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Subcritical interpolation inequalities on the sphere

With the uniform probability measure dµ on the unit sphere
Sd ⊂ Rd+1, let us consider the following family of
Gagliardo-Nirenberg-Sobolev inequalities

‖∇u‖2
L2(Sd ) ≥

d

p − 2

(
‖u‖2

Lp(Sd ) − ‖u‖2
L2(Sd )

)
∀ u ∈ H1(Sd , dµ) (GNS)

d = 1 or d = 2: p ∈ [1, 2) ∪ (2,+∞)
d ≥ 3: p ∈ [1, 2) ∪ (2, 2∗] with 2∗ = 2 d/(d − 2)

p = 2: Poincaré; p = 2∗: Sobolev;
p → 2: logarithmic Sobolev inequality

∫

Sd
|∇u|2 dµ ≥ d

2

∫

Sd
u2 log

(
u2

‖u‖2
L2(Sd )

)
dµ ∀ u ∈ H1(Sd , dµ) (LSI)

[Gidas, Spruck, 1981], [Bidaut-Véron, Véron, 1991]
[Bakry, Emery, 1985], [Demange, 2088], [JD, Esteban, Kowalczyk,
Loss]
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The Bakry-Emery method on the sphere

Entropy functional

Ep[ρ] := 1
p−2

(∫
Sd ρ

2
p dµ−

(∫
Sd ρ dµ

) 2
p

)
if p 6= 2

E2[ρ] :=
∫
Sd ρ log

(
ρ

‖ρ‖
L1(Sd )

)
dµ

Fisher information functional

Ip[ρ] :=
∫
Sd |∇ρ

1
p |2 dµ

[Bakry, Emery, 1985] carré du champ method: use the heat flow

∂ρ

∂t
= ∆ρ

and observe that d
dt Ep[ρ] = −Ip[ρ]

d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0 =⇒ Ip[ρ] ≥ d Ep[ρ]

with ρ = |u|p, if p ≤ 2# := 2 d2+1
(d−1)2
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The evolution under the fast diffusion flow

To overcome the limitation p ≤ 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

∂ρ

∂t
= ∆ρm

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any p ∈ [1, 2∗]

Kp[ρ] :=
d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0

1.0 1.5 2.5 3.0

0.0

0.5

1.5

2.0

(p,m) admissible region, d = 5
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Computation of the admissible region

With ρ = |u|β p and m = 1 + 2
p

(
1
β − 1

)
, κ = β (p − 2) + 1, with the

trace free Hessian

Lu := Hu − 1

d
(∆u) gd

and the trace free tensor

Mu :=
∇u ⊗∇u

u
− 1

d

|∇u|2
u

gd

we have

d

dt

(
Ip[ρ]− d Ep[ρ]

)
= − d

d − 1

(
a ‖Lu‖2 − 2 b Lu : Mu + c ‖Mu‖2

)

a = 1 , b = (κ+ β − 1)
d − 1

d + 2
, c = (κ+ β − 1)

d

d + 2
+ κ (β − 1)

so that the admissible region is defined by b2 − a c ≤ 0
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Improved inequalities

B the monotonicity result

d

dt

(
Ip[ρ]− d Ep[ρ]

)
= − d

d − 1
a

∥∥∥∥Lu − b

a
M

∥∥∥∥
2

− d

d − 1

(
c− b2

a

)
‖Mu‖2

B improved inequalities [Arnold, JD, 2005], [JD, Nazaret, Savaré,
2008], [JD, Toscani, 2013], [JD, Esteban, Kowalczyk, Loss, 2014], [JD,
Esteban, 2020]

Ip[ρ] ≥ d Φ
(
Ep[ρ]

)

for some convex Φ with Φ(0) = 0 and Φ′(0) = 1

B Application: with d ≥ 2, 2− p 6= γ :=
(

d−1
d+2

)2

(p − 1) (2# − p) > 0,

we have

‖∇u‖2
L2(Sd ) ≥

d

2− p − γ

(
‖u‖2

L2(Sd ) − ‖u‖
2− 2 γ

2−p

Lp(Sd )
‖u‖

2 γ
2−p

L2(Sd )

)
∀ u ∈ H1(Sd)
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Subcritical interpolation inequalities on the sphere: stability

[Frank, 2022] Degenerate stability of some Sobolev inequalities
Annales IHP C (2022), arXiv:2107.11608

If d ≥ 2 and 2 < p < 2∗, there is cd,p > 0 such that, if
∫
Sd u dµ = 1

‖∇u‖2
L2(Sd )+d

‖u‖2
Lp(Sd ) − ‖u‖2

L2(Sd )

p − 2
≥ cd,p

(
‖∇u‖2

L2(Sd ) + d
p−2 ‖u − 1‖2

L2(Sd )

)2

‖∇u‖2
L2(Sd )

+ d
p−2 ‖u‖2

L2(Sd )

An optimal result: take u(x) = 1 + ε z

Theorem

If d ≥ 2 and 2 < p < 2∗, there is Cd,p > 0 such that for any
u ∈ H1(Sd , dµ)

‖∇u‖2
L2(Sd ) + d

‖u‖2
Lp(Sd ) − ‖u‖2

L2(Sd )

p − 2
≥ Cd,p

∫

Sd
|∇u⊥|2 dµ

with optimal constant Cd,p = 2 d−p (d−2)
2 d (d+p) [Brigati, JD, Simonov]
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LSI: improved inequality under constraint

Theorem

Let d ≥ 1. For any F ∈ H1(Sd , dµ) such that
∫
Sd x F dµ = 0

∫

Sd
|∇F |2 dµ− d

2

∫

Sd
F 2 log

(
F 2

‖F‖2
L2(Sd )

)
dµ ≥ Cd

∫

Sd
|∇F |2 dµ

with optimal constant Cd = 2
d+2 if d ≥ 2 and C1 = 3

4

[Brigati, JD, Simonov]
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LSI: without orthogonality constraint

Let

γ =
4 d − 1

(d + 2)2
if d ≥ 2 , and γ =

1

3
if d = 1

ψ(t) := t − 1

γ
log(1 + γ t) ∀ t ≥ 0

Proposition

For any F ∈ H1(Sd) we have

∫

Sd
|∇F |2 dµ−d

2

∫

Sd
F 2 log

(
F 2

‖F‖2
L2(Sd )

)
dµ ≥ d ‖F‖2

L2(Sd ) ψ

(
‖∇F‖2

L2(Sd )

‖F‖2
L2(Sd )

)

[Brigati, JD, Simonov]

∫

Sd
|∇F |2 dµ−d

2

∫

Sd
F 2 log

(
F 2

‖F‖2
L2(Sd )

)
dµ ≥ d

2

γ ‖∇F‖4
L2(Sd )

γ ‖∇F‖2
L2(Sd ) + ‖F‖2

L2(Sd )
J. Dolbeault Stability estimates in critical functional inequalities
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LSI: A general stability result

Theorem

Let d ≥ 1. For any F ∈ H1(Sd , dµ), we have

∫

Sd
|∇F |2 dµ− d

2

∫

Sd
F 2 log

(
F 2

‖F‖2
L2(Sd )

)
dµ

≥ Sd

(
‖∇ΠF‖4

L2(Sd )

‖∇ΠF‖2
L2(Sd ) + ‖ΠF‖2

L2(Sd )

+
∥∥∇F⊥

∥∥2

L2(Sd )

)

for some stability constant Sd > 0
[Brigati, JD, Simonov]
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Duality
Yamabe flow
Entropy methods, improvements

Sobolev and Hardy-Littlewood-Sobolev
inequalities

B Stability in a weaker norm, with explicit constants

B From duality to improved estimates based on Yamabe’s flow

J. Dolbeault Stability estimates in critical functional inequalities



Sobolev and HLS inequalities
Stability, fast diffusion equation and entropy methods

A constructive Bianchi-Egnell stability result

Duality
Yamabe flow
Entropy methods, improvements

Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev’s inequality in Rd , d ≥ 3,

‖u‖2
L2∗ (Rd ) ≤ Sd ‖∇u‖2

L2(Rd ) ∀ u ∈ Ḣ1(Rd) (S)

and the Hardy-Littlewood-Sobolev inequality

Sd ‖v‖2

L
2 d
d+2 (Rd )

≥
∫

Rd

v (−∆)−1v dx ∀ v ∈ L 2 d
d+2 (Rd) (HLS)

are dual of each other. Here Sd is the Aubin-Talenti constant and
2∗ = 2 d

d−2

J. Dolbeault Stability estimates in critical functional inequalities
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Improved Sobolev inequality by duality

Theorem

[JD, Jankowiak] Assume that d ≥ 3 and let q = d+2
d−2 . There exists a

positive constant C < 1 such that

Sd ‖wq‖2

L
2 d
d+2 (Rd )

−
∫

Rd

wq (−∆)−1wq dx

≤ C Sd ‖w‖
8

d−2

L2∗ (Rd )

(
‖∇w‖2

L2(Rd ) − Sd ‖w‖2
L2∗ (Rd )

)

for any w ∈ Ḣ1(Rd)
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Proof: the completion of a square

Integrations by parts show that
∫

Rd

|∇(−∆)−1 v |2 dx =

∫

Rd

v (−∆)−1 v dx

and, if v = uq with q = d+2
d−2 ,

∫

Rd

∇u · ∇(−∆)−1 v dx =

∫

Rd

u v dx =

∫

Rd

u2∗ dx

Hence the expansion of the square

0 ≤
∫

Rd

∣∣∣∣Sd ‖u‖
4

d−2

L2∗ (Rd )
∇u −∇(−∆)−1 v

∣∣∣∣
2

dx

shows that (with C = 1)

0 ≤ Sd ‖u‖
8

d−2

L2∗ (Rd )

(
Sd ‖∇u‖2

L2(Rd ) − ‖u‖2
L2∗ (Rd )

)

−
(

Sd ‖uq‖2

L
2 d
d+2 (Rd )

−
∫

Rd

uq (−∆)−1 uq dx

)

J. Dolbeault Stability estimates in critical functional inequalities
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Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

∂v

∂t
= ∆vm t > 0 , x ∈ Rd (FDE)

If we define H(t) := Hd [v(t, ·)], with

Hd [v ] :=

∫

Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Rd )

then we observe that

1

2
H′ = −

∫

Rd

vm+1 dx + Sd

(∫

Rd

v
2 d
d+2 dx

) 2
d
∫

Rd

∇vm · ∇v d−2
d+2 dx

where v = v(t, ·) is a solution of (FDE). With the choice m = d−2
d+2 , we

find that m + 1 = 2 d
d+2

J. Dolbeault Stability estimates in critical functional inequalities
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A simple observation

Proposition

[JD] Assume that d ≥ 3 and m = d−2
d+2 . If v is a solution of (FDE)

with nonnegative initial datum in L2d/(d+2)(Rd), then

1

2

d

dt

(∫

Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Rd )

)

=

(∫

Rd

vm+1 dx

) 2
d (

Sd ‖∇u‖2
L2(Rd ) − ‖u‖2

L2∗ (Rd )

)
≥ 0

The HLS inequality amounts to H ≤ 0 and appears as a consequence
of Sobolev, that is H′ ≥ 0 if we show that lim supt>0 H(t) = 0
Notice that u = vm is an optimal function for (S) if v is optimal
for (HLS)

J. Dolbeault Stability estimates in critical functional inequalities
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Improved Sobolev inequality

By integrating along the flow defined by (FDE), we can actually
obtain optimal integral remainder terms which improve on the usual
Sobolev inequality (S), with d ≥ 5 for integrability reasons

Theorem

[JD] Assume that d ≥ 5 and let q = d+2
d−2 . There exists a positive

constant C ≤
(
1 + 2

d

) (
1− e−d/2

)
Sd such that

Sd ‖wq‖2

L
2 d
d+2 (Rd )

−
∫

Rd

wq (−∆)−1wq dx

≤ C ‖w‖
8

d−2

L2∗ (Rd )

(
‖∇w‖2

L2(Rd ) − Sd ‖w‖2
L2∗ (Rd )

)

for any w ∈ Ḣ1(Rd)

Proof: use the convexity properties of t 7→ J(t) :=
∫
Rd v(t, x)m+1 dx to

get an estimate of the extinction time and combine with a differential
inequality for t 7→ H(t)

J. Dolbeault Stability estimates in critical functional inequalities
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Solutions with separation of variables

Consider the solution of ∂v
∂t = ∆vm vanishing at t = T :

vT (t, x) = c (T − t)α (F (x))
d+2
d−2

where F is the Aubin-Talenti solution of

−∆F = d (d − 2)F (d+2)/(d−2)

Let ‖v‖∗ := supx∈Rd (1 + |x |2)d+2 |v(x)|

Lemma

[del Pino, Saez], [Vázquez, Esteban, Rodriguez] For any solution v
with initial datum v0 ∈ L2d/(d+2)(Rd), v0 > 0, there exists T > 0,
λ > 0 and x0 ∈ Rd such that

lim
t→T−

(T − t)−
1

1−m ‖v(t, ·)/v(t, ·)− 1‖∗ = 0

with v(t, x) = λ(d+2)/2 vT (t, (x − x0)/λ)

J. Dolbeault Stability estimates in critical functional inequalities
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Another improvement

Jd [v ] :=

∫

Rd

v
2 d
d+2 dx and Hd [v ] :=

∫

Rd

v (−∆)−1v dx−Sd ‖v‖2

L
2 d
d+2 (Rd )

Theorem

[JD, Jankowiak] Assume that d ≥ 3. Then we have

0 ≤ Hd [v ] + Sd Jd [v ]1+ 2
d ϕ
(

Jd [v ]
2
d−1

(
Sd ‖∇u‖2

L2(Rd ) − ‖u‖2
L2∗ (Rd )

))

∀ u ∈ D , v = u
d+2
d−2

where ϕ(x) :=
√
C2 + 2 C x − C for any x ≥ 0

Proof: H(t) = −Y(J(t)) ∀ t ∈ [0,T ), κ0 :=
H′0
J0

and consider the
differential inequality

Y′
(
C Sd s

1+ 2
d + Y

)
≤ d + 2

2 d
C κ0 S2

d s
1+ 4

d , Y(0) = 0 , Y(J0) = −H0

J. Dolbeault Stability estimates in critical functional inequalities
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C = 1 is not optimal

C = 1 is the constant in the expansion of the square method

Theorem

[JD, Jankowiak] In the inequality

Sd ‖wq‖2

L
2 d
d+2 (Rd )

−
∫

Rd

wq (−∆)−1wq dx

≤ Cd Sd ‖w‖
8

d−2

L2∗ (Rd )

(
‖∇w‖2

L2(Rd ) − Sd ‖w‖2
L2∗ (Rd )

)

we have
d

d + 4
≤ Cd < 1

based on a (painful) linearization

Extensions:
Moser-Trudinger-Onofri inequality
fractional Laplacian operator [Jankowiak, Nguyen]

J. Dolbeault Stability estimates in critical functional inequalities
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Constructive stability results

in Gagliardo-Nirenberg-Sobolev

inequalities

A joint project with M. Bonforte, B. Nazaret and N. Simonov
Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows,

regularity and the entropy method
arXiv:2007.03674, to appear in Memoirs of the AMS

J. Dolbeault Stability estimates in critical functional inequalities
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Fast diffusion equation
and entropy methods

∂u

∂t
= ∆um (FDE)

Gagliardo-Nirenberg-Sobolev inequalities

‖∇f ‖θ2 ‖f ‖
1−θ
p+1 ≥ CGNS(p) ‖f ‖2p (GNS)

Range of exponents:

1 < p ≤ d

d − 2
⇐⇒ d − 1

d
=: m1 ≤ m < 1

Sobolev inequality: p = d
d−2 , m = m1

Logarithmic Sobolev inequality: p = 1, m = 1
J. Dolbeault Stability estimates in critical functional inequalities
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Entropy – entropy production inequality

Fast diffusion equation (written in self-similar variables)

∂v

∂τ
+∇ ·

(
v
(
∇vm−1 − 2 x

))
= 0 (r FDE)

Generalized entropy (free energy) and Fisher information

F [v ] := − 1

m

∫

Rd

(
vm − Bm −mBm−1 (v − B)

)
dx

I[v ] :=

∫

Rd

v
∣∣∇vm−1 + 2 x

∣∣2 dx

satisfy an entropy – entropy production inequality

I[v ] ≥ 4F [v ]

[del Pino, JD, 2002] so that

F [v(t, ·)] ≤ F [v0] e− 4 t

J. Dolbeault Stability estimates in critical functional inequalities



Sobolev and HLS inequalities
Stability, fast diffusion equation and entropy methods

A constructive Bianchi-Egnell stability result

GNS inequality and the fast diffusion equation
The threshold time and consequences (subcritical case)
Stability results (subcritical and critical case)

The entropy – entropy production inequality I[v ] ≥ 4F [v ] is
equivalent to the Gagliardo-Nirenberg-Sobolev inequalities

‖∇f ‖θ2 ‖f ‖
1−θ
p+1 ≥ CGNS(p) ‖f ‖2p (GNS)

with equality if and only if |f (x)|2p = B(x) =
(
1 + |x |2

) 1
m−1

p = 1
2 m−1 ⇐⇒ m = p+1

2 p ∈ [m1, 1) with m1 = d−1
d

u = f 2 p so that um = f p+1 and u
∣∣∇um−1

∣∣2 = (p − 1)2 |∇f |2

J. Dolbeault Stability estimates in critical functional inequalities
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Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vázquez, 2009]

(
C0 + |x |2

)− 1
1−m ≤ v0 ≤

(
C1 + |x |2

)− 1
1−m (H)

Let Λα,d > 0 be the best constant in the Hardy–Poincaré inequality

Λα,d

∫

Rd

f 2 dµα−1 ≤
∫

Rd

|∇f |2 dµα ∀ f ∈ H1(dµα) ,

∫

Rd

f dµα−1 = 0

with dµα := (1 + |x |2)α dx , for α < 0

Lemma

Under assumption (H)

F [v(t, ·)] ≤ C e−2 γ(m) t ∀ t ≥ 0

with γ(m) := 2 if m1 ≤ m < 1 (d ≥ 2)

It is possible to improve on γ(m)

J. Dolbeault Stability estimates in critical functional inequalities
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Spectral gap

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

[Denzler, McCann, 2005]
[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2010-2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]

J. Dolbeault Stability estimates in critical functional inequalities
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Initial and asymptotic time layers
B Asymptotic time layer: constraint, spectral gap and improved
entropy – entropy production inequality

B Initial time layer: the carré du champ inequality and a backward
estimate

J. Dolbeault Stability estimates in critical functional inequalities
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The asymptotic time layer improvement

Linearized free energy and linearized Fisher information

F[g ] :=
m

2

∫

Rd

g2 B2−m dx and I[g ] := m (1−m)

∫

Rd

|∇g |2 B dx

Improved Hardy-Poincaré inequality. Under the orthogonality
condition

∫
Rd x g B2−m dx = 0, we have

I[g ] ≥ 4αF[g ] where α = 2− d (1−m)

Proposition

With m ∈ (0, 1) large enough, if
∫
Rd v dx =

∫
Rd B dx and

∫
Rd x v dx = 0 and (1− ε)B ≤ v ≤ (1 + ε)B

for some explicit ε, χ and η

I[v ] ≥ (4 + η)F [v ]
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The initial time layer improvement: backward estimate

For some strictly convex function ψ with ψ(0) = 0, ψ′(0) = 1, we have

I − 4F ≥ 4 (ψ(F)−F) ≥ 0

By the carré du champ method,we also have

dQ
dt
≤ Q (Q− 4) where Q[v ] :=

I[v ]

F [v ]

Lemma

Assume that m > m1 and v is a solution to (r FDE) with initial datum
v0 ≥ 0. If for some η > 0 and t? > 0, we have Q[v(t?, ·)] ≥ 4 + η, then

Q[v(t, ·)] ≥ 4 +
4 η e−4 t?

4 + η − η e−4 t?
∀ t ∈ [0, t?]
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Our strategy

Regularity and stability

Our strategy

Choose "> 0, small enough

Get a threshold time t?(")

0 t?(") t
Backward estimate

by entropy methods

Forward estimate

based on a spectral gap

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

E
s

⇐
#↳

Initial time layer Asymptotic time layer
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The threshold time
and the uniform convergence

in relative error
B The regularity results allow us to glue the initial time layer
estimates with the asymptotic time layer estimates

The improved entropy – entropy production inequality holds for any
time along the evolution along (r FDE)

(and in particular for the initial datum)
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B A global Harnack Principle. If v is a solves (r FDE) for some
nonnegative initial datum v0 ∈ L1(Rd) satisfying

A[v0] := sup
r>0

r
d (m−mc )

(1−m)

∫

|x|>r

v0 dx <∞ (HA)

then
(1− ε)B ≤ v(t, ·) ≤ (1 + ε)B ∀ t ≥ t?

for some explicit t? depending only on ε and A[v0]

Cf. Matteo’s lecture
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Uniform convergence in relative error

Theorem

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that m ∈ (m1, 1) if
d ≥ 2, m ∈ (1/3, 1) if d = 1 and let ε ∈ (0, 1/2), small enough, A > 0,
and G > 0 be given. There exists an explicit threshold time T ≥ 0 such
that, if u is a solution of

∂u

∂t
= ∆um (FDE)

with nonnegative initial datum u0 ∈ L1(Rd) satisfying

A[u0] = sup
r>0

r
d (m−mc )

(1−m)

∫

|x|>r

u0 dx ≤ A <∞ (HA)

∫
Rd u0 dx =

∫
Rd B dx =M and F [u0] ≤ G, then

sup
x∈Rd

∣∣∣∣
u(t, x)

B(t, x)
− 1

∣∣∣∣ ≤ ε ∀ t ≥ T
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Improved entropy – entropy
production inequality
(subcritical case)
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Theorem

Let m ∈ (m1, 1) if d ≥ 2, m ∈ (1/2, 1) if d = 1, A > 0 and G > 0. Then
there is a positive number ζ such that

I[v ] ≥ (4 + ζ)F [v ]

for any nonnegative function v ∈ L1(Rd) such that F [v ] = G,∫
Rd v dx =M,

∫
Rd x v dx = 0 and v satisfies (HA)

With t?(ε) = 1
2 logR(T ), we have the asymptotic time layer estimate

(1− ε)B ≤ v(t, ·) ≤ (1 + ε)B ∀ t ≥ t?

and, as a consequence, the initial time layer estimate

I[v(t, .)] ≥ (4 + ζ)F [v(t, .)] ∀ t ∈ [0, t?] where ζ =
4 η e−4 t?

4 + η − η e−4 t?
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Two consequences

B Improved decay rate for the rescaled fast diffusion equation

Corollary

Let m ∈ (m1, 1) if d ≥ 2, m ∈ (1/2, 1) if d = 1, A > 0 and G > 0. If v is
a solution of (r FDE) with nonnegative initial datum v0 ∈ L1(Rd) such
that F [v0] = G,

∫
Rd v0 dx =M,

∫
Rd x v0 dx = 0 and v0 satisfies (HA),

then
F [v(t, .)] ≤ F [v0] e− (4+ζ) t ∀ t ≥ 0

B The stability in the entropy - entropy production estimate
I[v ]− 4F [v ] ≥ ζ F [v ] also holds in a stronger sense

I[v ]− 4F [v ] ≥ ζ

4 + ζ
I[v ]
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Stability results
(subcritical case)

B We rephrase the results obtained by entropy methods in the
language of stability à la Bianchi-Egnell

Subcritical range

p∗ = +∞ if d = 1 or 2, p∗ = d
d−2 if d ≥ 3

J. Dolbeault Stability estimates in critical functional inequalities
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λ[f ] :=

(
2 d κ[f ]p−1

p2−1

‖f ‖p+1
p+1

‖∇f ‖2
2

) 2 p
d−p (d−4)

, κ[f ] := M
1

2 p

‖f ‖2 p

A[f ] := M

λ[f ]
d−p (d−4)

p−1 ‖f ‖2 p
2 p

supr>0 r
d−p (d−4)

p−1
∫
|x|>r

|f (x + xf )|2 p dx

E[f ] := 2 p
1−p

∫
Rd

(
κ[f ]p+1

λ[f ]
d

p−1
2 p

f p+1 − gp+1 − 1+p
2 p g1−p

(
κ[f ]2 p

λ[f ]2 f 2 p − g2 p
))

dx

S[f ] := M
p−1
2 p

p2−1
1

C(p,d) Z (A[f ], E[f ])

Theorem

Let d ≥ 1, p ∈ (1, p∗)

If f ∈ Wp(Rd) :=
{
f ∈ L2p(Rd) : ∇f ∈ L2(Rd) , |x | f p ∈ L2(Rd)

}
,

(
‖∇f ‖θ2 ‖f ‖

1−θ
p+1

)2 p γ

−
(
CGN ‖f ‖2 p

)2 p γ

≥ S[f ] ‖f ‖2 p γ
2 p E[f ]
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With KGNS = C (p, d) C2 p γ
GNS, γ = d+2−p (d−2)

d−p (d−4) , consider the deficit

functional

δ[f ] := (p − 1)2 ‖∇f ‖2
2 + 4

d − p (d − 2)

p + 1
‖f ‖p+1

p+1 −KGNS ‖f ‖2 p γ
2 p

Theorem

Let d ≥ 1 and p ∈ (1, p∗). There is an explicit C = C[f ] such that, for
any f ∈ L2p

(
Rd , (1 + |x |2) dx

)
such that ∇f ∈ L2(Rd) and A

[
f 2p
]
<∞,

δ[f ] ≥ C[f ] inf
ϕ∈M

∫

Rd

∣∣(p − 1)∇f + f p∇ϕ1−p∣∣2 dx

B The dependence of C[f ] on A
[
f 2p
]

and F
[
f 2p
]

is explicit and does
not degenerate if f ∈M

B Can we remove the condition A
[
f 2p
]
<∞ ?
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Stability in Sobolev’s inequality
(critical case)

B A constructive stability result

B The main ingredient of the proof
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A constructive stability result

Let 2 p? = 2d/(d − 2) = 2∗, d ≥ 3 and

Wp?(Rd) =
{
f ∈ Lp?+1(Rd) : ∇f ∈ L2(Rd) , |x | f p? ∈ L2(Rd)

}

Theorem

Let d ≥ 3 and A > 0. For any nonnegative f ∈ Wp?(Rd) such that

∫

Rd

(1, x , |x |2) f 2∗ dx =

∫

Rd

(1, x , |x |2) g dx and sup
r>0

rd
∫

|x|>r

f 2∗ dx ≤ A

we have

δ[f ] := ‖∇f ‖2
2 − S2

d ‖f ‖2
2∗ ≥

C?(A)

4 + C?(A)

∫

Rd

∣∣∣∇f + d−2
2 f

d
d−2 ∇g−

2
d−2

∣∣∣
2

dx

C?(A) = C?(0)
(
1+A1/(2 d)

)−1
and C?(0) > 0 depends only on d

J. Dolbeault Stability estimates in critical functional inequalities
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Peculiarities of the critical case

B We can remove the normalization of f , use the r.h.s. to measure the
distance to the Aubin-Talenti manifold of optimal functions (in
relative Fisher information) and obtain for

A[f ] := sup
r>0

rd
∫

r>0

|f |2∗(x + xf ) and Z [f ] :=
(

1 +µ[f ]−d λ[f ]d A[f ]
)

the Bianchi-Egnell type result

δ[f ] ≥ C? Z [f ]

4 + Z [f ]
inf
g∈M
J [f |g ]

with xf , λ[f ] and µ[f ] as in the subcritical case

B Notion of time delay [JD, Toscani, 2014, 2015]

J. Dolbeault Stability estimates in critical functional inequalities
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Extending the subcritical result in the critical case

To improve the spectral gap
for m = m1, we need to
adjust the Barenblatt function

Bλ(x) = λ−d/2 B
(
x/
√
λ
)

in or-

der to match
∫
Rd |x |2 v dx where

the function v solves (r FDE) or
to further rescale v according to

v(t, x) = 1
R(t)d

w
(
t + τ(t), x

R(t)

)
,

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

dτ
dt =

(
1
K?

∫
Rd |x |2 v dx

)− d
2 (m−mc )

− 1 , τ(0) = 0 and R(t) = e2 τ(t)

Lemma

t 7→ λ(t) and t 7→ τ(t) are bounded on R+

J. Dolbeault Stability estimates in critical functional inequalities
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A constructive
Bianchi-Egnell stability result

B A constructive estimate for the Bianchi-Egnell stability result

B Competing symmetries and the construction of a flow

B Explicit estimates close to the manifold of optimizers
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Stability for Sobolev

With d ≥ 3, 2∗ = 2 d/(d − 2), we consider the stability inequality

‖∇f ‖2
L2(Rd ) − Sd ‖f ‖2

L2∗ (Rd ) ≥ cBE inf
g∈M

‖∇f −∇g‖2
L2(Rd )

for functions in Ḣ1(Rd) =
{
f ∈ Lq(Rd) : ∇f ∈ L2(Rd)

}

Sd = 1
4 d (d − 2) |Sd |2/d is the optimal constant in Sobolev’s inequality

M is the manifold of the optimal Aubin-Talenti functions

f (x) = c
(
a + |x − b|2

)− d−2
2

cBE = 0: [Rodemich, 1966], [Aubin, 1976], [Talenti, 1976]
cBE > 0 ? [Brezis, Lieb, 1985]
cBE > 0: [Bianchi, Egnell, 1991]
cBE >?

Results in collaboration with
M.J. Esteban, A. Figalli, R.L. Frank, M. Loss
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Main result

E [f ] :=
‖∇f ‖2

L2(Rd ) − Sd ‖f ‖2
L2∗ (Rd )

infg∈M ‖∇f −∇g‖2
L2(Rd )

, ν(δ) :=

√
δ

1− δ

Theorem

Let d ≥ 3, q = 2 d/(d − 2). If f ∈ Ḣ1(Rd) is a non-negative function,
then

E [f ] ≥ κd := sup
0<δ<1

δ µ(δ)

where µ(δ) ≥ m
(
ν(δ)

)
and

m(ν) := 4
d+4 − 2

q ν
q−2 if d ≥ 6

m(ν) := 4
d+4 − 1

3 (q − 1) (q − 2) ν − 2
q ν

q−2 if d = 4, 5

m(ν) := 4
7 − 20

3 ν − 5 ν2 − 2 ν3 − 1
3 ν

4 if d = 3
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Comments

Upper bound: CBE ≤ inf
0≤f∈Ḣ1(Rd )\M

E [f ] <
4

d + 4
[König]

We also have a lower bound on CBE := inf
f∈Ḣ1(Rd )\M

E [f ]

...work in progress, arXiv: 22209.08651

4 6 8 10 12 14

0.005

0.010

0.015

0.020

Figure: Plot of d 7→ κ(d) for d = 3, 4, . . . , 15

Large dimensions: κ(d) ∼ 2d+1 d−1 (d + 4)−
d
2 as d → +∞
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Strategy: two regions

Taylor expansion, spectral estimates: in the region
infg∈M ‖∇f −∇g‖2

L2(Rd ) ≤ δ ‖∇f ‖2
L2(Rd ), prove that

E [f ] ≥ µ(δ)

Continuous flow argument: [Christ, 2017] if
infg∈M ‖∇f −∇g‖2

L2(Rd ) ≥ δ ‖∇f ‖2
L2(Rd ), build a flow (fτ )0≤τ<∞ s.t.

f0 = f , ‖fτ‖L2∗ (Rd ) = ‖f ‖L2∗ (Rd ) , τ 7→ ‖∇fτ‖L2(Rd ) is ↘

lim
τ→∞

inf
g∈M

‖∇(fτ − g)‖2
L2(Rd ) = 0

E [f ] ≥
‖∇f ‖2

L2(Rd )
−Sd ‖f ‖2

L2∗ (Rd )

‖∇f ‖2
L2(Rd )

= 1−Sd
‖f ‖2

L2∗ (Rd )

‖∇f ‖2
L2(Rd )

≥
‖∇fτ0

‖2
L2(Rd )

−Sd ‖fτ0
‖2

L2∗ (Rd )

‖∇fτ0
‖2
L2(Rd )

for some τ0 (it exists ?) s.t. infg∈M ‖∇(fτ0 − g)‖2
L2(Rd ) = δ ‖∇fτ0‖2

L2(Rd )

... then E [f ] ≥ E(fτ0 ) ≥ δ µ(δ)

J. Dolbeault Stability estimates in critical functional inequalities
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Inverse stereographic projection

Denote by s = (s1, s2, . . . , sd+1) the coordinates in Rd+1: Sd ⊂ Rd+1

can be parametrized in terms of stereographic coordinates by

sj =
2 xj

1 + |x |2 , j = 1, . . . , d , sd+1 =
1− |x |2
1 + |x |2

We set

F (s) =
(

1+|x|2
2

) d−2
2

f (x)

E [f ] =
‖∇f ‖2

2−Sd ‖f ‖2
2∗

infg∈M ‖∇f−∇g‖2
2

=
‖∇F‖2

L2(Sd )
+

1
4 d (d−2) ‖F‖2

L2(Sd )
−Sd ‖F‖2

L2∗ (Sd )

infG∈M
{
‖∇F−∇G‖2

L2(Sd )
+

1
4 d (d−2) ‖F−G‖2

L2(Sd )

}
where G (s) = c

(
a + b · s

)− d−2
2 , a > 0, b ∈ Rd and c ∈ C are constants
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Competing symmetries

[Carlen, Loss, 1990]
Conformal rotation

(UF )(s) = F (s1, s2, . . . , sd+1,−sd)

On Rd , the function that corresponds to UF on Rd is given by

(Uf )(x) =
(

2
|x−ed |2

) d−2
2

f
(

x1

|x−ed |2 , . . . ,
xd−1

|x−ed |2 ,
|x|2−1
|x−ed |2

)

where ed = (0, . . . , 0, 1) ∈ Rd and E(Uf ) = E [f ]

Symmetric decreasing rearrangement: if f ≥ 0, let

Rf (x) = f ∗(x)

f and f ∗ are equimeasurable and ‖∇f ∗‖2 ≤ ‖∇f ‖2

... continuous Steiner symmetrization
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On Rd , let

g∗(x) := |Sd |− d−2
2 d

(
2

1 + |x |2
) d−2

2

Theorem

[Carlen, Loss] Let f ∈ L2∗(Rd) be a non-negative function. Consider
the sequence (fn)n∈N of functions

fn = (RU)nf

Then hf = ‖f ‖2∗ g∗ ∈M and

lim
n→∞

‖fn − hf ‖2∗ = 0

If f ∈ Ḣ1(Rd), then (‖∇fn‖2)n∈N is a non-increasing sequence

J. Dolbeault Stability estimates in critical functional inequalities
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DefineM1 to be the set of the elements inM with 2∗-norm equal to 1

inf
g∈M

‖∇f −∇g‖2
2 = ‖∇f ‖2

2 − Sd sup
g∈M1

(
f , g2∗−1

)2

Lemma

For the sequence (fn)n∈N of the Theorem of [Carlen, Loss] we have that

n 7→ infg∈M ‖∇fn −∇g‖2
2∗ is strictly decreasing

lim
n→∞

inf
g∈M

‖∇fn −∇g‖2
2 = lim

n→∞
‖∇fn‖2

2 − Sd ‖f ‖2
2∗
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Two alternatives

Lemma

Let 0 ≤ f ∈ Ḣ1(Rd) \M s.t. infg∈M ‖∇f −∇g‖2
2 ≥ δ ‖∇f ‖2

2

One of the following alternatives holds:

(a) for all n = 0, 1, 2 . . . infg∈M ‖∇fn −∇g‖2
2 ≥ δ ‖∇fn‖2

2

(b) ∃n0 ∈ N such that

inf
g∈M

‖∇fn0−∇g‖2
2 ≥ δ ‖∇fn0‖2

2 and inf
g∈M

‖∇fn0+1−∇g‖2
2 < δ ‖∇fn0+1‖2

2

In case (a) we have

E [f ] =
‖∇f ‖2

2 − Sd ‖f ‖2
2∗

infg∈M ‖∇f −∇g‖2
2

≥ ‖∇f ‖
2
2 − Sd ‖f ‖2

2∗

‖∇f ‖2
2

≥ ‖∇fn‖
2
2 − Sd ‖f ‖2

2∗

‖∇fn‖2
2

≥ δ

because by the Theorem of [Carlen, Loss]

lim
n→∞

‖∇fn‖2
2 ≤

1

δ
lim

n→∞
inf

g∈M
‖∇fn−∇g‖2

2 =
1

δ

(
lim

n→∞
‖∇fn‖2

2 − Sd ‖f ‖2
2∗

)

J. Dolbeault Stability estimates in critical functional inequalities



Sobolev and HLS inequalities
Stability, fast diffusion equation and entropy methods

A constructive Bianchi-Egnell stability result

Constructive stability for Sobolev: a statement
A flow based on competing symmetries
Analysis close to the manifold of optimizers

Continuous rearrangement

Let f0 = U fn0 and denote by (fτ )0≤τ≤∞ the continuous rearrangement
starting at f0 and ending at f∞ = fn0+1

We find τ0 ∈ [0,∞) such that

inf
g∈M

‖∇fτ0 −∇g‖2
2 = δ ‖∇fτ0‖2

2

and conclude using

E(f0) ≥ 1−Sd
‖f0‖2

2∗

‖∇f0‖2
2

≥ 1−Sd
‖fτ0‖2

2∗

‖∇fτ0‖2
2

= δ
‖∇fτ0‖2

2 − Sd ‖fτ0‖2
2∗

infg∈M ‖∇fτ0 −∇g‖2
2

≥ δ µ(δ)

Existence of τ0 not granted: a discussion is needed !

Remark. We can build a flow by gluing continuous symmetrization at
each step of the sequence (fn)n∈N
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Analysis close to the manifold of optimizers

Proposition

Let X be a measure space and u, r ∈ Lq(X ) for some q ≥ 2 with u ≥ 0
and u + r ≥ 0. Assume also that

∫
X
uq−1 r dx = 0. If 2 ≤ q ≤ 3, then

‖u + r‖2
q ≤ ‖u‖2

q + ‖u‖2−q
q

(
(q − 1)

∫

X

uq−2 r2 dx +
2

q

∫

X

rq+ dx

)

2 ≤ q = 2 d
d−2 ≤ 3 means d ≥ 6 and is the most difficult case for Taylor

Corollary

Let q = 2∗, 0 ≤ f ∈ Ḣ1(Rd) and u ∈M which realizes
infg∈M ‖∇f −∇g‖2

Set r := f − u and σ := ‖r‖q/‖u‖q. If d ≥ 6, we have

‖∇f ‖2
2−Sd ‖f ‖2

q ≥
∫

Rd

(
|∇r |2−Sd (q−1) ‖u‖2−q

q uq−2 r2
)
dx− 2

q ‖∇r‖2
2 σ

q−2
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Spectral gap estimate

Cf. [Rey, 1990] and [Bianchi, Egnell, 1991]

Lemma

Let d ≥ 3, q = 2∗, f ∈ Ḣ1(Rd) and u ∈M be such that
‖∇f −∇u‖ = infg∈M ‖∇f −∇g‖. Then r := f − u satisfies

∫

Rd

(
|∇r |2 − Sd (q − 1) ‖u‖2−q

q |u|q−2 r2
)
dx ≥ 4

d + 4

∫

Rd

|∇r |2 dx

Corollary

Let q = 2∗ and 0 ≤ f ∈ Ḣ1(Rd). Set D[f ] := infg∈M ‖∇f −∇g‖2 and
τ := D[f ]/(‖∇f ‖2

2 −D[f ]2)1/2. If d ≥ 6, we have

‖∇f ‖2
2 − Sd ‖f ‖2

q ≥
(

4
d+4 − 2

q τ
q−2
)
D[f ]2
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One more step: removing the positivity assumption

The Bianchi-Egnell stability estimate

‖∇f ‖2
L2(Rd ) − Sd ‖f ‖2

L2∗ (Rd ) ≥ cBE inf
g∈M

‖∇f −∇g‖2
L2(Rd )

Nonnegative functions: cposBE ≥ κd and cBE ≤ cposBE ≤ 4
d+4

Sign-changing solutions. Take m := ‖u−‖2∗

2∗ and assume that

1−m = ‖u+‖2∗

2∗ . We argue that 2 h(1/2)m ≤ h(m) if

h(m) := m1− 2
d + (1−m)1− 2

d − 1

With d(v) := ‖∇v‖2
2 − Sd ‖v‖2

2∗ and (...), we obtain

d(u) ≥ cposBE ‖∇u+ −∇g+‖2
2 +

2 h(1/2)

2 h(1/2) + ξd
‖∇u−‖2

2

cBE ≥ 1
2 κd
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Lectures/
B Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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