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Preliminaries: some examples

The ground state of a nonlinear Schrödinger equation: when the
potential competes with the nonlinearity

Moving planes and eigenvalues

with P. Felmer

Phase transition and asymptotic behaviour in a flocking model
with a mean field term:

the homogeneous Cucker-Smale / McKean-Vlasov model

PhD thesis of Xingyu Li, https://arxiv.org/abs/1906.07517

J. Dolbeault Phase transitions and symmetry in PDEs

https://arxiv.org/abs/1906.07517


Some examples
Interpolation, symmetry and symmetry breaking

Interpolation and magnetic fields

Ground state of NLS
A remark on moving planes and eigenvalues
Cucker-Smale model: attractors, stability, coercivity and rates of convergence

Ground state of NLS

B The typical issue is the competition between a potential or a weight
and a nonlinearity
Let us consider a nonlinear Schrödinger equation in presence of a
radial external potential with a minimum which is not at the origin

−∆u + V (x) u − f (u) = 0
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A two-dimensional potential V (x) with mexican hat shape

J. Dolbeault Phase transitions and symmetry in PDEs



Some examples
Interpolation, symmetry and symmetry breaking

Interpolation and magnetic fields

Ground state of NLS
A remark on moving planes and eigenvalues
Cucker-Smale model: attractors, stability, coercivity and rates of convergence

Radial solutions to −∆u + V (x) u − F ′(u) = 0
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... give rise to a radial density of energy x 7→ V |u|2 + F (u)
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symmetry breaking

... but in some cases minimal energy solutions
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The theorem of Gidas, Ni and Nirenberg

Theorem

[Gidas, Ni and Nirenberg, 1979 and 1980] Let u ∈ C 2(B),
B = B(0, 1) ⊂ Rd , be a solution of

∆u + f (u) = 0 in B , u = 0 on ∂B

and assume that f is Lipschitz. If u is positive, then it is radially
symmetric and decreasing along any radius: u′(r) < 0 for any r ∈ (0, 1]

Extension: ∆u + f (r , u) = 0, r = |x | if ∂f
∂r ≤ 0... a “cooperative” case
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An extension of the theorem of Gidas, Ni and Nirenberg

Theorem (JD, P. Felmer)

∆u + λ f (r , u) = 0 in B , u = 0 on ∂B

and assume that f ∈ C 1(R+ × R+) (no assumption on the sign of ∂f
∂r )

There exists λ1, λ2 with 0 < λ1 ≤ λ2 such that

(i) Monotonicity: if λ ∈ (0, λ1), then d
dr (u − λ u0) < 0 where u0 is the

solution of ∆u0 + λf (r , 0) = 0

(ii) Symmetry: if λ ∈ (0, λ2), then u is radially symmetric

J. Dolbeault Phase transitions and symmetry in PDEs
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A simple version of the Cucker-Smale model

A model for bird flocking (simplified version)

∂f

∂t
= D ∆v f +∇v · (∇vφ(v) f − uf f )

where uf =
´
v f dv is the average velocity, D is a measure of the

noise, f is a probability measure

left:φ(v) =
1

4
|v |4 − 1

2
|v |2 right:φ(v)− uf · v
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[J. Tugaut, 2014]
[A. Barbaro, J. Cañizo, J.A. Carrillo, and P. Degond, 2016]
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Stationary solutions: phase transition in dimension d = 1
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d = 1: there exists a bifurcation point D = D∗ such that the only
stationary solution corresponds to uf = 0 if D > D∗ and there are
three solutions corresponding to uf = 0, ±u(D) if D < D∗

uf = 0 is linearly unstable if D < D∗

Notation: f
(0)
? , f

(+)
? , f

(−)
?
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Phase transition in dimension d = 2

0.1 0.2 0.3 0.4

-1.0

-0.5

0.5

1.0

J. Dolbeault Phase transitions and symmetry in PDEs



Some examples
Interpolation, symmetry and symmetry breaking

Interpolation and magnetic fields

Ground state of NLS
A remark on moving planes and eigenvalues
Cucker-Smale model: attractors, stability, coercivity and rates of convergence

Dynamics and free energy

The free energy

F [f ] := D

ˆ
Rd

f log f dv +

ˆ
Rd

f φ dv − 1

2
|uf |2

decays according to

d

dt
F [f (t, ·)] = −

ˆ
Rd

∣∣∣∣D
∇v f

f
+∇vφ− uf

∣∣∣∣
2

f dv

d = 1: if F [f (t = 0, ·)] < F [f
(0)
? ] and D < D∗, then

F [f (t, ·)]−F
[
f

(±)
?

]
≤ C e−λ t

d = 1: λ is the eigenvalue of the linearized problem at f
(±)
? in the

weighted space L2
(

(f
(±)
? )−1

)
with scalar product

〈f , g〉± := D

ˆ
R
f g
(
f

(±)
?

)−1

dv − uf ug
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Symmetry and symmetry breaking
in interpolation inequalities

Gagliardo-Nirenberg-Sobolev inequalities on the sphere

[Keller-Lieb-Thirring inequalities on the sphere]

Caffarelli-Kohn-Nirenberg inequalities

Joint work with M.J. Esteban, M. Loss, M. Kowalczyk,...
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A result of uniqueness on a classical example

On the sphere Sd , let us consider the positive solutions of

−∆u + λ u = up−1

p ∈ [1, 2) ∪ (2, 2∗] if d ≥ 3, 2∗ = 2 d
d−2

p ∈ [1, 2) ∪ (2,+∞) if d = 1, 2

Theorem

If λ ≤ d , u ≡ λ1/(p−2) is the unique solution

[Gidas & Spruck, 1981], [Bidaut-Véron & Véron, 1991]

J. Dolbeault Phase transitions and symmetry in PDEs
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Bifurcation point of view and symmetry breaking
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Figure: (p − 2)λ 7→ (p − 2)µ(λ) with d = 3

‖∇u‖2
L2(Sd ) + λ ‖u‖2

L2(Sd ) ≥ µ(λ) ‖u‖2
Lp(Sd )

Taylor expansion of u = 1 + εϕ1 as ε→ 0 with −∆ϕ1 = d ϕ1

µ(λ) < λ if and only if λ > d
p−2

B The inequality holds with µ(λ) = λ = d
p−2 [Bakry & Emery, 1985]

[Beckner, 1993], [Bidaut-Véron & Véron, 1991, Corollary 6.1]
J. Dolbeault Phase transitions and symmetry in PDEs
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The Bakry-Emery method on the sphere

Entropy functional

Ep[ρ] := 1
p−2

[´
Sd ρ

2
p dµ−

(´
Sd ρ dµ

) 2
p

]
if p 6= 2

E2[ρ] :=
´
Sd ρ log

(
ρ

‖ρ‖
L1(Sd )

)
dµ

Fisher information functional

Ip[ρ] :=
´
Sd |∇ρ

1
p |2 dµ

[Bakry & Emery, 1985] carré du champ method: use the heat flow

∂ρ

∂t
= ∆ρ

and observe that d
dt Ep[ρ] = −Ip[ρ]

d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0 =⇒ Ip[ρ] ≥ d Ep[ρ]

with ρ = |u|p, if p ≤ 2# := 2 d2+1
(d−1)2

J. Dolbeault Phase transitions and symmetry in PDEs
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The evolution under the fast diffusion flow

To overcome the limitation p ≤ 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

∂ρ

∂t
= ∆ρm

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any p ∈ [1, 2∗]

Kp[ρ] :=
d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0
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(p,m) admissible region, d = 5
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Optimal inequalities

With µ(λ) = λ = d
p−2 : [Bakry & Emery, 1985]

[Beckner, 1993], [Bidaut-Véron & Véron, 1991, Corollary 6.1]

‖∇u‖2
L2(Sd ) ≥

d

p − 2

(
‖u‖2

Lp(Sd ) − ‖u‖2
L2(Sd )

)
∀ u ∈ H1(Sd)

d ≥ 3, p ∈ [1, 2) or p ∈ (2, 2 d
d−2 )

d = 1 or d = 2, p ∈ [1, 2) or p ∈ (2,∞)
p = − 2 = 2 d/(d − 2) = −2 with d = 1 [Exner, Harrell, Loss, 1998]

‖∇u‖2
L2(S1) +

1

4

(ˆ
S1

1

u2
dµ

)−1

≥ 1

4
‖u‖2

L2(S1) ∀ u ∈ H1
+(S1)
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The elliptic point of view (nonlinear flow)
∂u
∂t = u2−2β

(
L u + κ |u

′|2
u ν

)
, κ = β (p − 2) + 1

−L u − (β − 1)
|u′|2
u

ν +
λ

p − 2
u =

λ

p − 2
uκ

Multiply by L u and integrate

...

ˆ 1

−1

L u uκ dνd = −κ
ˆ 1

−1

uκ
|u′|2
u

dνd

Multiply by κ |u
′|2
u and integrate

... = +κ

ˆ 1

−1

uκ
|u′|2
u

dνd

The two terms cancel and we are left only with

ˆ 1

−1

∣∣∣∣u′′ −
p + 2

6− p

|u′|2
u

∣∣∣∣
2

ν2 dνd = 0 if p = 2∗ and β =
4

6− p

J. Dolbeault Phase transitions and symmetry in PDEs
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The Moser-Trudinger-Onofri

inequality on Riemannian manifolds

Joint work with G. Jankowiak and M.J. Esteban

Extension to compact Riemannian manifolds of dimension 2
+ another nonlinearity
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We shall also denote by R the Ricci tensor, by Hgu the Hessian of u
and by

Lgu := Hgu −
g

d
∆gu

the trace free Hessian. Let us denote by Mgu the trace free tensor

Mgu := ∇u ⊗∇u − g

d
|∇u|2

We define

λ? := inf
u∈H2(M)\{0}

ˆ
M

[
‖Lgu − 1

2 Mgu ‖2 + R(∇u,∇u)
]
e−u/2 d vgˆ

M

|∇u|2 e−u/2 d vg

J. Dolbeault Phase transitions and symmetry in PDEs
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Theorem

Assume that d = 2 and λ? > 0. If u is a smooth solution to

− 1

2
∆gu + λ = eu

then u is a constant function if λ ∈ (0, λ?)

The Moser-Trudinger-Onofri inequality on M

1

4
‖∇u‖2

L2(M) + λ

ˆ
M

u d vg ≥ λ log

(ˆ
M

eu d vg

)
∀ u ∈ H1(M)

for some constant λ > 0. Let us denote by λ1 the first positive
eigenvalue of −∆g

Corollary

If d = 2, then the MTO inequality holds with λ = Λ := min{4π, λ?}.
Moreover, if Λ is strictly smaller than λ1/2, then the optimal constant
in the MTO inequality is strictly larger than Λ

J. Dolbeault Phase transitions and symmetry in PDEs
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The flow

∂f

∂t
= ∆g (e−f /2)− 1

2 |∇f |2 e−f /2

Gλ[f ] :=

ˆ
M

‖Lg f − 1
2 Mg f ‖2 e−f /2 d vg +

ˆ
M

R(∇f ,∇f ) e−f /2 d vg

− λ
ˆ
M

|∇f |2 e−f /2 d vg

Then for any λ ≤ λ? we have

d

dt
Fλ[f (t, ·)] =

ˆ
M

(
− 1

2 ∆g f + λ
) (

∆g (e−f /2)− 1
2 |∇f |2 e−f /2

)
d vg

= −Gλ[f (t, ·)]

Since Fλ is nonnegative and limt→∞ Fλ[f (t, ·)] = 0, we obtain that

Fλ[u] ≥
ˆ ∞

0

Gλ[f (t, ·)] dt

J. Dolbeault Phase transitions and symmetry in PDEs
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Weighted Moser-Trudinger-Onofri inequalities on the
two-dimensional Euclidean space

On the Euclidean space R2, given a general probability measure µ
does the inequality

1

16π

ˆ
R2

|∇u|2 dx ≥ λ
[

log

(ˆ
Rd

eu dµ

)
−
ˆ
Rd

u dµ

]

hold for some λ > 0 ? Let

Λ? := inf
x∈R2

−∆ logµ

8π µ

Theorem

Assume that µ is a radially symmetric function. Then any radially
symmetric solution to the EL equation is a constant if λ < Λ? and the
inequality holds with λ = Λ? if equality is achieved among radial functions

J. Dolbeault Phase transitions and symmetry in PDEs
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Euclidean space: Rényi entropy
powers and fast diffusion

The Euclidean space without weights

B Rényi entropy powers, the entropy approach without rescaling:
(Savaré, Toscani): scalings, nonlinearity and a concavity property
inspired by information theory

J. Dolbeault Phase transitions and symmetry in PDEs
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The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in Rd , d ≥ 1

∂v

∂t
= ∆vm

with initial datum v(x , t = 0) = v0(x) ≥ 0 such that
´
Rd v0 dx = 1 and´

Rd |x |2 v0 dx < +∞. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

U?(t, x) :=
1

(
κ t1/µ

)d B?
( x

κ t1/µ

)

where

µ := 2 + d (m − 1) , κ :=
∣∣∣ 2µm

m − 1

∣∣∣
1/µ

and B? is the Barenblatt profile

B?(x) :=





(
C? − |x |2

)1/(m−1)

+
if m > 1

(
C? + |x |2

)1/(m−1)
if m < 1

J. Dolbeault Phase transitions and symmetry in PDEs
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The Rényi entropy power F

The entropy is defined by

E :=

ˆ
Rd

vm dx

and the Fisher information by

I :=

ˆ
Rd

v |∇p|2 dx with p =
m

m − 1
vm−1

If v solves the fast diffusion equation, then

E′ = (1−m) I

To compute I′, we will use the fact that

∂p

∂t
= (m − 1) p ∆p + |∇p|2

F := Eσ with σ =
µ

d (1−m)
= 1+

2

1−m

(
1

d
+ m − 1

)
=

2

d

1

1−m
−1

has a linear growth asymptotically as t → +∞
J. Dolbeault Phase transitions and symmetry in PDEs
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The variation of the Fisher information

Lemma

If v solves ∂v
∂t = ∆vm with 1− 1

d ≤ m < 1, then

I′ =
d

dt

ˆ
Rd

v |∇p|2 dx = − 2

ˆ
Rd

vm
(
‖D2p‖2 + (m − 1) (∆p)2

)
dx

Explicit arithmetic geometric inequality

‖D2p‖2 − 1

d
(∆p)2 =

∥∥∥∥D2p− 1

d
∆p Id

∥∥∥∥
2

.... there are no boundary terms in the integrations by parts ?

J. Dolbeault Phase transitions and symmetry in PDEs
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The concavity property

Theorem

[Toscani-Savaré] Assume that m ≥ 1− 1
d if d > 1 and m > 0 if d = 1.

Then F (t) is increasing, (1−m) F′′(t) ≤ 0 and

lim
t→+∞

1

t
F(t) = (1−m)σ lim

t→+∞
Eσ−1 I = (1−m)σ Eσ−1

? I?

[Dolbeault-Toscani] The inequality

Eσ−1 I ≥ Eσ−1
? I?

is equivalent to the Gagliardo-Nirenberg inequality

‖∇w‖θL2(Rd ) ‖w‖1−θ
Lq+1(Rd )

≥ CGN ‖w‖L2q(Rd )

if 1− 1
d ≤ m < 1. Hint: vm−1/2 = w

‖w‖
L2q (Rd )

, q = 1
2 m−1

J. Dolbeault Phase transitions and symmetry in PDEs
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Euclidean space: self-similar
variables and relative entropies

In the Euclidean space, it is possible to characterize the optimal
constants using a spectral gap property

J. Dolbeault Phase transitions and symmetry in PDEs
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Self-similar variables and relative entropies

The large time behavior of the solution of ∂v
∂t = ∆vm is governed by

the source-type Barenblatt solutions

v?(t, x) :=
1

κd(µ t)d/µ
B?
(

x

κ (µ t)1/µ

)
where µ := 2 + d (m − 1)

where B? is the Barenblatt profile (with appropriate mass)

B?(x) :=
(
1 + |x |2

)1/(m−1)

A time-dependent rescaling: self-similar variables

v(t, x) =
1

κd Rd
u
(
τ,

x

κR

)
where

dR

dt
= R1−µ , τ(t) := 1

2 log

(
R(t)

R0

)

Then the function u solves a Fokker-Planck type equation

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2 x

) ]
= 0

J. Dolbeault Phase transitions and symmetry in PDEs



Some examples
Interpolation, symmetry and symmetry breaking

Interpolation and magnetic fields

Interpolation on the sphere
Fast diffusion equations on the Euclidean space
CKN inequalities, symmetry breaking and weighted nonlinear flows

Free energy and Fisher information

The function u solves a Fokker-Planck type equation

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2 x

) ]
= 0

(Ralston, Newman, 1984) Lyapunov functional:
Generalized entropy or Free energy

E [u] :=

ˆ
Rd

(
−um

m
+ |x |2u

)
dx − E0

Entropy production is measured by the Generalized Fisher
information

d

dt
E [u] = −I[u] , I[u] :=

ˆ
Rd

u
∣∣∇um−1 + 2 x

∣∣2 dx
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Without weights: relative entropy, entropy production

Stationary solution: choose C such that ‖u∞‖L1 = ‖u‖L1 = M > 0

u∞(x) :=
(
C + |x |2

)−1/(1−m)

+

Entropy – entropy production inequality (del Pino, JD)

Theorem

d ≥ 3, m ∈ [ d−1
d ,+∞), m > 1

2 , m 6= 1

I[u] ≥ 4 E [u]

p = 1
2m−1 , u = w2p: (GN) ‖∇w‖θL2(Rd ) ‖w‖1−θ

Lq+1(Rd )
≥ CGN ‖w‖L2q(Rd )

Corollary

(del Pino, JD) A solution u with initial data u0 ∈ L1
+(Rd) such that

|x |2 u0 ∈ L1(Rd), um0 ∈ L1(Rd) satisfies E [u(t, ·)] ≤ E [u0] e− 4 t

J. Dolbeault Phase transitions and symmetry in PDEs
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A computation on a large ball, with boundary terms

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2 x

) ]
= 0 τ > 0 , x ∈ BR

where BR is a centered ball in Rd with radius R > 0, and assume that
u satisfies zero-flux boundary conditions

(
∇um−1 − 2 x

)
· x

|x | = 0 τ > 0 , x ∈ ∂BR .

With z(τ, x) := ∇Q(τ, x) := ∇um−1 − 2 x , the relative Fisher
information is such that

d

dτ

ˆ
BR

u |z |2 dx + 4

ˆ
BR

u |z |2 dx

+ 2 1−m
m

ˆ
BR

um
(∥∥D2Q

∥∥2 − (1−m) (∆Q)2
)
dx

=

ˆ
∂BR

um
(
ω · ∇|z |2

)
dσ ≤ 0 (by Grisvard’s lemma)
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Spectral gap: sharp asymptotic rates of convergence

Assumptions on the initial datum v0

(H1) VD0 ≤ v0 ≤ VD1 for some D0 > D1 > 0

(H2) if d ≥ 3 and m ≤ m∗, (v0 − VD) is integrable for a suitable
D ∈ [D1,D0]

Theorem

(Blanchet, Bonforte, JD, Grillo, Vázquez) Under Assumptions
(H1)-(H2), if m < 1 and m 6= m∗ := d−4

d−2 , the entropy decays according
to

E [v(t, ·)] ≤ C e−2 (1−m) Λα,d t ∀ t ≥ 0

where Λα,d > 0 is the best constant in the Hardy–Poincaré inequality

Λα,d

ˆ
Rd

|f |2 dµα−1 ≤
ˆ
Rd

|∇f |2 dµα ∀ f ∈ H1(dµα) ,

ˆ
Rd

f dµα−1 = 0

with α := 1/(m − 1) < 0, dµα := hα dx , hα(x) := (1 + |x |2)α
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Spectral gap and best constants

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2
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Caffarelli-Kohn-Nirenberg,
symmetry and symmetry breaking

results, and weighted nonlinear flows

Joint work with M.J. Esteban and M. Loss
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Critical Caffarelli-Kohn-Nirenberg inequality

Let Da,b :=
{
v ∈ Lp

(
Rd , |x |−b dx

)
: |x |−a |∇v | ∈ L2

(
Rd , dx

)}

(ˆ
Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

ˆ
Rd

|∇v |2
|x |2 a

dx ∀ v ∈ Da,b

holds under conditions on a and b

p =
2 d

d − 2 + 2 (b − a)
(critical case)

B An optimal function among radial functions:

v?(x) =
(

1 + |x |(p−2) (ac−a)
)− 2

p−2

and C?a,b =
‖ |x |−b v? ‖2

p

‖ |x |−a∇v? ‖2
2

Question: Ca,b = C?a,b (symmetry) or Ca,b > C?a,b (symmetry breaking) ?
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Critical CKN: range of the parameters

Figure: d = 3(ˆ
Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

ˆ
Rd

|∇v |2
|x |2 a

dx

a

b

0

1

−1

b = a

b= a+ 1

a = d−2
2

p

p =
2 d

d − 2 + 2 (b − a)
a < ac := (d − 2)/2
a ≤ b ≤ a + 1 if d ≥ 3,
a + 1/2 < b ≤ a + 1 if d = 1
and a < b ≤ a + 1 < 1,

p = 2/(b − a) if d = 2

[Il’in (1961)]
[Glaser, Martin, Grosse, Thirring (1976)]

[Caffarelli, Kohn, Nirenberg (1984)]
[F. Catrina, Z.-Q. Wang (2001)]
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Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve

bFS(a) :=
d (ac − a)

2
√

(ac − a)2 + d − 1
+ a− ac

a

b

0

[Smets], [Smets, Willem], [Catrina, Wang], [Felli, Schneider]

v 7→ C?a,b

ˆ
Rd

|∇v |2
|x |2 a

dx −
(ˆ

Rd

|v |p
|x |b p

dx

)2/p

is linearly instable at v = v?
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Symmetry versus symmetry breaking:
the sharp result in the critical case

[JD, Esteban, Loss (2016)]

a

b

0

Theorem

Let d ≥ 2 and p < 2∗. If either a ∈ [0, ac) and b > 0, or a < 0 and
b ≥ bFS(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

B
J. Dolbeault Phase transitions and symmetry in PDEs
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The symmetry proof in one slide

A change of variables: v(|x |α−1 x) = w(x), Dαv =
(
α ∂v
∂s ,

1
s ∇ωv

)

‖v‖L2p,d−n(Rd ) ≤ Kα,n,p ‖Dαv‖ϑL2,d−n(Rd ) ‖v‖1−ϑ
Lp+1,d−n(Rd )

∀ v ∈ Hp
d−n,d−n(Rd)

Concavity of the Rényi entropy power: with
Lα = −D∗α Dα = α2

(
u′′ + n−1

s u′
)

+ 1
s2 ∆ω u and ∂u

∂t = Lαum

− d
dt G[u(t, ·)]

(´
Rd u

m dµ
)1−σ

≥ (1−m) (σ − 1)
´
Rd u

m
∣∣∣LαP−

´
Rd u |DαP|2 dµ´

Rd um dµ

∣∣∣
2

dµ

+ 2
´
Rd

(
α4
(
1− 1

n

) ∣∣∣P′′ − P′

s − ∆ω P
α2 (n−1) s2

∣∣∣
2

+ 2α2

s2

∣∣∇ωP′ − ∇ωP
s

∣∣2
)

um dµ

+ 2
´
Rd

(
(n − 2)

(
α2
FS − α2

)
|∇ωP|2 + c(n,m, d) |∇ωP|4

P2

)
um dµ

Elliptic regularity and the Emden-Fowler transformation: justifying
the integrations by parts
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The variational problem on the cylinder

B With the Emden-Fowler transformation

v(r , ω) = r a−ac ϕ(s, ω) with r = |x | , s = − log r and ω =
x

r

the variational problem becomes

Λ 7→ µ(Λ) := min
ϕ∈H1(C)

‖∂sϕ‖2
L2(C) + ‖∇ωϕ‖2

L2(C) + Λ ‖ϕ‖2
L2(C)

‖ϕ‖2
Lp(C)

is a concave increasing function

Restricted to symmetric functions, the variational problem becomes

µ?(Λ) := min
ϕ∈H1(R)

‖∂sϕ‖2
L2(Rd ) + Λ ‖ϕ‖2

L2(Rd )

‖ϕ‖2
Lp(Rd )

= µ?(1) Λα

Symmetry means µ(Λ) = µ?(Λ)

Symmetry breaking means µ(Λ) < µ?(Λ)
J. Dolbeault Phase transitions and symmetry in PDEs
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Numerical results

20 40 60 80 100

10

20

30

40

50

symmetric

non-symmetric

asymptotic

bifurcation

µ

Λα

µ(Λ)

�(Λ) = µ�(1) Λ
α

Parametric plot of the branch of optimal functions for p = 2.8, d = 5.

Non-symmetric solutions bifurcate from symmetric ones at a bifurcation

point Λ1 computed by V. Felli and M. Schneider. The branch behaves for

large values of Λ as shown by F. Catrina and Z.-Q. Wang
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Three references

Lecture notes on Symmetry and nonlinear diffusion flows...
a course on entropy methods (see webpage)

[JD, Maria J. Esteban, and Michael Loss] Symmetry and
symmetry breaking: rigidity and flows in elliptic PDEs
... the elliptic point of view: Proc. Int. Cong. of Math., Rio de
Janeiro, 3: 2279-2304, 2018.

[JD, Maria J. Esteban, and Michael Loss] Interpolation
inequalities, nonlinear flows, boundary terms, optimality and
linearization... the parabolic point of view
Journal of elliptic and parabolic equations, 2: 267-295, 2016.
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With magnetic fields (1/3)

in dimensions 2 and 3

Interpolation inequalities and spectral estimates

Estimates, numerics; an open question on constant magnetic fields

J. Dolbeault Phase transitions and symmetry in PDEs
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Magnetic interpolation inequalities
in the Euclidean space

B Three interpolation inequalities and their dual forms

B Estimates in dimension d = 2 for constant magnetic fields

Lower estimates

Upper estimates and numerical results

A linear stability result (numerical) and an open question

Assumptions are not detailed: A ∈ Ld+ε
loc (Rd), ε > 0 + integral

conditions as in [Esteban, Lions, 1989]
Estimates are given (almost) only in the case p > 2 but similar

estimates hold in the other cases

Joint work with M.J. Esteban, A. Laptev and M. Loss
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Magnetic Laplacian and spectral gap

In dimensions d = 2 and d = 3: the magnetic Laplacian is

−∆A ψ = −∆ψ − 2 i A · ∇ψ + |A|2ψ − i (divA)ψ

where the magnetic potential (resp. field) is A (resp. B = curlA) and

H1
A(Rd) :=

{
ψ ∈ L2(Rd) : ∇Aψ ∈ L2(Rd)

}
, ∇A := ∇+ i A

Spectral gap inequality

‖∇Aψ‖2
L2(Rd ) ≥ Λ[B] ‖ψ‖2

L2(Rd ) ∀ψ ∈ H1
A(Rd)

Λ depends only on B = curlA
Assumption: equality holds for some ψ ∈ H1

A(Rd)
If B is a constant magnetic field, Λ[B] = |B|
If d = 2, spec(−∆A) = {(2j + 1) |B| : j ∈ N} is generated by the

Landau levels. The Lowest Landau Level corresponds to j = 0

J. Dolbeault Phase transitions and symmetry in PDEs
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Magnetic interpolation inequalities

‖∇Aψ‖2
L2(Rd ) + α ‖ψ‖2

L2(Rd ) ≥ µB(α) ‖ψ‖2
Lp(Rd ) ∀ψ ∈ H1

A(Rd)

for any α ∈ (−Λ[B],+∞) and any p ∈ (2, 2∗),

‖∇Aψ‖2
L2(Rd ) + β ‖ψ‖2

Lp(Rd ) ≥ νB(β) ‖ψ‖2
L2(Rd ) ∀ψ ∈ H1

A(Rd)

for any β ∈ (0,+∞) and any p ∈ (1, 2)

‖∇Aψ‖2
L2(Rd ) ≥ γ

ˆ
Rd

|ψ|2 log

(
|ψ|2

‖ψ‖2
L2(Rd )

)
dx + ξB(γ) ‖ψ‖2

L2(Rd )

(limit case corresponding to p = 2) for any γ ∈ (0,+∞)

Cp :=





minu∈H1(Rd )\{0}
‖∇u‖2

L2(Rd )
+‖u‖2

L2(Rd )

‖u‖2
Lp (Rd )

if p ∈ (2, 2∗)

minu∈H1(Rd )\{0}
‖∇u‖2

L2(Rd )
+‖u‖2

Lp (Rd )

‖u‖2
L2(Rd )

if p ∈ (1, 2)

µ0(1) = Cp if p ∈ (2, 2∗), ν0(1) = Cp if p ∈ (1, 2)
ξ0(γ) = γ log

(
π e2/γ

)
if p = 2
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A statement

Theorem

p ∈ (2, 2∗): µB is monotone increasing on (−Λ[B],+∞), concave and

lim
α→(−Λ[B])+

µB(α) = 0 and lim
α→+∞

µB(α)α
d−2

2 −
d
p = Cp

p ∈ (1, 2): νB is monotone increasing on (0,+∞), concave and

lim
β→0+

νB(β) = Λ[B] and lim
β→+∞

νB(β)β−
2 p

2 p+d (2−p) = Cp

ξB is continuous on (0,+∞), concave, ξB(0) = Λ[B] and

ξB(γ) = d
2 γ log

(
π e2

γ

)
(1 + o(1)) as γ → +∞

Constant magnetic fields: equality is achieved
Nonconstant magnetic fields: only partial answers are known

J. Dolbeault Phase transitions and symmetry in PDEs
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2 4 6 8 10

2

4

6

8

Figure: Case d = 2, p = 3, B = 1: plot of α 7→ (2π)
2
p
−1
µB(α)
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Numerical results
and the symmetry issue
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Figure: Case d = 2, p = 3, B = 1
Upper estimates: α 7→ µGauss(α), µEL(α)
Lower estimates: α 7→ µinterp(α), µLT(α)
The exact value associated with µB lies in the grey area.
Plots represent the curves log10(µ/µEL) B
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An open question of symmetry

[Bonheure, Nys, Van Schaftingen, 2016] for a fixed α > 0 and
for B small enough, the optimal functions are radially symmetric
functions, i.e., belong to C0

This regime is equivalent to the regime as α→ +∞ for a given B, at
least if the magnetic field is constant

Numerically our upper and lower bounds are (in dimension d = 2,
for a constant magnetic field) extremely close

The optimal function in C0 is linearly stable with respect to
perturbations in C1

A reference: JD, M.J. Esteban, A. Laptev, M. Loss. Interpolation
inequalities and spectral estimates for magnetic operators. Annales
Henri Poincaré, 19 (5): 1439-1463, May 2018

B Prove that the optimality case is achieved among radial function if
d = 2 and B is a constant magnetic field

J. Dolbeault Phase transitions and symmetry in PDEs



Some examples
Interpolation, symmetry and symmetry breaking

Interpolation and magnetic fields

In dimensions 2 and 3
Magnetic rings: interpolation on the circle
Aharonov-Bohm magnetic fields and symmetry

With magnetic fields (2/3)

Magnetic rings: the case of S1

B A magnetic interpolation inequality on S1: with p > 2

‖ψ′ + i aψ‖2
L2(S1) + α ‖ψ‖2

L2(S1) ≥ µa,p(α) ‖ψ‖2
Lp(S1)

B Consequences

[A Keller-Lieb-Thirring inequality]

A new Hardy inequality for Aharonov-Bohm magnetic fields in R2

Joint work with M.J. Esteban, A. Laptev and M. Loss
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Magnetic flux, a reduction

Assume that a : R→ R is a 2π-periodic function such that its
restriction to (−π, π] ≈ S1 is in L1(S1) and define the space

Xa :=
{
ψ ∈ Cper(R) : ψ′ + i aψ ∈ L2(S1)

}

A standard change of gauge (see e.g. [Ilyin, Laptev, Loss, Zelik,
2016])

ψ(s) 7→ e i
´ s
−π(a(s)−ā) dσ ψ(s)

where ā :=
´ π
−π a(s) dσ is the magnetic flux, reduces the problem to

a is a constant function

For any k ∈ Z, ψ by s 7→ e iks ψ(s) shows that µa,p(α) = µk+a,p(α)

a ∈ [0, 1]

µa,p(α) = µ1−a,p(α) because

|ψ′ + i aψ|2 = |χ′ + i (1− a)χ|2 =
∣∣ψ′ − i aψ

∣∣2 if χ(s) = e−is ψ(s)

a ∈ [0, 1/2]

J. Dolbeault Phase transitions and symmetry in PDEs



Some examples
Interpolation, symmetry and symmetry breaking

Interpolation and magnetic fields

In dimensions 2 and 3
Magnetic rings: interpolation on the circle
Aharonov-Bohm magnetic fields and symmetry

Optimal interpolation

We want to characterize the optimal constant in the inequality

‖ψ′ + i aψ‖2
L2(S1) + α ‖ψ‖2

L2(S1) ≥ µa,p(α) ‖ψ‖2
Lp(S1)

written for any p > 2, a ∈ (0, 1/2], α ∈ (−a2,+∞), ψ ∈ Xa

µa,p(α) := inf
ψ∈Xa\{0}

´ π
−π
(
|ψ′ + i aψ|2 + α |ψ|2

)
dσ

‖ψ‖2
Lp(S1)

p = − 2 = 2 d/(d − 2) with d = 1 [Exner, Harrell, Loss, 1998]
p = +∞ [Galunov, Olienik, 1995] [Ilyin, Laptev, Loss, Zelik, 2016]
limα→− a2 µa,p(α) = 0 [JD, Esteban, Laptev, Loss, 2016]

Using a Fourier series ψ(s) =
∑

k∈Z ψk e
iks , we obtain that

‖ψ′ + i aψ‖2
L2(S1) =

∑

k∈Z
(a + k)2 |ψk |2 ≥ a2 ‖ψ‖2

L2(S1)

ψ 7→ ‖ψ′ + i aψ‖2
L2(S1) + α ‖ψ‖2

L2(S1) is coercive for any α > − a2

J. Dolbeault Phase transitions and symmetry in PDEs
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An interpolation result for the magnetic ring

Theorem

For any p > 2, a ∈ R, and α > − a2, µa,p(α) is achieved and
(i) if a ∈ [0, 1/2] and a2 (p + 2) + α (p − 2) ≤ 1, then µa,p(α) = a2 + α
and equality is achieved only by the constant functions
(ii) if a ∈ [0, 1/2] and a2 (p + 2) + α (p − 2) > 1, then µa,p(α) < a2 + α
and equality is not achieved among the constant functions
If α > − a2, a 7→ µa,p(α) is monotone increasing on (0, 1/2)

-0.2 -0.1 0.1 0.2 0.3 0.4
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0.2 0.4 0.6 0.8 1.0 1.2 1.4
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0.6

0.8

1.0

1.2

Figure: α 7→ µa,p(α) with p = 4 and (left) a = 0.45 or (right) a = 0.2
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Elimination of the phase

Let us define

Qa,p,α[u] :=
‖u′‖2

L2(S1) + a2 ‖u−1‖−2
L2(S1) + α ‖u‖2

L2(S1)

‖u‖2
Lp(S1)

Lemma

For any a ∈ (0, 1/2), p > 2, α > − a2,

µa,p(α) = min
u∈H1(S1)\{0}

Qa,p,α[u]

is achieved by a function u > 0
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A new Hardy inequality
ˆ
R2

|(i ∇+a) Ψ|2 dx ≥ τ
ˆ
R2

ϕ(x/|x|)
|x|2 |Ψ|2 dx ∀ϕ ∈ Lq(S1) , q ∈ (1,+∞)

Corollary

Let p > 2, a ∈ [0, 1/2], q = p/(p − 2) and assume that ϕ is a
non-negative function in Lq(S1). Then the inequality holds with τ > 0
given by

αa,p

(
τ ‖ϕ‖Lq(S1)

)
= 0

Moreover, τ = a2/‖ϕ‖Lq(S1) if 4 a2 + ‖ϕ‖Lq(S1) (p − 2) ≤ 1

For any a ∈ (0, 1/2), by taking ϕ constant, small enough in order that
4 a2 + ‖ϕ‖Lq(S1) (p − 2) ≤ 1, we recover the inequalityˆ

R2

|(i ∇+ a) Ψ|2 dx ≥ a2

ˆ
R2

|Ψ|2
|x|2 dx

[Laptev, Weidl, 1999] constant magnetic fields; [Hoffmann-Ostenhof,
Laptev, 2015] in Rd , d ≥ 3

J. Dolbeault Phase transitions and symmetry in PDEs



Some examples
Interpolation, symmetry and symmetry breaking

Interpolation and magnetic fields

In dimensions 2 and 3
Magnetic rings: interpolation on the circle
Aharonov-Bohm magnetic fields and symmetry

With magnetic fields (3/3)

Aharonov-Bohm magnetic fields

in R2

Aharonov-Bohm effect

[Interpolation and Keller-Lieb-Thirring inequalities in R2]

Aharonov-Symmetry and symmetry breaking

Joint work with D. Bonheure, M.J. Esteban, A. Laptev, & M. Loss
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Aharonov-Bohm effect

A major difference between classical mechanics and quantum
mechanics is that particles are described by a non-local object, the
wave function. In 1959 Y. Aharonov and D. Bohm proposed a series
of experiments intended to put in evidence such phenomena which are
nowadays called Aharonov-Bohm effects

One of the proposed experiments relies on a long, thin solenoid which
produces a magnetic field such that the region in which the magnetic
field is non-zero can be approximated by a line in dimension d = 3
and by a point in dimension d = 2

B [Physics today, 2009] “The notion, introduced 50 years ago, that
electrons could be affected by electromagnetic potentials without
coming in contact with actual force fields was received with a
skepticism that has spawned a flourishing of experimental tests and
expansions of the original idea.” Problem solved by considering
appropriate weak solutions !
B Is the wave function a physical object or is its modulus ? Decisive
experiments have been done only 20 years ago
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The interpolation inequality

Let us consider an Aharonov-Bohm vector potential

A(x) =
a

|x |2 (x2,− x1) , x = (x1, x2) ∈ R2 \ {0} , a ∈ R

Magnetic Hardy inequality [Laptev, Weidl, 1999]ˆ
R2

|∇A ψ|2 dx ≥ min
k∈Z

(a− k)2

ˆ
R2

|ψ|2
|x |2 dx

where ∇A ψ := ∇ψ + i Aψ, so that, with ψ = |ψ| e iSˆ
R2

|∇A ψ|2 dx =

ˆ
R2

[
(∂r |ψ|)2 + (∂rS)2 |ψ|2 +

1

r2
(∂θS + A)2 |ψ|2

]
dx

Magnetic interpolation inequality
ˆ
R2

|∇A ψ|2 dx + λ

ˆ
R2

|ψ|2
|x |2 dx ≥ µ(λ)

(ˆ
R2

|ψ|p
|x |2 dx

)2/p

B Symmetrization: [Erdös, 1996], [Boulenger, Lenzmann], [Lenzmann,
Sok]
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A magnetic Hardy-Sobolev inequality

Theorem

Let a ∈ [0, 1/2] and p > 2. For any λ > − a2, there is an optimal,
monotone increasing, concave function λ 7→ µ(λ) which is such that

ˆ
R2

|∇A ψ|2 dx + λ

ˆ
R2

|ψ|2
|x |2 dx ≥ µ(λ)

(ˆ
R2

|ψ|p
|x |2 dx

)2/p

If λ ≤ λ? = 4 1−4 a2

p2−4 − a2 equality is achieved by

ψ(x) = (|x |α + |x |−α)
− 2

p−2 ∀ x ∈ R2 , with α = p−2
2

√
λ+ a2

If λ > λ• with

λ• :=
8
(√

p4−a2 (p−2)2 (p+2) (3 p−2)+2
)
−4 p (p+4)

(p−2)3 (p+2) − a2

there is symmetry breaking: optimal functions are not radially symmetric
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Figure: Case p = 4
Symmetry breaking region: λ > λ•(a)
Symmetry breaking region: λ < λ?
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Figure: The curve a 7→ λ•(a)− λ?(a)
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