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@ Phase transition and symmetry breaking

@ Preliminaries: some observations

> Ground state in Schrodinger eqations, a mechanism

> Moving planes and eigenvalues

> Phase transition and asymptotic behaviour in a flocking model

Q@ Symmetry and symmetry breaking in interpolation inequalities
> Gagliardo-Nirenberg-Sobolev inequalities on the sphere

> [Keller-Lieb-Thirring inequalities on the sphere]

> Caffarelli-Kohn-Nirenberg inequalities

Q@ Ground states with magnetic fields
> Magnetic rings, a one-dimensional magnetic interpolation inequality
> Interpolation inequalities in dimensions 2 and 3, spectral estimates

@ Aharonov-Bohm magnetic fields in R?

> Aharonov-Bohm effect

> Interpolation [and Keller-Lieb-Thirring] inequalities in R?
> Aharonov-Symmetry and symmetry breaking
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Phase transition and
symmetry breaking

@ The notion of phase transition in physics
> Ehrenfest’s classification and more recent definitions

Q Symmetry breaking
> The principles of Pierre Curie
> A mathematical point of view: the symmetry of the ground state

@ Bifurcations, interpolation inequalities and evolution equations
> Subcritical interpolation inequalities depending on a single
parameter

> The non-linear problem versus the linearized spectral problem
> Nonlinear flows as a tool: generalized Bakry-Emery method

> Energy and relaxation
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Preliminaries: some examples

@ The ground state of a nonlinear Schrédinger equation: when the
potential competes with the nonlinearity

@ Moving planes and eigenvalues
with P. Felmer

@ Phase transition and asymptotic behaviour in a flocking model
with a mean field term:
the homogeneous Cucker-Smale / McKean-Viasov model

PhD thesis of Xingyu Li, https://arxiv.org/abs/1906.07517
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Ground state of NLS

D> The typical issue is the competition between a potential or a weight
and a nonlinearity

Let us consider a nonlinear Schrodinger equation in presence of a
radial external potential with a minimum which is not at the origin

—Au+V(x)u—f(u)=0

o0sf

-05}

A one-dimensional potential V(x)
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o NN

A two-dimensional potential V(x) with mexican hat shape
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Radial solutions to —Au+ V(x)u— F'(u) =0

... give rise to a radial density of energy x — V |u|? + F(u)
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symmetry breaking

... but in some cases minimal energy solutions

... give rise to a non-radial density of energy x — V |u|> + F(u)
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a The theorem of Gidas, Ni and Nirenberg

Theorem

[Gidas, Ni and Nirenberg, 1979 and 1980] Let u € C3(B),
B = B(0,1) C RY, be a solution of

Au+f(u)y=0inB, u=00ndB

and assume that f is Lipschitz. If u is positive, then it is radially
symmetric and decreasing along any radius: u'(r) < 0 for any r € (0, 1]

Extension: Au+ f(r,u) =0, r = |x| if 2£ <0... a “cooperative” case
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An extension of the theorem of Gidas, Ni and Nirenberg

Theorem (JD, P. Felmer)

Au+ \f(r,u)=0inB, u=0o0n0B
and assume that f € C}(R* x R¥) (no assumption on the sign of 9°)
There exists A1, Ao with 0 < \; < Ao such that

i) Monotonicity: if A € (0, \1), then <L(u — X ug) < 0 where ug is the
dr
solution of Aug + Af(r,0) =0

(ii) Symmetry: if X € (0, \2), then u is radially symmetric
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a A simple version of the Cucker-Smale model

A model for bird flocking (simplified version)

O DAV (Vuov) f )

where ur = [ v f dv is the average velocity, D is a measure of the
noise, f is a probability measure

1 1
left: p(v) = n lv|* — 5 v|? right: ¢(v) — ur - v

[J. Tugaut, 2014]
[A. Barbaro, J. Canizo, J.A. Carrillo, and P. Degond:72016]
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Stationary solutions: phase transition in dimension d = 1

0.5 0.6

Q@ d = 1: there exists a bifurcation point D = D, such that the only
stationary solution corresponds to ug = 0 if D > D, and there are
three solutions corresponding to us = 0, £u(D) if D < D,

@ us = 0 is linearly unstable if D < D,

Notation: f*(o), f*(+) f(_)

J. Dolbeault Phase transitions and symmetry in PDEs



Some examples
Interpolation, symmetry and symmetry breaking
Phase transition

Interpolation and magnetic fields

1.0

0.5

0.4

J. Dolbeault

«O>» 4F» «=)» «=)» = Q>



Some examples Ground state of NLS
A remark on moving planes and eigenvalues
Cucker-Smale model: attractors, stability, coercivity and rates of convergence

Dynamics and free energy

The free energy
1
Flf] = D/ f Iogfdv+/ fodv— = |ufl?
Rd Rd 2

decays according to

& A /'Vf vh— ur

Q@ d=1if FIf(t =0,-)] < F[f\”] and D < D,, then

2
f dv

FIf(e, ) - F ] < ce

@ d =1: )\ is the eigenvalue of the linearized problem at f*(i) in the
weighted space L2 (( f*(i))*l) with scalar product

-1
(f.8)x ::D/fg(f*(i)) dv —urug
R
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Symmetry and symmetry breaking
in interpolation inequalities

@ Gagliardo-Nirenberg-Sobolev inequalities on the sphere
@ [Keller-Lieb-Thirring inequalities on the sphere]

@ Caffarelli-Kohn-Nirenberg inequalities

Joint work with M.J. Esteban, M. Loss, M. Kowalczyk,...
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A result of uniqueness on a classical example

On the sphere S9, let us consider the positive solutions of
—Au+Au=uP?

pel2)uU(2,27]ifd >3, 2" = 2%

pell2)U(2,4+00)ifd=1,2

IfX<d, u= A2 js the unique solution l

[Gidas & Spruck, 1981], [Bidaut-Véron & Véron, 1991]
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Bifurcation point of view and symmetry breaking

8k -

©
T

2 4 8 10

Figure: (p—2)A— (p—2) u(X) withd =3

HVUHiZ(sd) +A ||“||i2(sd) > 1(A) ||UHip(Sd)

Taylor expansion of u=1+¢c¢; as € = 0 with —Ap; =d ¢

w(A) < A if and only if A > p;iZ
> The inequality holds with p(A) =\ = f; [Bakry & Emery, 1985]
[Beckner, 1993], [Bidaut-Véron & Véron, 1991, Corollary 6.1]
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The Bakry-Emery method on the sphere

Entropy functional
2
Eplo) = 55 {fsd p> dip— (g p du)"] if p#2

— p
52[/)] = fgd p log (HPHLl@d)) du
Fisher information functional
1
Lolp) = fsa VPP ? dp

[Bakry & Emery, 1985] carré du champ method: use the heat flow

dp

LA

ot
and observe that £&,[p] = — Z,[0]

(Ll -~ d&l)) <0 = Tlo] > d& L

. . 2
with p = |u|P, if p < 27 := %
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The evolution under the fast diffusion flow

To overcome the limitation p < 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

Op
ot
[Demange], [JD, Esteban, Kowalczyk, Loss]: for any p € [1,2%]

Kolel = 5 (Tl -~ d&5lal) <0

Am

L L
25 30

(p, m) admissible region, d =5
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Interpolation on the sphere
Interpolation, symmetry and symmetry breaking i

Fast diffusion equations on the Euclidean space

CKN inequalities, symmetry breaking and weighted nonlinear flows
Optimal inequalities

With p()) = A = -

555 [Bakry & Emery, 1985]
[Beckner, 1993], [Bi ut Véron & Véron, 1991, Corollary 6.1]

||V“||iz(sd) > b_2 (H”H%p(gd) - ||U||iZ(sd)) Vue Hl(Sd)

@ d>3,pe[l,2)orpe (2 d—d)
@d=lord=2pe[l,2)or pe (2 )
@ p=-2=2d/(d—2)=

—2 with d = 1 [Exner, Harrell, Loss, 1998|

1 1 o
2 2 1 (gl
|| \V U”Lz(Sl) + Z (/;1 7U2 d/.t) Z Z ||UI|L2(SI) Yu S H+(S )
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The elliptic point of view (nonlinear flow)

Ju — 228 (cu+m¥u),n:ﬁ(p—2)+1

lu'|? A A )
_ —(B-1 = “
Lu—(-1) . 1/+p_2u p_2u

Multiply by £ v and integrate

1 | /|2
/ Euu”dud:—l-;/ dvy
—1 -1 u

v
Multiply by % and integrate

\’I2
..:—l—,%/ u® duvy
—1

The two terms cancel and we are left only with

1
4
/ u v dvg =0 ifp:2*andﬂ:67
-1

—p

,opt2 |uPP
6—p u
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The Moser-Trudinger-Onofri

inequality on Riemannian manifolds

Joint work with G. Jankowiak and M.J. Esteban

Q@ Extension to compact Riemannian manifolds of dimension 2
+ another nonlinearity
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We shall also denote by R the Ricci tensor, by Hgyu the Hessian of u
and by

Leu:=Hgu— %Agu
the trace free Hessian. Let us denote by M, u the trace free tensor
Moy = g 2
g =Vu®Vu— J |Vul
We define

./sm {H Lgu— 3 Mgu|? +R(Vu,Vu)| e /2 dv,

A= inf
uER(M)\{0} / Vul2e 2 dv,
m
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Theorem

Assume that d = 2 and A\, > 0. If u is a smooth solution to

1
—EAgu—i-)\:e”

then u is a constant function if A € (0, \,)

The Moser-Trudinger-Onofri inequality on 9t

1
7 ||Vu|\i2(5m) + A / udvg > X log (/ e! dvg) Yu e HY(OM)
m m

for some constant A > 0. Let us denote by A; the first positive
eigenvalue of — A,

If d = 2, then the MTO inequality holds with A = A := min{4 7, A\, }.
Moreover, if A is strictly smaller than \1/2, then the optimal constant
in the MTO inequality is strictly larger than N\

J. Dolbeault Phase transitions and symmetry in PDEs
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of

a _ Ag(eff/Z) _ % |vf|2 eff/2

Galf] = /Em | Lgf — LM f|2e "2dv, + /m R(VF, Ve /2dy,

— )\/ |VF2e 2dy,
M

Then for any A < A\, we have

7]-",\[7‘( )] = /Sm (-2 Dgf+ ) (Ag(e*fm) — LV eff/2> dvg
— ~ Gilf(z. )

Since F) is nonnegative and lim;_,o Fa[f(t,-)] = 0, we obtain that

Fa[] > /000 GA[F(t )] dt
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Weighted Moser-Trudinger-Onofri inequalities on the
two-dimensional Euclidean space

On the Euclidean space R?, given a general probability measure
does the inequality

1
—— [ |Vu]?Pdx > \|log / e'du | — / udp
167 R2 Rd R

hold for some A > 0 7 Let

Ay = inf —Alogp
x€R? 8w p

Assume that p is a radially symmetric function. Then any radially
symmetric solution to the EL equation is a constant if A < A, and the
inequality holds with A\ = A, if equality is achieved among radial functions

J. Dolbeault Phase transitions and symmetry in PDEs
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Euclidean space: Rényi entropy
powers and fast diffusion

@ The Euclidean space without weights

> Rényi entropy powers, the entropy approach without rescaling:

(Savaré, Toscani): scalings, nonlinearity and a concavity property
inspired by information theory

J. Dolbeault Phase transitions and symmetry in PDEs
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The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in RY. d>1

v

— =AvT"

ot
with initial datum v(x, t = 0) = vp(x) > 0 such that [, vo dx =1 and
Jge IXI* vo dx < +00. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

1 X
U (t, x) = B.
( X) (f{tl/l‘)d (Fctl/“)
where ) Y
pm /K
= 2 d — l = |—
a Fd(m=1), =« m—1

and B, is the Barenblatt profile
(Co— xRV itm>1
B.(x) = n1/(m=1) .
(G + |x?) ifm<1

J. Dolbeault Phase transitions and symmetry in PDEs



Interpolation on the sphere
Interpolation, symmetry and symmetry breaking Fast diffusion equations on the Euclidean space
CKN inequalities, symmetry breaking and weighted nonlinear flows

The Rényi entropy power F

The entropy is defined by

E::/ v dx
Rd

and the Fisher information by

| := / v|Vpl? dx with p= =
RY m-—1
If v solves the fast diffusion equation, then
E=(1-ml

To compute I, we will use the fact that

Ip 2

—=(m-1)pA

5 = (m—1)pAp+|Vpl

e _ I _ 2 1 21

F:=E° with U_d(l—m)_1+l—m<d+m 1>_dl—m 1

has a linear growth asymptotically as t — +oo
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The variation of the Fisher information

If v solves % = Av™ with 1 — % <m<1, then

=2 [ VP ox= —2/ v (IID2pI? + (m — 1) (4p)?) o
R R4

Explicit arithmetic geometric inequality

1 1 2
%2 - 3 (80 = | D% - § o1

.... there are no boundary terms in the integrations by parts ?

J. Dolbeault Phase transitions and symmetry in PDEs
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The concavity property

[Toscani-Savaré| Assume that m>1— 2 ifd >1and m>0ifd =1.
Then F(t) is increasing, (1 — m)F"(t) <0 and

) 1 o 2 o—1] __ o—1
lim EF(t)_(l_m)Ut—llTooE I=(1-m)oE{ "I,

t—+4o00

[Dolbeault-Toscani] The inequality
EO- I > ETI,
is equivalent to the Gagliardo-Nirenberg inequality
19w ey 1 ey > Con w2

if1-1<m<1 Hint: v?1/2=_—*  g=_1_

= w20 m1
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Euclidean space: self-similar
variables and relative entropies

@ In the Euclidean space, it is possible to characterize the optimal
constants using a spectral gap property
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Self-similar variables and relative entropies

The large time behavior of the solution of % = Av™ is governed by
the source-type Barenblatt solutions

1 B X
I t)d/m =\ k(e e)V/e

where B, is the Barenblatt profile (with appropriate mass)

vie(t, x) =

) where p:=24+d(m-1)

B.(x) = (1 +|x[)"/" Y

A time-dependent rescaling: self-similar variables

1 X dR 1, 1 R(t)
V(t, X) = W U(T, /{7,"—\’) where E =R s T(t) =3 |0g (RO

Then the function u solves a Fokker-Planck type equation

%—I—V- [U(Vum_l—Zx)} =0

J. Dolbeault Phase transitions and symmetry in PDEs
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Free energy and Fisher information

Q@ The function u solves a Fokker-Planck type equation

%—FV- [U(Vumfl—Qx)] =0

@ (Ralston, Newman, 1984) Lyapunov functional:
Generalized entropy or Free energy

E[ul ;:/ (—u+x|2u) dx — &
Rd m

Q@ Entropy production is measured by the Generalized Fisher
information

d
Eé’[u] =—TI[u], Z[u]:= /]Rd u|Vu'"*1 + 2X|2 dx

J. Dolbeault Phase transitions and symmetry in PDEs
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Without weights: relative entropy, entropy production

Q@ Stationary solution: choose C such that ||usl||L: = |Jull;r =M >0

e (x) = (C + [x?) /O™

Q@ FEntropy — entropy production inequality (del Pino, JD)

d23,m6[%,+oo),m>%,m7é1

T[u] > 4 €[]

1 _ 2p:(

P=gm—r U=WwW ) ”VW”L2(]RCI ||WHLq+1(Rd) > Can HWHLZq(Rd)

(del Pino, JD) A solution u with initial data ug € L1 (R?) such that
Ix|2 up € LY(RY), uf’ € L1(RY) satisfies E[u(t,-)] < E[ug] e~ **
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A computation on a large ball, with boundary terms

ou m—
E—i—V{u(Vu 1—2X):|:0 >0, xe€Bg

where Bg is a centered ball in RY with radius R > 0, and assume that
u satisfies zero-flux boundary conditions

(Vum*1—2x)~ X _o 7>0, x€0Bg.

x|

With z(7,x) := VQ(7, x) := Vu™"! — 2, the relative Fisher
information is such that

d
— u|z\2dx+4/ ulz|? dx
dT Br Br

vaize [ um (D) - (1 m) (80)7) ox
Br
= / u™ (w- V|z|?) do < 0 (by Grisvard’s lemma)
JoBg
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Spectral gap: sharp asymptotic rates of convergence

Assumptions on the initial datum v
(Hl) \/D0 < v < VD1 fm" some Dy > Dy >0

(H2) if d > 3 and m < m,, (vy — V) is integrable for a suitable
D e [[)17 Do]

Theorem

(Blanchet, Bonforte, JD, Grillo, Vézquez) Under Assumptions
(H1)-(H2), if m < 1 and m # m, := 9=%, the entropy decays according
to

Elv(t,))] < Ce2=mAadt >0

where Ny ,g > 0 is the best constant in the Hardy—Poincaré inequality

/\W,/ |FI? dpta—1 g/ |Vf2du, Y fe Hl(dua),/ fdug_1=0
R4 Rd Rd

with o := 1/(m — 1) < 0, dpg 1= hy dx, ho(x) := (1 + |x|?)®
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Spectral gap and best constants

y(m)
4
my = 41
did
d+6
2
e Case 1
— Cage 2
e Case 3
0 m
1
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Caffarelli-Kohn-Nirenberg,
symmetry and symmetry breaking
results, and weighted nonlinear flows

Joint work with M.J. Esteban and M. Loss
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Critical Caffarelli-Kohn-Nirenberg inequality

Let D, p = { veLP(RY, [x|Pdx) : |x|7?|Vv| € L? (RY, dx) }

VP O\ [vv[?
</Rd |X‘bp dx < Ca,b |X‘2 dx VYve Da,b

holds under conditions on a and b

2d
d—2+2(b—a)

p= (critical case)

> An optimal function among radial functions:
X~ v I3

2
_ (p—2) (2c—2)) 72 -
Vi (x) (1 + |x] ) and Cj, v 2

N0

Question: Cyp = Cj , (symmetry) or Cyp > C} , (symmetry breaking)
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Critical CKN: range of the parameters

Figure: d =3 b b—a+

. p 2/p 2
(/ |"L dx) < Ca,b/ |VZ‘ dx
Rrd |Xx|PP " Jre |Xx]22 L P

-1 =137
/ ’ “
b=a
2d
p =
d_2+2(b_a)

a<ac=(d—2)2 in (1961)]
a<b<a+lifd>3, [Glaser, Martin, Grosse, Thirring (1976)]
a+tl/2<b<a+lifd=1 [Caffarelli, Kohn, Nirenberg (1984)]
anda<b<a+1l<l1, [F. Catrina, Z.-Q. Wang (2001)]

p=2/(b—a)if d=2

J. Dolbeault Phase transitions and symmetry in PDEs
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Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve b/
d(ac—a
brs(a) = 9D L,

2y/(ac—a)?+d-1

/ 0

[Smets|, [Smets, Willem], [Catrina, Wang], [Felli, Schneider]

2 p 2/p
V|—>C§b/ ‘V‘j dx — (/ |VL dx)
7 Jre |x]?2 re |x[0P

is linearly instable at v = v,

J. Dolbeault Phase transitions and symmetry in PDEs
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Symmetry versus symmetry breaking:
the sharp result in the critical case

[JD, Esteban, Loss (2016)]

Let d > 2 and p < 2*. If either a € [0,a.) and b > 0, or a < 0 and
b > bgs(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric
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The symmetry proof in one slide

@ A change of variables: v(|x|*1x) = w(x), Dov = (o 2%, L V,v)
HV||L2Pd n(R9) < Ka ,n,p ”D(XVHLM n(R9) ”VHLPH d=n(RR9) Vve Hzfn,dfn(Rd)

@ Concavity of the Rényi entropy power: with
Lo =—DD, = a? (u”—l—”%lu’) —i—s%Awuand % = L,um

< Glu(t, )] (fga u™ du)

2 2
> (1= m) (0= 1) fy um | £aP — Lo oemie
#2 fpe (a* 1= 3

+2fRd <(”*2) (a%s )|V P2 + c(n, m, d) W Pl ) u™dp

du

nm_ P AyP
P" — s a?(n—1)s?

(9P )

@ Elliptic regularity and the Emden-Fowler transformation: justifying
the integrations by parts
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The variational problem on the cylinder

> With the Emden-Fowler transformation

v(r,w) =r""%*p(s,w) with r=|x|, s=—logr and w= x

the variational problem becomes

Dsp + |Vue + Ay
Ao u(A) = min 10512y + IVwpllEaey + AMleliae
p€H(C) H‘PHLP c

is a concave increasing function

Restricted to symmetric functions, the variational problem becomes

e (A) == min 10:011E2(ge + A2 = p(1) A%
peH!(R) HSOHLP Rd)

Symmetry means p(A) = pi(A)
Symmetry breaking means p(A) < py(A)
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Numerical results

50

B I —— asymptotic

-------- symmetric
20

non-symmetric

Parametric plot of the branch of optimal functions for p = 2.8, d = 5.
Non-symmetric solutions bifurcate from symmetric ones at a bifurcation
point N1 computed by V. Felli and M. Schneider. The branch behaves for
large values of N\ as shown by F. Catrina and Z.-Q). Wang
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Three references

@ Lecture notes on Symmetry and nonlinear diffusion flows...
a course on entropy methods (see webpage)

@ [JD, Maria J. Esteban, and Michael Loss| Symmetry and
symmetry breaking: rigidity and flows in elliptic PDEs

... the elliptic point of view: Proc. Int. Cong. of Math., Rio de
Janeiro, 3: 2279-2304, 2018.

@ [JD, Maria J. Esteban, and Michael Loss| Interpolation
inequalities, nonlinear flows, boundary terms, optimality and
linearization... the parabolic point of view

Journal of elliptic and parabolic equations, 2: 267-295, 2016.
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With magnetic fields (1/3)
in dimensions 2 and 3

@ Interpolation inequalities and spectral estimates

@ Estimates, numerics; an open question on constant magnetic fields

J. Dolbeault Phase transitions and symmetry in PDEs
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Magnetic interpolation inequalities
in the Euclidean space

> Three interpolation inequalities and their dual forms

> Estimates in dimension d = 2 for constant magnetic fields
o Lower estimates
@ Upper estimates and numerical results

@ A linear stability result (numerical) and an open question

@ Assumptions are not detailed: A € L&T5(R?), e > 0 + integral
conditions as in [Esteban, Lions, 1989]

@ Estimates are given (almost) only in the case p > 2 but similar
estimates hold in the other cases

Joint work with M.J. Esteban, A. Laptev and M. Loss
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Magnetic Laplacian and spectral gap

In dimensions d = 2 and d = 3: the magnetic Laplacian is
—ApY =Dt — 2iA-Vp+ |AP) — i (divA)p
where the magnetic potential (resp. field) is A (resp. B = curl A) and
HA(RY) := {¢ € L*(RY) : Vay e L (RY)}, Va:=V+iA

Spectral gap inequality

IV At 12y > ALBI []2gsy V¥ € HA(RY)
@ A depends only on B = curl A
@ Assumption: equality holds for some 1) € Hj(RY)
@ If B is a constant magnetic field, A[B] = |B|

@ If d =2, spec(—Aa) = {(2/ + 1) |B| : j € N} is generated by the
Landau levels. The Lowest Landau Level corresponds to j =0

J. Dolbeault Phase transitions and symmetry in PDEs
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Magnetic interpolation inequalities

1986 oy + 0 [91agme > 8(0) 61y V> € HA(RY)
for any a € (—A[B], +00) and any p € (2,2*),

Hv/-\"/)“i?(]Rd) + ||1/J|\ip(Rd) > vg(B) leliz(md) Vi e H}\(Rd)
for any S € (0,+00) and any p € (1,2)

IVt ey 2 7 [ 10F log< Ul )dX+§B(7)||¢||i2(Rd)
1o

(limit case corresponding to p = 2) for any v € (0, +00)

. IVl g+l
MiNyeH! (R)\{0} Tull?

C, = LP(RY)
P V411 2 gy Il p oy

EE) i pe(2,2%)

MNuEH RONO} ™ ul o it pe(12)
(1) = C, if p € (2,2), (1) = C, if p € (1,2)
() =7 log (we?/v) if p=2

J. Dolbeault Phase transitions and symmetry in PDEs



In dimensions 2 and 3
Magnetic rings: interpolation on the circle
Interpolation and magnetic fields Aharonov-Bohm magnetic fields and symmetry

A statement

Theorem

p € (2,2*): pp is monotone increasing on (—A[B],+c0), concave and

a—>(|ir/T\1[B])+ MB(Q) =0 and aE)Too /lB(Oé) @’

d—2 _d
P

= CP
p € (1,2): vg is monotone increasing on (0, +00), concave and
2p
- _ ' i
ﬁllj&r vg(B) = A[B] and BETOO vg(B) B~ 2rrdE=m = C,

&g is continuous on (0, +00), concave, g(0) = A[B] and

&8(7) = 47 log (Z£) (1 +0(1)) as v — +o0

Constant magnetic fields: equality is achieved
Nonconstant magnetic fields: only partial answers are known

J. Dolbeault Phase transitions and symmetry in PDEs
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2 4 6 8 10

Figure: Case d =2, p=3, B=1: plot of a — (271')%_1 ps ()
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Some examples

Interpolation, symmetry and symmetry breaking
Interpolation and magnetic fields

In dimensions 2 and 3

Magnetic rings: interpolation on the circle

Aharonov-Bohm magnetic fields and symmetry

Numerical results

and the symmetry issue

J. Dolbeault
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-0.02

-0.04

-0.06

-0.08

Figure: Cased =2, p=3,B=1

Upper estimates: « — pgauss(@), peL(a)

Lower estimates: & — pinterp(@), prr()

The exact value associated with ug lies in the grey area.
Plots represent the curves log;o(1t/peL)
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An open question of symmetry

@ [Bonheure, Nys, Van Schaftingen, 2016] for a fixed o > 0 and

for B small enough, the optimal functions are radially symmetric
functions, i.e., belong to Cp

This regime is equivalent to the regime as a — 400 for a given B, at
least if the magnetic field is constant

@ Numerically our upper and lower bounds are (in dimension d = 2,
for a constant magnetic field) extremely close

@ The optimal function in Cy is linearly stable with respect to
perturbations in C;

@ A reference: JD, M.J. Esteban, A. Laptev, M. Loss. Interpolation
inequalities and spectral estimates for magnetic operators. Annales
Henri Poincaré, 19 (5): 1439-1463, May 2018

> Prove that the optimality case is achieved among radial function if
d =2 and B is a constant magnetic field

J. Dolbeault Phase transitions and symmetry in PDEs



Some examples In dimensions 2 and 3
Interpolation, symmetry and symmetry breaking Magnetic rings: interpolation on the circle
Interpolation and magnetic fields Aharonov-Bohm magnetic fields and symmetry

With magnetic fields (2/3)
Magnetic rings: the case of St

> A magnetic interpolation inequality on S': with p > 2

19" + i atlIEaey + o [$ll7ae) = pap(e) [

> Consequences
@ [A Keller-Lieb-Thirring inequality]
e A new Hardy inequality for Aharonov-Bohm magnetic fields in R?

Joint work with M.J. Esteban, A. Laptev and M. Loss
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Magnetic flux, a reduction

Assume that a: R — R is a 2w-periodic function such that its
restriction to (—m, 7] ~ St is in L}(S!) and define the space

X, = {¢ € Ga(R) : ¢ +iay € L*(S")}

@ A standard change of gauge (see e.g. [llyin, Laptev, Loss, Zelik,
2016])

Y(s) s el IR (=D Aoy )

where 3 := ffﬂ a(s) do is the magnetic fluz, reduces the problem to
a is a constant function
@ For any k € Z, ¢ by s+ e 1)(s) shows that 11, ,(a) = piktap()
aec[0,1]
Q@ ap(a) = p1-ap(a) because
[ +iauP =[x +i(1—a)x =0 —iav]"if x(s) = e (s)
ael0,1/2]
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Optimal interpolation

We want to characterize the optimal constant in the inequality
19" + i a|faey + @ l¥liae) 2 Hap(@) [T
written for any p > 2, a € (0,1/2], a € (—a?,+00), ¥ € X,

o S (W A iavP +alyP)do
= n
peX,\{0} ”w”ip(gl)

Ua,p(a) :

p=—2=2d/(d —2) with d = 1 [Exner, Harrell, Loss, 1998]
p = +oo [Galunov, Olienik, 1995] [Ilyin, Laptev, Loss, Zelik, 2016]
limg__ 52 ttap(c) = 0 [JD, Esteban, Laptev, Loss, 2016]
Using a Fourier series ¢(s) = Y, ., ¥« €, we obtain that
1"+ iagliaey = D (a+ k)2 [ul® = & 0] Fae
kEZ
¥ |9+ i a oy + al[$lfee is coercive for any a > — a?

J. Dolbeault Phase transitions and symmetry in PDEs
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An interpolation result for the magnetic ring

Theorem

For any p>2, a€ R, and a > — a%, p, p() is achieved and

(i) ifa€[0,1/2] and a® (p +2) + a(p — 2) < 1, then , p(a) = 2% + «
and equality is achieved only by the constant functions

(i) ifa €10,1/2] and a® (p+ 2) + a(p — 2) > 1, then u,p(a) < a° + «
and equality is not achieved among the constant functions

Ifa > —a%, ars pap() is monotone increasing on (0,1/2)

-02 -01 CEY 0z 03 04 02 a 05 08 10 12 12

Figure: a — pap(a) with p =4 and (left) a = 0.45 or (right) a = 0.2
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Elimination of the phase

Let us define

' Fary + @ Mz + e llullfa

Qa,p,a[ul =

HUHiP(Sl)

For any a€ (0,1/2), p>2, a > —a°,

Hap(a) = min Qap.alu]

ueH!(S1)\{0}

is achieved by a function u > 0
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A new Hardy inequality

(iV+a)W\2dx27/ M|w\2dx Vo e LI(SY), ge(1,+0)
Rz

|
R2 x|

Corollary

Let p>2,a€0,1/2], g = p/(p — 2) and assume that ¢ is a
non-negative function in LI(S*). Then the inequality holds with T > 0
given by

@ap (T l@llLasty) =0

Moreover, T = & /||p||Last) if 4 @ + [|@llLast) (P —2) < 1

4

For any a € (0,1/2), by taking ¢ constant, small enough in order that
42% + ||llLa(sr) (p — 2) < 1, we recover the inequality

\|12
/\(iV+a)\IJ\2deaz/ %dx
R2 re |X|

[Laptev, Weidl, 1999] constant magnetic fields; [Hoffmann-Ostenhof,
Laptev, 2015] in R?, d > 3
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With magnetic fields (3/3)

Aharonov-Bohm magnetic fields
in R?

@ Aharonov-Bohm effect
@ [Interpolation and Keller-Lieb-Thirring inequalities in R?|

@ Aharonov-Symmetry and symmetry breaking

Joint work with D. Bonheure, M.J. Esteban, A. Laptev, & M. Loss
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Aharonov-Bohm effect

A major difference between classical mechanics and quantum
mechanics is that particles are described by a non-local object, the
wave function. In 1959 Y. Aharonov and D. Bohm proposed a series
of experiments intended to put in evidence such phenomena which are
nowadays called Aharonov-Bohm effects

One of the proposed experiments relies on a long, thin solenoid which
produces a magnetic field such that the region in which the magnetic
field is non-zero can be approximated by a line in dimension d = 3
and by a point in dimension d = 2

> [Physics today, 2009] “The notion, introduced 50 years ago, that
electrons could be affected by electromagnetic potentials without
coming in contact with actual force fields was received with a
skepticism that has spawned a flourishing of experimental tests and
expansions of the original idea.” Problem solved by considering
appropriate weak solutions !

> Is the wave function a physical object or is its modulus ? Decisive
experiments have been done only 20 years ago

J. Dolbeault Phase transitions and symmetry in PDEs
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The interpolation inequality

Let us consider an Aharonov-Bohm vector potential

A(x) = x |2 (x2,—x1), x=(x,x)cR*\ {0}, acR

Magnetic Hardy inequality [Laptev, Weidl, 1999]
2
/ |Va 1|2 dx > min (a — k)? / [Pl dx
R2 kEZ R

: IxP?

where Va1 := Vi + i A, so that, with ¢ = |1)| e

[ vaviac= | [(ar|¢|)2+(a,5)2|w|2+12(695+A)2|w|2] dx
R2 R2 r

Magnetic interpolation inequality

P Ll ( Ivl? )2“’
/RZWWI dx+)\/Rz P dx > p(N) /R e dx

> Symmetrization: [Erdés, 1996], [Boulenger, Lenzmann|, [Lenzmann,
Sok]
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A magnetic Hardy-Sobolev inequality

Theorem

Let a€[0,1/2] and p > 2. For any A > — a2, there is an optimal,
monotone increasing, concave function A — () which is such that

2 p 2/p
/ \VAq/)\zdx—&-)\/ W]|2dx>u()\)</ 1/}|2dx)
R2 R |X| r |X|

IFA< A =4 1;222 — a2 equality is achieved by

2
@ —a\" p—2 . _ p—2
D(x) = (x| +[x]7*) 772 VxeR?, with a=P3"VA+ 22

If A > Ao with

M e 8(y/p'—a2 (,,,2)(2 (ii) GrD+2)—4p(p+) 2
p—2)* (p+2)

there is symmetry breaking: optimal functions are not radially symmetric

J. Dolbeault Phase transitions and symmetry in PDEs



Some examples In dimensions 2 and 3
Interpolation, symmetry and symmetry breaking Magnetic rings: interpolation on the circle
Interpolation and magnetic fields Aharonov-Bohm magnetic fields and symmetry

~——
~~ae
~
-
~.

—0.1

-0.2

Figure: Case p=14
Symmetry breaking region: A > Xe(a)
Symmetry breaking region: A < A,

0.005
0.004
0.003
0.002

0.001

Figure: The curve a — Ao(a) — Ai(a)

[m] = -
J. Dolbeault Phase transitions and symmetry in PDEs

n
it
N
el
Q



In dimensions 2 and 3
Magnetic rings: interpolation on the circle
Interpolation and magnetic fields Aharonov-Bohm magnetic fields and symmetry

References

@ D. Bonheure, J. Dolbeault, M.J. Esteban, A. Laptev, M. Loss.
Inequalities involving Aharonov-Bohm magnetic potentials in
dimensions 2 and 3. Preprint arXiv:1902.06454

@ D. Bonheure, J. Dolbeault, M.J. Esteban, A. Laptev, M. Loss.
Symmetry results in two-dimensional inequalities for Aharonov-Bohm
magnetic fields. Communications in Mathematical Physics, (2019).

@ J. Dolbeault, M. J. Esteban, A. Laptev, and M. Loss. Magnetic
rings. Journal of Mathematical Physics, 59 (5): 051504, 2018.

@ J. Dolbeault, M. J. Esteban, A. Laptev, and M. Loss. Interpolation
inequalities and spectral estimates for magnetic operators. Annales
Henri Poincaré, 19 (5): 1439-1463, May 2018.

J. Dolbeault Phase transitions and symmetry in PDEs



Some examples In dimensions 2 and 3
Interpolation, symmetry and symmetry breaking Magnetic rings: interpolation on the circle
Interpolation and magnetic fields Aharonov-Bohm magnetic fields and symmetry

These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Conferences/
> Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list /
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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