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Scope

Prove inequalities with sharp constants on: the sphere, the line,
compact manifolds, cylinders
- rigidity methods based on a nonlinear flow
- generalized entropies and generalized Fisher informations

We start with compact manifolds for which rigidity statements are
easy and extend the method to non-compact settings which are much
more difficult

Interpolation inequalities on the sphere
A nonlinear flow and improvements of the inequalities
The line
Compact manifolds
The cylinder
Symmetry breaking issues in Caffarelli-Kohn-Nirenberg inequalities

Spectral estimates on the sphere
Spectral consequences on Riemannian manifolds
Spectral estimates on the cylinder
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Interpolation inequalities on the
sphere

Joint work with M.J. Esteban, M. Kowalczyk and M. Loss
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A family of interpolation inequalities on the sphere

The following interpolation inequality holds on the sphere

p − 2

d

∫

Sd

|∇u|2 d vg+
∫

Sd

|u|2 d vg ≥
(
∫

Sd

|u|p d vg

)2/p

∀ u ∈ H1(Sd , dvg )

for any p ∈ (2, 2∗] with 2∗ = 2 d
d−2 if d ≥ 3

for any p ∈ (2,∞) if d = 2

Here dvg is the uniform probability measure: vg (S
d ) = 1

1 is the optimal constant, equality achieved by constants

p = 2∗ corresponds to Sobolev’s inequality...
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Stereographic projection
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Sobolev inequality

The stereographic projection of Sd ⊂ Rd × R ∋ (ρ φ, z) onto Rd :
to ρ2 + z2 = 1, z ∈ [−1, 1], ρ ≥ 0, φ ∈ Sd−1 we associate x ∈ Rd such
that r = |x |, φ = x

|x|

z =
r2 − 1

r2 + 1
= 1− 2

r2 + 1
, ρ =

2 r

r2 + 1

and transform any function u on Sd into a function v on Rd using

u(y) =
(

r
ρ

)

d−2
2 v(x) =

(

r2+1
2

)

d−2
2 v(x) = (1− z)−

d−2
2 v(x)

p = 2∗, Sd = 1
4 d (d − 2) |Sd |2/d : Euclidean Sobolev inequality

∫

Rd

|∇v |2 dx ≥ Sd

[
∫

Rd

|v | 2 d
d−2 dx

]
d−2
d

∀ v ∈ D1,2(Rd )

J. Dolbeault Sharp functional inequalities and nonlinear diffusions



Extended inequality

∫

Sd

|∇u|2 d vg ≥ d

p − 2

[

(
∫

Sd

|u|p d vg

)2/p

−
∫

Sd

|u|2 d vg
]

∀ u ∈ H1(Sd , dµ)

is valid
for any p ∈ (1, 2) ∪ (2,∞) if d = 1, 2
for any p ∈ (1, 2) ∪ (2, 2∗] if d ≥ 3

Case p = 2: Logarithmic Sobolev inequality

∫

Sd

|∇u|2 d vg ≥ d

2

∫

Sd

|u|2 log

( |u|2
∫

Sd
|u|2 d vg

)

d vg ∀ u ∈ H1(Sd , dµ)

Case p = 1: Poincaré inequality

∫

Sd

|∇u|2 d vg ≥ d

∫

Sd

|u − ū|2 d vg with ū :=

∫

Sd

u d vg ∀ u ∈ H1(Sd , dµ)
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Optimality: a perturbation argument

For any p ∈ (1, 2∗] if d ≥ 3, any p > 1 if d = 1 or 2, it is
remarkable that

Q[u] :=
(p − 2) ‖∇u‖2

L2(Sd )

‖u‖2
Lp(Sd )

− ‖u‖2
L2(Sd )

≥ inf
u∈H1(Sd ,dµ)

Q[u] =
1

d

is achieved in the limiting case

Q[1 + ε v ] ∼
‖∇v‖2

L2(Sd )

‖v‖2
L2(Sd )

as ε → 0

when v is an eigenfunction associated with the first nonzero
eigenvalue of ∆g , thus proving the optimality

p < 2: a proof by semi-groups using Nelson’s hypercontractivity
lemma. p > 2: no simple proof based on spectral analysis is available:
[Beckner], an approach based on Lieb’s duality, the Funk-Hecke
formula and some (non-trivial) computations

elliptic methods / Γ2 formalism of Bakry-Emery / nonlinear flows
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Schwarz symmetrization and the ultraspherical setting

(ξ0, ξ1, . . . ξd) ∈ S
d , ξd = z ,

∑d
i=0 |ξi |2 = 1 [Smets-Willem]

Lemma

Up to a rotation, any minimizer of Q depends only on ξd = z

• Let dσ(θ) := (sin θ)d−1

Zd
dθ, Zd :=

√
π

Γ(
d
2 )

Γ(
d+1
2 )

: ∀ v ∈ H1([0, π], dσ)

p − 2

d

∫ π

0

|v ′(θ)|2 dσ +

∫ π

0

|v(θ)|2 dσ ≥
(
∫ π

0

|v(θ)|p dσ

)
2
p

• Change of variables z = cos θ, v(θ) = f (z)

p − 2

d

∫ 1

−1

|f ′|2 ν dνd +

∫ 1

−1

|f |2 dνd ≥
(
∫ 1

−1

|f |p dνd

)

2
p

where νd (z) dz = dνd(z) := Z−1
d ν

d
2 −1 dz , ν(z) := 1− z2
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The ultraspherical operator

With dνd = Z−1
d ν

d
2 −1 dz , ν(z) := 1− z2, consider the space

L2((−1, 1), dνd) with scalar product

〈f1, f2〉 =
∫ 1

−1

f1 f2 dνd , ‖f ‖p =

(
∫ 1

−1

f p dνd

)

1
p

The self-adjoint ultraspherical operator is

L f := (1− z2) f ′′ − d z f ′ = ν f ′′ +
d

2
ν′ f ′

which satisfies 〈f1,L f2〉 = −
∫ 1

−1
f ′1 f

′
2 ν dνd

Proposition

Let p ∈ [1, 2) ∪ (2, 2∗], d ≥ 1

−〈f ,L f 〉 =
∫ 1

−1

|f ′|2 ν dνd ≥ d
‖f ‖2p − ‖f ‖22

p − 2
∀ f ∈ H1([−1, 1], dνd)
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Flows on the sphere

Heat flow and the Bakry-Emery method

Fast diffusion (porous media) flow and the choice of the exponents

Joint work with M.J. Esteban, M. Kowalczyk and M. Loss

J. Dolbeault Sharp functional inequalities and nonlinear diffusions



Heat flow and the Bakry-Emery method

With g = f p , i.e. f = gα with α = 1/p

(Ineq.) −〈f ,L f 〉 = −〈gα,L gα〉 =: I[g ] ≥ d
‖g‖2α1 − ‖g 2α‖1

p − 2
=: F [g ]

Heat flow
∂g

∂t
= L g

d

dt
‖g‖1 = 0 ,

d

dt
‖g 2α‖1 = − 2 (p−2) 〈f ,L f 〉 = 2 (p−2)

∫ 1

−1

|f ′|2 ν dνd

which finally gives

d

dt
F [g(t, ·)] = − d

p − 2

d

dt
‖g 2α‖1 = − 2 d I[g(t, ·)]

Ineq. ⇐⇒ d

dt
F [g(t, ·)] ≤ − 2 d F [g(t, ·)] ⇐=

d

dt
I[g(t, ·)] ≤ − 2 d I[g(t, ·)]
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The equation for g = f p can be rewritten in terms of f as

∂f

∂t
= L f + (p − 1)

|f ′|2
f

ν

−1

2

d

dt

∫ 1

−1

|f ′|2 ν dνd =
1

2

d

dt
〈f ,L f 〉 = 〈L f ,L f 〉+(p−1) 〈 |f

′|2
f

ν,L f 〉

d

dt
I[g(t, ·)] + 2 d I[g(t, ·)] = d

dt

∫ 1

−1

|f ′|2 ν dνd + 2 d

∫ 1

−1

|f ′|2 ν dνd

= − 2

∫ 1

−1

(

|f ′′|2 + (p − 1)
d

d + 2

|f ′|4
f 2

− 2 (p − 1)
d − 1

d + 2

|f ′|2 f ′′
f

)

ν2 dνd

is nonpositive if

|f ′′|2 + (p − 1)
d

d + 2

|f ′|4
f 2

− 2 (p − 1)
d − 1

d + 2

|f ′|2 f ′′
f

is pointwise nonnegative, which is granted if

[

(p − 1)
d − 1

d + 2

]2

≤ (p−1)
d

d + 2
⇐⇒ p ≤ 2 d2 + 1

(d − 1)2
= 2# <

2 d

d − 2
= 2∗
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... up to the critical exponent: a proof in two slides

[

d

dz
,L

]

u = (L u)
′ − L u′ = −2 z u′′ − d u′

∫ 1

−1

(L u)2 dνd =

∫ 1

−1

|u′′|2 ν2 dνd + d

∫ 1

−1

|u′|2 ν dνd

∫ 1

−1

(L u)
|u′|2
u

ν dνd =
d

d + 2

∫ 1

−1

|u′|4
u2

ν2 dνd − 2
d − 1

d + 2

∫ 1

−1

|u′|2 u′′
u

ν2 dνd

On (−1, 1), let us consider the porous medium (fast diffusion) flow

ut = u2−2β

(

L u + κ
|u′|2
u

ν

)

If κ = β (p − 2) + 1, the Lp norm is conserved

d

dt

∫ 1

−1

uβp dνd = β p (κ− β (p − 2)− 1)

∫ 1

−1

uβ(p−2) |u′|2 ν dνd = 0
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f = uβ , ‖f ′‖2
L2(Sd ) +

d
p−2

(

‖f ‖2
L2(Sd ) − ‖f ‖2

Lp(Sd )

)

≥ 0 ?

A :=

∫ 1

−1

|u′′|2 ν2 dνd − 2
d − 1

d + 2
(κ+ β − 1)

∫ 1

−1

u′′
|u′|2
u

ν2 dνd

+

[

κ (β − 1) +
d

d + 2
(κ+ β − 1)

]
∫ 1

−1

|u′|4
u2

ν2 dνd

A is nonnegative for some β if

8 d2

(d + 2)2
(p − 1) (2∗ − p) ≥ 0

A is a sum of squares if p ∈ (2, 2∗) for an arbitrary choice of β in a
certain interval (depending on p and

A =

∫ 1

−1

∣

∣

∣

∣

u′′ − p + 2

6− p

|u′|2
u

∣

∣

∣

∣

2

ν2 dνd ≥ 0 if p = 2∗ and β =
4

6− p
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The rigidity point of view

Which computation have we done ? ut = u2−2β
(

L u + κ |u′|2
u

ν
)

−L u − (β − 1)
|u′|2
u

ν +
λ

p − 2
u =

λ

p − 2
uκ

Multiply by L u and integrate

...

∫ 1

−1

L u uκ dνd = − κ

∫ 1

−1

uκ
|u′|2
u

dνd

Multiply by κ |u′|2
u

and integrate

... = + κ

∫ 1

−1

uκ
|u′|2
u

dνd

The two terms cancel and we are left only with the two-homogenous
terms
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Improvements of the inequalities
(subcritical range)

as long as the exponent is either in the range (1, 2) or in the range
(2, 2∗), on can establish improved inequalities

An improvement automatically gives an explicit stability result of
the optimal functions in the (non-improved) inequality

By duality, this provides a stability result for Keller-Lieb-Tirring
inequalities

Joint work with M.J. Esteban, M. Kowalczyk and M. LossJ. Dolbeault Sharp functional inequalities and nonlinear diffusions



What does “improvement” mean ?

An improved inequality is

d Φ (e) ≤ i ∀ u ∈ H1(Sd ) s.t. ‖u‖2
L2(Sd ) = 1

for some function Φ such that Φ(0) = 0, Φ′(0) = 1, Φ′ > 0 and
Φ(s) > s for any s. With Ψ(s) := s − Φ−1(s)

i− d e ≥ d (Ψ ◦ Φ)(e) ∀ u ∈ H1(Sd ) s.t. ‖u‖2
L2(Sd ) = 1

Lemma (Generalized Csiszár-Kullback inequalities)

‖∇u‖2
L2(Sd ) −

d

p − 2

[

‖u‖2
Lp(Sd ) − ‖u‖2

L2(Sd )

]

≥ d ‖u‖2
L2(Sd ) (Ψ ◦ Φ)

(

C
‖u‖2 (1−r)

Ls (Sd )

‖u‖2

L2 (Sd )

‖ur − ūr‖2
Lq(Sd )

)

∀ u ∈ H1(Sd )

s(p) := max{2, p} and p ∈ (1, 2): q(p) := 2/p, r(p) := p; p ∈ (2, 4):
q = p/2, r = 2; p ≥ 4: q = p/(p − 2), r = p − 2
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Linear flow: improved Bakry-Emery method

Cf. [Arnold, JD]

wt = Lw + κ
|w ′|2
w

ν

With 2♯ := 2 d2+1
(d−1)2

γ1 :=

(

d − 1

d + 2

)2

(p− 1) (2#−p) if d > 1 , γ1 :=
p − 1

3
if d = 1

If p ∈ [1, 2) ∪ (2, 2♯] and w is a solution, then

d

dt
(i− d e) ≤ − γ1

∫ 1

−1

|w ′|4
w 2

dνd ≤ − γ1
|e′|2

1− (p − 2) e

Recalling that e′ = − i, we get a differential inequality

e′′ + d e′ ≥ γ1
|e′|2

1− (p − 2) e

After integration: d Φ(e(0)) ≤ i(0)
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Nonlinear flow: the Hölder estimate of J. Demange

wt = w 2−2β

(

Lw + κ
|w ′|2
w

)

For all p ∈ [1, 2∗], κ = β (p − 2) + 1, d
dt

∫ 1

−1 w
βp dνd = 0

− 1
2β2

d
dt

∫ 1

−1

(

|(wβ)′|2 ν + d
p−2

(

w 2β − w 2β
)

)

dνd ≥ γ
∫ 1

−1
|w ′|4
w2 ν2 dνd

Lemma

For all w ∈ H1
(

(−1, 1), dνd
)

, such that
∫ 1

−1
wβp dνd = 1

∫ 1

−1

|w ′|4
w 2

ν2 dνd ≥ 1

β2

∫ 1

−1
|(wβ)′|2 ν dνd

∫ 1

−1
|w ′|2 ν dνd

(

∫ 1

−1
w 2β dνd

)δ

.... but there are conditions on β
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Admissible (p, β) for d = 5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

5

6
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The line

A first example of a non-compact manifold

Joint work with M.J. Esteban, A. Laptev and M. Loss
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One-dimensional Gagliardo-Nirenberg-Sobolev inequalities

‖f ‖Lp(R) ≤ CGN(p) ‖f ′‖θL2(R) ‖f ‖1−θ
L2(R) if p ∈ (2,∞)

‖f ‖L2(R) ≤ CGN(p) ‖f ′‖ηL2(R) ‖f ‖
1−η
Lp(R) if p ∈ (1, 2)

with θ = p−2
2 p and η = 2−p

2+p

The threshold case corresponding to the limit as p → 2 is the
logarithmic Sobolev inequality

∫

R
u2 log

(

u2

‖u‖2
L2(R)

)

dx ≤ 1
2 ‖u‖2L2(R) log

(

2
π e

‖u′‖2
L2(R)

‖u‖2
L2(R)

)

If p > 2, u⋆(x) = (cosh x)−
2

p−2 solves

− (p − 2)2 u′′ + 4 u − 2 p |u|p−2 u = 0

If p ∈ (1, 2) consider u∗(x) = (cos x)
2

2−p , x ∈ (−π/2, π/2)
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Flow

Let us define on H1(R) the functional

F [v ] := ‖v ′‖2
L2(R) +

4

(p − 2)2
‖v‖2

L2(R) − C ‖v‖2
Lp(R) s.t. F [u⋆] = 0

With z(x) := tanh x , consider the flow

vt =
v1− p

2

√
1− z2

[

v ′′ +
2 p

p − 2
z v ′ +

p

2

|v ′|2
v

+
2

p − 2
v

]

Theorem (Dolbeault-Esteban-Laptev-Loss)

Let p ∈ (2,∞). Then

d

dt
F [v(t)] ≤ 0 and lim

t→∞
F [v(t)] = 0

d
dt
F [v(t)] = 0 ⇐⇒ v0(x) = u⋆(x − x0)

Similar results for p ∈ (1, 2)
J. Dolbeault Sharp functional inequalities and nonlinear diffusions



The inequality (p > 2) and the ultraspherical operator

The problem on the line is equivalent to the critical problem for the
ultraspherical operator

∫

R

|v ′|2 dx +
4

(p − 2)2

∫

R

|v |2 dx ≥ C

(
∫

R

|v |p dx

)
2
p

With

z(x) = tanh x , v⋆ = (1− z2)
1

p−2 and v(x) = v⋆(x) f (z(x))

equality is achieved for f = 1 and, if we let ν(z) := 1− z2, then

∫ 1

−1

|f ′|2 ν dνd +
2 p

(p − 2)2

∫ 1

−1

|f |2 dνd ≥ 2 p

(p − 2)2

(
∫ 1

−1

|f |p dνd

)

2
p

where dνp denotes the probability measure dνp(z) :=
1
ζp
ν

2
p−2 dz

d = 2 p
p−2 ⇐⇒ p = 2 d

d−2
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Change of variables = stereographic projection + Emden-Fowler
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Compact Riemannian manifolds

no sign is required on the Ricci tensor and an improved integral
criterion is established

the flow explores the energy landscape... and shows the
non-optimality of the improved criterion
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Riemannian manifolds with positive curvature

(M, g) is a smooth closed compact connected Riemannian manifold
dimension d , no boundary, ∆g is the Laplace-Beltrami operator
vol(M) = 1, R is the Ricci tensor, λ1 = λ1(−∆g )

ρ := inf
M

inf
ξ∈Sd−1

R(ξ , ξ)

Theorem (Licois-Véron, Bakry-Ledoux)

Assume d ≥ 2 and ρ > 0. If

λ ≤ (1 − θ)λ1 + θ
d ρ

d − 1
where θ =

(d − 1)2 (p − 1)

d (d + 2) + p − 1
> 0

then for any p ∈ (2, 2∗), the equation

−∆gv +
λ

p − 2

(

v − vp−1
)

= 0

has a unique positive solution v ∈ C 2(M): v ≡ 1
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Riemannian manifolds: first improvement

Theorem (Dolbeault-Esteban-Loss)

For any p ∈ (1, 2) ∪ (2, 2∗)

0 < λ < λ⋆ = inf
u∈H2 (M)

∫

M

[

(1− θ) (∆gu)
2 +

θ d

d − 1
R(∇u,∇u)

]

d vg
∫

M
|∇u|2 d vg

there is a unique positive solution in C 2(M): u ≡ 1

limp→1+ θ(p) = 0 =⇒ limp→1+ λ⋆(p) = λ1 if ρ is bounded
λ⋆ = λ1 = d ρ/(d − 1) = d if M = Sd since ρ = d − 1

(1− θ)λ1 + θ
d ρ

d − 1
≤ λ⋆ ≤ λ1

J. Dolbeault Sharp functional inequalities and nonlinear diffusions



Riemannian manifolds: second improvement

Hgu denotes Hessian of u and θ =
(d − 1)2 (p − 1)

d (d + 2) + p − 1

Qgu := Hgu − g

d
∆gu − (d − 1) (p − 1)

θ (d + 3− p)

[∇u ⊗∇u

u
− g

d

|∇u|2
u

]

Λ⋆ := inf
u∈H2(M)\{0}

(1− θ)

∫

M

(∆gu)
2 d vg +

θ d

d − 1

∫

M

[

‖Qgu‖2 +R(∇u,∇u)
]

∫

M

|∇u|2 d vg

Theorem (Dolbeault-Esteban-Loss)

Assume that Λ⋆ > 0. For any p ∈ (1, 2) ∪ (2, 2∗), the equation has a
unique positive solution in C 2(M) if λ ∈ (0,Λ⋆): u ≡ 1
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Optimal interpolation inequality

For any p ∈ (1, 2) ∪ (2, 2∗) or p = 2∗ if d ≥ 3

‖∇v‖2
L2(M) ≥

λ

p − 2

[

‖v‖2
Lp(M) − ‖v‖2

L2(M)

]

∀ v ∈ H1(M)

Theorem (Dolbeault-Esteban-Loss)

Assume Λ⋆ > 0. The above inequality holds for some λ = Λ ∈ [Λ⋆, λ1]
If Λ⋆ < λ1, then the optimal constant Λ is such that

Λ⋆ < Λ ≤ λ1

If p = 1, then Λ = λ1

Using u = 1 + ε ϕ as a test function where ϕ we get λ ≤ λ1

A minimum of

v 7→ ‖∇v‖2
L2(M) − λ

p−2

[

‖v‖2
Lp(M) − ‖v‖2

L2(M)

]

under the constraint ‖v‖Lp(M) = 1 is negative if λ > λ1
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The flow

The key tools the flow

ut = u2−2 β

(

∆gu + κ
|∇u|2
u

)

, κ = 1 + β (p − 2)

If v = uβ , then d
dt
‖v‖Lp(M) = 0 and the functional

F [u] :=

∫

M

|∇(uβ)|2 d vg +
λ

p − 2

[

∫

M

u2 β d vg −
(
∫

M

uβ p d vg

)2/p
]

is monotone decaying

J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on
manifolds with positive curvature, J. Funct. Anal., 254 (2008),
pp. 593–611. Also see C. Villani, Optimal Transport, Old and New
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Elementary observations (1/2)

Let d ≥ 2, u ∈ C 2 (M), and consider the trace free Hessian

Lgu := Hgu − g

d
∆gu

Lemma
∫

M

(∆gu)
2 d vg =

d

d − 1

∫

M

‖Lgu ‖2 d vg +
d

d − 1

∫

M

R(∇u,∇u) d vg

Based on the Bochner-Lichnerovicz-Weitzenböck formula

1

2
∆ |∇u|2 = ‖Hgu‖2 +∇(∆gu) · ∇u +R(∇u,∇u)
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Elementary observations (2/2)

Lemma

∫

M

∆gu
|∇u|2
u

d vg

=
d

d + 2

∫

M

|∇u|4
u2

d vg − 2 d

d + 2

∫

M

[Lgu] :

[∇u ⊗∇u

u

]

d vg

Lemma

∫

M

(∆gu)
2 d vg ≥ λ1

∫

M

|∇u|2 d vg ∀ u ∈ H2(M)

and λ1 is the optimal constant in the above inequality
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The key estimates

G[u] :=
∫

M

[

θ (∆gu)
2 + (κ+ β − 1)∆gu

|∇u|2
u

+ κ (β − 1) |∇u|4
u2

]

d vg

Lemma

1

2 β2

d

dt
F [u] = − (1− θ)

∫

M

(∆gu)
2 d vg − G[u] + λ

∫

M

|∇u|2 d vg

Qθ
gu := Lgu − 1

θ
d−1
d+2 (κ+ β − 1)

[

∇u⊗∇u
u

− g
d

|∇u|2
u

]

Lemma

G[u] = θ d

d − 1

[
∫

M

‖Qθ
gu‖2 d vg +

∫

M

R(∇u,∇u) d vg

]

−µ

∫

M

|∇u|4
u2

d vg

with µ :=
1

θ

(d − 1

d + 2

)2
(κ+ β − 1)2 − κ (β − 1)− (κ+ β − 1)

d

d + 2
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The end of the proof

Assume that d ≥ 2. If θ = 1, then µ is nonpositive if

β−(p) ≤ β ≤ β+(p) ∀ p ∈ (1, 2∗)

where β± := b±
√
b2−a

2 a with a = 2− p +
[

(d−1) (p−1)
d+2

]2

and b = d+3−p
d+2

Notice that β−(p) < β+(p) if p ∈ (1, 2∗) and β−(2∗) = β+(2
∗)

θ =
(d − 1)2 (p − 1)

d (d + 2) + p − 1
and β =

d + 2

d + 3− p

Proposition

Let d ≥ 2, p ∈ (1, 2) ∪ (2, 2∗) (p 6= 5 or d 6= 2)

1

2 β2

d

dt
F [u] ≤ (λ − Λ⋆)

∫

M

|∇u|2 d vg
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The Moser-Trudinger-Onofri
inequality on Riemannian manifolds

Joint work with G. Jankowiak and M.J. Esteban

Extension to compact Riemannian manifolds of dimension 2...
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We shall also denote by R the Ricci tensor, by Hgu the Hessian of u
and by

Lgu := Hgu − g

d
∆gu

the trace free Hessian. Let us denote by Mgu the trace free tensor

Mgu := ∇u ⊗∇u − g

d
|∇u|2

We define

λ⋆ := inf
u∈H2(M)\{0}

∫

M

[

‖Lgu − 1
2 Mgu ‖2 +R(∇u,∇u)

]

e−u/2 d vg
∫

M

|∇u|2 e−u/2 d vg
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Theorem

Assume that d = 2 and λ⋆ > 0. If u is a smooth solution to

− 1

2
∆gu + λ = eu

then u is a constant function if λ ∈ (0, λ⋆)

The Moser-Trudinger-Onofri inequality on M

1

4
‖∇u‖2

L2(M) + λ

∫

M

u d vg ≥ λ log

(
∫

M

eu d vg

)

∀ u ∈ H1(M)

for some constant λ > 0. Let us denote by λ1 the first positive
eigenvalue of −∆g

Corollary

If d = 2, then the MTO inequality holds with λ = Λ := min{4 π, λ⋆}.
Moreover, if Λ is strictly smaller than λ1/2, then the optimal constant
in the MTO inequality is strictly larger than Λ
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The flow

∂f

∂t
= ∆g (e

−f /2)− 1
2 |∇f |2 e−f /2

Gλ[f ] :=

∫

M

‖Lg f − 1
2 Mg f ‖2 e−f /2 d vg +

∫

M

R(∇f ,∇f ) e−f /2 d vg

− λ

∫

M

|∇f |2 e−f /2 d vg

Then for any λ ≤ λ⋆ we have

d

dt
Fλ[f (t, ·)] =

∫

M

(

− 1
2 ∆g f + λ

)

(

∆g (e
−f /2)− 1

2 |∇f |2 e−f /2
)

d vg

= −Gλ[f (t, ·)]

Since Fλ is nonnegative and limt→∞ Fλ[f (t, ·)] = 0, we obtain that

Fλ[u] ≥
∫ ∞

0

Gλ[f (t, ·)] dt
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Weighted Moser-Trudinger-Onofri inequalities on the
two-dimensional Euclidean space

On the Euclidean space R2, given a general probability measure µ
does the inequality

1

16 π

∫

R2

|∇u|2 dx ≥ λ

[

log

(
∫

R2

eu dµ

)

−
∫

R2

u dµ

]

hold for some λ > 0 ? Let

Λ⋆ := inf
x∈R2

−∆ logµ

8 π µ

Theorem

Assume that µ is a radially symmetric function. Then any radially
symmetric solution to the EL equation is a constant if λ < Λ⋆ and the
inequality holds with λ = Λ⋆ if equality is achieved among radial functions
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Caffarelli-Kohn-Nirenberg
inequalities

Work in progress with M.J. Esteban and M. Loss
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Caffarelli-Kohn-Nirenberg inequalities and the symmetry
breaking issue

Let Da,b :=
{

v ∈ Lp
(

Rd , |x |−b dx
)

: |x |−a |∇v | ∈ L2
(

Rd , dx
)

}

(
∫

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇v |2
|x |2 a dx ∀ v ∈ Da,b

hold under the conditions that a ≤ b ≤ a+ 1 if d ≥ 3, a < b ≤ a+ 1 if
d = 2, a+ 1/2 < b ≤ a + 1 if d = 1, and a < ac := (d − 2)/2

p =
2 d

d − 2 + 2 (b − a)

⊲ With

v⋆(x) =
(

1 + |x |(p−2) (ac−a)
)− 2

p−2

and C⋆
a,b =

‖ |x |−b v⋆ ‖2p
‖ |x |−a∇v⋆ ‖22

do we have Ca,b = C⋆
a,b (symmetry)

or Ca,b > C⋆
a,b (symmetry breaking) ?
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The Emden-Fowler transformation and the cylinder

v(r , ω) = ra−ac ϕ(s, ω) with r = |x | , s = − log r and ω =
x

r

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as

‖∂sϕ‖2L2(C1)
+ ‖∇ωϕ‖2L2(C1)

+ Λ ‖ϕ‖2
L2(C1)

≥ µ(Λ) ‖ϕ‖2
Lp(C1)

∀ϕ ∈ H1(C)

where Λ := (ac − a)2, C = R× Sd−1 and the optimal constant µ(Λ) is

µ(Λ) =
1

Ca,b
with a = ac ±

√
Λ and b =

d

p
±
√
Λ
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Numerical results

20 40 60 80 100

10

20

30

40

50

Λ(µ)

symmetric

non-symmetric

asymptotic

bifurcation

µ

Parametric plot of the branch of optimal functions for p = 2.8, d = 5,

θ = 1. Non-symmetric solutions bifurcate from symmetric ones at a

bifurcation point computed by V. Felli and M. Schneider. The branch

behaves for large values of Λ as predicted by F. Catrina and Z.-Q. Wang
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The symmetry result

bFS(a) :=
d (ac − a)

2
√

(ac − a)2 + d − 1
+ a− ac

Theorem

Let d ≥ 2 and p ≤ 4. If either a ∈ [0, ac) and b > 0, or a < 0 and
b ≥ bFS(a), then the optimal functions for the Caffarelli-Kohn-Nirenberg
inequalities are radially symmetric
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a

b

0

−1

1

b = a + 1

b = a

b = bFS(a)

b = b direct(a)

Symmetry region

Symmetry breaking region

ac = d−2
2

The Felli-Schneider region, or symmetry breaking region, appears in dark

grey and is defined by a < 0, a ≤ b < bFS(a). We prove that symmetry

holds in the light grey region defined by b ≥ bFS(a) when a < 0 and for any

b ∈ [a, a + 1] if a ∈ [0, ac)
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Sketch of a proof
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A change of variables

With (r = |x |, ω = x/r) ∈ R
+ × S

d−1, the Caffarelli-Kohn-Nirenberg
inequality is

(
∫ ∞

0

∫

Sd−1

|v |p r d−b p dr

r
dω

)
2
p

≤ Ca,b

∫ ∞

0

∫

Sd−1

|∇v |2 r d−2 a dr

r
dω

Change of variables r 7→ rα, v(r , ω) = w(rα, ω)

α1− 2
p

(
∫ ∞

0

∫

Sd−1

|w |p r
d−b p

α

dr

r
dω

)
2
p

≤ Ca,b

∫ ∞

0

∫

Sd−1

(

α2
∣

∣

∂w
∂r

∣

∣

2
+ 1

r2
|∇ωw |2

)

r
d−2 a−2

α
+2 dr

r
dω

Choice of α

n =
d − b p

α
=

d − 2 a− 2

α
+ 2

Then p = 2 n
n−2 is the critical Sobolev exponent associated with n
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A Sobolev type inequality

The parameters α and n vary in the ranges 0 < α < ∞ and d < n < ∞
and the Felli-Schneider curve in the (α, n) variables is given by

α =

√

d − 1

n − 1
=: αFS

With

Dw =

(

α
∂w

∂r
,
1

r
∇ωw

)

, dµ := rn−1 dr dω

the inequality becomes

α1− 2
p

(
∫

Rd

|w |p dµ
)

2
p

≤ Ca,b

∫

Rd

|Dw |2 dµ

Proposition

Let d ≥ 4. Optimality is achieved by radial functions and Ca,b = C⋆
a,b if

α ≤ αFS

The case of Gagliardo-Nirenberg inequalities on general cylinders is
similar
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Notations

When there is no ambiguity, we will omit the index ω and from now
on write that ∇ = ∇ω denotes the gradient with respect to the
angular variable ω ∈ Sd−1 and that ∆ is the Laplace-Beltrami
operator on Sd−1. We define the self-adjoint operator L by

Lw := −D∗Dw = α2 w ′′ + α2 n − 1

r
w ′ +

∆w

r2

The fundamental property of L is the fact that

∫

Rd

w1 Lw2 dµ = −
∫

Rd

Dw1 · Dw2 dµ ∀w1, w2 ∈ D(Rd )

⊲ Heuristics: we look for a monotonicity formula along a well chosen
nonlinear flow, based on the analogy with the decay of the Fisher
information along the fast diffusion flow in Rd
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Fisher information

Let u
1
2− 1

n = |w | ⇐⇒ u = |w |p, p = 2 n
n−2

I[u] :=
∫

Rd

u |Dp|2 dµ , p =
m

1−m
um−1 and m = 1− 1

n

Here I is the Fisher information and p is the pressure function

Proposition

With Λ = 4α2/(p − 2)2 and for some explicit numerical constant κ, we
have

κµ(Λ) = inf
{

I[u] : ‖u‖L1(Sd ,dνn)

}
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The fast diffusion equation

∂u

∂t
= L um , m = 1− 1

n

Barenblatt self-similar solutions

u⋆(t, r , ω) = t−n

(

c⋆ +
r2

2 (n− 1)α2 t2

)−n

Lemma

κµ⋆(Λ) = I[u⋆(t, ·)] ∀ t > 0

⊲ Strategy:
1) prove that d

dt
I[u(t, ·)] ≤ 0,

2) prove that d
dt
I[u(t, ·)] = 0 means that u = u⋆ up to a time shift
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Decay of the Fisher information along the flow ?

∂p

∂t
=

1

n
pL p− |Dp|2

Q[p] :=
1

2
L |Dp|2 − Dp · DL p

K[p] :=

∫

Rd

(

Q[p]− 1

n
(L p)2

)

p1−n dµ

Lemma

d

dt
I[u(t, ·)] = − 2 (n− 1)n−1 K[p]

If u is a critical point, then K[p] = 0
Boundary terms ! Regularity !
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Proving decay (1/2)

k[p] := Q(p)− 1

n
(L p)2 =

1

2
L |Dp|2 − Dp · DL p− 1

n
(L p)2

kM[p] :=
1

2
∆ |∇p|2 −∇p · ∇∆p− 1

n−1 (∆p)2 − (n − 2)α2 |∇p|2

Lemma

Let n 6= 1 be any real number, d ∈ N, d ≥ 2, and consider a function
p ∈ C 3((0,∞)×M), where (M, g) is a smooth, compact Riemannian
manifold. Then we have

k[p] = α4

(

1− 1

n

)[

p′′ − p′

r
− ∆p

α2 (n − 1) r2

]2

+ 2α2 1

r2

∣

∣

∣

∣

∇p′ − ∇p

r

∣

∣

∣

∣

2

+
1

r4
kM[p]
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Proving decay (2/2)

Lemma

Assume that d ≥ 3, n > d and M = S
d−1. There is a positive constant

ζ⋆ such that

∫

Sd−1

kM[p] p1−n dω ≥
(

λ⋆ − (n − 2)α2
)

∫

Sd−1

|∇p|2 p1−n dω

+ ζ⋆ (n − d)

∫

Sd−1

|∇p|4 p1−n dω

Proof based on the Bochner-Lichnerowicz-Weitzenböck formula

Corollary

Let d ≥ 2 and assume that α ≤ αFS. Then for any nonnegative function
u ∈ L1(Rd ) with I[u] < +∞ and

∫

Rd u dµ = 1, we have

I[u] ≥ I⋆

When M = Sd−1, λ⋆ = (n − 2) d−1
n−1
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A perturbation argument

If u is a critical point of I under the mass constraint
∫

Rd u dµ = 1,
then

o(ε) = I[u + εL um]− I[u] = − 2 (n− 1)n−1 εK[p] + o(ε)

because εL um is an admissible perturbation. Indeed, we know that

∫

Rd

(u + εL um) dµ =

∫

Rd

u dµ = 1

and, as we take the limit as ε → 0, u + εL um makes sense and, in
particular, is positive

If α ≤ αFS, then K[p] = 0 implies that u = u⋆
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A summary
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the sphere: the flow tells us what to do, and provides a simple
proof (choice of the exponents / of the nonlinearity) once the problem
is reduced to the ultraspherical setting + improvements

[not presented here: Keller-Lieb-Thirring estimates] the spectral
point of view on the inequality: how to measure the deviation with
respect to the semi-classical estimates, a nice example of bifurcation
(and symmetry breaking)

Riemannian manifolds: no sign is required on the Ricci tensor and
an improved integral criterion is established. We extend the theory
from pointwise criteria to a non-local Schrödinger type estimate
(Rayleigh quotient). The method generically shows the
non-optimality of the improved criterion

the flow is a nice way of exploring an energy space: it explain how
to produce a good test function at any critical point. A rigidity result
tells you that a local result is actually global because otherwise the
flow would relate (far away) extremal points while keeping the energy
minimal
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