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Introduction
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Symmetry and symmetry breaking in PDEs

Symmetry in PDEs has been widely used to understand the uniqueness
or multiplicity properties of the solutions. The standard scheme goes as
follows:

prove some symmetry properties by symmetrization or comparison
techniques of the solutions (ground states) of an (Euler-Lagrange)
equation

prove uniqueness by ODE techniques

but also: bifurcation analysis, branches of solutions within certain classes
of symmetry, direct analysis of the solution set,...

This talk will be focused on a very simple case (equality cases in some
inequalities with homogeneous weights and homogeneous nonlinearities):
Caffarelli-Kohn-Nirenberg (CKN) and “weighted logarithmic Hardy
inequalities” (WLH)

Almost all results of symmetry / symmetry breaking can be related to
some spectral properties... a new result
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A symmetry breaking mechanism

Various techniques have been developed to prove symmetry

Much less is known concerning symmetry breaking. Known results are
based on

energy considerations + linear analysis

characterization of some asymptotic regimes

What is the reason for symmetry breaking ?

Typical source of symmetry breaking is the competition of two effects: a
potential and a nonlinearity the competition of a nonlinearity which tends
to aggregate or concentrate the solution and of an (external) potential
term which “prefers”
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The solution with broken symmetry

Can we understand the transition from a regime of ground states with
symmetry to a regime where symmetry is broken ? Can we quantify this
phenomenon ? Do the non-radial solutions bifurcate from the radial ones
(if one increases the strength of the potential, for instance)
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The energy point of view (ground state)
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Symmetry results
(moving planes)

Some simple remarks
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The theorem of Gidas, Ni and Nirenberg - extensions

Theorem 1. [Gidas, Ni and Nirenberg, 1979 and 1980] Let u ∈ C2(B),

B = B(0, 1) ⊂ R
d, be a solution of

∆u + f(u) = 0 in B , u = 0 on ∂B

and assume that f is Lipschitz. If u is positive, then it is radially symmetric and decreasing

along any radius: u′(r) < 0 for any r ∈ (0, 1]

Extension: ∆u + f(r, u) = 0, r = |x| if ∂f
∂r

≤ 0... a “cooperative" case

Theorem 2. [JD, Felmer, 1999] Consider solutions of

∆u + λ f(r, u) = 0 in B , u = 0 on ∂B

and assume that f ∈ C1(R+ × R
+) (no assumption on the sign of ∂f

∂r ). There exists

λ1, λ2 with 0 < λ1 ≤ λ2 such that

(i) Monotonicity: if λ ∈ (0, λ1), then d
dr (u − λu0) < 0 where u0 is the solution of

∆u0 + λf(r, 0) = 0

(ii) Symmetry: if λ ∈ (0, λ2), then u is radially symmetric
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Proof: spectral issues

The counter-example of Gidas, Ni and Nirenberg if ∂f
∂r ≥ 0 is based on

eigenfunctions and eigenvalues

A sketch of the proof of (ii): x̄ = (−x1, x
′), |x′| = |x|, ū(x) = u(x̄)

∆ū + λ f(r, ū) = 0

v = ū − u, c = (f(r, ū) − f(r, u))/(u − ū) and ∆v + λ c v = 0
λ1 = sup{λ > 0 : ∆v + λ c v = 0 =⇒ v = 0}
λ2 = sup{λ > 0 : ∆v + λ c v = 0 and v changes sign =⇒ v = 0}
If λ < λ2,

either λ = λ1 and v is nonnegative... but v(x̄) = u(x) − u(x̄) = −v(x)
and so v ≡ 0: u = ū

or λ 6= λ1: v ≡ 0, same conclusion

We learned (vague) that symmetry by the moving planes has to do with
spectral properties
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Caffarelli-Kohn-Nirenberg
inequalities (Part I)

Joint work(s) with M. Esteban, M. Loss and G. Tarantello

Symmetry and symmetry breaking of extremal functions in some interpolation inequalities – p. 12/58



Caffarelli-Kohn-Nirenberg (CKN) inequalities

(∫

Rd

|u|p
|x|b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇u|2
|x|2 a

dx ∀ u ∈ Da,b

with a ≤ b ≤ a + 1 if d ≥ 3 , a < b ≤ a + 1 if d = 2 , and a 6= d−2
2 =: ac

p =
2 d

d − 2 + 2 (b − a)

Da,b :=
{

|x|−b u ∈ Lp(Rd, dx) : |x|−a |∇u| ∈ L2(Rd, dx)
}
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The symmetry issue

(∫

Rd

|u|p
|x|b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇u|2
|x|2 a

dx ∀ u ∈ Da,b

Ca,b = best constant for general functions u

C∗
a,b = best constant for radially symmetric functions u

C∗
a,b ≤ Ca,b

Up to scalar multiplication and dilation, the optimal radial function is

u∗
a,b(x) = |x|a+ d

2
b−a

b−a+1

(

1 + |x|2
)− d−2+2(b−a)

2(1+a−b)

Questions: is optimality (equality) achieved ? do we have ua,b = u∗
a,b ?
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Known results

[Aubin, Talenti, Lieb, Chou-Chu, Lions, Catrina-Wang, ...]

Extremals exist for a < b < a + 1 and 0 ≤ a ≤ d−2
2 ,

for a ≤ b < a + 1 and a < 0 if d ≥ 2

Optimal constants are never achieved in the following cases
“critical / Sobolev” case: for b = a < 0, d ≥ 3

“Hardy” case: b = a + 1, d ≥ 2

If d ≥ 3, 0 ≤ a < d−2
2 and a ≤ b < a + 1, the extremal functions are

radially symmetric ... u(x) = |x|a v(x) + Schwarz symmetrization
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More results on symmetry

Radial symmetry has also been established for d ≥ 3, a < 0, |a| small
and 0 < b < a + 1: [Lin-Wang, Smets-Willem]

Schwarz foliated symmetry [Smets-Willem]

d = 3: optimality is achieved among solutions which depend only on
the “latitude" θ and on r. Similar results hold in higher dimensions
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Symmetry breaking

[Catrina-Wang, Felli-Schneider] if a < 0, a ≤ b < bFS(a), the extremal
functions ARE NOT radially symmetric !

bFS(a) =
d (d − 2 − 2a)

2
√

(d − 2 − 2a)2 + 4(d − 1)
− 1

2
(d − 2 − 2a)

[Catrina-Wang] As a → −∞, optimal functions look like some
decentered optimal functions for some Gagliardo-Nirenberg
interpolation inequalities (after some appropriate transformation)
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Approaching Onofri’s inequality ( d = 2)

[J.D., M. Esteban, G. Tarantello] A generalized Onofri inequality

On R
2, consider dµα = α+1

π
|x|2α dx

(1+|x|2 (α+1))2
with α > −1

log
(∫

R2

ev dµα

)

−
∫

R2

v dµα ≤ 1

16 π (α + 1)
‖∇v‖2

L2(R2, dx)

For d = 2, radial symmetry holds if −η < a < 0 and −ε(η) a ≤ b < a + 1

Theorem 3. [J.D.-Esteban-Tarantello] For all ε > 0 ∃ η > 0 s.t. for a < 0, |a| < η

(i) if |a| > 2
p−ε (1 + |a|2), then

Ca,b > C∗
a,b ( symmetry breaking)

(ii) if |a| < 2
p+ε (1 + |a|2), then

s Ca,b = C∗
a,b and ua,b = u∗

a,b a

b
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A larger symetry region

For d ≥ 2, radial symmetry can be proved when b is close to a + 1

Theorem 4. [J.D.-Esteban-Loss-Tarantello] Let d ≥ 2. For every A < 0, there exists
ε > 0 such that the extremals are radially symmetric if a + 1 − ε < b < a + 1 and
a ∈ (A, 0). So they are given by u∗

a,b, up to a scalar multiplication and a dilation

a

b

d = 2 d ≥ 3
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Two regions and a curve

The symmetry and the symmetry breaking zones are simply connected
and separated by a continuous curve

Theorem 5. [J.D.-Esteban-Loss-Tarantello] For all d ≥ 2, there exists a continuous
function a∗: (2, 2∗)−→ (−∞, 0) such that limp→2∗

−
a∗(p) = 0,

limp→2+ a∗(p) = −∞ and

(i) If (a, p) ∈
(
a∗(p), d−2

2

)
× (2, 2∗), all extremals radially symmetric

(ii) If (a, p) ∈ (−∞, a∗(p)) × (2, 2∗), none of the extremals is radially symmetric

Open question. Do the curves obtained by Felli-Schneider and ours coincide ?
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Emden-Fowler transformation and the cylinder C = R × S
d−1

t = log |x| , ω =
x

|x| ∈ S
d−1 , w(t, ω) = |x|−a v(x) , Λ =

1

4
(d − 2 − 2a)2

Caffarelli-Kohn-Nirenberg inequalities rewritten on the cylinder become
standard interpolation inequalities of Gagliardo-Nirenberg type

‖w‖2
Lp(C) ≤ CΛ,p

[

‖∇w‖2
L2(C) + Λ ‖w‖2

L2(C)

]

EΛ[w] := ‖∇w‖2
L2(C) + Λ ‖w‖2

L2(C)

C−1
Λ,p := C−1

a,b = inf
{

EΛ(w) : ‖w‖2
Lp(C) = 1

}

a < 0 =⇒ Λ > a2
c = 1

4 (d − 2)2

“critical / Sobolev” case: b − a → 0 ⇐⇒ p → 2d

d − 2

“Hardy” case: b − (a + 1) → 0 ⇐⇒ p → 2+
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Methods for proving symmetry breaking

Strategy of [Catrina-Wang, Felli-Schneider]

Expand EΛ[w] around w∗
Λ,p with w in an appropriate orthogonal space to

wΛ,p. This amounts to study the spectrum of

−∆ + Λ − (p − 1) |w∗
Λ,p|p−2

in H1(C), make en expansion in spherical harmonics and compute the
lowest eigenvalue associated to the first non-constant spherical harmonic
function
Details will be given later

Alternative proof in dimension d = 2 close to (a, b) = (0, 0):
[J.D.-Esteban-Tarantello]

Energy comparison: at the end of this talk [Catrina, Wang] [JD, Esteban,
Tarantello, Tertikas]
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Auxiliary results for symmetry proofs

Euler-Lagrange equations: Multiplication by constants does not affect
optimality (no more scaling invariance in C): we normalize so that the
optimal functions solve −∆w + Λw = wp−1, that is

∫

C
|∇w|2 dx + Λ

∫

C
|w|2 dx =

∫

C
|w|p dx

Normalization: With 1/CΛ,p = E [w]/‖w‖2
Lp(C), this determines ‖w‖Lp(C)

Lemma 6. [JD, Esteban, Loss, Tarantello] Let d ≥ 2, p ∈ (2, 2∗). For any Λ 6= 0, we
have

(
Cd

Λ,p

)− p
p−2 = ‖wΛ,p‖p

Lp(C) ≤ ‖w∗
Λ,p‖p

Lp(C) = 4 |Sd−1| (2 Λ p)
p

p−2
cp

2 p
√

Λ

where p 7→ cp is increasing and limp→2+ 2
2 p

p−2
√

p − 2 cp =
√

2π

The extremals can be chosen to satisfy: wΛ,p depends only on r and the
azimuthal angle θ, maxC wΛ,p = wΛ,p(0, ω0) for some ω0 ∈ S

d−1 and
∂twΛ,p < 0 for any t > 0
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“Hardy” regime ( b close to a + 1, d ≥ 2)

Let (Λn)n∈N and (pn)n∈N be such that

lim
n→+∞

Λn = Λ ≥ (d − 2)2/4 and lim
n→+∞

pn = 2+

such that the corresponding global minimizer wn := wΛn, pn satisfies

FΛ,p[wΛn, pn
] < FΛ,p[w

∗
Λn, pn

] and − ∆ywn + Λn wn = wp−1
n in C

Define c2
n := (Λn pn)−

pn
pn−2 2

pn
pn−2

√
pn − 2 and Wn := cn wn. We have

limn→+∞ c2−pn
n = Λ and

lim sup
n→+∞

∫

C
|∇Wn|2 dy+Λn

∫

C
W 2

n dy = lim sup
n→+∞

c2
n

∫

C
wpn

n dy ≤ |Sd−1|
√

2 π/Λ

so that (Wn)n∈N is bounded in H1(C). By elliptic estimates, Wn → W and
−∆W + ΛW = ΛW =⇒ W ≡ 0
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“Hardy” regime (continued)

Let χn := ∇ωwn := sin θ2−d ∂
∂θ

(
sin θd−2 wn

)
. By differentiating

−∆Wn + Λn Wn = c2−pn
n W pn−1

n with respect to θ, we get

−∆χn + Λn χn = (pn − 1) c2−pn
n W pn−2

n χn

0 =
∫

C |∇χn|2 dy + Λn

∫

C |χn|2 dy − (pn − 1) c2−pn
n

∫

C W pn−2
n |χn|2 dy

Since
∫

Sd−1 χn dω = 0

∫

C |∇χn|2 dy ≥ (d − 1)
∫

C |χn|2 dy

by the Poincaré inequality. But Wn is bounded by Wn(0, ω0), we get

0 ≥
(

d − 1 + Λn − (pn − 1) c2−pn
n Wn(0, ω0)

pn−2

︸ ︷︷ ︸

→0 as n→∞

) ∫

C
|χn|2 dy

This proves that χn ≡ 0 for n large enough
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Scaling and consequences

A scaling property along the axis of the cylinder (d ≥ 2)
let wσ(t, ω) := w(σ t, ω) for any σ > 0

Fσ2Λ,p(wσ) = σ1+2/p FΛ,p(w) − σ−1+2/p (σ2 − 1)

∫

C |∇ωw|2 dy
(∫

C |w|p dy
)2/p

Lemma 7. [JD, Esteban, Loss, Tarantello] If d ≥ 2, Λ > 0 and p ∈ (2, 2∗)

(i) If Cd
Λ,p = C

d,∗
Λ,p, then Cd

λ,p = C
d,∗
λ,p and wλ,p = w∗

λ,p, for any λ ∈ (0, Λ)

(ii) If there is a non radially symmetric extremal wΛ,p, then Cd
λ,p > C

d,∗
λ,p for all λ > Λ
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A curve separates symmetry and symmetry breaking regions

Corollary 8. [JD, Esteban, Loss, Tarantello] Let d ≥ 2. For all p ∈ (2, 2∗),

Λ∗(p) ∈ (0, ΛFS(p)] and

(i) If λ ∈ (0, Λ∗(p)), then wλ,p = w∗
λ,p and clearly, Cd

λ,p = Cd,∗
λ,p

(ii) If λ = Λ∗(p), then Cd
λ,p = Cd,∗

λ,p

(iii) If λ > Λ∗(p), then Cd
λ,p > Cd,∗

λ,p

Upper semicontinuity
is easy to prove
For continuity,
a delicate spectral
analysis is needed
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Caffarelli-Kohn-Nirenberg
inequalities (Part II)

and
Logarithmic Hardy

inequalities
Joint work with M. del Pino, S. Filippas and A. Tertikas
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Generalized Caffarelli-Kohn-Nirenberg inequalities (CKN)

Let 2∗ = ∞ if d = 1 or d = 2, 2∗ = 2d/(d − 2) if d ≥ 3 and define

ϑ(p, d) :=
d (p − 2)

2 p

Theorem 9. [Caffarelli-Kohn-Nirenberg-84] Let d ≥ 1. For any θ ∈ [ϑ(p, d), 1], with

p = 2 d
d−2+2 (b−a) , there exists a positive constant CCKN(θ, p, a) such that

(∫

Rd

|u|p
|x|b p

dx

) 2
p

≤ CCKN(θ, p, a)

(∫

Rd

|∇u|2
|x|2 a

dx

)θ (∫

Rd

|u|2
|x|2 (a+1)

dx

)1−θ

In the radial case, with Λ = (a − ac)
2, the best constant when the

inequality is restricted to radial functions is C∗
CKN(θ, p, a) and

CCKN(θ, p, a) ≥ C∗
CKN(θ, p, a) = C∗

CKN(θ, p) Λ
p−2
2p −θ

C∗
CKN(θ, p) =

[
2 πd/2

Γ(d/2)

]2 p−1
p

[
(p−2)2

2+(2 θ−1) p

] p−2
2 p

[
2+(2 θ−1) p

2 p θ

]θ [
4

p+2

] 6−p
2 p

[
Γ( 2

p−2+ 1
2 )√

π Γ( 2
p−2 )

] p−2
p
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Weighted logarithmic Hardy inequalities (WLH)

A “logarithmic Hardy inequality”

Theorem 10. [del Pino, J.D. Filippas, Tertikas] Let d ≥ 3. There exists a constant

CLH ∈ (0, S] such that, for all u ∈ D1,2(Rd) with
∫

Rd

|u|2
|x|2 dx = 1, we have

∫

Rd

|u|2
|x|2 log

(
|x|d−2|u|2

)
dx ≤ d

2
log

[

CLH

∫

Rd

|∇u|2 dx

]

A “weighted logarithmic Hardy inequality” (WLH)

Theorem 11. [del Pino, J.D. Filippas, Tertikas] Let d ≥ 1. Suppose that a < (d − 2)/2,

γ ≥ d/4 and γ > 1/2 if d = 2. Then there exists a positive constant CWLH such that,

for any u ∈ D1,2
a (Rd) normalized by

∫

Rd

|u|2
|x|2 (a+1) dx = 1, we have

∫

Rd

|u|2
|x|2 (a+1)

log
(
|x|d−2−2 a |u|2

)
dx ≤ 2 γ log

[

CWLH

∫

Rd

|∇u|2
|x|2 a

dx

]
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Weighted logarithmic Hardy inequalities: radial case

Theorem 12. [del Pino, J.D. Filippas, Tertikas] Let d ≥ 1, a < (d − 2)/2 and γ ≥ 1/4.

If u = u(|x|) ∈ D1,2
a (Rd) is radially symmetric, and

∫

Rd

|u|2
|x|2 (a+1) dx = 1, then

∫

Rd

|u|2
|x|2 (a+1)

log
(
|x|d−2−2 a |u|2

)
dx ≤ 2 γ log

[

C∗
WLH

∫

Rd

|∇u|2
|x|2 a

dx

]

C∗
WLH = 1

γ

[Γ( d
2 )]

1
2 γ

(8 πd+1 e)
1

4 γ

(
4 γ−1

(d−2−2 a)2

) 4 γ−1
4 γ

if γ > 1
4

C∗
WLH = 4

[Γ( d
2 )]

2

8 πd+1 e
if γ = 1

4

If γ > 1
4 , equality is achieved by the function

u =
ũ

∫

Rd

|ũ|2
|x|2 dx

where ũ(x) = |x|− d−2−2 a
2 exp

(

− (d−2−2a)2

4 (4 γ−1)

[
log |x|

]2
)
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Extremal functions for
Caffarelli-Kohn-Nirenberg

and logarithmic Hardy
inequalities

Joint work with Maria J. Esteban
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First existence result: the sub-critical case

Theorem 13. [J.D. Esteban] Let d ≥ 2 and assume that a ∈ (−∞, ac)

(i) For any p ∈ (2, 2∗) and any θ ∈ (ϑ(p, d), 1), the Caffarelli-Kohn-Nirenberg
inequality (CKN)

(∫

Rd

|u|p
|x|b p

dx

) 2
p

≤ C(θ, p, a)

(∫

Rd

|∇u|2
|x|2 a

dx

)θ (∫

Rd

|u|2
|x|2 (a+1)

dx

)1−θ

admits an extremal function in D1,2
a (Rd)

Critical case: there exists a continuous function a∗ : (2, 2∗) → (−∞, ac) such

that the inequality also admits an extremal function in D1,2
a (Rd) if θ = ϑ(p, d) and

a ∈ (a∗(p), ac)

(ii) For any γ > d/4, the weighted logarithmic Hardy inequality (WLH)

∫

Rd

|u|2
|x|2 (a+1)

log
(
|x|d−2−2 a |u|2

)
dx ≤ 2 γ log

[

CWLH

∫

Rd

|∇u|2
|x|2 a

dx

]

admits an extremal function in D1,2
a (Rd)

Critical case: idem if γ = d/4, d ≥ 3 and a ∈ (a⋆, ac) for some a⋆ ∈ (−∞, ac)
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Existence for CKN

a

b

a

b

d = 3, θ = 1 d = 3, θ = 0.8
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A possible loss of compactness

Gagliardo-Nirenberg interpolation inequalities: if p ∈ (2, 2∗),

‖u‖2
Lp(Rd) ≤ CGN(p) ‖∇u‖2 ϑ(p,d)

L2(Rd)
‖u‖2 (1−ϑ(p,d))

L2(Rd)
∀ u ∈ H1(Rd)

If u is a radial minimizer for 1/CGN(p) and un(x) := u(x + n e) , e ∈ S
d−1

1

CCKN(ϑ(p, d), p, a)
≤
‖|x|−a ∇un‖2 ϑ(p,d)

L2(Rd)
‖|x|−(a+1) un‖2 (1−ϑ(p,d))

L2(Rd)

‖|x|−b un‖2
Lp(Rd)

=
1

CGN(p)

(
1 + Rn−2 + O(n−4)

)

Gross’ logarithmic Sobolev inequality in Weissler’s form

e
2
d

R

Rd |u|2 log |u|2 dx ≤ CLS ‖∇u‖2
L2(Rd) ∀ u ∈ H1(Rd) such that ‖u‖L2(Rd) = 1

CLS ≤ CWLH
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Second existence result

Let

a⋆ := ac −
√

(d − 1) e (2d+1 π)−1/(d−1) Γ(d/2)2/(d−1)

Theorem 14 (Critical cases). [J.D. Esteban]

(i) if θ = ϑ(p, d) and CGN(p) < CCKN(θ, p, a), then (CKN) admits an extremal

function in D1,2
a (Rd),

(ii) if γ = d/4, d ≥ 3, and CLS < CWLH(γ, a), then (WLH) admits an extremal

function in D1,2
a (Rd)

If a ∈ (a⋆, ac) then

CLS < CWLH(d/4, a)
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Strategy of the proofs (1/2)

Emden-Fowler transformation and minimization on the cylinder of the
functionals

Eθ[v] :=
(

‖∇v‖2
L2(C)+ Λ ‖v‖2

L2(C)

)θ

‖v‖2 (1−θ)
L2(C)

Fγ [w] :=
(

‖∇w‖2
L2(C)+ Λ

)

exp

[

− 1
2 γ

∫

C
|w|2 log |w|2 dy

]

under the constraints ‖v‖Lp(C) = 1 and ‖w‖L2(C) = 1

Convergence of minimizing sequences if they are bounded in H1(C):
no vanishing

Lemma 15. [Lions 1984,Catrina-Wang 2001] Let r > 0 and q ∈ [2, 2∗). If (fn)n is

bounded in H1(C) and if lim supn→∞
∫

Br(y)∩C |fn|q dy = 0 for any y ∈ C, then

limn→∞ ‖fn‖Lp(C) = 0 for any p ∈ (2, 2∗).

Up to translations, the sequences converge to a nontrivial limit
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Strategy of the proofs (2/2)

For any x, y > 0, η ∈ (0, 1), we have: (1 + x)η (1 + y)1−η ≥ 1 + xη y1−η

with strict inequality unless x = y

Passing to the limit

1

CCKN(θ, p, a)
= lim

n→∞
Eθ[vn] ≥ Eθ[v] + lim

n→∞
Eθ[vn − v]

≥ 1

CCKN(θ, p, a)

(

‖v‖2
Lp(C) + lim

n→∞
‖vn − v‖2

Lp(C)

)

+ Brezis-Lieb Lemma

1 = ‖vn‖p
Lp(C) = ‖v‖p

Lp(C) + lim
n→∞

‖vn − v‖p
Lp(C)

Concavity of the function f(z) := z2/p + (1 − z)2/p, z ∈ [0, 1], f(z) ≥ 1
with strict inequality unless z = 0 or z = 1: no splitting

For (WLH) use: η x1/η + (1 − η) y1/(1−η) ≥ x y

with strict inequality unless x = y and η = 1/2
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Boundedness in H
1(C) ?

(CKN) with θ > ϑ(p, d) and (WLH) with γ > d/4: by interpolation, any
minimizing sequence is bounded in H1(C)

Critical cases: (CKN) with θ = ϑ(p, d) and (WLH) with γ = d/4

An approach by contradiction
An unbounded minimizing sequence concentrates
We take as a special minimizing sequence a sequence of
minimizers corresponding to a θn > ϑ(p, d) or γn > d/4, use the
Euler-Lagrange equations and perform a blow-up analysis
we find a contradiction with CGN(p) < CCKN(θ, p, a) for
θ = ϑ(p, d), or with CLS < CWLH(γ, a) if γ = d/4, d ≥ 3

If a ∈ (a⋆, ac), d ≥ 3, then CLS < C∗
WLH(d/4, a) ≤ CWLH(d/4, a) and the

logarithmic Hardy inequality admits a minimizer in the critical case
γ = d/4, d ≥ 3
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Radial symmetry and
symmetry breaking

Joint work with
M. del Pino, S. Filippas and A. Tertikas (symmetry breaking)
Maria J. Esteban, Gabriella Tarantello and Achilles Tertikas
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Symmetry breaking for (CKN) inequalities

Θ(a, p, d) := p−2
32 (d−1) p

[
(p + 2)2 (d2 + 4 a2 − 4 a (d − 2)) − 4 p (p + 4) (d − 1)

]

a−(p) := d−2
2 − 2 (d−1)

p+2

Theorem 16. [del Pino, J.D. Filippas, Tertikas] Let d ≥ 2, 2 < p < 2∗ and a < a−(p).

Then C(θ, p, a) > C∗(θ, p, a) if either

ϑ(p, d) ≤ θ < Θ(a, p, d) when a ≥ d − 2

2
− 2

√
d − 1

√

(p − 2)(p + 2)

or

ϑ(p, d) ≤ θ ≤ 1 when a <
d − 2

2
− 2

√
d − 1

√

(p − 2)(p + 2)

In other words, symmetry breaking occurs in (CKN) if a, θ and p are in any of the two
above regions
“Close” to (WLH): if a < −1/2, there exists ε > 0, γ1 > d/4 and γ2 > γ1 such that

symmetry breaking occurs if θ = γ (p− 2) for any γ ∈ (γ1, γ2) and any p ∈ (2, 2 + ε)
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Plots (1/2)
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a = −1 a = −0.5 a = −0.25 a = 0

Plots in (η, θ) coordinates, with η := b − a,

Admissible regions appear in grey

Symmetry breaking regions appear in dark grey

The symmetry breaking region touches (η, θ) = (1, 0) for a ≤ −1/2

Another parametrization: symmetry breaking holds for any

a < ac −
2
√

d − 1

p + 2

√

2 p θ

p − 2
− 1
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Plots (2/2)
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(a, η) representation of admissible ar-
eas: η = b − a ≥ 1 − θ

Symmetry breaking region:
η < g(a, θ) (dark grey)

Here d = 3 and θ = 0.5

η < g(a, 1) corresponds to the condi-
tion found by Felli and Schneider

Regions of symmetry breaking:
1 − θ ≤ η < g(a, θ)

θ = 1, 0.75, 0.5, 0.3, 0.2, 0.1, 0.05, 0.02

The enveloppe determines a curve
η = h(a)

The limit case η = 0 = h(0) is the
Felli and Schneider case

h(−1/2) = 1 is consistent with sym-
metry breaking for WLH
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Implementing the method of Catrina-Wang / Felli-Schneider

Among functions w ∈ H1(C) which depend only on s, the minimum of

J [w] :=

Z

C

`

|∇w|2 + 1
4

(d − 2 − 2 a)2 |w|2
´

dy − [C∗(θ, p, a)]−
1
θ

`R

C
|w|p dy

´

2
p θ

`R

C
|w|2 dy

´

1−θ
θ

is achieved by w(y) :=
ˆ

cosh(λ s)
˜−

2
p−2 , y = (s, ω) ∈ R × Sd−1 = C with

λ := 1
4

(d − 2 − 2 a) (p − 2)
q

p+2
2 p θ−(p−2)

as a solution of

λ2 (p − 2)2 w′′ − 4 w + 2 p |w|p−2 w = 0

Spectrum of L := −∆ + κ wp−2 + µ is given for
p

1 + 4 κ/λ2 ≥ 2 j + 1 by

λi,j = µ + i (d + i − 2) − λ2

4

“
q

1 + 4 κ
λ2 − (1 + 2 j)

”2
∀ i , j ∈ N

The eigenspace of L corresponding to λ0,0 is generated by w

The eigenfunction φ(1,0) associated to λ1,0 is not radially symmetric and such that
R

C
w φ(1,0) dy = 0 and

R

C
wp−1 φ(1,0) dy = 0

If λ1,0 < 0, optimal functions for (CKN) cannot be radially symmetric and

C(θ, p, a) > C∗(θ, p, a)
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Logarithmic Hardy inequalities: symmetry breaking

Theorem 17. [del Pino, J.D. Filippas, Tertikas] Let d ≥ 2 and a < −1/2. Assume that

γ > 1/2 if d = 2. If, in addition,

d

4
≤ γ <

1

4
+

(d − 2 a − 2)2

4 (d − 1)

then the optimal constant CWLH is not achieved by a radial function and
CWLH > C∗

WLH

Same method, but applied to the functional

F [w] :=
R

C
|∇w|2 dy

R

C
|w|2 dy

+σ2−|Sd−1| 1
2 γ exp

[
K(γ,σ)

2 γ + 1
2 γ

∫

C
|w|2

R

C
|w|2 dy

log
(

|w|2
R

C
|w|2 dy

)

dy
]

which has gaussian minimizers among functions w ∈ H1(C) which depend
only on s

Symmetry and symmetry breaking of extremal functions in some interpolation inequalities – p. 45/58



Surface / curve of separation

Caffarelli-Kohn-Nirenberg inequality (CKN)

Theorem 18. [J.D. Esteban, Tarantello, Tertikas] For all d ≥ 2, there exists a continuous
function a∗ defined on the set {(θ, p) ∈ (0, 1] × (2, 2∗) : θ > ϑ(p, d)} with values in

(−∞, ac) such that lim
p→2+

a∗(θ, p) = −∞ and

(i) If (a, p) ∈ (a∗(θ, p), ac) × (2, 2∗), (CKN) has only radially symmetric extremals

(ii) If (a, p) ∈ (−∞, a∗(θ, p)) × (2, 2∗), none of the extremals of (CKN) is radially
symmetric

(iii) For every p ∈ (2, 2∗), a(θ, p) ≤ a∗(θ, p) ≤ ā(θ, p) < ac

Weighted logarithmic Hardy inequality (WLH)

Theorem 19. [J.D. Esteban, Tarantello, Tertikas] Let d ≥ 2, there exists a continuous
function a∗∗ defined on (d/4,∞), with values in (−∞, ac) such that for any γ > d/4
and a ∈ [a∗∗(γ), ac), there is a radially symmetric extremal for WLH, while for

a < a∗∗(γ) no extremal of (WLH) is radially symmetric. Moreover, a∗∗(γ) ≥ ã(γ) for

any γ ∈ (d/4,∞)

The proof is similar to the case θ = 1 but requires delicate estimates
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Schwarz’ symmetrization

With u(x) = |x|a v(x), (CKN) is then equivalent to

‖|x|a−b v‖2
Lp(Rd) ≤ CCKN(θ, p, Λ) (A− λB)

θ B1−θ

with A := ‖∇v‖2
L2(Rd), B := ‖|x|−1 v‖2

L2(Rd) and λ := a (2 ac − a). We

observe that the function B 7→ h(B) := (A− λB)
θ B1−θ satisfies

h′(B)

h(B)
=

1 − θ

B − λ θ

A− λB

By Hardy’s inequality (d ≥ 3), we know that

A− λB ≥ inf
a>0

(
A− a (2 ac − a)B

)
= A− a2

c B > 0

and so h′(B) ≤ 0 if (1 − θ)A < λB ⇐⇒ A/B < λ/(1 − θ)
By interpolation A/B is small if ac − a > 0 is small enough, for θ > ϑ(p, d)
and d ≥ 3
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Regions in which Schwarz’ symmetrization holds

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

Here d = 5, ac = 1.5 and p = 2.1, 2.2, . . . 3.2

Symmetry holds if a ∈ [a0(θ, p), ac), θ ∈ (ϑ(p, d), 1)

Horizontal segments correspond to θ = ϑ(p, d)

Hardy’s inequality: the above symmetry region is contained in θ > (1 − a
ac

)2

Alternatively, we could prove the symmetry by the moving planes method
in the same region
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New results on symmetry breaking: WLH inequalities

Recall that: for γ = d/4, d ≥ 3, (WLH) admits an extremal function in
D1,2

a (Rd)

If a ∈ (a⋆, ac) with a⋆ := ac −
√

(d − 1) e (2d+1 π)−1/(d−1) Γ(d/2)2/(d−1)

CLS < CWLH(d/4, a) and for γ = d/4, d ≥ 3, (WLH) admits an
extremal function in D1,2

a (Rd)

for γ > d/4, d ≥ 3, (WLH) always admits an extremal function

If a⋆ > aFS(γ), for γ close enough to d/4 and a ∈ (aFS(γ), a⋆), the
minimizer cannot be symmetric
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The new symmetry breaking result for WLH

C∗
WLH(γ, Λ) < CLS if and only if Λ(a) > ΛSB(γ, d)

Notice that C∗
WLH(d/4, Λ(−1/2)) < CLS if d ≥ 3, while, for d = 2, we have

limγ→(1/2)+ C∗
WLH(γ, Λ(−1/2)) < CLS

5 10 15 20 25 30 35

0.84

0.86

0.88

0.92

0.94

0.96

0.98

By continuity, the inequality C∗
WLH(γ, Λ̃(γ)) < CLS remains valid for

γ > d/4, provided γ − d/4 > 0 is small enough... how small ?
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Symmetry breaking for WLH: numerical range

By numerical calculations: Λ(a) > Λ̃(γ) is more restrictive than
Λ(a) > ΛSB(γ, d) except if

d = 2 and γ ∈ [0.621414 . . . , 6.69625 . . .]
d = 3 and γ ∈ [0.937725 . . . , 4.14851 . . .]
d = 4 and γ ∈ [1.31303 . . . , 2.98835 . . .]

For d ≥ 5, we observe that ΛSB(γ, d) < Λ̃(γ)

2 4 6 8 10

0.5

0.75

1.25

1.5

1.75

2
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Symmetry breaking for WLH: a statement

ΛSB(γ, d) :=
1

8
(4 γ − 1) e

(
π4 γ−d−1

16

) 1
4 γ−1

(
d
γ

) 4 γ
4 γ−1 Γ

(
d
2

) 2
4 γ−1 (1)

Theorem 20. [J.D. Esteban, Tarantello, Tertikas] Let d ≥ 2 and assume that γ > 1/2 if

d = 2. If Λ(a) > ΛSB(γ, d), then there is symmetry breaking: no extremal for (WLH)

corresponding to the parameters (γ, a) is radially symmetric. As a consequence, there

exists an ε > 0 such that, if a ∈ [ã(γ), ã(γ) + ε) and γ ∈ [d/4, d/4 + ε), with

γ > 1/2 if d = 2, there is symmetry breaking

Recall that Λ = (a − ac)2, ΛSB(d/4, d) = Λ⋆ and a(θ, p), ã(γ) are given by the method of
Felli & Schneider

a < a⋆ and γ = d/4: symmetry breaking

a ∈ (a⋆, ac) and γ = d/4: existence of a minimizer for WLH
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New results on symmetry breaking: CKN inequalities

Method:

if θ = ϑ(p, d) and CGN(p) < CCKN(θ, p, a), then (CKN) admits an
extremal function in D1,2

a (Rd)

it is enough to find a good test function if we know the value of
CGN(p) and if we evaluate from below CCKN(θ, p, a) by C∗

CKN(θ, p, a)

CGN(p) ≤ [test function] ≤ C∗
CKN(θ, p, a) ≤ CCKN(θ, p, a)

CGN(p) converges to CLS as p → 2+, and gaussian functions are
optimal for the logarithmic Sobolev inequality

Use Gaussians as test functions, for p close enough to 2
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The new symmetry breaking result for CKN

Let g(x) := (2 π)−d/4 exp(−|x|2/4)

1
CCKN(ϑ(p,d),p,Λ(a−(p))) ≤ 1

CGN(p) ≤ h(p, d) :=
‖∇g‖2 ϑ(p,d)

L2(Rd)
‖g‖2 (1−ϑ(p,d))

L2(Rd)

‖g‖2

Lp(Rd)

where a−(p) = a(ϑ(p, d), p)

2.2 2.4 2.6 2.8 3 3.2

0.96

0.98

1.02

1.04

1.06

Symmetry breaking occurs if

L(p, d) := h(p, d) C∗
CKN

(
ϑ(p, d), p, Λ(a−(p))

)
< 1
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Symmetry breaking for CKN: a statement

Theorem 21. [J.D. Esteban, Tarantello, Tertikas] Let d ≥ 2. There exists η > 0 such that
for every p ∈ (2, 2 + η) there exists an ε > 0 with the property that for

θ ∈ [ϑ(p, d), ϑ(p, d) + ε) and a ∈ [a(θ, p), a(θ, p) + ε), no extremal for (CKN)

corresponding to the parameters (θ, p, a) is radially symmetric

There is always an extremal function for (CKN) if θ > ϑ(p, d), and also in some cases if

θ = ϑ(p, d)
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Summary (1/2): Existence for (CKN)

a

θ

ac0

1

(1)

(2)

(3)

The zones in which existence is known are:

(1) a ≥ a0: extremals are achieved among radial functions, by the
Schwarz symmetrization method

(1)+(2) a > a1: this follows from the explicit a priori estimates;
Λ1 = (ac − a1)

2

(1)+(2)+(3) a > aCKN
⋆ : this follows by comparison of the optimal constant

for (CKN) with the optimal constant in the corresponding
Gagliardo-Nirenberg-Sobolev inequality
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Summary (2/2): Symmetry and symmetry breaking for (CKN)

The zone of symmetry breaking contains:

(1) a < a(θ, p): by linearization around radial extremals

(1)+(2) a < aCKN
⋆ : by comparison with the Gagliardo-Nirenberg-Sobolev

inequality

In (3) it is not known whether symmetry holds or if there is symmetry
breaking, while in (4), that is, for a0 ≤ a < ac, symmetry holds by the
Schwarz symmetrization

a

θ

ac0

1

(1)

(2)
(3)

(4)

(3)
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Thank you !
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