Phase transitions and symmetry in PDEs

Jean Dolbeault

 $http://www.ceremade.dauphine.fr/{\sim}dolbeaul$

Ceremade, Université Paris-Dauphine

December 5, 2019

Advances in geometric analysis Université de Paris (5-6/12/2019)

《曰》 《聞》 《臣》 《臣》 三臣 …

Outline

- Phase transition and symmetry breaking
- Preliminaries: some observations
- \rhd Ground state in Schrödinger equations, a mechanism
- \vartriangleright Moving planes and eigenvalues
- \rhd Phase transition and asymptotic behaviour in a $\mathit{flocking}\xspace$ model
- Symmetry and symmetry breaking in interpolation inequalities
- \rhd Gagliardo-Nirenberg-Sobolev inequalities on the sphere
- \triangleright [Keller-Lieb-Thirring inequalities on the sphere]
- \triangleright Caffarelli-Kohn-Nirenberg inequalities
- Ground states with magnetic fields
- > Magnetic rings, a one-dimensional magnetic interpolation inequality
- \vartriangleright Interpolation inequalities in dimensions 2 and 3, spectral estimates
- Aharonov-Bohm magnetic fields in \mathbb{R}^2
- \rhd Aharonov-Bohm effect
- \rhd Interpolation [and Keller-Lieb-Thirring] inequalities in \mathbb{R}^2
- \rhd A haronov-Symmetry and symmetry breaking

Phase transition and symmetry breaking

■ The notion of *phase transition* in physics ▷ Ehrenfest's classification and more recent definitions

• Symmetry breaking

- \vartriangleright The principles of Pierre Curie
- \rhd A mathematical point of view: the symmetry of the ground state
- Q Bifurcations, interpolation inequalities and evolution equations
 ▷ Subcritical interpolation inequalities depending on a single parameter
- \rhd The non-linear problem versus the linearized spectral problem
- \rhd Nonlinear flows as a tool: generalized Bakry-Emery method
- \rhd Energy and relaxation

(本語)と (本語)と (本語)と

Preliminaries: some examples

 \blacksquare The ground state of a nonlinear Schrödinger equation: when the potential competes with the nonlinearity

• Moving planes and eigenvalues

with P. Felmer

・ロン ・回と ・ヨン ・ ヨン

• Phase transition and asymptotic behaviour in a *flocking* model with a mean field term:

the homogeneous Cucker-Smale / McKean-Vlasov model

PhD thesis of Xingyu Li, https://arxiv.org/abs/1906.07517

nterpolation, symmetry and symmetry breaking Interpolation and magnetic fields Ground state of NLS A remark on moving planes and eigenvalues Cucker-Smale model: attractors, stability, coercivity and rates of convergence

• Ground state of NLS

 \triangleright The typical issue is the competition between a potential or a weight and a nonlinearity

Let us consider a nonlinear Schrödinger equation in presence of a radial external potential with a minimum which is not at the origin

$$-\Delta u + V(x) u - f(u) = 0$$

Ground state of NLS

Interpolation, symmetry and symmetry breaking Interpolation and magnetic fields A remark on moving planes and eigenvalues Cucker-Smale model: attractors, stability, coercivity and rates of convergence

・ロト ・回ト ・ヨト ・ヨト

э

A two-dimensional potential V(x) with mexican hat shape

Ground state of NLS A remark on moving planes and eigenvalues Cucker-Smale model: attractors, stability, coercivity and rates of convergence

・ロン ・四マ ・ヨマー

-

Radial solutions to $-\Delta u + V(x)u - F'(u) = 0$

... give rise to a radial density of energy $x \mapsto V |u|^2 + F(u)$

Interpolation, symmetry and symmetry breaking Interpolation and magnetic fields Ground state of NLS A remark on moving planes and eigenvalues Cucker-Smale model: attractors, stability, coercivity and rates of convergence

・ロト ・回ト ・ヨト ・ヨト

symmetry breaking

... but in some cases minimal energy solutions

... give rise to a non-radial density of energy $x \mapsto V |u|^2 + F(u)$

Ground state of NLS A remark on moving planes and eigenvalues Cucker-Smale model: attractors, stability, coercivity and rates of convergence

・ 回 > ・ ヨ > ・ ヨ >

• The theorem of Gidas, Ni and Nirenberg

Theorem

[Gidas, Ni and Nirenberg, 1979 and 1980] Let $u \in C^2(B)$, $B = B(0,1) \subset \mathbb{R}^d$, be a solution of

$$\Delta u + f(u) = 0$$
 in B , $u = 0$ on ∂B

and assume that f is Lipschitz. If u is positive, then it is radially symmetric and decreasing along any radius: u'(r) < 0 for any $r \in (0,1]$

Extension: $\Delta u + f(r, u) = 0$, r = |x| if $\frac{\partial f}{\partial r} \leq 0$... a "cooperative" case

Ground state of NLS A remark on moving planes and eigenvalues Cucker-Smale model: attractors, stability, coercivity and rates of convergence

イロン 不同 とくほう イヨン

An extension of the theorem of Gidas, Ni and Nirenberg

Theorem (JD, P. Felmer)

 $\Delta u + \lambda f(r, u) = 0$ in B, u = 0 on ∂B

and assume that $f \in C^1(\mathbb{R}^+ \times \mathbb{R}^+)$ (no assumption on the sign of $\frac{\partial f}{\partial r}$) There exists λ_1 , λ_2 with $0 < \lambda_1 \leq \lambda_2$ such that

(i) Monotonicity: if $\lambda \in (0, \lambda_1)$, then $\frac{d}{dr}(u - \lambda u_0) < 0$ where u_0 is the solution of $\Delta u_0 + \lambda f(r, 0) = 0$

(ii) Symmetry: if $\lambda \in (0, \lambda_2)$, then u is radially symmetric

Ground state of NLS A remark on moving planes and eigenvalues Cucker-Smale model: attractors, stability, coercivity and rates of convergence

A simple version of the Cucker-Smale model

A model for bird flocking (simplified version)

$$\frac{\partial f}{\partial t} = \mathbf{D} \Delta_{\mathbf{v}} f + \nabla_{\mathbf{v}} \cdot (\nabla_{\mathbf{v}} \phi(\mathbf{v}) f - \mathbf{u}_f f)$$

where $\mathbf{u}_f = \int v f \, dv$ is the average velocity, D is a measure of the noise, f is a probability measure

[J. Tugaut, 2014] [A. Barbaro, J. Cañizo, J.A. Carrillo, and P. Degond, 2016]

Interpolation, symmetry and symmetry breaking Interpolation and magnetic fields Ground state of NLS A remark on moving planes and eigenvalues Cucker-Smale model: attractors, stability, coercivity and rates of convergence

Stationary solutions: phase transition in dimension d = 1

• d = 1: there exists a bifurcation point $D = D_*$ such that the only stationary solution corresponds to $\mathbf{u}_f = 0$ if $D > D_*$ and there are three solutions corresponding to $\mathbf{u}_f = 0, \pm u(D)$ if $D < D_*$ • $\mathbf{u}_f = 0$ is linearly unstable if $D < D_*$

Notation:
$$f_{\star}^{(0)}, f_{\star}^{(+)}, f_{\star}^{(-)}$$

Interpolation, symmetry and symmetry breaking Interpolation and magnetic fields Ground state of NLS A remark on moving planes and eigenvalues Cucker-Smale model: attractors, stability, coercivity and rates of convergence

イロン 不同 とくほう イヨン

3

Phase transition in dimension d = 2

Interpolation, symmetry and symmetry breaking Interpolation and magnetic fields Ground state of NLS A remark on moving planes and eigenvalues Cucker-Smale model: attractors, stability, coercivity and rates of convergence

Dynamics and free energy

The free energy

$$\mathcal{F}[f] := D \int_{\mathbb{R}^d} f \log f \, dv + \int_{\mathbb{R}^d} f \, \phi \, dv - rac{1}{2} \, |\mathbf{u}_f|^2$$

decays according to

$$\frac{d}{dt}\mathcal{F}[f(t,\cdot)] = -\int_{\mathbb{R}^d} \left| D \, \frac{\nabla_v f}{f} + \nabla_v \phi - \mathbf{u}_f \right|^2 f \, dv$$

$$\mathbf{\bullet} \quad d = 1: \text{ if } \mathcal{F}[f(t=0,\cdot)] < \mathcal{F}[f_\star^{(0)}] \text{ and } D < D_*, \text{ then}$$

$$\mathcal{F}[f(t,\cdot)] - \mathcal{F}\left[f_\star^{(\pm)}\right] \le C \, e^{-\lambda t}$$

• d = 1: λ is the eigenvalue of the linearized problem at $f_{\star}^{(\pm)}$ in the weighted space $L^2\left((f_{\star}^{(\pm)})^{-1}\right)$ with scalar product

$$\langle f,g \rangle_{\pm} := D \int_{\mathbb{R}} f g \left(f_{\star}^{(\pm)} \right)^{-1} dv - \mathbf{u}_f \mathbf{u}_g$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Symmetry and symmetry breaking in interpolation inequalities

- Gagliardo-Nirenberg-Sobolev inequalities on the sphere
- [Keller-Lieb-Thirring inequalities on the sphere]
- Caffarelli-Kohn-Nirenberg inequalities

Joint work with M.J. Esteban, M. Loss, M. Kowalczyk,...

・ 回 と ・ ヨ と ・ ヨ と

A result of uniqueness on a classical example

On the sphere \mathbb{S}^d , let us consider the positive solutions of

$$-\Delta u + \lambda \, u = u^{p-1}$$

 $p \in [1,2) \cup (2,2^*]$ if $d \ge 3$, $2^* = \frac{2d}{d-2}$ $p \in [1,2) \cup (2,+\infty)$ if d = 1, 2

Theorem

If $\lambda \leq d$, $u \equiv \lambda^{1/(p-2)}$ is the unique solution

[Gidas & Spruck, 1981], [Bidaut-Véron & Véron, 1991]

Interpolation on the sphere

Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

Bifurcation point of view and symmetry breaking

Taylor expansion of $u = 1 + \varepsilon \varphi_1$ as $\varepsilon \to 0$ with $-\Delta \varphi_1 = d \varphi_1$ $\mu(\lambda) < \lambda$ if and only if $\lambda > \frac{d}{d-2}$

▷ The inequality holds with $\mu(\lambda) = \lambda = \frac{d}{p-2}$ [Bakry & Emery, 1985] [Beckner, 1993], [Bidaut-Véron & Véron, 1991, Corollary 6.1]

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

The Bakry-Emery method on the sphere

Entropy functional

$$\begin{aligned} \mathcal{E}_{p}[\rho] &:= \frac{1}{p-2} \left[\int_{\mathbb{S}^{d}} \rho^{\frac{2}{p}} d\mu - \left(\int_{\mathbb{S}^{d}} \rho \ d\mu \right)^{\frac{2}{p}} \right] & \text{if} \quad p \neq 2 \\ \mathcal{E}_{2}[\rho] &:= \int_{\mathbb{S}^{d}} \rho \ \log \left(\frac{\rho}{\|\rho\|_{L^{1}(\mathbb{S}^{d})}} \right) d\mu \end{aligned}$$

Fisher information functional

$$\mathcal{I}_p[
ho] := \int_{\mathbb{S}^d} |
abla
ho^{rac{1}{p}}|^2 \ d\mu$$

[Bakry & Emery, 1985] carré du champ method: use the heat flow

$$\frac{\partial \rho}{\partial t} = \Delta \rho$$

and observe that $\frac{d}{dt}\mathcal{E}_{\rho}[\rho] = -\mathcal{I}_{\rho}[\rho]$

$$\frac{d}{dt} \Big(\mathcal{I}_{\rho}[\rho] - d \, \mathcal{E}_{\rho}[\rho] \Big) \leq 0 \quad \Longrightarrow \quad \mathcal{I}_{\rho}[\rho] \geq d \, \mathcal{E}_{\rho}[\rho]$$

with $\rho = |u|^p$, if $p \le 2^{\#} := \frac{2d^2+1}{(d-1)^2}$

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

The evolution under the fast diffusion flow

To overcome the limitation $p \leq 2^{\#},$ one can consider a nonlinear diffusion of fast diffusion / porous medium type

$$\frac{\partial \rho}{\partial t} = \Delta \rho^{\prime\prime}$$

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any $p \in [1,2^*]$

$$\mathcal{K}_{\rho}[\rho] := rac{d}{dt} \Big(\mathcal{I}_{\rho}[\rho] - d \, \mathcal{E}_{\rho}[\rho] \Big) \leq 0$$

イロト イポト イヨト イヨト

Q JD, M. J. Esteban, M. Kowalczyk, and M. Loss. Improved interpolation inequalities on the sphere. Discrete and Continuous Dynamical Systems Series S, 7 (4): 695-724, 2014.

❑ JD, M.J. Esteban, and M. Loss. Interpolation inequalities on the sphere: linear *versus* nonlinear flows. Annales de la faculté des sciences de Toulouse Sér. 6, 26 (2): 351-379, 2017

Q JD, M.J. Esteban. Improved interpolation inequalities and stability. Preprint, 2019 arXiv:1908.08235

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

・ 回 ト ・ ヨ ト ・ ヨ ト

Optimal inequalities

With $\mu(\lambda) = \lambda = \frac{d}{p-2}$: [Bakry & Emery, 1985] [Beckner, 1993], [Bidaut-Véron & Véron, 1991, Corollary 6.1]

$$\|\nabla u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \geq \frac{d}{p-2} \left(\|u\|_{\mathrm{L}^p(\mathbb{S}^d)}^2 - \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \right) \quad \forall \, u \in \mathrm{H}^1(\mathbb{S}^d)$$

•
$$d \ge 3, p \in [1, 2)$$
 or $p \in (2, \frac{2d}{d-2})$
• $d = 1$ or $d = 2, p \in [1, 2)$ or $p \in (2, \infty)$
• $p = -2 = 2d/(d-2) = -2$ with $d = 1$ [Exner, Harrell, Loss, 1998]

$$\|
abla u\|_{\mathrm{L}^2(\mathbb{S}^1)}^2 + rac{1}{4} \left(\int_{\mathbb{S}^1} rac{1}{u^2} \ d\mu
ight)^{-1} \geq rac{1}{4} \, \|u\|_{\mathrm{L}^2(\mathbb{S}^1)}^2 \quad \forall \, u \in \mathrm{H}^1_+(\mathbb{S}^1)$$

Interpolation on the sphere

Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

The elliptic point of view (nonlinear flow)

$$\begin{aligned} \frac{\partial u}{\partial t} &= u^{2-2\beta} \left(\mathcal{L} \, u + \kappa \, \frac{|u'|^2}{u} \, \nu \right), \, \kappa = \beta \left(p - 2 \right) + 1 \\ &- \mathcal{L} \, u - \left(\beta - 1 \right) \frac{|u'|^2}{u} \, \nu + \frac{\lambda}{p - 2} \, u = \frac{\lambda}{p - 2} \, u^{\kappa} \end{aligned}$$

Multiply by $\mathcal{L}\, u$ and integrate

...
$$\int_{-1}^{1} \mathcal{L} u \, u^{\kappa} \, d\nu_{d} = -\kappa \int_{-1}^{1} u^{\kappa} \, \frac{|u'|^{2}}{u} \, d\nu_{d}$$

Multiply by $\kappa \frac{|u'|^2}{u}$ and integrate

$$\dots = +\kappa \int_{-1}^{1} u^{\kappa} \frac{|u'|^2}{u} d\nu_d$$

The two terms cancel and we are left only with

$$\int_{-1}^{1} \left| u'' - \frac{p+2}{6-p} \frac{|u'|^2}{u} \right|^2 \nu^2 \, d\nu_d = 0 \quad \text{if } p = 2^* \text{ and } \beta = \frac{4}{6-p}$$

(日本) (日本) (日本)

The Moser-Trudinger-Onofri inequality on Riemannian manifolds

Joint work with G. Jankowiak and M.J. Esteban

 $\textcircled{\mbox{\boldmath\square}}$ Extension to compact Riemannian manifolds of dimension 2 + another nonlinearity

We shall also denote by $\mathfrak R$ the Ricci tensor, by $\mathrm H_g u$ the Hessian of u and by

$$\mathbf{L}_{g} u := \mathbf{H}_{g} u - \frac{g}{d} \Delta_{g} u$$

the trace free Hessian. Let us denote by $\mathbf{M}_g u$ the trace free tensor

$$\mathbf{M}_{g} u := \nabla u \otimes \nabla u - \frac{g}{d} |\nabla u|^{2}$$

We define

$$\lambda_{\star} := \inf_{u \in \mathrm{H}^{2}(\mathfrak{M}) \setminus \{0\}} \frac{\int_{\mathfrak{M}} \left[\| \mathrm{L}_{g} u - \frac{1}{2} \mathrm{M}_{g} u \|^{2} + \mathfrak{R}(\nabla u, \nabla u) \right] e^{-u/2} \, dv_{g}}{\int_{\mathfrak{M}} |\nabla u|^{2} \, e^{-u/2} \, dv_{g}}$$

3

Theorem

Assume that d = 2 and $\lambda_{\star} > 0$. If u is a smooth solution to

$$-\frac{1}{2}\Delta_g u + \lambda = e^u$$

then u is a constant function if $\lambda \in (0, \lambda_{\star})$

The Moser-Trudinger-Onofri inequality on ${\mathfrak M}$

$$\frac{1}{4} \, \|\nabla u\|_{\mathrm{L}^2(\mathfrak{M})}^2 + \lambda \, \int_{\mathfrak{M}} u \, d \, \mathsf{v}_{\mathsf{g}} \geq \lambda \, \log \left(\int_{\mathfrak{M}} e^u \, d \, \mathsf{v}_{\mathsf{g}} \right) \quad \forall \, u \in \mathrm{H}^1(\mathfrak{M})$$

for some constant $\lambda > 0$. Let us denote by λ_1 the first positive eigenvalue of $-\Delta_g$

Corollary

If d = 2, then the MTO inequality holds with $\lambda = \Lambda := \min\{4\pi, \lambda_{\star}\}$. Moreover, if Λ is strictly smaller than $\lambda_1/2$, then the optimal constant in the MTO inequality is strictly larger than Λ

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

The flow

$$\frac{\partial f}{\partial t} = \Delta_g(e^{-f/2}) - \frac{1}{2} |\nabla f|^2 e^{-f/2}$$

$$\mathcal{G}_{\lambda}[f] := \int_{\mathfrak{M}} \| \operatorname{L}_{g} f - \frac{1}{2} \operatorname{M}_{g} f \|^{2} e^{-f/2} dv_{g} + \int_{\mathfrak{M}} \mathfrak{R}(\nabla f, \nabla f) e^{-f/2} dv_{g}$$
$$- \lambda \int_{\mathfrak{M}} |\nabla f|^{2} e^{-f/2} dv_{g}$$

Then for any $\lambda \leq \lambda_{\star}$ we have

$$\frac{d}{dt}\mathcal{F}_{\lambda}[f(t,\cdot)] = \int_{\mathfrak{M}} \left(-\frac{1}{2}\Delta_{g}f + \lambda\right) \left(\Delta_{g}(e^{-f/2}) - \frac{1}{2}|\nabla f|^{2}e^{-f/2}\right) dv_{g}$$
$$= -\mathcal{G}_{\lambda}[f(t,\cdot)]$$

Since \mathcal{F}_{λ} is nonnegative and $\lim_{t\to\infty} \mathcal{F}_{\lambda}[f(t,\cdot)] = 0$, we obtain that

$$\mathcal{F}_{\lambda}[u] \geq \int_{0}^{\infty} \mathcal{G}_{\lambda}[f(t,\cdot)] \, dt$$

J. Dolbeault

3

Weighted Moser-Trudinger-Onofri inequalities on the two-dimensional Euclidean space

On the Euclidean space $\mathbb{R}^2,$ given a general probability measure μ does the inequality

$$\frac{1}{16\pi}\int_{\mathbb{R}^2}|\nabla u|^2\,dx\geq\lambda\left[\log\left(\int_{\mathbb{R}^d}\mathsf{e}^u\,d\mu\right)-\int_{\mathbb{R}^d}u\,d\mu\right]$$

hold for some $\lambda > 0$? Let

$$\Lambda_{\star} := \inf_{x \in \mathbb{R}^2} \frac{-\Delta \log \mu}{8 \pi \mu}$$

Theorem

Assume that μ is a radially symmetric function. Then any radially symmetric solution to the EL equation is a constant if $\lambda < \Lambda_{\star}$ and the inequality holds with $\lambda = \Lambda_{\star}$ if equality is achieved among radial functions

(1日) (日) (日)

Euclidean space: Rényi entropy powers and fast diffusion

• The Euclidean space without weights

▷ Rényi entropy powers, the entropy approach without rescaling: (Savaré, Toscani): scalings, nonlinearity and a concavity property inspired by information theory

The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in $\mathbb{R}^d,\,d\geq 1$

$$\frac{\partial v}{\partial t} = \Delta v^m$$

with initial datum $v(x, t = 0) = v_0(x) \ge 0$ such that $\int_{\mathbb{R}^d} v_0 dx = 1$ and $\int_{\mathbb{R}^d} |x|^2 v_0 dx < +\infty$. The large time behavior of the solutions is governed by the source-type Barenblatt solutions

$$\mathcal{U}_{\star}(t,x) := rac{1}{\left(\kappa \, t^{1/\mu}
ight)^d} \, \mathcal{B}_{\star}\!\left(rac{x}{\kappa \, t^{1/\mu}}
ight)$$

where

$$\mu := 2 + d(m-1), \quad \kappa := \left|\frac{2 \mu m}{m-1}\right|^{1/\mu}$$

and \mathcal{B}_{\star} is the Barenblatt profile

$$\mathcal{B}_{\star}(x) := \begin{cases} \left(C_{\star} - |x|^2\right)_{+}^{1/(m-1)} & \text{if } m > 1\\ \left(C_{\star} + |x|^2\right)^{1/(m-1)} & \text{if } m < 1 \end{cases}$$

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

The Rényi entropy power F

The entropy is defined by

$$\Xi := \int_{\mathbb{R}^d} v^m \, dx$$

and the Fisher information by

$$\mathsf{I} := \int_{\mathbb{R}^d} \mathsf{v} \, |\nabla \mathsf{p}|^2 \, dx \quad \text{with} \quad \mathsf{p} = \frac{m}{m-1} \, \mathsf{v}^{m-1}$$

If v solves the fast diffusion equation, then

$$\mathsf{E}' = (1-m)\mathsf{I}$$

To compute I', we will use the fact that

$$\frac{\partial p}{\partial t} = (m-1) p \Delta p + |\nabla p|^2$$

$$F := E^{\sigma} \quad \text{with} \quad \sigma = \frac{\mu}{d(1-m)} = 1 + \frac{2}{1-m} \left(\frac{1}{d} + m - 1\right) = \frac{2}{d} \frac{1}{1-m} - 1$$
has a linear growth asymptotically as $t \to +\infty$.

has a linear growth asymptotically as $t \to +\infty$

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

-

The variation of the Fisher information

Lemma

If v solves
$$\frac{\partial v}{\partial t} = \Delta v^m$$
 with $1 - \frac{1}{d} \le m < 1$, then

$$\mathsf{I}' = \frac{d}{dt} \int_{\mathbb{R}^d} \mathsf{v} \, |\nabla \mathsf{p}|^2 \, d\mathsf{x} = -2 \int_{\mathbb{R}^d} \mathsf{v}^m \left(\|\mathrm{D}^2 \mathsf{p}\|^2 + (m-1) \, (\Delta \mathsf{p})^2 \right) \, d\mathsf{x}$$

Explicit arithmetic geometric inequality

$$\|\mathbf{D}^2 \mathbf{p}\|^2 - \frac{1}{d} (\Delta \mathbf{p})^2 = \left\| \mathbf{D}^2 \mathbf{p} - \frac{1}{d} \Delta \mathbf{p} \operatorname{Id} \right\|^2$$

.... there are no boundary terms in the integrations by parts ?

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

The concavity property

Theorem

[Toscani-Savaré] Assume that $m \ge 1 - \frac{1}{d}$ if d > 1 and m > 0 if d = 1. Then F(t) is increasing, $(1 - m) F''(t) \le 0$ and

$$\lim_{t \to +\infty} \frac{1}{t} \mathsf{F}(t) = (1-m) \, \sigma \, \lim_{t \to +\infty} \mathsf{E}^{\sigma-1} \, \mathsf{I} = (1-m) \, \sigma \, \mathsf{E}_\star^{\sigma-1} \, \mathsf{I},$$

[Dolbeault-Toscani] The inequality

$$\mathsf{E}^{\sigma-1}\,\mathsf{I} \ge \mathsf{E}_\star^{\sigma-1}\,\mathsf{I}_\star$$

is equivalent to the Gagliardo-Nirenberg inequality

$$\|\nabla w\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{\theta} \|w\|_{\mathrm{L}^{q+1}(\mathbb{R}^{d})}^{1-\theta} \geq \mathsf{C}_{\mathrm{GN}} \|w\|_{\mathrm{L}^{2q}(\mathbb{R}^{d})}$$

if $1 - \frac{1}{d} \le m < 1$. Hint: $v^{m-1/2} = \frac{w}{\|w\|_{L^{2q}(\mathbb{R}^d)}}, \ q = \frac{1}{2m-1}$

- 4 同 6 - 4 三 6 - 4 三 6

Euclidean space: self-similar variables and relative entropies

• In the Euclidean space, it is possible to characterize the optimal constants using a spectral gap property

・ロト ・回ト ・ヨト ・ヨト

Self-similar variables and relative entropies

The large time behavior of the solution of $\frac{\partial v}{\partial t} = \Delta v^m$ is governed by the source-type *Barenblatt solutions*

$$v_{\star}(t,x) := rac{1}{\kappa^d(\mu\,t)^{d/\mu}}\,\mathcal{B}_{\star}\left(rac{x}{\kappa\,(\mu\,t)^{1/\mu}}
ight) \quad ext{where} \quad \mu := 2 + d\,(m-1)$$

where \mathcal{B}_{\star} is the Barenblatt profile (with appropriate mass)

$$\mathcal{B}_{\star}(x) := \left(1 + |x|^2\right)^{1/(m-1)}$$

A time-dependent rescaling: self-similar variables

$$v(t,x) = rac{1}{\kappa^d R^d} u\left(au, rac{x}{\kappa R}
ight) \quad ext{where} \quad rac{dR}{dt} = R^{1-\mu} \,, \quad au(t) := rac{1}{2} \log\left(rac{R(t)}{R_0}
ight)$$

Then the function u solves a Fokker-Planck type equation

$$\frac{\partial u}{\partial \tau} + \nabla \cdot \left[u \left(\nabla u^{m-1} - 2x \right) \right] = 0$$

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

イロン 不同 とくほう イヨン

Free energy and Fisher information

 \blacksquare The function u solves a Fokker-Planck type equation

$$\frac{\partial u}{\partial \tau} + \nabla \cdot \left[u \left(\nabla u^{m-1} - 2x \right) \right] = 0$$

$$\mathcal{E}[u] := \int_{\mathbb{R}^d} \left(-\frac{u^m}{m} + |x|^2 u \right) \, dx - \mathcal{E}_0$$

• Entropy production is measured by the *Generalized Fisher* information

$$\frac{d}{dt}\mathcal{E}[u] = -\mathcal{I}[u] , \quad \mathcal{I}[u] := \int_{\mathbb{R}^d} u \left| \nabla u^{m-1} + 2x \right|^2 dx$$

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

Without weights: relative entropy, entropy production

• Stationary solution: choose C such that $\|u_{\infty}\|_{L^1} = \|u\|_{L^1} = M > 0$

$$u_{\infty}(x) := (C + |x|^2)_+^{-1/(1-m)}$$

• Entropy – entropy production inequality (del Pino, JD)

Theorem

$$d \ge 3, \ m \in [\frac{d-1}{d}, +\infty), \ m > \frac{1}{2}, \ m \ne 1$$

$$\mathcal{I}[u] \ge 4 \mathcal{E}[u]$$

$$p = \frac{1}{2m-1}, \ u = w^{2p}: \ (GN) \ \|\nabla w\|_{L^{2}(\mathbb{R}^{d})}^{\theta} \|w\|_{L^{q+1}(\mathbb{R}^{d})}^{1-\theta} \ge C_{GN} \ \|w\|_{L^{2q}(\mathbb{R}^{d})}$$
Corollary
(del Pino, JD) A solution u with initial data $u_{0} \in L^{1}_{+}(\mathbb{R}^{d})$ such that
 $|x|^{2} u_{0} \in L^{1}(\mathbb{R}^{d}), \ u_{0}^{m} \in L^{1}(\mathbb{R}^{d})$ satisfies $\mathcal{E}[u(t, \cdot)] \le \mathcal{E}[u_{0}] e^{-4t}$

A computation on a large ball, with boundary terms

$$\frac{\partial u}{\partial \tau} + \nabla \cdot \left[u \left(\nabla u^{m-1} - 2 x \right) \right] = 0 \quad \tau > 0 \,, \quad x \in B_R$$

where B_R is a centered ball in \mathbb{R}^d with radius R > 0, and assume that u satisfies zero-flux boundary conditions

$$\left(\nabla u^{m-1}-2x\right)\cdot\frac{x}{|x|}=0$$
 $\tau>0$, $x\in\partial B_R$.

With $z(\tau, x) := \nabla Q(\tau, x) := \nabla u^{m-1} - 2x$, the relative Fisher information is such that

$$\begin{aligned} \frac{d}{d\tau} \int_{B_R} u |z|^2 dx + 4 \int_{B_R} u |z|^2 dx \\ &+ 2 \frac{1-m}{m} \int_{B_R} u^m \left(\left\| D^2 Q \right\|^2 - (1-m) \left(\Delta Q \right)^2 \right) dx \\ &= \int_{\partial B_R} u^m \left(\omega \cdot \nabla |z|^2 \right) d\sigma \le 0 \text{ (by Grisvard's lemma)} \end{aligned}$$

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

Spectral gap: sharp asymptotic rates of convergence

Assumptions on the initial datum v_0

(H1) $V_{D_0} \le v_0 \le V_{D_1}$ for some $D_0 > D_1 > 0$ (H2) if $d \ge 3$ and $m \le m_*$, $(v_0 - V_D)$ is integrable for a suitable $D \in [D_1, D_0]$

Theorem

(Blanchet, Bonforte, JD, Grillo, Vázquez) Under Assumptions (H1)-(H2), if m < 1 and $m \neq m_* := \frac{d-4}{d-2}$, the entropy decays according to

$$\mathcal{E}[v(t,\cdot)] \leq C e^{-2(1-m)\Lambda_{\alpha,d}t} \quad \forall t \geq 0$$

where $\Lambda_{\alpha,d} > 0$ is the best constant in the Hardy–Poincaré inequality

$$\begin{split} & \bigwedge_{\alpha,d} \int_{\mathbb{R}^d} |f|^2 \, d\mu_{\alpha-1} \leq \int_{\mathbb{R}^d} |\nabla f|^2 \, d\mu_{\alpha} \quad \forall \ f \in H^1(d\mu_{\alpha}) \,, \int_{\mathbb{R}^d} f \, d\mu_{\alpha-1} = 0 \\ & \text{with } \alpha := 1/(m-1) < 0, \ d\mu_{\alpha} := h_{\alpha} \, dx, \ h_{\alpha}(x) := (1+|x|^2)^{\alpha} \end{split}$$

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

Spectral gap and best constants

J. Dolbeault Phase transitions and symmetry in PDEs

Caffarelli-Kohn-Nirenberg, symmetry and symmetry breaking results, and weighted nonlinear flows

Joint work with M.J. Esteban and M. Loss

伺 とう きょう うちょう

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

・ロト ・回ト ・ヨト ・ヨト

-

Critical Caffarelli-Kohn-Nirenberg inequality

Let
$$\mathcal{D}_{a,b} := \left\{ v \in \mathrm{L}^p\left(\mathbb{R}^d, |x|^{-b} dx\right) : |x|^{-a} |\nabla v| \in \mathrm{L}^2\left(\mathbb{R}^d, dx\right) \right\}$$

$$\left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{b\,p}} dx\right)^{2/p} \leq \mathsf{C}_{\mathsf{a},b} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2\,\mathfrak{a}}} dx \quad \forall \, v \in \mathcal{D}_{\mathsf{a},b}$$

holds under conditions on \boldsymbol{a} and \boldsymbol{b}

$$p = \frac{2d}{d - 2 + 2(b - a)}$$
 (critical case)

 \triangleright An optimal function among radial functions:

$$v_{\star}(x) = \left(1 + |x|^{(p-2)(a_{c}-a)}\right)^{-\frac{2}{p-2}} \quad and \quad \mathsf{C}_{a,b}^{\star} = \frac{\||x|^{-b} v_{\star}\|_{p}^{2}}{\||x|^{-a} \nabla v_{\star}\|_{2}^{2}}$$

Question: $C_{a,b} = C^{\star}_{a,b}$ (symmetry) or $C_{a,b} > C^{\star}_{a,b}$ (symmetry breaking) ?

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

Critical CKN: range of the parameters

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

Linear instability of radial minimizers: the Felli-Schneider curve

[Smets], [Smets, Willem], [Catrina, Wang], [Felli, Schneider]

$$v \mapsto \mathsf{C}^{\star}_{a,b} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2\,a}} \, dx - \left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{b\,p}} \, dx\right)^{2/p}$$

is linearly instable at $v=v_\star$

▲□→ ▲注→ ▲注→

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

・ロン ・回 と ・ 回 と ・ 回 と

P Dac

Symmetry *versus* symmetry breaking: the sharp result in the critical case

[JD, Esteban, Loss (2016)]

Theorem

Let $d \ge 2$ and $p < 2^*$. If either $a \in [0, a_c)$ and b > 0, or a < 0 and $b \ge b_{FS}(a)$, then the optimal functions for the critical Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

-

The symmetry proof in one slide

• A change of variables:
$$v(|x|^{\alpha-1}x) = w(x)$$
, $D_{\alpha}v = \left(\alpha \frac{\partial v}{\partial s}, \frac{1}{s} \nabla_{\omega}v\right)$

$$\|v\|_{\mathrm{L}^{2p,d-n}(\mathbb{R}^d)} \leq \mathsf{K}_{\alpha,n,p} \, \|\mathsf{D}_{\alpha}v\|_{\mathrm{L}^{2,d-n}(\mathbb{R}^d)}^{\vartheta} \, \|v\|_{\mathrm{L}^{p+1,d-n}(\mathbb{R}^d)}^{1-\vartheta} \quad \forall \, v \in \mathrm{H}^p_{d-n,d-n}(\mathbb{R}^d)$$

• Concavity of the Rényi entropy power: with
$$\mathcal{L}_{\alpha} = -\mathsf{D}_{\alpha}^* \mathsf{D}_{\alpha} = \alpha^2 \left(u'' + \frac{n-1}{s} u' \right) + \frac{1}{s^2} \Delta_{\omega} u$$
 and $\frac{\partial u}{\partial t} = \mathcal{L}_{\alpha} u^m$

$$\begin{aligned} &-\frac{d}{dt} \mathcal{G}[u(t,\cdot)] \left(\int_{\mathbb{R}^d} u^m \, d\mu \right)^{1-\sigma} \\ &\geq (1-m) \left(\sigma-1\right) \int_{\mathbb{R}^d} u^m \left| \mathcal{L}_{\alpha} \mathsf{P} - \frac{\int_{\mathbb{R}^d} u \left| \mathsf{D}_{\alpha} \mathsf{P} \right|^2 d\mu}{\int_{\mathbb{R}^d} u^m \, d\mu} \right|^2 d\mu \\ &+ 2 \int_{\mathbb{R}^d} \left(\alpha^4 \left(1-\frac{1}{n}\right) \left| \mathsf{P}'' - \frac{\mathsf{P}'}{s} - \frac{\Delta_{\omega} \mathsf{P}}{\alpha^2 (n-1) s^2} \right|^2 + \frac{2 \alpha^2}{s^2} \left| \nabla_{\omega} \mathsf{P}' - \frac{\nabla_{\omega} \mathsf{P}}{s} \right|^2 \right) \, u^m \, d\mu \\ &+ 2 \int_{\mathbb{R}^d} \left((n-2) \left(\alpha_{\mathrm{FS}}^2 - \alpha^2 \right) \left| \nabla_{\omega} \mathsf{P} \right|^2 + c(n,m,d) \, \frac{\left| \nabla_{\omega} \mathsf{P} \right|^4}{\mathsf{P}^2} \right) \, u^m \, d\mu \end{aligned}$$

• Elliptic regularity and the Emden-Fowler transformation: justifying the integrations by parts

The variational problem on the cylinder

 \triangleright With the Emden-Fowler transformation

$$v(r,\omega) = r^{a-a_c} \varphi(s,\omega)$$
 with $r = |x|$, $s = -\log r$ and $\omega = \frac{x}{r}$

the variational problem becomes

$$\Lambda \mapsto \mu(\Lambda) := \min_{\varphi \in \mathrm{H}^{1}(\mathcal{C})} \frac{\|\partial_{s}\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2} + \|\nabla_{\omega}\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2} + \Lambda \|\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2}}{\|\varphi\|_{\mathrm{L}^{p}(\mathcal{C})}^{2}}$$

is a concave increasing function

・回 ・ ・ ヨ ・ ・ ヨ ・ …

-

Restricted to symmetric functions, the variational problem becomes

$$\mu_{\star}(\Lambda) := \min_{\varphi \in \mathrm{H}^{1}(\mathbb{R})} \frac{\|\partial_{s}\varphi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} + \Lambda \|\varphi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}}{\|\varphi\|_{\mathrm{L}^{\rho}(\mathbb{R}^{d})}^{2}} = \mu_{\star}(1) \Lambda^{\alpha}$$

Symmetry means $\mu(\Lambda) = \mu_{\star}(\Lambda)$ Symmetry breaking means $\mu(\Lambda) < \mu_{\star}(\Lambda)$

Interpolation on the sphere Fast diffusion equations on the Euclidean space CKN inequalities, symmetry breaking and weighted nonlinear flows

Numerical results

Parametric plot of the branch of optimal functions for p = 2.8, d = 5. Non-symmetric solutions bifurcate from symmetric ones at a bifurcation point Λ_1 computed by V. Felli and M. Schneider. The branch behaves for large values of Λ as shown by F. Catrina and Z.-Q. Wang

Three references

• Lecture notes on *Symmetry and nonlinear diffusion flows...* a course on entropy methods (see webpage)

• [JD, Maria J. Esteban, and Michael Loss] Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs ... the elliptic point of view: Proc. Int. Cong. of Math., Rio de Janeiro, 3: 2279-2304, 2018.

• [JD, Maria J. Esteban, and Michael Loss] Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization... the parabolic point of view Journal of elliptic and parabolic equations, 2: 267-295, 2016.

With magnetic fields (1/3)in dimensions 2 and 3

- Interpolation inequalities and spectral estimates
- Estimates, numerics; an open question on constant magnetic fields

▲□ → ▲ □ → ▲ □ →

Magnetic interpolation inequalities in the Euclidean space

- \rhd Three interpolation inequalities and their dual forms
- \triangleright Estimates in dimension d = 2 for constant magnetic fields
 - Lower estimates
 - Upper estimates and numerical results
 - A linear stability result (numerical) and an open question

• Assumptions are not detailed: $\mathbf{A} \in \mathrm{L}^{d+\varepsilon}_{\mathrm{loc}}(\mathbb{R}^d), \varepsilon > 0 + \mathrm{integral}$ conditions as in [Esteban, Lions, 1989]

Estimates are given (almost) only in the case p>2 but similar estimates hold in the other cases

Joint work with M.J. Esteban, A. Laptev and M. Loss

・ロト ・回ト ・ヨト ・ヨト

In dimensions 2 and 3 Magnetic rings: interpolation on the circle Aharonov-Bohm magnetic fields and symmetry

Magnetic Laplacian and spectral gap

In dimensions d = 2 and d = 3: the magnetic Laplacian is

 $-\Delta_{\mathbf{A}}\psi = -\Delta\psi - 2\,i\,\mathbf{A}\cdot\nabla\psi + |\mathbf{A}|^{2}\psi - i\,(\operatorname{div}\mathbf{A})\,\psi$

where the magnetic potential (resp. field) is $\boldsymbol{\mathsf{A}}$ (resp. $\boldsymbol{\mathsf{B}}=\operatorname{curl}\boldsymbol{\mathsf{A}})$ and

$$\mathrm{H}^{1}_{\mathbf{A}}(\mathbb{R}^{d}) := \left\{ \psi \in \mathrm{L}^{2}(\mathbb{R}^{d}) \, : \,
abla_{\mathbf{A}} \psi \in \mathrm{L}^{2}(\mathbb{R}^{d})
ight\} \, , \quad
abla_{\mathbf{A}} :=
abla + \, i \, \mathbf{A}$$

Spectral gap inequality

 $\|\nabla_{\mathbf{A}}\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \geq \Lambda[\mathbf{B}] \, \|\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \quad \forall \, \psi \in \mathrm{H}^{1}_{\mathbf{A}}(\mathbb{R}^{d})$

A depends only on B = curl A
Assumption: equality holds for some ψ ∈ H¹_A(ℝ^d)
If B is a constant magnetic field, Λ[B] = |B|
If d = 2, spec(-Δ_A) = {(2j + 1) |B| : j ∈ N} is generated by the Landau levels. The Lowest Landau Level corresponds to j = 0

In dimensions 2 and 3 Magnetic rings: interpolation on the circle Aharonov-Bohm magnetic fields and symmetry

Magnetic interpolation inequalities

$$\begin{split} \|\nabla_{\mathbf{A}}\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} + \alpha \|\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \geq \mu_{\mathbf{B}}(\alpha) \|\psi\|_{\mathrm{L}^{p}(\mathbb{R}^{d})}^{2} \quad \forall \psi \in \mathrm{H}^{1}_{\mathbf{A}}(\mathbb{R}^{d}) \\ \text{for any } \alpha \in (-\Lambda[\mathbf{B}], +\infty) \text{ and any } p \in (2, 2^{*}), \\ \|\nabla_{\mathbf{A}}\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} + \beta \|\psi\|_{\mathrm{L}^{p}(\mathbb{R}^{d})}^{2} \geq \nu_{\mathbf{B}}(\beta) \|\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \quad \forall \psi \in \mathrm{H}^{1}_{\mathbf{A}}(\mathbb{R}^{d}) \\ \text{for any } \beta \in (0, +\infty) \text{ and any } p \in (1, 2) \end{split}$$

$$\|\nabla_{\mathbf{A}}\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \geq \gamma \int_{\mathbb{R}^{d}} |\psi|^{2} \log\left(\frac{|\psi|^{2}}{\|\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}}\right) dx + \xi_{\mathbf{B}}(\gamma) \|\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}$$

(limit case corresponding to p=2) for any $\gamma \in (0,+\infty)$

$$C_{p} := \begin{cases} \min_{u \in H^{1}(\mathbb{R}^{d}) \setminus \{0\}} \frac{\|\nabla u\|_{L^{2}(\mathbb{R}^{d})}^{2} + \|u\|_{L^{2}(\mathbb{R}^{d})}^{2}}{\|u\|_{L^{p}(\mathbb{R}^{d})}^{2}} & \text{if } p \in \{2, 2^{*}\}\\ \min_{u \in H^{1}(\mathbb{R}^{d}) \setminus \{0\}} \frac{\|\nabla u\|_{L^{2}(\mathbb{R}^{d})}^{2} + \|u\|_{L^{p}(\mathbb{R}^{d})}^{2}}{\|u\|_{L^{2}(\mathbb{R}^{d})}^{2}} & \text{if } p \in \{1, 2\} \end{cases}$$

 $\begin{aligned} \mu_{\mathbf{0}}(1) &= \mathsf{C}_{p} \text{ if } p \in (2,2^{*}), \, \nu_{\mathbf{0}}(1) = \mathsf{C}_{p} \text{ if } p \in (1,2) \\ \xi_{\mathbf{0}}(\gamma) &= \gamma \log \left(\pi \, e^{2} / \gamma\right) \text{ if } p = 2 \end{aligned}$

医下口 医下

In dimensions 2 and 3 Magnetic rings: interpolation on the circle Aharonov-Bohm magnetic fields and symmetry

A statement

Theorem

 $p \in (2, 2^*)$: $\mu_{\mathbf{B}}$ is monotone increasing on $(-\Lambda[\mathbf{B}], +\infty)$, concave and $\lim_{\alpha \to (-\Lambda[\mathbf{B}])_+} \mu_{\mathbf{B}}(\alpha) = 0 \quad and \quad \lim_{\alpha \to +\infty} \mu_{\mathbf{B}}(\alpha) \, \alpha^{\frac{d-2}{2} - \frac{d}{p}} = \mathsf{C}_p$ $p \in (1,2)$: $\nu_{\mathbf{B}}$ is monotone increasing on $(0,+\infty)$, concave and $\lim_{\beta \to 0_{+}} \nu_{\mathbf{B}}(\beta) = \Lambda[\mathbf{B}] \quad and \quad \lim_{\beta \to +\infty} \nu_{\mathbf{B}}(\beta) \beta^{-\frac{2p}{2p+d(2-p)}} = \mathsf{C}_{p}$ $\xi_{\mathbf{B}}$ is continuous on $(0, +\infty)$, concave, $\xi_{\mathbf{B}}(0) = \Lambda[\mathbf{B}]$ and $\xi_{\mathbf{B}}(\gamma) = \frac{d}{2} \gamma \log\left(\frac{\pi e^2}{\gamma}\right) (1 + o(1)) \quad \text{as} \quad \gamma \to +\infty$

Constant magnetic fields: equality is achieved Nonconstant magnetic fields: only partial answers are known

In dimensions 2 and 3 Magnetic rings: interpolation on the circle Aharonov-Bohm magnetic fields and symmetry

・ロン ・四 と ・ ヨ と ・ 日 と

э

Numerical results and the symmetry issue

<ロ> <同> <同> < 回> < 回>

-

Figure: Case d = 2, p = 3, B = 1Upper estimates: $\alpha \mapsto \mu_{\text{Gauss}}(\alpha)$, $\mu_{\text{EL}}(\alpha)$ Lower estimates: $\alpha \mapsto \mu_{\text{interp}}(\alpha)$, $\mu_{\text{LT}}(\alpha)$ The exact value associated with μ_{B} lies in the grey area. Plots represent the curves $\log_{10}(\mu/\mu_{\text{EL}})$

In dimensions 2 and 3 Magnetic rings: interpolation on the circle Aharonov-Bohm magnetic fields and symmetry

An open question of symmetry

• [Bonheure, Nys, Van Schaftingen, 2016] for a fixed $\alpha > 0$ and for **B** small enough, the optimal functions are radially symmetric functions, *i.e.*, belong to C_0 This regime is equivalent to the regime as $\alpha \to +\infty$ for a given **B**, at least if the magnetic field is constant

Numerically our upper and lower bounds are (in dimension d=2, for a constant magnetic field) extremely close

 \blacksquare . The optimal function in \mathcal{C}_0 is linearly stable with respect to perturbations in \mathcal{C}_1

▲ A reference: JD, M.J. Esteban, A. Laptev, M. Loss. Interpolation inequalities and spectral estimates for magnetic operators. Annales Henri Poincaré, 19 (5): 1439-1463, May 2018

 \triangleright Prove that the optimality case is achieved among radial function if d = 2 and **B** is a constant magnetic field

・ロン ・回と ・ヨン ・ ヨン

With magnetic fields (2/3)Magnetic rings: the case of \mathbb{S}^1

 \rhd A magnetic interpolation inequality on $\mathbb{S}^1\!\!:$ with p>2

 $\|\psi' + i \operatorname{\mathsf{a}} \psi\|_{\mathrm{L}^2(\mathbb{S}^1)}^2 + \alpha \, \|\psi\|_{\mathrm{L}^2(\mathbb{S}^1)}^2 \geq \mu_{\operatorname{\mathsf{a}},\operatorname{\mathsf{p}}}(\alpha) \, \|\psi\|_{\mathrm{L}^{\operatorname{\mathsf{p}}}(\mathbb{S}^1)}^2$

 \triangleright Consequences

• [A Keller-Lieb-Thirring inequality]

• A new Hardy inequality for Aharonov-Bohm magnetic fields in \mathbb{R}^2

Joint work with M.J. Esteban, A. Laptev and M. Loss

イロン 不同 とくほう イヨン

Magnetic flux, a reduction

Assume that $a: \mathbb{R} \to \mathbb{R}$ is a 2π -periodic function such that its restriction to $(-\pi,\pi] \approx \mathbb{S}^1$ is in $L^1(\mathbb{S}^1)$ and define the space

$$X_{\mathbf{a}} := \left\{ \psi \in \mathcal{C}_{\mathrm{per}}(\mathbb{R}) \, : \, \psi' + i \, \mathbf{a} \, \psi \in \mathrm{L}^2(\mathbb{S}^1)
ight\}$$

• A standard change of gauge (see *e.q.* [Ilvin, Laptev, Loss, Zelik, 2016

$$\psi(s) \mapsto e^{i \int_{-\pi}^{s} (a(s) - \bar{a}) \, \mathrm{d}\sigma} \, \psi(s)$$

where $\bar{a} := \int_{-\pi}^{\pi} a(s) d\sigma$ is the magnetic flux, reduces the problem to

a is a constant function

• For any $k \in \mathbb{Z}$, ψ by $\mathbf{s} \mapsto e^{iks} \psi(\mathbf{s})$ shows that $\mu_{\mathbf{a},\mathbf{p}}(\alpha) = \mu_{k+\mathbf{a},\mathbf{p}}(\alpha)$ $a \in [0, 1]$

• $\mu_{a,p}(\alpha) = \mu_{1-a,p}(\alpha)$ because $|\psi' + i a \psi|^2 = |\chi' + i (1 - a) \chi|^2 = |\overline{\psi}' - i a \overline{\psi}|^2$ if $\chi(s) = e^{-is} \overline{\psi(s)}$ $a \in [0, 1/2]$ ・ロン ・四マ ・ヨマー

Optimal interpolation

We want to characterize the *optimal constant* in the inequality

$$\|\psi' + i \, \mathbf{a} \, \psi\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} + \alpha \, \|\psi\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} \geq \mu_{\mathbf{a},\mathbf{p}}(\alpha) \, \|\psi\|_{\mathrm{L}^{p}(\mathbb{S}^{1})}^{2}$$

written for any p > 2, $a \in (0, 1/2]$, $\alpha \in (-a^2, +\infty)$, $\psi \in X_a$

$$\mu_{\boldsymbol{a},\boldsymbol{p}}(\alpha) := \inf_{\boldsymbol{\psi} \in \boldsymbol{X}_{\boldsymbol{a}} \setminus \{0\}} \frac{\int_{-\pi}^{\pi} \left(|\boldsymbol{\psi}' + \boldsymbol{i} \, \boldsymbol{a} \, \boldsymbol{\psi}|^2 + \alpha \, |\boldsymbol{\psi}|^2 \right) \mathrm{d}\sigma}{\|\boldsymbol{\psi}\|_{\mathrm{L}^{\boldsymbol{p}}(\mathbb{S}^1)}^2}$$

p = -2 = 2 d/(d-2) with d = 1 [Exner, Harrell, Loss, 1998] $p = +\infty$ [Galunov, Olienik, 1995] [Ilyin, Laptev, Loss, Zelik, 2016] $\lim_{\alpha \to -a^2} \mu_{a,p}(\alpha) = 0$ [JD, Esteban, Laptev, Loss, 2016]

Using a Fourier series $\psi(s) = \sum_{k \in \mathbb{Z}} \psi_k e^{iks}$, we obtain that

$$\|\psi' + i \, a \, \psi\|_{\mathrm{L}^2(\mathbb{S}^1)}^2 = \sum_{k \in \mathbb{Z}} (a+k)^2 \, |\psi_k|^2 \ge a^2 \, \|\psi\|_{\mathrm{L}^2(\mathbb{S}^1)}^2$$

 $\psi \mapsto \|\psi' + i \, \mathbf{a} \, \psi\|_{\mathrm{L}^2(\mathbb{S}^1)}^2 + \alpha \, \|\psi\|_{\mathrm{L}^2(\mathbb{S}^1)}^2 \text{ is coercive for any } \alpha > - \, \mathbf{a}^2_{\mathbb{S}^2} + \mathbf{a}^2_{\mathbb{S}^$

In dimensions 2 and 3 Magnetic rings: interpolation on the circle Aharonov-Bohm magnetic fields and symmetry

An interpolation result for the magnetic ring

Theorem

For any p > 2, $a \in \mathbb{R}$, and $\alpha > -a^2$, $\mu_{a,p}(\alpha)$ is achieved and (i) if $a \in [0, 1/2]$ and $a^2(p+2) + \alpha(p-2) \le 1$, then $\mu_{a,p}(\alpha) = a^2 + \alpha$ and equality is achieved only by the constant functions (ii) if $a \in [0, 1/2]$ and $a^2(p+2) + \alpha(p-2) > 1$, then $\mu_{a,p}(\alpha) < a^2 + \alpha$ and equality is not achieved among the constant functions If $\alpha > -a^2$, $a \mapsto \mu_{a,p}(\alpha)$ is monotone increasing on (0, 1/2)

In dimensions 2 and 3 Magnetic rings: interpolation on the circle Aharonov-Bohm magnetic fields and symmetry

Elimination of the phase

Let us define

$$\mathcal{Q}_{\boldsymbol{a},\boldsymbol{p},\alpha}[\boldsymbol{u}] := \frac{\|\boldsymbol{u}'\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} + \boldsymbol{a}^{2} \|\boldsymbol{u}^{-1}\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{-2} + \alpha \|\boldsymbol{u}\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2}}{\|\boldsymbol{u}\|_{\mathrm{L}^{p}(\mathbb{S}^{1})}^{2}}$$

Lemma

For any $a \in (0, 1/2)$, p > 2, $\alpha > -a^2$,

$$\mu_{\boldsymbol{a},\boldsymbol{p}}(\alpha) = \min_{\boldsymbol{u} \in \mathrm{H}^{1}(\mathbb{S}^{1}) \setminus \{\boldsymbol{0}\}} \mathcal{Q}_{\boldsymbol{a},\boldsymbol{p},\alpha}[\boldsymbol{u}]$$

is achieved by a function u > 0

・ロン ・回と ・ヨン ・ ヨン

-

In dimensions 2 and 3 Magnetic rings: interpolation on the circle Aharonov-Bohm magnetic fields and symmetry

A new Hardy inequality

$$\int_{\mathbb{R}^2} |(i \, \nabla + \mathbf{a}) \, \Psi|^2 \, d\mathbf{x} \geq \tau \int_{\mathbb{R}^2} \frac{\varphi(\mathbf{x}/|\mathbf{x}|)}{|\mathbf{x}|^2} \, |\Psi|^2 \, \mathrm{d}\mathbf{x} \quad \forall \, \varphi \in \mathrm{L}^q(\mathbb{S}^1) \,, \quad q \in (1, +\infty)$$

Corollary

Let p > 2, $a \in [0, 1/2]$, q = p/(p-2) and assume that φ is a non-negative function in $L^q(\mathbb{S}^1)$. Then the inequality holds with $\tau > 0$ given by

$$\alpha_{\boldsymbol{a},\boldsymbol{p}}\left(\tau \,\|\varphi\|_{\mathrm{L}^{q}(\mathbb{S}^{1})}\right) = \mathbf{0}$$

Moreover, $au = a^2/\|arphi\|_{\mathrm{L}^q(\mathbb{S}^1)}$ if 4 $a^2 + \|arphi\|_{\mathrm{L}^q(\mathbb{S}^1)}$ $(p-2) \leq 1$

For any $a \in (0, 1/2)$, by taking φ constant, small enough in order that $4 a^2 + \|\varphi\|_{L^q(\mathbb{S}^1)} (p-2) \leq 1$, we recover the inequality

$$\int_{\mathbb{R}^2} |(i \nabla + \mathbf{a}) \Psi|^2 \, \mathrm{d} \mathbf{x} \ge a^2 \int_{\mathbb{R}^2} \frac{|\Psi|^2}{|\mathbf{x}|^2} \, \mathrm{d} \mathbf{x}$$

[Laptev, Weidl, 1999] constant magnetic fields; [Hoffmann-Ostenhof, Laptev, 2015] in \mathbb{R}^d , $d \geq 3$

With magnetic fields (3/3)Aharonov-Bohm magnetic fields in \mathbb{R}^2

- Aharonov-Bohm effect
- [Interpolation and Keller-Lieb-Thirring inequalities in \mathbb{R}^2]
- Aharonov-Symmetry and symmetry breaking

Joint work with D. Bonheure, M.J. Esteban, A. Laptev, & M. Loss

In dimensions 2 and 3 Magnetic rings: interpolation on the circle Aharonov-Bohm magnetic fields and symmetry

Aharonov-Bohm effect

A major difference between classical mechanics and quantum mechanics is that particles are described by a non-local object, the wave function. In 1959 Y. Aharonov and D. Bohm proposed a series of experiments intended to put in evidence such phenomena which are nowadays called *Aharonov-Bohm effects*

One of the proposed experiments relies on a long, thin solenoid which produces a magnetic field such that the region in which the magnetic field is non-zero can be approximated by a line in dimension d = 3 and by a point in dimension d = 2

 \triangleright [Physics today, 2009] "The notion, introduced 50 years ago, that electrons could be affected by electromagnetic potentials without coming in contact with actual force fields was received with a skepticism that has spawned a flourishing of experimental tests and expansions of the original idea." Problem solved by considering appropriate weak solutions !

 \triangleright Is the wave function a physical object or is its modulus ? Decisive experiments have been done only 20 years ago

The interpolation inequality

Let us consider an Aharonov-Bohm vector potential

$$\mathbf{A}(x) = rac{a}{|x|^2} (x_2, -x_1) , \quad x = (x_1, x_2) \in \mathbb{R}^2 \setminus \{0\}, \quad a \in \mathbb{R}$$

Magnetic Hardy inequality [Laptev, Weidl, 1999]

$$\int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, dx \geq \min_{k \in \mathbb{Z}} \left(a - k\right)^2 \int_{\mathbb{R}^2} \frac{|\psi|^2}{|x|^2} \, dx$$

where $\nabla_{\mathbf{A}} \psi := \nabla \psi + i \mathbf{A} \psi$, so that, with $\psi = |\psi| e^{iS}$

$$\int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, d\mathbf{x} = \int_{\mathbb{R}^2} \left[(\partial_r |\psi|)^2 + (\partial_r S)^2 \, |\psi|^2 + \frac{1}{r^2} \, (\partial_\theta S + A)^2 \, |\psi|^2 \right] \, d\mathbf{x}$$

Magnetic interpolation inequality

$$\int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, d\mathbf{x} + \lambda \int_{\mathbb{R}^2} \frac{|\psi|^2}{|\mathbf{x}|^2} \, d\mathbf{x} \ge \mu(\lambda) \left(\int_{\mathbb{R}^2} \frac{|\psi|^p}{|\mathbf{x}|^2} \, d\mathbf{x} \right)^{2/p}$$

▷ Symmetrization: [Erdös, 1996], [Boulenger, Lenzmann], [Lenzmann, Sok]

In dimensions 2 and 3 Magnetic rings: interpolation on the circle Aharonov-Bohm magnetic fields and symmetry

A magnetic Hardy-Sobolev inequality

Theorem

Let $a \in [0, 1/2]$ and p > 2. For any $\lambda > -a^2$, there is an optimal, monotone increasing, concave function $\lambda \mapsto \mu(\lambda)$ which is such that

$$\int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, dx + \lambda \int_{\mathbb{R}^2} \frac{|\psi|^2}{|x|^2} \, dx \ge \mu(\lambda) \left(\int_{\mathbb{R}^2} \frac{|\psi|^p}{|x|^2} \, dx \right)^{2/p}$$

If
$$\lambda \leq \lambda_{\star} = 4 \, rac{1 - 4 \, a^2}{p^2 - 4} - a^2$$
 equality is achieved by

$$\psi(x) = (|x|^{\alpha} + |x|^{-\alpha})^{-\frac{2}{p-2}} \quad \forall x \in \mathbb{R}^2, \quad \text{with} \quad \alpha = \frac{p-2}{2}\sqrt{\lambda + a^2}$$

If $\lambda > \lambda_{\bullet}$ with

$$\lambda_{\bullet} := \frac{8 \left(\sqrt{p^4 - a^2 \left(p - 2 \right)^2 \left(p + 2 \right) \left(3 \, p - 2 \right)} + 2 \right) - 4 \, p \left(p + 4 \right)}{(p - 2)^3 \left(p + 2 \right)} - a^2$$

there is symmetry breaking: optimal functions are not radially symmetric

In dimensions 2 and 3 Magnetic rings: interpolation on the circle Aharonov-Bohm magnetic fields and symmetry

э

Figure: Case p = 4Symmetry breaking region: $\lambda > \lambda_{\bullet}(a)$ Symmetry breaking region: $\lambda < \lambda_{\star}$

- D. Bonheure, J. Dolbeault, M.J. Esteban, A. Laptev, M. Loss. Inequalities involving Aharonov-Bohm magnetic potentials in dimensions 2 and 3. Preprint arXiv:1902.06454
- D. Bonheure, J. Dolbeault, M.J. Esteban, A. Laptev, M. Loss. Symmetry results in two-dimensional inequalities for Aharonov-Bohm magnetic fields. Communications in Mathematical Physics, (2019).
- Q J. Dolbeault, M. J. Esteban, A. Laptev, and M. Loss. *Magnetic rings*. Journal of Mathematical Physics, 59 (5): 051504, 2018.
- Q J. Dolbeault, M. J. Esteban, A. Laptev, and M. Loss. Interpolation inequalities and spectral estimates for magnetic operators. Annales Henri Poincaré, 19 (5): 1439-1463, May 2018.

イロト 不得 とくほと くほとう

These slides can be found at

 $\label{eq:http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/ $$ \rhd Lectures$

The papers can be found at

 $\label{eq:http://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/ $$ $$ $$ $$ $$ $$ $$ $$ Preprints / papers $$$

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !

・ロト ・回ト ・ヨト ・ヨト

-