\delta}{1 - \delta}}$$

Theorem

Let $d \geq 3$, q = 2 d/(d-2). If $f \in \dot{\mathrm{H}}^1(\mathbb{R}^d)$ is a non-negative function, then

$$\mathcal{E}(f) \geq \kappa := \sup_{0 < \delta < 1} \delta \, \mu(\delta)$$

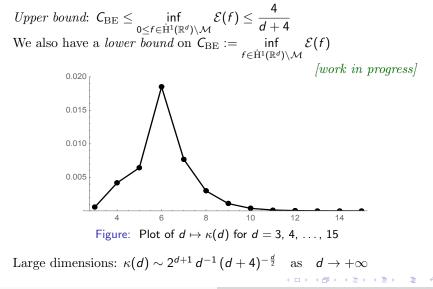
where $\mu(\delta) \ge \mathsf{m}(\nu(\delta))$ and

$$\begin{split} \mathsf{m}(\nu) &:= \frac{4}{d+4} - \frac{2}{q} \nu^{q-2} & \text{if } d \ge 6\\ \mathsf{m}(\nu) &:= \frac{4}{d+4} - \frac{1}{3} \left(q-1\right) \left(q-2\right) \nu - \frac{2}{q} \nu^{q-2} & \text{if } d = 4,5\\ \mathsf{m}(\nu) &:= \frac{4}{7} - \frac{20}{3} \nu - 5 \nu^2 - 2 \nu^3 - \frac{1}{3} \nu^4 & \text{if } d = 3 \end{split}$$

(ロ) (四) (三) (三)

Constructive stability for Sobolev: a statement A flow based on competing symmetries Analysis close to the manifold of optimizers

Comments



Constructive stability for Sobolev: a statement A flow based on competing symmetries Analysis close to the manifold of optimizers

Strategy: two regions

• In the region $\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{L^2(\mathbb{R}^d)}^2 \leq \delta \|\nabla f\|_{L^2(\mathbb{R}^d)}^2$, prove that $\mathcal{E}(f) \geq \mu(\delta)$

• If $\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{L^2(\mathbb{R}^d)}^2 \ge \delta \|\nabla f\|_{L^2(\mathbb{R}^d)}^2$, build a flow $(f_{\tau})_{0 \le \tau < \infty}$ s.t.

$$f_{0} = f , \quad \|f_{\tau}\|_{L^{2^{*}}(\mathbb{R}^{d})} = \|f\|_{L^{2^{*}}(\mathbb{R}^{d})}, \quad \tau \mapsto \|\nabla f_{\tau}\|_{L^{2}(\mathbb{R}^{d})} \text{ is } \searrow$$

$$\lim_{\tau \to \infty} \inf_{g \in \mathcal{M}} \|\nabla (f_{\tau} - g)\|_{L^{2}(\mathbb{R}^{d})}^{2} = 0$$

$$\mathcal{E}(f) \geq \frac{\|\nabla f\|_{L^{2}(\mathbb{R}^{d})}^{2} - S_{d} \|f\|_{L^{2^{*}}(\mathbb{R}^{d})}^{2}}{\|\nabla f\|_{L^{2}(\mathbb{R}^{d})}^{2}} = 1 - S_{d} \frac{\|f\|_{L^{2^{*}}(\mathbb{R}^{d})}^{2}}{\|\nabla f\|_{L^{2}(\mathbb{R}^{d})}^{2}} \geq \frac{\|\nabla f_{\tau_{0}}\|_{L^{2}(\mathbb{R}^{d})}^{2} - S_{d} \|f_{\tau_{0}}\|_{L^{2^{*}}(\mathbb{R}^{d})}^{2}}{\|\nabla f_{\tau_{0}}\|_{L^{2}(\mathbb{R}^{d})}^{2}}$$
for some τ_{0} (it exists ?) s.t. $\inf_{g \in \mathcal{M}} \|\nabla (f_{\tau_{0}} - g)\|_{L^{2}(\mathbb{R}^{d})}^{2} = \delta \|\nabla f_{\tau_{0}}\|_{L^{2}(\mathbb{R}^{d})}^{2}$

$$\dots \text{ then } \mathcal{E}(f) \geq \mathcal{E}(f_{\tau_{0}}) \geq \delta \mu(\delta)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Constructive stability for Sobolev: a statement A flow based on competing symmetries Analysis close to the manifold of optimizers

Inverse stereographic projection

Denote by $s = (s_1, s_2, \ldots, s_{d+1})$ the coordinates in \mathbb{R}^{d+1} : $\mathbb{S}^d \subset \mathbb{R}^{d+1}$ can be parametrized in terms of stereographic coordinates by

$$s_j = rac{2 x_j}{1+|x|^2}, \quad j = 1, \dots, d, \quad s_{d+1} = rac{1-|x|^2}{1+|x|^2}$$

We set

$$\begin{split} F(s) &= \left(\frac{1+|x|^2}{2}\right)^{\frac{d-2}{2}} f(x) \\ \mathcal{E}(f) &= \frac{\|\nabla F\|_2^2 - S_d \, \|f\|_{2*}^2}{\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2^2} = \frac{\|\nabla F\|_{L^2(\mathbb{S}^d)}^2 + \frac{1}{4} \, d \, (d-2) \, \|F\|_{L^2(\mathbb{S}^d)}^2 - S_d \, \|F\|_{L^{2*}(\mathbb{S}^d)}^2}{\inf_{G \in \mathcal{M}} \left\{ \|\nabla F - \nabla G\|_{L^2(\mathbb{S}^d)}^2 + \frac{1}{4} \, d \, (d-2) \, \|F - G\|_{L^2(\mathbb{S}^d)}^2 \right\}} \\ \text{where } G(s) &= c \left(a + b \cdot s\right)^{-\frac{d-2}{2}}, \, a > 0, \, b \in \mathbb{R}^d \text{ and } c \in \mathbb{C} \text{ are constants} \end{split}$$

(人間) システン イラン

-

Constructive stability for Sobolev: a statement A flow based on competing symmetries Analysis close to the manifold of optimizers

Competing symmetries

[Carlen, Loss, 1990] • Conformal rotation

$$(UF)(s) = F(s_1, s_2, \ldots, s_{d+1}, -s_d)$$

On $\mathbb{R}^d,$ the function that corresponds to UF on \mathbb{R}^d is given by

$$(Uf)(x) = \left(\frac{2}{|x-e_d|^2}\right)^{\frac{d-2}{2}} f\left(\frac{x_1}{|x-e_d|^2}, \dots, \frac{x_{d-1}}{|x-e_d|^2}, \frac{|x|^2-1}{|x-e_d|^2}\right)$$

where $e_d = (0, \ldots, 0, 1) \in \mathbb{R}^d$ and $\mathcal{E}(Uf) = \mathcal{E}(f)$

• Symmetric decreasing rearrangement: if $f \ge 0$, let

$$\mathcal{R}f(x)=f^*(x)$$

f and f^* are equimeasurable and $\|\nabla f^*\|_2 \leq \|\nabla f\|_2$

マボト イラト イラト

Constructive stability for Sobolev: a statement A flow based on competing symmetries Analysis close to the manifold of optimizers

On \mathbb{R}^d , let

$$g_*(x) := |\mathbb{S}^d|^{-rac{d-2}{2d}} \left(rac{2}{1+|x|^2}
ight)^{rac{d-2}{2}}$$

Theorem

[Carlen, Loss] Let $f \in L^{2^*}(\mathbb{R}^d)$ be a non-negative function. Consider the sequence $(f_n)_{n \in \mathbb{N}}$ of functions

$$f_n = (\mathcal{R}U)^n f$$

Then $h_f = \|f\|_{2^*} g_* \in \mathcal{M}$ and

$$\lim_{n\to\infty}\|f_n-h_f\|_{2^*}=0$$

If $f \in \dot{\mathrm{H}}^1(\mathbb{R}^d)$, then $(\|\nabla f_n\|_2)_{n \in \mathbb{N}}$ is a non-increasing sequence

<ロ> <同> <同> < 回> < 回>

Define \mathcal{M}_1 to be the set of the elements in \mathcal{M} with 2^{*}-norm equal to 1

$$\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2^2 = \|\nabla f\|_2^2 - S_d \sup_{g \in \mathcal{M}_1} \left(f, g^{2^* - 1}\right)^2$$

Lemma

For the sequence $(f_n)_{n \in \mathbb{N}}$ of the Theorem of [Carlen, Loss] we have that $n \mapsto \inf_{g \in \mathcal{M}} \|\nabla f_n - \nabla g\|_{2^*}^2$ is strictly decreasing $\lim_{n \to \infty} \inf_{g \in \mathcal{M}} \|\nabla f_n - \nabla g\|_2^2 = \lim_{n \to \infty} \|\nabla f_n\|_2^2 - S_d \|f\|_{2^*}^2$

イロン 不同 とくほう イロン

-

Constructive stability for Sobolev: a statement A flow based on competing symmetries Analysis close to the manifold of optimizers

Two alternatives

Lemma

Let
$$0 \leq f \in \dot{H}^1(\mathbb{R}^d) \setminus \mathcal{M}$$
 s.t. $\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2^2 \geq \delta \|\nabla f\|_2^2$
One of the following alternatives holds:
(a) for all $n = 0, 1, 2... \inf_{g \in \mathcal{M}} \|\nabla f_n - \nabla g\|_2^2 \geq \delta \|\nabla f_n\|_2^2$
(b) $\exists n_0 \in \mathbb{N}$ such that

$$\inf_{g \in \mathcal{M}} \|\nabla f_{n_0} - \nabla g\|_2^2 \ge \delta \|\nabla f_{n_0}\|_2^2 \quad \text{and} \quad \inf_{g \in \mathcal{M}} \|\nabla f_{n_0+1} - \nabla g\|_2^2 < \delta \|\nabla f_{n_0+1}\|_2^2$$

In case (a) we have

$$\mathcal{E}(f) = \frac{\|\nabla f\|_2^2 - S_d \, \|f\|_{2*}^2}{\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2^2} \ge \frac{\|\nabla f\|_2^2 - S_d \, \|f\|_{2*}^2}{\|\nabla f\|_2^2} \ge \frac{\|\nabla f_n\|_2^2 - S_d \, \|f\|_{2*}^2}{\|\nabla f_n\|_2^2} \ge \delta$$

because by the Theorem of [Carlen, Loss]

$$\lim_{n \to \infty} \|\nabla f_n\|_2^2 \leq \frac{1}{\delta} \lim_{n \to \infty} \inf_{g \in \mathcal{M}} \|\nabla f_n - \nabla g\|_2^2 = \frac{1}{\delta} \left(\lim_{n \to \infty} \|\nabla f_n\|_2^2 - S_d \|f\|_{2^*}^2 \right)$$

Constructive stability for Sobolev: a statement A flow based on competing symmetries Analysis close to the manifold of optimizers

Continuous rearrangement

Let $f_0 = U f_{n_0}$ and denote by $(f_{\tau})_{0 \le \tau \le \infty}$ the continuous rearrangement starting at f_0 and ending at $f_{\infty} = f_{n_0+1}$ We find $\tau_0 \in [0, \infty)$ such that

$$\inf_{g \in \mathcal{M}} \|\nabla f_{\tau_0} - \nabla g\|_2^2 = \delta \|\nabla f_{\tau_0}\|_2^2$$

and conclude using

$$\mathcal{E}(\mathsf{f}_0) \ge 1 - S_d \frac{\|\mathsf{f}_0\|_{2*}^2}{\|\nabla\mathsf{f}_0\|_2^2} \ge 1 - S_d \frac{\|\mathsf{f}_{\tau_0}\|_{2*}^2}{\|\nabla\mathsf{f}_{\tau_0}\|_2^2} = \delta \frac{\|\nabla\mathsf{f}_{\tau_0}\|_2^2 - S_d \|\mathsf{f}_{\tau_0}\|_{2*}^2}{\mathsf{inf}_{g \in \mathcal{M}} \|\nabla\mathsf{f}_{\tau_0} - \nabla g\|_2^2} \ge \delta \,\mu(\delta)$$

Existence of τ_0 not granted: a discussion is needed !

Remark. We can build a **flow** by gluing continuous symmetrization at each step of the sequence $(f_n)_{n \in \mathbb{N}}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Constructive stability for Sobolev: a statement A flow based on competing symmetries Analysis close to the manifold of optimizers

Analysis close to the manifold of optimizers

Proposition

Let X be a measure space and $u, r \in L^q(X)$ for some $q \ge 2$ with $u \ge 0$ and $u + r \ge 0$. Assume also that $\int_X u^{q-1} r \, dx = 0$. If $2 \le q \le 3$, then

$$||u+r||_q^2 \le ||u||_q^2 + ||u||_q^{2-q} \left((q-1) \int_X u^{q-2} r^2 dx + \frac{2}{q} \int_X r_+^q dx \right)$$

 $2 \leq q = \frac{2\,d}{d-2} \leq 3$ means $d \geq 6$ and is the most difficult case for Taylor

Corollary

Let
$$q = 2^*$$
, $0 \le f \in \mathrm{H}^1(\mathbb{R}^d)$ and $u \in \mathcal{M}$ which
realizes $\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2$
Set $r := f - u$ and $\sigma := \|r\|_q / \|u\|_q$. If $d \ge 6$, we have
 $\|\nabla f\|_2^2 - S_d \|f\|_q^2 \ge \int_{\mathbb{R}^d} \left(|\nabla r|^2 - S_d (q-1) \|u\|_q^{2-q} u^{q-2} r^2 \right) dx - \frac{2}{q} \|\nabla r\|_2^2 \sigma^{q-2}$

Constructive stability for Sobolev: a statement A flow based on competing symmetries Analysis close to the manifold of optimizers

Spectral gap estimate

Cf. [Rey, 1990] and [Bianchi, Egnell, 1991]

Lemma

Let
$$d \ge 3$$
, $q = 2^*$, $f \in \dot{\mathrm{H}}^1(\mathbb{R}^d)$ and $u \in \mathcal{M}$ be such that $\|\nabla f - \nabla u\| = \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|$. Then $r := f - u$ satisfies

$$\int_{\mathbb{R}^d} \left(|\nabla r|^2 - S_d \left(q - 1 \right) \| u \|_q^{2-q} \, |u|^{q-2} \, r^2 \right) \, dx \geq \frac{4}{d+4} \int_{\mathbb{R}^d} |\nabla r|^2 \, dx$$

Corollary

Let $q = 2^*$ and $0 \le f \in \dot{\mathrm{H}}^1(\mathbb{R}^d)$. Set $\mathcal{D}(f) := \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2$ and $\tau := \mathcal{D}(f)/(\|\nabla f\|_2^2 - \mathcal{D}(f)^2)^{1/2}$. If $d \ge 6$, we have

$$\|\nabla f\|_{2}^{2} - S_{d} \|f\|_{q}^{2} \ge \left(\frac{4}{d+4} - \frac{2}{q} \tau^{q-2}\right) \mathcal{D}(f)^{2}$$

- 4 同 2 4 日 2 4 日 2

GNS inequality and the fast diffusion equation The threshold time and consequences (subcritical case) Stability results (subcritical and critical case)

Constructive stability results in Gagliardo-Nirenberg-Sobolev inequalities

A joint project with M. Bonforte, B. Nazaret and N. Simonov Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows, regularity and the entropy method arXiv:2007.03674, to appear in Memoirs of the AMS

マロト イラト イラト

GNS inequality and the fast diffusion equation The threshold time and consequences (subcritical case) Stability results (subcritical and critical case)

Fast diffusion equation and entropy methods

$$\frac{\partial u}{\partial t} = \Delta u^m \tag{FDE}$$

 $Gagliar do \hbox{-} Nirenberg \hbox{-} Sobolev \ inequalities$

$$\left\|\nabla f\right\|_{2}^{\theta} \left\|f\right\|_{p+1}^{1-\theta} \ge \mathcal{C}_{\text{GNS}}(p) \left\|f\right\|_{2p} \tag{GNS}$$

Range of exponents:

$$1$$

• Sobolev inequality: $p = \frac{d}{d-2}, m = m_1$

Logarithmic Sobolev inequality

通 と く ヨ と く ヨ と

GNS inequality and the fast diffusion equation The threshold time and consequences (subcritical case) Stability results (subcritical and critical case)

Entropy – entropy production inequality

Fast diffusion equation (written in self-similar variables)

$$\frac{\partial \mathbf{v}}{\partial \tau} + \nabla \cdot \left[\mathbf{v} \left(\nabla \mathbf{v}^{m-1} - 2 \mathbf{x} \right) \right] = 0 \qquad (r \, \text{FDE})$$

Generalized entropy (free energy) and Fisher information

$$\mathcal{F}[\mathbf{v}] := -\frac{1}{m} \int_{\mathbb{R}^d} \left(\mathbf{v}^m - \mathcal{B}^m - m \mathcal{B}^{m-1} \left(\mathbf{v} - \mathcal{B} \right) \right) \, d\mathbf{x}$$
$$\mathcal{I}[\mathbf{v}] := \int_{\mathbb{R}^d} \mathbf{v} \left| \nabla \mathbf{v}^{m-1} + 2 \, \mathbf{x} \right|^2 \, d\mathbf{x}$$

satisfy an entropy – entropy production inequality

 $\mathcal{I}[v] \geq 4 \, \mathcal{F}[v]$

[del Pino, JD, 2002] so that

 $\mathcal{F}[v(t,\cdot)] \leq \mathcal{F}[v_0] e^{-4t}$

イロト イポト イヨト イヨト

GNS inequality and the fast diffusion equation The threshold time and consequences (subcritical case) Stability results (subcritical and critical case)

The entropy – entropy production inequality $\mathcal{I}[v] \ge 4 \mathcal{F}[v]$ is equivalent to the Gagliardo-Nirenberg-Sobolev inequalities

$$\|\nabla f\|_{2}^{\theta} \|f\|_{p+1}^{1-\theta} \ge \mathcal{C}_{\text{GNS}}(p) \|f\|_{2p}$$
 (GNS)

with equality if and only if $|f(x)|^{2p} = \mathcal{B}(x) = (1 + |x|^2)^{\frac{1}{m-1}}$.

$$p = \frac{1}{2m-1} \quad \Longleftrightarrow \quad m = \frac{p+1}{2p} \in [m_1, 1) \quad \text{with} \quad m_1 = \frac{d-1}{d}$$

 $u = f^{2p} \text{ so that } u^m = f^{p+1} \text{ and } u |\nabla u^{m-1}| = (p-1)^2 |\nabla t|^2$ $\mathcal{M} = \|f\|_{2p}^{2p}, \quad \mathsf{E}[u] = \|f\|_{p+1}^{p+1}, \quad \mathsf{I}[u] = (p+1)^2 \|\nabla f\|_2^2$

・ 同 ト ・ ヨ ト ・ ヨ ト

-

GNS inequality and the fast diffusion equation The threshold time and consequences (subcritical case) Stability results (subcritical and critical case)

Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vázquez, 2009]

$$(C_0 + |x|^2)^{-\frac{1}{1-m}} \le v_0 \le (C_1 + |x|^2)^{-\frac{1}{1-m}}$$
 (H)

Let $\Lambda_{\alpha,d} > 0$ be the best constant in the Hardy–Poincaré inequality

$$\begin{split} & \Lambda_{\alpha,d} \int_{\mathbb{R}^d} f^2 \, \mathrm{d}\mu_{\alpha-1} \leq \int_{\mathbb{R}^d} |\nabla f|^2 \, \mathrm{d}\mu_{\alpha} \quad \forall \ f \in \mathrm{H}^1(\mathrm{d}\mu_{\alpha}) \,, \quad \int_{\mathbb{R}^d} f \, \mathrm{d}\mu_{\alpha-1} = 0 \\ & \text{with } \mathrm{d}\mu_{\alpha} := (1+|x|^2)^{\alpha} \, dx, \, \text{for } \alpha < 0 \end{split}$$

Lemma

Under assumption (H),

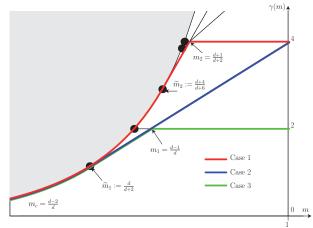
$$\mathcal{F}[v(t,\cdot)] \leq C e^{-2\gamma(m)t} \quad \forall t \geq 0, \quad \gamma(m) := (1-m) \Lambda_{1/(m-1),d}$$

Moreover $\gamma(m) := 2$ if $\frac{d-1}{d} = m_1 \le m < 1$

イロト イポト イヨト イヨト

GNS inequality and the fast diffusion equation The threshold time and consequences (subcritical case) Stability results (subcritical and critical case)

Spectral gap



[Denzler, McCann, 2005] [BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2010-2015] Much more is know, *e.g.*, [Denzler, Koch, McCann, 2015]

イロト イポト イヨト イヨト

э

Initial and asymptotic time layers

 \rhd Asymptotic time layer: constraint, spectral gap and improved entropy – entropy production inequality

 \rhd Initial time layer: the carré du champ inequality and a backward estimate

The asymptotic time layer improvement

Linearized free energy and linearized Fisher information

$$\mathsf{F}[g] := \frac{m}{2} \int_{\mathbb{R}^d} g^2 \, \mathcal{B}^{2-m} \, dx \quad \text{and} \quad \mathsf{I}[g] := m \, (1-m) \int_{\mathbb{R}^d} |\nabla g|^2 \, \mathcal{B} \, dx$$

Hardy-Poincaré inequality. Let $d \ge 1$, $m \in (m_1, 1)$ and $g \in L^2(\mathbb{R}^d, \mathcal{B}^{2-m} dx)$ such that $\nabla g \in L^2(\mathbb{R}^d, \mathcal{B} dx)$, $\int_{\mathbb{R}^d} g \mathcal{B}^{2-m} dx = 0$ and $\int_{\mathbb{R}^d} x g \mathcal{B}^{2-m} dx = 0$

$$\mathsf{I}[g] \ge 4 \, \alpha \, \mathsf{F}[g] \quad \text{where} \quad \alpha = 2 - d \left(1 - m\right)$$

Proposition

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/3, 1)$ if d = 1, $\eta = 2 (d m - d + 1)$ and $\chi = m/(266 + 56 m)$. If $\int_{\mathbb{R}^d} v \, dx = \mathcal{M}$, $\int_{\mathbb{R}^d} x \, v \, dx = 0$ and

 $(1 - \varepsilon) \mathcal{B} \leq \mathsf{v} \leq (1 + \varepsilon) \mathcal{B}$

for some $\varepsilon \in (0, \chi \eta)$, then

$$\mathcal{I}[\mathbf{v}] \geq (\mathbf{4} + \eta) \mathcal{F}[\mathbf{v}]$$

The initial time layer improvement: backward estimate

Hint: for some strictly convex function ψ with $\psi(0) = 0$, $\psi'(0) = 1$, we have

$$\mathcal{I} - 4 \, \mathcal{F} \geq 4 \, (\psi(\mathcal{F}) - \mathcal{F}) \geq 0$$

Far from the equality case (*i.e.*, close to an initial datum away from the Barenblatt solutions) for (FDE), we expect some improvement Rephrasing the *carré du champ* method, $\mathcal{Q}[\mathbf{v}] := \frac{\mathcal{I}[\mathbf{v}]}{\mathcal{F}[\mathbf{v}]}$ is such that

$$\frac{d\mathcal{Q}}{dt} \leq \mathcal{Q}\left(\mathcal{Q}-4\right)$$

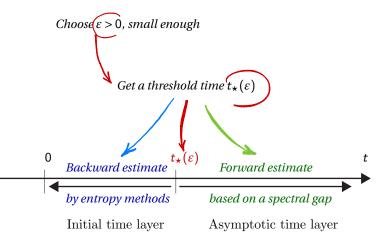
Lemma

Assume that $m > m_1$ and v is a solution to (r FDE) with nonnegative initial datum v_0 . If for some $\eta > 0$ and $t_* > 0$, we have $\mathcal{Q}[v(t_*, \cdot)] \ge 4 + \eta$, then

$$\mathcal{Q}[v(t,\cdot)] \geq 4 + \frac{4\eta e^{-4t_\star}}{4+\eta-\eta e^{-4t_\star}} \quad \forall t \in [0,t_\star]$$

GNS inequality and the fast diffusion equation The threshold time and consequences (subcritical case) Stability results (subcritical and critical case)

Our strategy



< ∃ >

A >

A 32 b

The threshold time and the uniform convergence in relative error

 \triangleright The regularity results allow us to glue the initial time layer estimates with the asymptotic time layer estimates

The improved entropy – entropy production inequality holds for any time along the evolution along (rFDE)

(and in particular for the initial datum)

・ 同 ト ・ ヨ ト ・ ヨ ト

If v is a solves (r FDE) for some nonnegative initial datum $v_0 \in L^1(\mathbb{R}^d)$ satisfying

$$\sup_{r>0} r^{\frac{d(m-m_c)}{(1-m)}} \int_{|x|>r} v_0 \, dx \le A < \infty \tag{H}_A$$

then

$$(1-arepsilon)\,\mathcal{B} \leq oldsymbol{v}(t,\cdot) \leq (1+arepsilon)\,\mathcal{B} \quad orall\,t \geq t_\star$$

for some *explicit* t_{\star} depending only on ε and A

・ 同 ト ・ ヨ ト ・ ヨ ト

3

GNS inequality and the fast diffusion equation The threshold time and consequences (subcritical case) Stability results (subcritical and critical case)

Global Harnack Principle

The *Global Harnack Principle* holds if for some t > 0 large enough

$$\mathcal{B}_{M_1}(t- au_1,x) \leq u(t,x) \leq \mathcal{B}_{M_2}(t+ au_2,x)$$
 (GHP)

[Vázquez, 2003], [Bonforte, Vázquez, 2006]: (GHP) holds if $u_0 \leq |x|^{-\frac{2}{1-m}}$ [Vázquez, 2003], [Bonforte, Simonov, 2020]: (GHP) holds if

$$\mathsf{A}[u_0] := \sup_{R>0} R^{\frac{2}{1-m}-d} \int_{\mathbb{R}^d \setminus B_R(0)} |u_0| \, dx < \infty$$

Theorem

[Bonforte, Simonov, 2020] If $M + A[u_0] < \infty$, then

$$\lim_{t\to\infty}\left\|\frac{u(t)-B(t)}{B(t)}\right\|_{\infty}=0$$

- 4 同 6 4 日 6 4 日 6

GNS inequality and the fast diffusion equation **The threshold time and consequences (subcritical case)** Stability results (subcritical and critical case)

Uniform convergence in relative error

Theorem

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/3, 1)$ if d = 1 and let $\varepsilon \in (0, 1/2)$, small enough, A > 0, and G > 0 be given. There exists an explicit threshold time $T \ge 0$ such that, if u is a solution of

$$\frac{\partial u}{\partial t} = \Delta u^m$$
 (FDE)

with nonnegative initial datum $u_0 \in L^1(\mathbb{R}^d)$ satisfying

$$A[u_0] = \sup_{r>0} r^{\frac{d(m-m_c)}{(1-m)}} \int_{|x|>r} u_0 \, dx \le A < \infty \tag{H}_A$$

 $\int_{\mathbb{R}^d} u_0 \, dx = \int_{\mathbb{R}^d} B \, dx = \mathcal{M}$ and $\mathcal{F}[u_0] \leq G$, then

$$\sup_{x \in \mathbb{R}^d} \left| \frac{u(t,x)}{B(t,x)} - 1 \right| \le \varepsilon \quad \forall \, t \ge T$$

GNS inequality and the fast diffusion equation The threshold time and consequences (subcritical case) Stability results (subcritical and critical case)

The threshold time

Proposition

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/3, 1)$ if d = 1, $\varepsilon \in (0, \varepsilon_{m,d})$, A > 0 and G > 0 $T = c_* \frac{1 + A^{1-m} + G^{\frac{\alpha}{2}}}{\varepsilon^a}$ where $a = \frac{\alpha}{\vartheta} \frac{2-m}{1-m}$, $\alpha = d(m - m_c)$ and $\vartheta = \nu/(d + \nu)$

$$c_{\star} = c_{\star}(m, d) = \sup_{\varepsilon \in (0, \varepsilon_{m,d})} \max \left\{ \varepsilon \, \kappa_1(\varepsilon, m), \, \varepsilon^{\mathsf{a}} \kappa_2(\varepsilon, m), \, \varepsilon \, \kappa_3(\varepsilon, m) \right\}$$

$$\kappa_{1}(\varepsilon, m) := \max\left\{\frac{8c}{(1+\varepsilon)^{1-m}-1}, \frac{2^{3-m}\kappa_{\star}}{1-(1-\varepsilon)^{1-m}}\right\}$$
$$\kappa_{2}(\varepsilon, m) := \frac{(4\alpha)^{\alpha-1} \mathsf{K}^{\frac{\alpha}{\vartheta}}}{\varepsilon^{\frac{2-m}{1-m}\frac{\alpha}{\vartheta}}} \quad \text{and} \quad \kappa_{3}(\varepsilon, m) := \frac{8\alpha^{-1}}{1-(1-\varepsilon)^{1-m}}$$

J. Dolbeault

Stability estimates in critical functional inequalities

Improved entropy – entropy production inequality (subcritical case)

- 4 回 ト - 4 回 ト

Theorem

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/2, 1)$ if d = 1, A > 0 and G > 0. Then there is a positive number ζ such that

 $\mathcal{I}[v] \ge (4 + \zeta) \mathcal{F}[v]$

for any nonnegative function $v \in L^1(\mathbb{R}^d)$ such that $\mathcal{F}[v] = G$, $\int_{\mathbb{R}^d} v \, dx = \mathcal{M}$, $\int_{\mathbb{R}^d} x \, v \, dx = 0$ and v satisfies (H_A)

We have the asymptotic time layer estimate

$$\varepsilon \in (0, 2\varepsilon_{\star}), \quad \varepsilon_{\star} := \frac{1}{2} \min \left\{ \varepsilon_{m,d}, \chi \eta \right\} \quad \text{with} \quad t_{\star} = t_{\star}(\varepsilon) = \frac{1}{2} \log R(T)$$
$$(1 - \varepsilon) \mathcal{B} \le v(t, \cdot) \le (1 + \varepsilon) \mathcal{B} \quad \forall t \ge t_{\star}$$

and, as a consequence, the *initial time layer estimate*

 $\mathcal{I}[v(t,.)] \ge (4+\zeta) \,\mathcal{F}[v(t,.)] \quad \forall \, t \in [0, t_{\star}] \quad \text{where} \quad \zeta = \frac{4 \,\eta \, e^{-4 \, t_{\star}}}{4 + \eta - \eta \, e^{-4 \, t_{\star}}}$

2

Two consequences

$$\zeta = \mathsf{Z}(\mathsf{A}, \mathcal{F}[u_0]), \quad \mathsf{Z}(\mathsf{A}, \mathsf{G}) := \frac{\zeta_{\star}}{1 + \mathsf{A}^{(1-m)\frac{2}{\alpha}} + \mathsf{G}}, \quad \zeta_{\star} := \frac{4\eta \, c_{\alpha}}{4+\eta} \left(\frac{\varepsilon_{\star}^{a}}{2 \, \alpha \, \mathsf{c}_{\star}}\right)^{\frac{1}{\alpha}}$$

 \rhd Improved decay rate for the fast diffusion equation in rescaled variables

Corollary

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/2, 1)$ if d = 1, A > 0 and G > 0. If v is a solution of (rFDE) with nonnegative initial datum $v_0 \in L^1(\mathbb{R}^d)$ such that $\mathcal{F}[v_0] = G$, $\int_{\mathbb{R}^d} v_0 \, dx = \mathcal{M}$, $\int_{\mathbb{R}^d} x \, v_0 \, dx = 0$ and v_0 satisfies (H_A), then

$$\mathcal{F}[v(t,.)] \leq \mathcal{F}[v_0] e^{-(4+\zeta)t} \quad \forall t \geq 0$$

 $\triangleright \text{ The stability in the entropy - entropy production estimate} \\ \mathcal{I}[v] - 4 \mathcal{F}[v] \ge \zeta \mathcal{F}[v] \text{ also holds in a stronger sense}$

$$\mathcal{I}[v] - 4\mathcal{F}[v] \ge \frac{\zeta}{4+\zeta}\mathcal{I}[v]$$

・ 回 ト ・ ヨ ト ・ モ ト ・

Stability results (subcritical case)

 \triangleright We rephrase the results obtained by entropy methods in the language of stability $\grave{a}~la$ Bianchi-Egnell

Subcritical range

$$p^* = +\infty$$
 if $d = 1$ or 2, $p^* = \frac{d}{d-2}$ if $d \ge 3$

▲圖 → ▲ 三 → ▲ 三 →

GNS inequality and the fast diffusion equation The threshold time and consequences (subcritical case) Stability results (subcritical and critical case)

$$\begin{split} \lambda[f] &:= \left(\frac{2\,d\,\kappa[f]^{p-1}}{p^2 - 1} \,\frac{\|f\|_{p+1}^{p+1}}{\|\nabla f\|_2^2}\right)^{\frac{2\,p}{d-p\,(d-4)}}, \quad \kappa[f] := \frac{\mathcal{M}^{\frac{1}{2\,p}}}{\|f\|_{2\,p}} \\ \mathsf{A}[f] &:= \frac{\mathcal{M}}{\lambda[f]^{\frac{d-p\,(d-4)}{p-1}} \,\|f\|_{2\,p}^{2\,p}} \,\sup_{r>0} r^{\frac{d-p\,(d-4)}{p-1}} \,\int_{|x|>r} |f(x+x_f)|^{2\,p} \,dx \\ \mathsf{E}[f] &:= \frac{2\,p}{1-p} \,\int_{\mathbb{R}^d} \left(\frac{\kappa[f]^{p+1}}{\lambda[f]^{\frac{d-p-1}{2\,p}}} \,f^{p+1} - \mathsf{g}^{p+1} - \frac{1+p}{2\,p} \,\mathsf{g}^{1-p} \left(\frac{\kappa[f]^{2\,p}}{\lambda[f]^2} \,f^{2\,p} - \mathsf{g}^{2\,p}\right)\right) \,dx \\ \mathfrak{S}[f] &:= \frac{\mathcal{M}^{\frac{p-1}{2\,p}}}{p^2-1} \,\frac{1}{C(p,d)} \,\mathsf{Z}(\mathsf{A}[f], \,\mathsf{E}[f]) \end{split}$$

Theorem

Let
$$d \ge 1$$
, $p \in (1, p^*)$
If $f \in \mathcal{W}_p(\mathbb{R}^d) := \{f \in L^{2p}(\mathbb{R}^d) : \nabla f \in L^2(\mathbb{R}^d), |x| f^p \in L^2(\mathbb{R}^d)\},$
 $\left(\|\nabla f\|_2^{\theta} \|f\|_{p+1}^{1-\theta} \right)^{2p\gamma} - \left(\mathcal{C}_{\mathrm{GN}} \|f\|_{2p} \right)^{2p\gamma} \ge \mathfrak{S}[f] \|f\|_{2p}^{2p\gamma} \mathsf{E}[f]$

With $\mathcal{K}_{GNS} = C(p, d) \mathcal{C}_{GNS}^{2 p \gamma}$, $\gamma = \frac{d+2-p(d-2)}{d-p(d-4)}$, consider the *deficit* functional

$$\delta[f] := (p-1)^2 \|\nabla f\|_2^2 + 4 \frac{d - p(d-2)}{p+1} \|f\|_{p+1}^{p+1} - \mathcal{K}_{\text{GNS}} \|f\|_{2p}^{2p\gamma}$$

Theorem

Let $d \ge 1$ and $p \in (1, p^*)$. There is an explicit C = C[f] such that, for any $f \in L^{2p}(\mathbb{R}^d, (1 + |x|^2) dx)$ such that $\nabla f \in L^2(\mathbb{R}^d)$ and $A[f^{2p}] < \infty$,

$$\delta[f] \geq \mathcal{C}[f] \inf_{\varphi \in \mathfrak{M}} \int_{\mathbb{R}^d} \left| (p-1) \nabla f + f^p \nabla \varphi^{1-p} \right|^2 dx$$

 \triangleright The dependence of $\mathcal{C}[f]$ on $\mathsf{A}[f^{2p}]$ and $\mathcal{F}[f^{2p}]$ is explicit and does not degenerate if $f \in \mathfrak{M}$

 \triangleright Can we remove the condition $\mathsf{A}\!\left[f^{2p}\right]<\infty$?

・ 同 ト ・ ヨ ト ・ ヨ ト

Stability in Sobolev's inequality (critical case)

- $\,\triangleright\,$ A constructive stability result
- \triangleright The main ingredient of the proof

< 回 > < 三 > < 三 >

GNS inequality and the fast diffusion equation The threshold time and consequences (subcritical case) Stability results (subcritical and critical case)

A constructive stability result

Let
$$2 p^* = 2d/(d-2) = 2^*, d \ge 3$$
 and
 $\mathcal{W}_{p^*}(\mathbb{R}^d) = \left\{ f \in L^{p^*+1}(\mathbb{R}^d) : \nabla f \in L^2(\mathbb{R}^d), |x| f^{p^*} \in L^2(\mathbb{R}^d) \right\}$

Theorem

Let $d \ge 3$ and A > 0. Then for any nonnegative $f \in W_{p^*}(\mathbb{R}^d)$ such that

$$\int_{\mathbb{R}^d} \left(1, x, |x|^2\right) f^{2^*} \, dx = \int_{\mathbb{R}^d} \left(1, x, |x|^2\right) \mathsf{g} \, dx \text{ and } \sup_{r > 0} r^d \int_{|x| > r} \, f^{2^*} \, dx \le A$$

we have

$$\delta[f] := \|\nabla f\|_2^2 - \mathsf{S}_d^2 \|f\|_{2^*}^2 \ge \frac{\mathcal{C}_\star(A)}{4 + \mathcal{C}_\star(A)} \int_{\mathbb{R}^d} \left|\nabla f + \frac{d-2}{2} f^{\frac{d}{d-2}} \nabla \mathsf{g}^{-\frac{2}{d-2}}\right|^2 d\mathsf{x}$$

 $\mathcal{C}_\star(A)=\mathfrak{C}_\star\left(1\!+\!A^{1/(2\,d)}\right)^{-1}$ and $\mathfrak{C}_\star>0$ depends only on d

GNS inequality and the fast diffusion equation The threshold time and consequences (subcritical case) Stability results (subcritical and critical case)

Peculiarities of the critical case

 \triangleright We can remove the normalization of f, use the r.h.s. to measure the distance to the Aubin-Talenti manifold of optimal functions (in relative Fisher information) and obtain for

$$A[f] := \sup_{r>0} r^d \int_{r>0} |f|^{2^*}(x+x_f) \text{ and } Z[f] := \left(1 + \mu[f]^{-d} \lambda[f]^d A[f]\right)$$

the Bianchi-Egnell type result

$$\delta[f] \geq \frac{\mathfrak{C}_{\star} Z[f]}{4 + Z[f]} \inf_{g \in \mathfrak{M}} \mathcal{J}[f|g]$$

with x_f , $\lambda[f]$ and $\mu[f]$ as in the subcritical case > Notion of time delay [JD, Toscani, 2014, 2015]

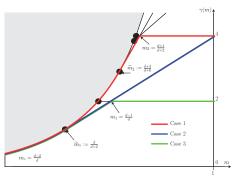
- 4 回 2 4 U 2 4 U

GNS inequality and the fast diffusion equation The threshold time and consequences (subcritical case) Stability results (subcritical and critical case)

Extending the subcritical result in the critical case

To improve the spectral gap for $m = m_1$, we need to adjust the Barenblatt function $\mathcal{B}_{\lambda}(x) = \lambda^{-d/2} \mathcal{B}\left(x/\sqrt{\lambda}\right)$ in order to match $\int_{\mathbb{R}^d} |x|^2 v \, dx$ where the function v solves (r FDE) or to further rescale v according to

$$v(t,x) = rac{1}{\mathfrak{R}(t)^d} w\left(t+ au(t),rac{x}{\mathfrak{R}(t)}
ight),$$



$$\frac{\mathrm{d}\tau}{\mathrm{d}t} = \left(\frac{1}{\mathcal{K}_{\star}} \int_{\mathbb{R}^d} |x|^2 \, v \, dx\right)^{-\frac{d}{2} \left(m - m_c\right)} - 1 \,, \quad \tau(0) = 0 \quad \text{and} \quad \mathfrak{R}(t) = e^{2 \, \tau(t)}$$

Lemma

$$t\mapsto \lambda(t)$$
 and $t\mapsto au(t)$ are bounded on \mathbb{R}^+

These slides can be found at

$\label{eq:http://www.ceremade.dauphine.fr/~dolbeaul/Lectures/ $$ $$ $$ $$ $$ $$ $$ $$ Lectures $$$

More related papers can be found at

 $\label{eq:http://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/ $$ $$ Preprints and papers $$$

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

イロト イポト イラト イラト

Thank you for your attention !