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Standard Hardy inequality
Let u ∈ H1(IRN) and consider∫

IRN

∣∣∣∣∣∇u+ N−2
2

x

|x|2 u
∣∣∣∣∣
2

dx ≥ 0 .

Develop this square and integrate by parts using the identity

∇ ·
(
x
|x|2

)
= N−2
|x|2

∫
IRN
|∇u|2 dx ≥ 1

4
(N − 2)2

∫
IRN

|u|2
|x|2 dx

It is optimal (take appropriate truncations of x �→ |x|−(N−2)/2):
the operator −∆− A

|x|2 is nonnegative if and only if A ≤ 1
4(N−2)2.

Optimality has to be taken with care: improvements with l.o.t.
in L2 by Brezis-Vazquez, in W1,q with q < 2 by Vazquez-Zuazua,
and logarithmic terms by Adimurthi & al. N = 3 from now on.
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Some notations

Free Dirac operator:

H0 = −i α · ∇+ β , with α1, α2, α3, β ∈M4×4(CI )

β =

(
1I 0
0 −1I

)
, αi =

(
0 σi
σi 0

)
Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)

Decomposition into upper / lower component: Ψ =

(
ϕ

χ

)

H0Ψ =

(
Rχ+ ϕ

Rϕ− χ

)
, with R = −i σ · ∇
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Two of the main properties of H0 are:

H2
0 = −∆ + 1

and

σ(H0) = (−∞,−1] ∪ [1,+∞) .

Denote by Y ± the spaces Λ±(H1/2(IR3,CI 4)), where Λ± are the

positive and negative spectral projectors on L2(IR3,CI 4) corre-

sponding to the free Dirac operator: Λ+ and Λ− = 1I
L2 − Λ+

have both infinite rank and satisfy

H0 Λ+ = Λ+H0 =
√

1−∆ Λ+ = Λ+ √1−∆ ,

H0 Λ− = Λ−H0 = −
√

1−∆ Λ− = −Λ−
√

1−∆ .

With R = −i σ · ∇, R2 = −∆.
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Hardy inequality for the operator R

Proposition 1 With the above notations, for any ϕ ∈ H1/2(IR3,CI 2),

∫
IR3

|(σ · ∇)ϕ|2
1 + 1

|x|
dx +

∫
IR3
|ϕ|2 dx ≥

∫
IR3

|ϕ|2
|x| dx

This is a consequence of the following inequality, which is slightly
more general: for all ϕ ∈ H1/2(IR3,CI 2) and all ν ∈ (0,1],

ν
∫
IR3

|ϕ|2
|x| +

√
1− ν2

∫
IR3
|ϕ|2 ≤

∫
IR3

|(σ · ∇)ϕ|2
ν
|x| + 1 +

√
1− ν2

+
∫
IR3
|ϕ|2
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Replace ϕ(x) by ϕ
(
x
µ

)
and let µ→ 0.

∫
IR3

|ϕ|2
|x| dx ≤

∫
IR3
|x||(σ · ∇)ϕ|2 dx for all ϕ ∈ H1/2(IR3,CI 2)

Actually, taking φ = |x|1/2ϕ, this inequality has to be directly

related to the standard Hardy inequality∫
IR3

|ϕ|2
|x| =

∫
IR3

|φ|2
|x|2 ≤ 4

∫
IR3
|∇φ|2 = 4

∫
IR3

∣∣∣∣∣|x|1/2∇φ+
1

2

x

|x|3/2
φ

∣∣∣∣∣
2

∫
IR3

|ϕ|2
|x| dx ≤

∫
IR3
|x| |∇ϕ|2 dx
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Connection with the spectrum of the Dirac operator

Let λ1(V ) be the lowest eigenvalue of H0+V in the gap (−1,1) of
the continuous spectrum of H0 + V (under appropriate assump-

tions on V ). Let Ψ =

(
ϕ

χ

)
be the corresponding eigenfunction.

(H0 + V )Ψ = λ1(V )Ψ

means, for R = −i c (σ · ∇)
Rχ = (λ1(V )− c2 − V )ϕ

Rϕ = (λ1(V ) + c2 − V ) χ

which can be solved by
χ = (λ1(V ) + c2 − V )−1Rϕ

R

(
Rϕ

λ1(V )+c2−V

)
= (λ1(V )− c2 − V )ϕ
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Multiplying by ϕ and integrating with respect to x ∈ IR3, we get :∫
IR3

|Rϕ|2
λ1(V ) + c2 − V dx+

∫
IR3
V |ϕ|2 dx +(c2−λ1(V ))

∫
IR3
|ϕ|2 dx = 0

Note that for any fixed φ

λ �→
∫
IR3

|Rφ|2
λ+ c2 − V dx+

∫
IR3
V |φ|2 dx + (c2 − λ)

∫
IR3
|φ|2 dx

is monotone decreasing. We shall see that λ1(V ) and φ can be
characterized as follows

λ1(V ) is the smallest λ for which∫
IR3

|Rφ|2
λ+ c2 − V dx+

∫
IR3
V |φ|2 dx + (c2 − λ)

∫
IR3
|φ|2 dx ≥ 0 ∀φ

and ϕ is the corresponding optimal function.

The generalized Hardy inequality is recovered with λ =
√

1− ν2.
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Other standard Hardy type inequalities

Define the spectral projectors:

Λ+ = χ(0,+∞)(H0) and Λ− = χ(−∞,0)(H0)

Using the Fourier transform u(x) �→ û(ξ), we get

Ĥ0 = i α · ξ+ β , Ĥ2
0 = |ξ|2 + 1 ,

H2
0 = −∆ + 1 .

1) Using −∆ ≥ 1
4

1
|x|2 (Hardy inequality), |H0| = Λ+H0Λ

+ −
Λ−H0Λ

− satisfies

|H0| ≥ κ
|x| κ = 1

2

Z α ≤ κ with α−1 = 137.037... means Z ≤ 68.
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2) Kato’s inequality.

|H0| ≥ κ
|x| κ = 2

π = 0.63662...

Z α ≤ κ means Z ≤ 87. Optimal [Herbst].

3) An inequality for the Brown & Ravenhall operator

[Burenkov, Evans, Perry, Siedentop, Tix]:

B := Λ+
(
H0 − κ

|x|

)
Λ+ ≥ 0 κ = 2

2
π+

π
2

= 0.906037...

B was introduced by Bethe and Salpeter. κ is sharp. Z α ≤ κ
means Z ≤ 124.

10



Min-max characterization of the discrete spectrum

Kato’s inequality and related inequalities have no evident relation

with the spectrum of H0: ν = 2
π or ν = 2

2/π+π/2 are not critical

for the (point) spectrum of H0 − ν
|x|. The operator

Hν := H0 −
ν

|x| , 0 < ν < 1

has a self-adjoint extension with domain included in H1/2(IR3,CI 4)

and its spectrum is given by

σ(Hν) = (−∞,−1] ∪ {λν1, λν2, . . .} ∪ [1,∞) , lim
ν→1

λν1 = 0 .

Hν is self-adjoint only for ν < 1. The notion of “first eigenvalue”

in (−1,1) does not make sense for ν ≥ 1 .
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Assume that V ∈ M3(IR3) + L∞(IR3) and ∃ δ > 0 such that

(H) ± Λ± (H0 + V )Λ±≥δΛ±
√

1−∆Λ± in H1/2(IR3,CI 4)

With Y ± = Λ±H1/2(IR3,CI 4), define

ck(V ) = inf
F⊂Y+

F vector space
dim F=k

sup
ψ∈F⊕Y−
ψ �=0

((H0 + V )ψ,ψ)

(ψ,ψ)

Theorem 1 [J.D., Esteban, Séré] Under assumption (H), if V ∈
L∞(IR3 \BR0

) for some R0 > 0 is such that
limR→+∞‖V ‖L∞(|x|>R) = 0, limR→+∞ supess |x|>RV (x)|x|2 = −∞ ,

then {ck(V )}k≥1 is the non-decreasing sequence of eigenvalues
of H0 + V in the interval [0,1), counted with multiplicity, and

0 < δ ≤ c1(V ) = λ1(V ) ≤ ... ck(V ) = λk(V ) ≤ ... ≤ 1 , lim
k→+∞

ck(V ) = 1
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Griesemer and Siedentop proved an abstract result which implies

the above min-max characterization for the eigenvalues of H0 +

V for a certain class of potentials V (which does not include

singularities close to the Coulombic ones). This has

Remark. Any potential V such that |V | ≤ a|x|−β+C belongs to

M3(IR3) + L∞(IR3) for all a, C > 0, β ∈ (0,1). If |V | ≤ a|x|−1,

then (H) is satisfied if a < 2/(π/2 + 2/π) ≈ 0.9. Moreover, any

V ∈ L∞(IR3) satisfies (H) if ||V ||∞ < 1.

Remark. Assumption (H) implies that for all constants κ > 1,

close to 1, there is a positive constant δ(κ) > 0 such that :

±Λ±(H0 + κV )Λ± ≥ δ(κ)Λ± in H1/2(IR3,CI 4)
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Further min-max results: Talman’s decomposition

HT+ = L2(IR3,CI 2)⊗
{(

0

0

)}
, HT− =

{(
0

0

)}
⊗ L2(IR3,CI 2) ,

so that, for any ψ =
(
ϕ
χ

)
∈ L2(IR3,CI 4),

ΛT+ψ =
(
ϕ

0

)
, ΛT−ψ =

(
0

χ

)
.

Assume also that the potential V satisfies

lim
|x|→+∞

V (x) = 0 , − ν|x| − c1 ≤ V ≤ c2 = sup(V ) ,

with ν ∈ (0,1) and c1, c2 ∈ IR. Finally, define the 2-spinor space
W := C∞0 (IR3,CI 2) , and the 4-spinor subspaces of L2(IR3,CI 4)

WT
+ :=W ⊗

{(
0

0

)}
, WT

− :=
{(

0

0

)}
⊗W
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Theorem 2 [J.D., Esteban, Séré] Under the previous assump-

tions, all eigenvalues of H0+V in the interval (−1,1) are given

by the following (eventually finite) sequence of real numbers

inf
F⊂WT

+
F vector space

dim F=k

sup
ψ∈F⊕WT−
ψ �=0

((H0 + V )ψ,ψ)

(ψ,ψ)
,

as long as they are contained in the interval (−1,1), assuming

that the lowest of these min-max values is larger than −1.

In particular, λ1(V ) = inf
ϕ �=0

sup
χ

(ψ, (H0 + V )ψ)

(ψ,ψ)
(Talman)

where both ϕ and χ are in W and ψ =
(
ϕ
χ

)
, as soon a the above

inf-sup takes its values in (−1,1). This theorem is a special case

of an abstract result.
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Abstract min-max approach

Let H be a Hilbert space and A : D(A) ⊂ H → H a self-adjoint
operator. F(A) is the form-domain of A. Let H+, H− be two
orthogonal Hilbert subspaces of H such that H = H+⊕H−. Λ±
are the projectors on H±. We assume the existence of a core F
such that :

(i) F+ = Λ+F and F− = Λ−F are two subspaces of F(A).

(ii) a = supx−∈F−\{0}
(x−,Ax−)
‖x−‖2H

< +∞.

Let ck = inf
V subspace of F+

dim V=k

sup
x∈(V⊕F−)\{0}

(x,Ax)

||x||2H
, k ≥ 1.

(iii) c1 > a , b = inf (σess(A) ∩ (a,+∞)) ∈ [a,+∞].
Definition: for k ≥ 1, λk is the kth eigenvalue of A in (a, b),
counted with multiplicity, if this eigenvalue exists. If not, λk = b.
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Theorem 3 [J.D., Esteban, Séré] Assume (i)-(ii)-(iii).

ck = λk , ∀k ≥ 1

As a consequence, b = lim
k→∞

ck = sup
k
ck > a .

References on the min-max approach: Talman and Datta & De-

viah for the computation of the first positive eigenvalue of Dirac

operators with a potential. Other min-max approaches were pro-

posed by Drake & Goldman and Kutzelnigg.

Esteban & Séré: Dirac operators with a Coulomb-like po-

tential. Griesemer & Siedentop: first abstract theorem on the

variational principle, under conditions (i), (ii), and two additional

hypotheses instead of (iii): (Ax, x) > a‖x‖2 ∀x ∈ F+ \ {0}, the

operator (|A|+ 1)1/2P−Λ+ is bounded. Here Λ+ is the orthog-

onal projection of H on H+ and P− is the spectral projection of

A for the interval (−∞, a], i.e. P− = χ(−∞,a](A).
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[Griesemer, Lewis & Siedentop]: an alternative approach which

extends the results of Griesemer & Siedentop and applies to

Dirac operators with potentials having Coulomb singularities.

Additional comment: the difficult part to apply the previous the-

orem is condition (iii): the first level of min-max has to be above

the lower bound of the gap. A possible method consists in de-

riving an abstract continuation method when the family of op-

erators depends continuously on a parameter, for instance ν in

case of Hν := H0 − ν
|x|. This allows us to take any ν ∈ (0,1) in

the case of the Coulomb potential V (x) = ν
|x|.

Proof: see the finite dimensional case (numerical approach).
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A min-max approach of Hardy type inequalities

The case of Talman’s min-max

As a subproduct of our method, we obtain Hardy type inequal-
ities. In the case of the decomposition based on the projectors
of the free Dirac operator, one gets a Hardy type inequality. A
simpler form is obtained in case of Talman’s decomposition.

For every ϕ ∈ C∞0 (IR3,CI 2) consider

λ(ϕ) = sup
χ

(ψ, (H0 + V )ψ)

(ψ,ψ)
where ψ =

(
ϕ

χ

)
This number is achieved by the function

χ(ϕ) :=
−i (σ · ∇)ϕ

1− V + λ(ϕ)
=

Rϕ

1− V + λ(ϕ)

19



Moreover, λ = λ(ϕ) is the unique solution to the equation

λ
∫
IR3
|ϕ|2 dx =

∫
IR3

(
|(σ · ∇)ϕ|2
1− V + λ

+ (1 + V )|ϕ|2
)
dx

(uniqueness is an easy consequence of the monotonicity of both

sides of the equation in terms of λ). Thus λ1(V ) is the solution

of the following minimization problem

λ1(V ):= inf{λ(ϕ) : ϕ ∈ C∞0 (IR3,CI 2)} .

This is by far simpler than working with Rayleigh quotients.

λ1(V ) is the best constant in the inequality∫
IR3

|(σ · ∇)ϕ|2
1 + λ1(V )− V dx +

∫
IR3

(1− λ1(V ) + V )|ϕ|2 dx ≥ 0
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For any ν ∈ (0,1), the first eigenvalue of Hν := H0 − ν
|x| is ex-

plicit:

λ1

(
− ν|x|

)
=
√

1− ν2

∫
IR3

|(σ · ∇)ϕ|2
1+
√

1−ν2+ ν
|x|
dx +

(
1−
√

1−ν2
)∫

IR3
|ϕ|2 dx ≥ ν

∫
IR3

|ϕ|2
|x| dx

Moreover this inequality is achieved. In the limit ν → 1 , we get

the optimal (but not achieved) inequality:∫
IR3

|(σ · ∇)ϕ|2
1 + 1

|x|
dx +

∫
IR3
|ϕ|2 dx ≥

∫
IR3

|ϕ|2
|x| dx

This inequality is not invariant under scaling.
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The min-max associated with the projectors of the free
Dirac operator: corresponding Hardy type inequality

Consider the splitting H = Hf+ ⊕H
f
−, with Hf± = Λ±H, where

Λ+ = χ(0,+∞)(H0), Λ− = χ(−∞,0)(H0), i.e.

Λ± =
1

2

(
1I± H0√

1−∆

)

Theorem 4 If lim
|x|→+∞

V (x) = 0 and − ν
|x| − c1 ≤ V ≤ c2 with

ν ∈ (0,1), c1, c2 ≥ 0, c1 + c2 − 1 <
√

1− ν2, then

c
f
k(V ) = λk(V ) ∀ k ≥ 1 .

Case ν < 1
2: [Esteban, Séré], case ν < 2

2
π+

π
2

: [J.D., Esteban, Séré]
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If E ≥ cf1(V ) , Q
f
E,ν(ψ+) ≥ 0 , ∀ ψ+ ∈ Λ+

(
C∞0 (IR3,CI 4)

)
Q
f
E,ν(ψ+) := ||ψ+||2H1/2 − (ψ+, (E − V )ψ+)

+
(
Λ−|V |ψ+,

(
Λ−(
√

1−∆ + E + |V |)Λ−
)−1

Λ−|V |ψ+

)

Proposition 2 For all ν ∈ [0,1], ψ+ ∈ Λ+
(
C∞0 (IR3,CI 4)

)
,

ν
∫
IR3

|ψ+|2
|x| dx+

√
1− ν2

∫
IR3
|ψ+|2 dx

≤
∫
IR3

(ψ+,
√

1−∆ψ+) dx+ ν2
∫
IR3

(
Λ−

(
ψ+

|x|

)
, B−1Λ−

(
ψ+

|x|

))
dx

with B := Λ−
(√

1−∆ + ν
|x| +

√
1− ν2

)
Λ−
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Taking functions with support near the origin, we find, after
rescaling and passing to the limit, a new homogeneous Hardy-
type inequality. If

Λ0
± :=

1

2

(
1I± α · p̂|p̂|

)
, p̂ := −i∇

are the projectors associated with the zero-mass free Dirac op-
erator, then for any ψ+ ∈ Λ0

+

(
C∞0 (IR3,CI 4)

)
,

∫
IR3

|ψ+|2
|x| dx ≤

∫
IR3

(ψ+, |p̂|ψ+) dx+
∫
IR3

(
Λ0
−

(
ψ+

|x|

)
, (B0)−1Λ0

−

(
ψ+

|x|

))
dx

with B0 := Λ0
−
(
|p̂|+ 1

|x|

)
Λ0
−
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Generalized Hardy inequality: an analytical proof

Notes from a discussion with M. Loss. Related works based on commutators

of M.J. Esteban, L. Vega, Adimurthi containing improvements like logarithmic

terms.

Proposition 3 Let g be a bounded radial C1 function such that

limx→0 |x| g(x) is finite. Then for any ϕ ∈ H1/2(IR3,CI 2),

∫
IR3

1

g
|(σ · ∇)ϕ|2 dx +

∫
IR3
g |ϕ|2 dx ≥ 2

∫
IR3

|ϕ|2
|x| dx
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Proof. Let φ ∈ H1/2(IR3,CI 2) and ε = ±1. In the case of
the generalized Hardy inequality, take g(x) = 1 + 1

|x|. From∫
IR3

∣∣∣∣∣ 1
√
g
(σ · ∇φ) + ε

√
g

(
σ · x|x| φ

)∣∣∣∣∣
2

dx ≥ 0, we get

∫
IR3

1

g
|σ · ∇φ|2 dx+

∫
IR3
g |φ|2 dx ≥ ε

(
φ,

[
1
√
g
(σ · ∇),

√
g

(
σ · x|x|

)]
φ

)
L2

Let L = ix ∧∇. A straightforward computation shows that[
(σ · ∇),

(
σ · x|x|

)]
=

2

|x| (1 + σ · L)

[
1√
g (σ · ∇),

√
g

(
σ · x|x|

)]
= 1

2g

(
∇g · x|x|

)
+ 2
|x| (1 + σ · L) ,

[
1√
g σ ·

(
∇− x

|x|
∂
∂r

)
,
√
g

(
σ · x|x|

)]
= 2
|x| (1 + σ · L) .
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Lemma 4 The spectrum of (1+σ·L) is ZZ\{0} and L2(IR3,CI 2) =

H− ⊕H+ with H± = P±L2(IR3,CI 2), P± = 1
2

(
1± 1+σ·L

|1+σ·L|

)
. As a

consequence, for any nonnegative radial function h,
if φ ∈ H±, ± (φ, h (1 + σ · L)φ)L2 ≥

∫
IR3
h |φ|2 dx

Let ϕ ∈ H1/2(IR3,CI 2), ϕ± = P±ϕ. Apply Lemma 4 to ϕ+ with

ε = +1 (resp. to ϕ− with ε = −1), h = 1
|x|, ∇⊥ =

(
∇− x

|x|
∂
∂r

)
:

∫
IR3

1

g
|σ · ∇⊥ϕ±|2 dx+

∫
IR3
g |φ±|2 dx ≥

∫
IR3

2

|x| |ϕ±|
2 dx

For any radial function h,∫
IR3 h |ϕ|2 dx =

∫
IR3 h |ϕ−|2 dx+

∫
IR3 h |ϕ+|2 dx∫

IR3 |∇ϕ|2 dx ≥
∫
IR3 |∇⊥ϕ−|2 dx+

∫
IR3 |∇⊥ϕ+|2 dx
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A numerical algorithm for computing
the eigenvalues of the Dirac operator

In principle one has to look for the minima of the Rayleigh quo-
tient

((H0 + V )ψ,ψ)

(ψ,ψ)

on “well chosen” subspaces of 4-spinors on which the above
quotient is bounded from below. Direct approaches may face
serious numerical difficulties. Our method is based on finding
the best constant λ in the generalized Hardy inequality

∫
IR3

|Rφ|2
λ+ 1− V dx+

∫
IR3
V |φ|2 dx + (1− λ)

∫
IR3
|φ|2 dx ≥ 0 ∀φ
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To do this, we minimize λ = λ(ϕ) , given by∫
IR3

(
|(σ · ∇)ϕ|2
1− V + λ

+ (1 + V )|ϕ|2
)
dx− λ

∫
IR3
|ϕ|2 dx = 0

w.r.t. ϕ. The discretized version of this equation on a finite
dimensional space En of dimension n of 2-spinor functions is

An(λ)xn · xn = 0 ,

where xn ∈ En and An(λ) is a λ-dependent n × n matrix. If En
is generated by a basis set {ϕi, . . . ϕn} , the entries of the matrix
An(λ) are the numbers∫

IR3

(
((σ · ∇)ϕi, (σ · ∇)ϕj)

1− V + λ
+ (1− λ+ V ) (ϕi, ϕj)

)
dx .

The matrix is monotone decreasing in λ. The ground state
energy will then be approached from above by the unique λ for
which the first eigenvalue of An(λ) is zero.
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The matrix An(λ) is selfadjoint and has therefore n real eigen-
values:

λ1,n(λ) < λ2,n(λ) < ... λ1,n(λ)

which are all monotone decreasing functions of λ.

The equation

An(λ)xn · xn = 0 ,

means that xn is an eigenvector associated to the eigenvalue
λk,n(λ) = 0, for some k.

Minimizing λ is therefore equivalent to compute λ1,n as the
solution of the equation

λ1,n(λ) = 0

The uniqueness of such a λ comes from the monotonicity.
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Moreover, if the approximating finite spaces (En)n∈IN is an in-

creasing family which generates H1(IR3;CI 2), since for a fixed λ

λ1,n(λ)↘ λ1(λ) as n→ +∞

we also have

λ1,n ↘ λ1 as n→ +∞

This method has been tested on diatomic configurations (cor-

responding to a cylindrical symmetry) with B-splines basis sets.

Approximations from above of the other eigenvalues of the Dirac

operator, or excited levels, can also be computed by requiring

successively that the second, third,... eigenvalues of An(λ) are

equal to zero.
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1 2 3 4 5

c1

c2
c3 c4 c5

µ̄( )λ

λ λ λ λ λ

λ

Figure 1: Each eigenvalue µi(λ) of A(λ), considered as a function of λ, is monotone decreasing. By looking for the zeros of the
non continuous function λ �→ µ̄(λ) = infi |µi(λ)|, we obtain an efficient algorithm to compute all eigenvalues of the Dirac
operator in the gap (−1, 1) and the corresponding eigenfunctions. The ground state of course corresponds to the smallest
zero of µ̄(λ) in (−1, 1). Moreover the method forbids variational collapse, no spurious states may appear and the only
consequence of the approximation on a finite basis set is that eigenvalues are approximated from above.
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Figure 2: Ground state of Th89+ corresponding to Z = 90, one atom, computed with smax = 10, zmax = 10, h = 0.4.
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Figure 3: Ground state of H+
2 corresponding to Z = 1, two atoms, computed with smax = 700, zmax = 820, h = 20.
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Figure 4: Ground state of Th179+
2 corresponding to Z = 90, two atoms, computed with smax = 10, zmax = 12, h = 0.4.


