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July 11th, 2011
Asymptotic dynamics driven by solitons and traveling fronts in

nonlinear PDE Santiago, Chile (July 11-15, 2011)

J. Dolbeault Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion



Gagliardo-Nirenberg inequalities: old and new
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Gagliardo-Nirenberg inequalities: further improvements

1 Gagliardo-Nirenberg inequalities: old and new

2 Sobolev and Hardy-Littlewood-Sobolev inequalities: duality,
flows, and an improvement of Sobolev based on HLS

3 Gagliardo-Nirenberg inequalities: further improvements, in the
spirit of [G. Bianchi and H. Egnell]

Improvements of Sobolev’s inequality have been questioned by
[H. Brezis and E. H. Lieb]

[G. Bianchi and H. Egnell]: Compactness methods

[A. Cianchi, N. Fusco, F. Maggi, and A. Pratelli]:
Rearrangements techniques

Two new answers:

[J.D]: A non-local estimate based on HLS

[J.D., G. Toscani]: Entropy methods and matching Barenblatt
approaches
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Gagliardo-Nirenberg inequalities: old and new

Outline

The fast diffusion equation and Gagliardo-Nirenberg inequalities

Onofri’s inequality as a limit case in dimension d = 2

The Keller-Segel model: relative entropies or free energies and
the logarithmic Hardy-Littlewood-Sobolev inequality

A puzzling result of Carlen, Carrillo and Loss on
Hardy-Littlewood-Sobolev inequalities
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The fast diffusion equation

Consider the fast diffusion equation (FDE)

∂v

∂t
= ∆vm t > 0 , x ∈ R

d

with exponent m ∈ ( d−1
d

, 1), d ≥ 3, or its Fokker-Planck version

∂u

∂t
= ∆um + ∇ · (x u) t > 0 , x ∈ R

d

with u0 ∈ L1
+(Rd )) such that um

0 ∈ L1
+(Rd )) and |x |2 u0 ∈ L1

+(Rd))

Any solution converges as t → ∞ to the Barenblatt profile

u∞(x) =
(

CM + 1−m
2m

|x |2
)

1
m−1 x ∈ R

d

[A. Friedman, S. Kamin], [M. del Pino, J.D.]
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Asymptotic behaviour of the solutions of FDE

[J. Ralston, W.I. Newman] Define the relative entropy by

F [u] :=
1

m − 1

∫

Rd

[

um − um
∞ − m, um−1

∞ (u − u∞)
]

dx

and observe that
d
dt
F [u(t, ·)] = −

(

m
m−1

)2 ∫

Rd u |∇um−1 −∇um−1
∞ |2 dx =: −I[u(t, ·)]

F [u(t, ·)] ≤ 1
2 I[u(t, ·)]

if m is in the range ( d−1
d

, 1), thus showing that

F [u(t, ·)] ≤ F [u0] e
−2t ∀ t ≥ 0

With p = 1
2m−1 , the inequality F [u] ≤ 1

2 I[u] can be rewritten in

terms of f = um−1/2 as

‖f ‖L2p(Rd ) ≤ Cp,d ‖∇f ‖θ
L2(Rd ) ‖f ‖

1−θ
Lp+1(Rd )

f∞ = u
m−1/2
∞ is optimal
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FDE: old and new, and much more

d−1 

d

m

1 d−2 

d

glob al existenc e i  n L1 

Bakry-Emer y m  etho d (  relati ve en trop y) 

m ∈ L1 ,  x
2 

∈ L1 

d

d+2 

0 ,  ∈ L1 

∈ L1 

∈ L1 

< ∞

] =∞

m1 

d−4 

d−2 

6∈ L1 

mcm∗

Gagliardo-Nire nb er g 

uC

∞
(x) = (C + 1−m

2 m

2)
1

m−1

u0 − uC

∞
F [uC1

∞
uC0

∞

u0
C∗

∞

x

u

u u

uuC1

∞
− uC0

∞ uC

∞

, ]F [uC1

∞
uC0

∞

[A. Blanchet, M. Bonforte, J.D., G. Grillo, J.-L. Vázquez]
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Gagliardo-Nirenberg inequalities

Consider the following sub-family of Gagliardo-Nirenberg inequalities

‖f ‖L2p(Rd ) ≤ Cp,d ‖∇f ‖θ
L2(Rd ) ‖f ‖

1−θ
Lp+1(Rd )

with θ = θ(p) := p−1
p

d
d+2−p (d−2)

1 < p ≤ d
d−2 if d ≥ 3

1 < p < ∞ if d = 2

[M. del Pino, J.D.] equality holds in if f = Fp with

Fp(x) = (1 + |x |2)−
1

p−1 ∀ x ∈ R
d

and that all extremal functions are equal to Fp up to a multiplication
by a constant, a translation and a scaling.

If d ≥ 3, the limit case p = d/(d − 2) corresponds to Sobolev’s
inequality [T. Aubin, G. Talenti]

When p → 1, we recover the euclidean logarithmic Sobolev
inequality in optimal scale invariant form [F. Weissler]

If d = 2 and p → ∞...
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Onofri’s inequality as a limit case

When d = 2, Onofri’s inequality can be seen as an endpoint case of
the family of the Gagliardo-Nirenberg inequalities [J.D.]

Proposition

[J.D.] Assume that g ∈ D(Rd ) is such that
∫

R2 g dµ = 0 and let

fp := Fp(1 +
g

2p
)

With µ(x) := 1
π (1 + |x |2)−2, and dµ(x) := µ(x) dx, we have

1 ≤ lim
p→∞

Cp,2

‖∇f ‖
θ(p)
L2(R2) ‖f ‖

1−θ(p)
Lp+1(R2)

‖f ‖L2p(R2)
=

e
1

16 π

R

R2 |∇g |2 dx

∫

R2 e g dµ

The standard form of the euclidean version of Onofri’s inequality is

log

(
∫

R2

e g dµ

)

−

∫

R2

g dµ ≤
1

16 π

∫

R2

|∇g |2 dx
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The Keller-Segel model

With t > 0, x ∈ R
2, consider the system

∂v

∂t
= ∆v −∇(v ∇ϕ) , −∆ϕ = v

The behaviour of the solution depends on the mass M =
∫

R2 v dx

[W. Jäger, S. Luckhaus] if M > 8 π (under technical conditions),
smooth solutions blow-up in finite time because

d

dt

∫

R2

|x |2 v dx = 4 M −
M2

4 π
< 0

[J.D., B. Perthame] if M ≤ 8 π, the entropy H[v ] is bounded from
below

H[v ] :=

∫

R2

v log v dx −
1

2

∫

R2

v ϕ dx

In the critical mass case M = 8 π, H[v ] ≥ H[µ] > −∞ is given by
the logarithmic Hardy-Littlewood-Sobolev inequality

∫

R2

f log

(

f

M

)

dx+
2

M

∫

R2×R2

f (x) f (y) log |x−y | dx dy+M (1 + log π) ≥ 0
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A puzzling result of Carlen, Carrillo and Loss (d ≥ 3)

[E. Carlen, J.A. Carrillo and M. Loss] The fast diffusion equation

∂v

∂t
= ∆vm t > 0 , x ∈ R

d

with exponent m = d/(d + 2), when d ≥ 3, is such that

Hd [v ] :=

∫

Rd

v (−∆)−1v dx − Sd ‖v‖
2

L
2 d
d+2 (Rd )

obeys to

1

2

d

dt
Hd [v(t, ·)] =

1

2

d

dt

[
∫

Rd

v (−∆)−1v dx − Sd ‖v‖
2

L
2 d
d+2 (Rd )

]

= d (d−2)
(d−1)2 Sd ‖u‖

4/(d−1)

Lq+1(Rd )
‖∇u‖2

L2(Rd ) − ‖u‖2q

L2q(Rd )

with u = v (d−1)/(d+2) and q = d+1
d−1 . If d (d−2)

(d−1)2 Sd = (Cq,d )2q , the r.h.s.

is nonnegative. Optimality is achieved simultaneously in both
functionals (Barenblatt regime): the Hardy-Littlewood-Sobolev
inequalities can be improved by an integral remainder term
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... and the two-dimensional case

Recall that (−∆)−1v = Gd ∗ v with

Gd (x) = 1
d−2 |S

d−1|−1 |x |2−d if d ≥ 3

G2(x) = 1
2 π log |x | if d = 2

Same computation in dimension d = 2 with m = 1/2 gives

‖v‖L1(R2)

8

d

dt

[

4 π

‖v‖L1(R2)

∫

R2

v (−∆)−1v dx −

∫

R2

v log v dx

]

= ‖u‖4
L4(R2) ‖∇u‖2

L2(R2) − π ‖v‖6
L6(R2)

The r.h.s. is one of the Gagliardo-Nirenberg inequalities (d = 2,
q = 3): π (C3,2)

6 = 1
The l.h.s. is bounded from below by the logarithmic
Hardy-Littlewood-Sobolev inequality and achieves its minimum if
v = µ with

µ(x) :=
1

π (1 + |x |2)2
∀ x ∈ R

2
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Sobolev and

Hardy-Littlewood-Sobolev

inequalities:

duality, flows
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Sobolev and Hardy-Littlewood-Sobolev inequalities:

duality, flows

Outline

Legendre duality

Sobolev and HLS inequalities can be related using a nonlinear
flow compatible with Legendre’s duality

The asymptotic behaviour close to the vanishing time is
determined by a solution with separation of variables based on
the Aubin-Talenti solution

The vanishing time T can be estimated using a priori estimates

The entropy H is negative, concave, and we can relate H(0) with
H′(0) by integrating estimates on (0, T ), which provides an

improvement of Sobolev’s inequality if d ≥ 5
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Legendre duality

To a convex functional F , we may associate the functional F ∗ defined
by Legendre’s duality as

F ∗[v ] := sup

(
∫

Rd

u v dx − F [u]

)

To F1[u] = 1
2 ‖u‖

2
Lp(Rd ), we associate F ∗

1 [v ] = 1
2 ‖v‖

2
Lq(Rd ) where p

and q are Hölder conjugate exponents: 1/p + 1/q = 1

To F2[u] = 1
2 Sd ‖∇u‖2

L2(Rd ), we associate

F ∗
2 [v ] =

1

2
S−1

d

∫

Rd

v (−∆)−1v dx

where (−∆)−1v = Gd ∗ v , Gd (x) = 1
d−2 |S

d−1|−1 |x |2−d if d ≥ 3

As a straightforward consequence of Legendre’s duality, if we have a
functional inequality of the form F1[u] ≤ F2[u], then we have the dual
inequality F ∗

1 [v ] ≥ F ∗
2 [v ]

J. Dolbeault Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion
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Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev’s inequality in R
d , d ≥ 3,

‖u‖2
L2∗ (Rd ) ≤ Sd ‖∇u‖2

L2(Rd ) ∀ u ∈ D1,2(Rd ) (1)

and the Hardy-Littlewood-Sobolev inequality

Sd ‖v‖
2

L
2 d
d+2 (Rd )

≥

∫

Rd

v (−∆)−1v dx ∀ v ∈ L
2 d
d+2 (Rd) (2)

are dual of each other. Here Sd is the Aubin-Talenti constant and
2∗ = 2 d

d−2
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Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

∂v

∂t
= ∆vm t > 0 , x ∈ R

d (3)

If we define H(t) := Hd [v(t, ·)], with

Hd [v ] :=

∫

Rd

v (−∆)−1v dx − Sd ‖v‖
2

L
2 d
d+2 (Rd )

then we observe that

1

2
H′ = −

∫

Rd

vm+1 dx + Sd

(
∫

Rd

v
2 d
d+2 dx

)
2
d
∫

Rd

∇vm · ∇v
d−2
d+2 dx

where v = v(t, ·) is a solution of (3). With the choice m = d−2
d+2 , we

find that m + 1 = 2 d
d+2

J. Dolbeault Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion
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A first statement

Proposition

[J.D.] Assume that d ≥ 3 and m = d−2
d+2 . If v is a solution of (3) with

nonnegative initial datum in L2d/(d+2)(Rd ), then

1

2

d

dt

[
∫

Rd

v (−∆)−1v dx − Sd ‖v‖
2

L
2 d
d+2 (Rd )

]

=

(
∫

Rd

vm+1 dx

)
2
d [

Sd ‖∇u‖2
L2(Rd ) − ‖u‖2

L2∗ (Rd )

]

≥ 0

The HLS inequality amounts to H ≤ 0 and appears as a consequence
of Sobolev, that is H′ ≥ 0 if we show that lim supt>0 H(t) = 0
Notice that u = vm is an optimal function for (1) if v is optimal for (2)
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Improved Sobolev inequality

By integrating along the flow defined by (3), we can actually obtain
optimal integral remainder terms which improve on the usual Sobolev
inequality (1), but only when d ≥ 5 for integrability reasons

Theorem

[J.D.] Assume that d ≥ 5 and let q = d+2
d−2 . There exists a positive

constant C ≤
(

1 + 2
d

) (

1 − e−d/2
)

Sd such that

Sd ‖w
q‖2

L
2 d
d+2 (Rd )

−

∫

Rd

wq (−∆)−1wq dx

≤ C ‖w‖
8

d−2

L2∗(Rd )

[

‖∇w‖2
L2(Rd ) − Sd ‖w‖2

L2∗ (Rd )

]

for any w ∈ D1,2(Rd)
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Solutions with separation of variables

Consider the solution vanishing at t = T :

vT (t, x) = c (T − t)α (F (x))
d+2
d−2 ∀ (t, x) ∈ (0, T ) × R

d

where α = (d + 2)/4, c1−m = 4 m d , m = d−2
d+2 , p = d/(d − 2) and F is

the Aubin-Talenti solution of

−∆F = d (d − 2)F (d+2)/(d−2)

Let ‖v‖∗ := supx∈Rd (1 + |x |2)d+2 |v(x)|

Lemma

[M. delPino, M. Saez], [J. L. Vázquez, J. R. Esteban, A. Rodŕıguez]
For any solution v of (3) with initial datum v0 ∈ L2d/(d+2)(Rd ), v0 > 0,

there exists T > 0, λ > 0 and x0 ∈ R
d such that

lim
t→T−

(T − t)−
1

1−m ‖v(t, ·)/v(t, ·) − 1‖∗ = 0

with v (t, x) = λ(d+2)/2 vT (t, (x − x0)/λ)
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A first set of a priori integral estimates

Let J(t) :=
∫

Rd v(t, x)m+1 dx . Let d ≥ 3 and m = (d − 2)/(d + 2)

Lemma

[J.D.] If v is a solution of (3) vanishing at time T > 0 with v0 ∈ L2∗

+ (Rd )

(

4 (T−t)
(d+2) Sd

)
d
2

≤ J(t) ≤ J(0) , ‖∇vm(t, ·)‖2
L2(Rd ) ≥ S−1

d

(

4 (T−t)
d+2

)
d
2 −1

T ≤ 1
4 (d + 2) Sd

(∫

Rd vm+1
0 dx

)
2
d

for any t ∈ (0, T ). Moreover, if d ≥ 5, we also have

∫

Rd

vm+1(t, x) dx ≥

∫

Rd

vm+1
0 dx − 2 d

d+2 t ‖∇vm
0 ‖2

L2(Rd )

‖∇vm(t, ·)‖2
L2(Rd ) ≤ ‖∇vm

0 ‖2
L2(Rd )

T ≥
d + 2

2 d

∫

Rd

vm+1
0 dx ‖∇vm

0 ‖−2
L2(Rd )
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Proofs (1/2)

J(t) :=
∫

Rd v(t, x)m+1 dx satisfies

J′ = −(m + 1) ‖∇vm‖2
L2(Rd ) ≤ −

m + 1

Sd

J1− 2
d

If d ≥ 5, then we also have

J′′ = 2 m (m + 1)

∫

Rd

vm−1 (∆vm)2 dx ≥ 0

Such an estimate makes sense if v = vT . This is also true for any
solution v as can be seen by rewriting the problem on S

d :
integrability conditions for v are exactly the same as for vT �

Notice that

J′

J
≤ −

m + 1

Sd

J−
2
d ≤ −κ with κ :=

2 d

d + 2

1

Sd

(
∫

Rd

vm+1
0 dx

)− 2
d

≤
d

2 T

J. Dolbeault Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion
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Proofs (2/2)

By the Cauchy-Schwarz inequality, we have

‖∇vm‖4
L2(Rd ) =

(
∫

Rd

v (m−1)/2 ∆vm · v (m+1)/2 dx

)2

≤

∫

Rd

vm−1 (∆vm)2 dx

∫

Rd

vm+1 dx

so that Q(t) := ‖∇vm(t, ·)‖2
L2(Rd )

(∫

Rd vm+1(t, x) dx
)−(d−2)/d

is

monotone decreasing, and

H′ = 2 J (Sd Q − 1) , H′′ =
J′

J
H′ + 2 JSd Q′ ≤

J′

J
H′ ≤ 0

H′′ ≤ −κ H′ with κ =
2 d

d + 2

1

Sd

(
∫

Rd

vm+1
0 dx

)−2/d

By writing that −H(0) = H(T ) − H(0) ≤ H′(0) (1 − e−κ T )/κ and
using the estimate κ T ≤ d/2, we obtain our main result �
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The two-dimensional case: Legendre duality

Onofri’s inequality amounts to F1[u] ≤ F2[u] with

F1[u] := log

(
∫

R2

eu dµ

)

and F2[u] :=
1

16 π

∫

R2

|∇u|2 dx+

∫

R2

u µ dx

Proposition

[E. Carlen, M. Loss], [V. Calvez, L. Corrias] For any v ∈ L1
+(R2) with

∫

R2 v dx = 1, such that v log v and (1 + log |x |2) v ∈ L1(R2), we have

F ∗
1 [v ]−F ∗

2 [v ] =

∫

R2

v log

(

v

µ

)

dx−4 π

∫

R2

(v − µ) (−∆)−1(v − µ) dx ≥ 0

Notice that −∆ logµ = 8 π µ can be inverted as

(−∆)−1µ =
1

8 π
log (π µ)
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The two-dimensional case: log HLS and...

H2[v ] :=

∫

R2

(v − µ) (−∆)−1(v − µ) dx −
1

4 π

∫

R2

v log

(

v

µ

)

dx

Assume that v is a positive solution of

∂v

∂t
= ∆ log

(

v

µ

)

t > 0 , x ∈ R
2

Proposition

[J.D.] If v is a solution with nonnegative initial datum v0 in L1(R2) such

that
∫

R2 v0 dx = 1, v0 log v0 ∈ L1(R2) and v0 log µ ∈ L1(R2), then

d

dt
H2[v(t, ·)] =

1

16 π

∫

R2

|∇u|2 dx −

∫

R2

(

e
u
2 − 1

)

u dµ

with log(v/µ) = u/2
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The two-dimensional case: ...Onofri’s inequality

d

dt
H2[v(t, ·)] =

1

16 π

∫

R2

|∇u|2 dx −

∫

R2

(

e
u
2 − 1

)

u dµ

The right hand side is nonnegative by Onofri’s inequality:

d

dt
H2[v(t, ·)] ≥

1

16 π

∫

R2

|∇u|2 dx +

∫

R2

u dµ − log

(
∫

R2

eu dµ

)

≥ 0

If
∫

R2 u dµ = 1, then

−

∫

R2

e
u
2 u dµ ≥ − log

(
∫

R2

eu dµ

)

Corollary: for any u ∈ D(Rd ) such that
∫

R2 e
u
2 dµ = 1, we have

1

16 π

∫

R2

|∇u|2 dx ≥

∫

R2

(

e
u
2 − 1

)

u dµ
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The two-dimensional case: the sphere setting

The image w of v by the inverse stereographic projection on the
sphere S

2, up to a scaling, solves the equation

∂w

∂t
= ∆S2 log w t > 0 , y ∈ S

2

More precisely, if x = (x1, x2) ∈ R
2, then u and w are related by

w(t, y) =
u(t, x)

4 π µ(x)
, y =

(

2 (x1,x2)
1+|x|2 , 1−|x|2

1+|x|2

)

∈ S
2

The loss of mass of the solution of

∂v

∂t
= ∆ log v t > 0 , x ∈ R

2

is compensated in case of

∂v

∂t
= ∆ log

(

v

µ

)

t > 0 , x ∈ R
2

by the source term −∆ log µ
J. Dolbeault Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion



Gagliardo-Nirenberg inequalities: old and new
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Gagliardo-Nirenberg inequalities: further improvements

Gagliardo-Nirenberg inequalities:

further improvements
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Gagliardo-Nirenberg inequalities: further improvements

A brief summary of a strategy for further improvements

Back to the basin of attraction of Barenblatt functions:
improving the asymptotic rates of convergence for any m

∂v

∂t
+ ∇ ·

(

v ∇vm−1
)

= 0 t > 0 , x ∈ R
d

with m ∈ ( d−1
d

, 1), d ≥ 3... Refer to M. Bonforte’s lecture

The 1
2 factor in the inequality F [u] ≤ 1

2 I[u] can be explained by
spectral gap considerations

This factor can be improved for well prepared initial data, if
m > d−1

d

Global improvements can be obtained using rescalings which
depend on the second moment, even for m = d−1

d

J. Dolbeault Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion
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Spectral gaps and best constants

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

[A. Blanchet, M. Bonforte, J.D., G. Grillo, J.-L. Vázquez]
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Best matching Barenblatt profiles

Consider the fast diffusion equation

∂u

∂t
+ ∇ ·

[

u
(

σ
d
2 (m−mc ) ∇um−1 − 2 x

)]

= 0 t > 0 , x ∈ R
d

with a nonlocal, time-dependent diffusion coefficient

σ(t) =
1

KM

∫

Rd

|x |2 u(x , t) dx , KM :=

∫

Rd

|x |2 B1(x) dx

where

Bλ(x) := λ− d
2

(

CM + 1
λ |x |2

)
1

m−1 ∀ x ∈ R
d

and define the relative entropy

Fλ[u] :=
1

m − 1

∫

Rd

[

um − Bm
λ − m Bm−1

λ (u − Bλ)
]

dx
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Three ingredients for global improvements

1 infλ>0 Fλ[u(x , t)] = Fσ(t)[u(x , t)] so that

d

dt
Fσ(t)[u(x , t)] = −Jσ(t)[u(·, t)]

where the relative Fisher information is

Jλ[u] := λ
d
2 (m−mc )

m

1 − m

∫

Rd

u
∣

∣∇um−1 −∇Bm−1
λ

∣

∣

2
dx

2 In the Bakry-Emery method, there is an additional (good) term

4

[

1 + 2 Cm,d

Fσ(t)[u(·, t)]

Mγ σ
d
2 (1−m)
0

]

d

dt

(

Fσ(t)[u(·, t)]
)

≥
d

dt

(

Jσ(t)[u(·, t)]
)

3 The Csiszár-Kullback inequality is also improved

Fσ[u] ≥
m

8
∫

Rd Bm
1 dx

C 2
M‖u − Bσ‖

2
L1(Rd )
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An improved Gagliardo-Nirenberg inequality (1/2)

Relative entropy functional

R(p)[f ] := inf
g∈M

(p)
d

∫

Rd

[

g 1−p
(

|f |2 p − g 2 p
)

− 2 p

p+1

(

|f |p+1 − gp+1
)

]

dx

Theorem

Let d ≥ 2, p > 1 and assume that p < d/(d − 2) if d ≥ 3. If

∫

Rd |x |
2 |f |2 p dx

(∫

Rd |f |2 p dx
)γ =

d (p−1) σ∗ Mγ−1
∗

d+2−p (d−2) , σ∗(p) :=
(

4 d+2−p (d−2)
(p−1)2 (p+1)

)

4 p

d−p (d−4)

for any f ∈ Lp+1 ∩ D1,2(Rd ), then we have

∫

Rd

|∇f |2 dx+

∫

Rd

|f |p+1 dx−Kp,d

(
∫

Rd

|f |2 p dx

)γ

≥ Cp,d

(

R(p)[f ]
)2

(∫

Rd |f |2 p dx
)γ
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An improved Gagliardo-Nirenberg inequality (2/2)

A Csiszár-Kullback inequality

R(p)[f ] ≥ CCK ‖f ‖
2 p (γ−2)

L2 p(Rd )
inf

g∈M
(p)
d

‖|f |2 p − g 2 p‖2
L1(Rd )

with CCK = p−1
p+1

d+2−p (d−2)
32 p

σ
d

p−1
4 p

∗ M
1−γ
∗ . Let

Cp,d := Cd,p CCK
2

Corollary

Under previous assumptions, we have

∫

Rd

|∇f |2 dx +

∫

Rd

|f |p+1 dx − Kp,d

(
∫

Rd

|f |2 p dx

)γ

≥ Cp,d ‖f ‖
2 p (γ−4)

L2 p(Rd )
inf

g∈Md (p)
‖|f |2 p − g 2 p‖4

L1(Rd )
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