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Critical Caffarelli-Kohn-Nirenberg inequality

Let Da,b :=
{
v ∈ Lp

(
Rd , |x |−b dx

)
: |x |−a |∇v | ∈ L2

(
Rd , dx

)}

(∫

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇v |2
|x |2 a

dx ∀ v ∈ Da,b

holds under conditions on a and b

p =
2 d

d − 2 + 2 (b − a)
(critical case)

B An optimal function among radial functions:

v?(x) =
(

1 + |x |(p−2) (ac−a)
)− 2

p−2

and C?a,b =
‖ |x |−b v? ‖2

p

‖ |x |−a∇v? ‖2
2

Question: Ca,b = C?a,b (symmetry) or Ca,b > C?a,b (symmetry breaking) ?

J. Dolbeault Flows, linearization, entropy methods
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Critical CKN: range of the parameters

Figure: d = 3(∫

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇v |2
|x |2 a

dx

a

b

0

1

−1

b = a

b= a+ 1

a = d−2
2

p

a ≤ b ≤ a + 1 if d ≥ 3
a < b ≤ a + 1 if d = 2, a + 1/2 < b ≤ a + 1 if d = 1
and a < ac := (d − 2)/2

p =
2 d

d − 2 + 2 (b − a)

[Glaser, Martin, Grosse, Thirring (1976)]
[Caffarelli, Kohn, Nirenberg (1984)]

[F. Catrina, Z.-Q. Wang (2001)]
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Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve

bFS(a) :=
d (ac − a)

2
√

(ac − a)2 + d − 1
+ a− ac

a

b

0

[Smets], [Smets, Willem], [Catrina, Wang], [Felli, Schneider]
The functional

C?a,b

∫

Rd

|∇v |2
|x |2 a

dx −
(∫

Rd

|v |p
|x |b p

dx

)2/p

is linearly instable at v = v?
J. Dolbeault Flows, linearization, entropy methods



Symmetry breaking and linearization
Entropy methods without weights

Weighted nonlinear flows and CKN inequalities

Critical Caffarelli-Kohn-Nirenberg inequality
Subcritical Caffarelli-Kohn-Nirenberg inequalities
Linearization and spectrum

Symmetry versus symmetry breaking:
the sharp result in the critical case

[JD, Esteban, Loss (Inventiones 2016)]

a

b

0

Theorem

Let d ≥ 2 and p < 2∗. If either a ∈ [0, ac) and b > 0, or a < 0 and
b ≥ bFS(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

J. Dolbeault Flows, linearization, entropy methods
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The Emden-Fowler transformation and the cylinder

B With an Emden-Fowler transformation, critical the
Caffarelli-Kohn-Nirenberg inequality on the Euclidean space are
equivalent to Gagliardo-Nirenberg inequalities on a cylinder

v(r , ω) = r a−ac ϕ(s, ω) with r = |x | , s = − log r and ω =
x

r

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as the subcritical interpolation inequality

‖∂sϕ‖2
L2(C) + ‖∇ωϕ‖2

L2(C) + Λ ‖ϕ‖2
L2(C) ≥ µ(Λ) ‖ϕ‖2

Lp(C) ∀ϕ ∈ H1(C)

where Λ := (ac − a)2, C = R× Sd−1 and the optimal constant µ(Λ) is

µ(Λ) =
1

Ca,b
with a = ac ±

√
Λ and b =

d

p
±
√

Λ

J. Dolbeault Flows, linearization, entropy methods
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Linearization around symmetric critical points

Up to a normalization and a scaling

ϕ?(s, ω) = (cosh s)−
1

p−2

is a critical point of

H1(C) 3 ϕ 7→ ‖∂sϕ‖2
L2(C) + ‖∇ωϕ‖2

L2(C) + Λ ‖ϕ‖2
L2(C)

under a constraint on ‖ϕ‖2
Lp(C)

ϕ? is not optimal for (CKN) if the Pöschl-Teller operator

−∂2
s −∆ω + Λ− ϕp−2

? = −∂2
s −∆ω + Λ− 1

(cosh s)2

has a negative eigenvalue

J. Dolbeault Flows, linearization, entropy methods
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Subcritical Caffarelli-Kohn-Nirenberg inequalities

Norms: ‖w‖Lq,γ(Rd ) :=
(∫

Rd |w |q |x |−γ dx
)1/q

, ‖w‖Lq(Rd ) := ‖w‖Lq,0(Rd )

(some) Caffarelli-Kohn-Nirenberg interpolation inequalities (1984)

‖w‖L2p,γ(Rd ) ≤ Cβ,γ,p ‖∇w‖ϑL2,β(Rd ) ‖w‖1−ϑ
Lp+1,γ(Rd )

(CKN)

Here Cβ,γ,p denotes the optimal constant, the parameters satisfy

d ≥ 2 , γ−2 < β < d−2
d γ , γ ∈ (−∞, d) , p ∈ (1, p?] with p? := d−γ

d−β−2

and the exponent ϑ is determined by the scaling invariance, i.e.,

ϑ = (d−γ) (p−1)

p
(
d+β+2−2 γ−p (d−β−2)

)

Is the equality case achieved by the Barenblatt / Aubin-Talenti
type function

w?(x) =
(
1 + |x |2+β−γ)−1/(p−1) ∀ x ∈ Rd ?

Do we know (symmetry) that the equality case is achieved among
radial functions?

J. Dolbeault Flows, linearization, entropy methods
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Range of the parameters

Here p is given
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Symmetry and symmetry breaking

[JD, Esteban, Loss, Muratori, 2016]

Let us define βFS(γ) := d − 2−
√

(d − γ)2 − 4 (d − 1)

Theorem

Symmetry breaking holds in (CKN) if

γ < 0 and βFS(γ) < β <
d − 2

d
γ

In the range βFS(γ) < β < d−2
d γ

w?(x) =
(
1 + |x |2+β−γ)−1/(p−1)

is not optimal

J. Dolbeault Flows, linearization, entropy methods
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The green area is the region of symmetry, while the red area is the
region of symmetry breaking. The threshold is determined by the
hyperbola

(d − γ)2 − (β − d + 2)2 − 4 (d − 1) = 0

J. Dolbeault Flows, linearization, entropy methods
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A useful change of variables

With

α = 1 +
β − γ

2
and n = 2

d − γ
β + 2− γ ,

(CKN) can be rewritten for a function v(|x |α−1 x) = w(x) as

‖v‖L2p,d−n(Rd ) ≤ Kα,n,p ‖Dαv‖ϑL2,d−n(Rd ) ‖v‖1−ϑ
Lp+1,d−n(Rd )

with the notations s = |x |, Dαv =
(
α ∂v
∂s ,

1
s ∇ωv

)
. Parameters are in

the range

d ≥ 2 , α > 0 , n > d and p ∈ (1, p?] , p? :=
n

n − 2

By our change of variables, w? is changed into

v?(x) :=
(
1 + |x |2

)− 1
p−1 ∀ x ∈ Rd

The symmetry breaking condition (Felli-Schneider) now reads

α < αFS with αFS :=

√
d − 1

n − 1

J. Dolbeault Flows, linearization, entropy methods
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The second variation

J [v ] := ϑ log
(
‖Dαv‖L2,d−n(Rd )

)
+ (1− ϑ) log

(
‖v‖Lp+1,d−n(Rd )

)

+ log Kα,n,p − log
(
‖v‖L2p,d−n(Rd )

)

Let us define dµδ := µδ(x) dx , where µδ(x) := (1 + |x |2)−δ. Since v? is
a critical point of J , a Taylor expansion at order ε2 shows that

‖Dαv?‖2
L2,d−n(Rd ) J

[
v? + ε µδ/2 f

]
= 1

2 ε
2 ϑQ[f ] + o(ε2)

with δ = 2 p
p−1 and

Q[f ] =

∫

Rd

|Dαf |2 |x |n−d dµδ −
4 p α2

p − 1

∫

Rd

|f |2 |x |n−d dµδ+1

We assume that
∫
Rd f |x |n−d dµδ+1 = 0 (mass conservation)

J. Dolbeault Flows, linearization, entropy methods
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Symmetry breaking: the proof

Proposition (Hardy-Poincaré inequality)

Let d ≥ 2, α ∈ (0,+∞), n > d and δ ≥ n. If f has 0 average, then

∫

Rd

|Dαf |2 |x |n−d dµδ ≥ Λ

∫

Rd

|f |2 |x |n−d dµδ+1

with optimal constant Λ = min{2α2 (2 δ − n), 2α2 δ η} where η is the
unique positive solution to η (η+n− 2) = (d − 1)/α2. The corresponding

eigenfunction is not radially symmetric if α2 >
(d − 1) δ2

n (2 δ − n) (δ − 1)

Q ≥ 0 iff 4 p α2

p−1 ≤ Λ and symmetry breaking occurs in (CKN) if

2α2 δ η <
4 p α2

p − 1
⇐⇒ η < 1

⇐⇒ d − 1

α2
= η (η + n − 2) < n − 1 ⇐⇒ α > αFS

J. Dolbeault Flows, linearization, entropy methods
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Inequalities without weights and fast
diffusion equations

B Rényi entropy powers

B Self-similar variables and relative entropies

B The role of the spectral gap
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Rényi entropy powers and fast diffusion

B Rényi entropy powers, the entropy approach without rescaling:
[Savaré, Toscani]: scalings, nonlinearity and a concavity property
inspired by information theory

B Faster rates of convergence: [Carrillo, Toscani], [JD, Toscani]
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The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in Rd , d ≥ 1

∂v

∂t
= ∆vm

with initial datum v(x , t = 0) = v0(x) ≥ 0 such that
∫
Rd v0 dx = 1 and∫

Rd |x |2 v0 dx < +∞. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

U?(t, x) :=
1

(
κ t1/µ

)d B?
( x

κ t1/µ

)

where

µ := 2 + d (m − 1) , κ :=
∣∣∣ 2µm

m − 1

∣∣∣
1/µ

and B? is the Barenblatt profile

B?(x) :=





(
C? − |x |2

)1/(m−1)

+
if m > 1

(
C? + |x |2

)1/(m−1)
if m < 1

J. Dolbeault Flows, linearization, entropy methods
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The Rényi entropy power F

The entropy is defined by

E :=

∫

Rd

vm dx

and the Fisher information by

I :=

∫

Rd

v |∇p|2 dx with p =
m

m − 1
vm−1

If v solves the fast diffusion equation, then

E′ = (1−m) I

To compute I′, we will use the fact that

∂p

∂t
= (m − 1) p ∆p + |∇p|2

F := Eσ with σ =
µ

d (1−m)
= 1+

2

1−m

(
1

d
+ m − 1

)
=

2

d

1

1−m
−1

has a linear growth asymptotically as t → +∞
J. Dolbeault Flows, linearization, entropy methods
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The concavity property

Theorem

[Toscani-Savaré] Assume that m ≥ 1− 1
d if d > 1 and m > 0 if d = 1.

Then F (t) is increasing, (1−m) F′′(t) ≤ 0 and

lim
t→+∞

1

t
F(t) = (1−m)σ lim

t→+∞
Eσ−1 I = (1−m)σ Eσ−1

? I?

[Dolbeault-Toscani] The inequality

Eσ−1 I ≥ Eσ−1
? I?

is equivalent to the Gagliardo-Nirenberg inequality

‖∇w‖θL2(Rd ) ‖w‖1−θ
Lq+1(Rd )

≥ CGN ‖w‖L2q(Rd )

if 1− 1
d ≤ m < 1. Hint: vm−1/2 = w

‖w‖
L2q (Rd )

, q = 1
2 m−1

J. Dolbeault Flows, linearization, entropy methods
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The proof

Lemma

If v solves ∂v
∂t = ∆vm with 1

d ≤ m < 1, then

I′ =
d

dt

∫

Rd

v |∇p|2 dx = − 2

∫

Rd

vm
(
‖D2p‖2 + (m − 1) (∆p)2

)
dx

Explicit arithmetic geometric inequality

‖D2p‖2 − 1

d
(∆p)2 =

∥∥∥∥D2p− 1

d
∆p Id

∥∥∥∥
2

There are no boundary terms in the integrations by parts

J. Dolbeault Flows, linearization, entropy methods
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Remainder terms

F′′ = −σ (1−m) R[v ]. The pressure variable is P = m
1−m vm−1

R[v ] := (σ − 1) (1−m) Eσ−1

∫

Rd

vm

∣∣∣∣∆P−
∫
Rd v |∇P|2 dx∫

Rd vm dx

∣∣∣∣
2

dx

+ 2 Eσ−1

∫

Rd

vm
∥∥D2P− 1

d ∆P Id
∥∥2

dx

Let

G[v ] :=
F[v ]

σ (1−m)
=

(∫

Rd

vm dx

)σ−1 ∫

Rd

v |∇P|2 dx

The Gagliardo-Nirenberg inequality is equivalent to G[v0] ≥ G[v?]

Proposition

G[v0] ≥ G[v?] +

∫ ∞

0

R[v(t, ·)] dt

J. Dolbeault Flows, linearization, entropy methods
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Self-similar variables and relative entropies

The large time behavior of the solution of ∂v
∂t = ∆vm is governed by

the source-type Barenblatt solutions

v?(t, x) :=
1

κd(µ t)d/µ
B?
(

x

κ (µ t)1/µ

)
where µ := 2 + d (m − 1)

where B? is the Barenblatt profile (with appropriate mass)

B?(x) :=
(
1 + |x |2

)1/(m−1)

A time-dependent rescaling: self-similar variables

v(t, x) =
1

κd Rd
u
(
τ,

x

κR

)
where

dR

dt
= R1−µ , τ(t) := 1

2 log

(
R(t)

R0

)

Then the function u solves a Fokker-Planck type equation

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2 x

) ]
= 0

J. Dolbeault Flows, linearization, entropy methods
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Free energy and Fisher information

The function u solves a Fokker-Planck type equation

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2 x

) ]
= 0

[Ralston, Newman, 1984] Lyapunov functional:
Generalized entropy or Free energy

E [u] :=

∫

Rd

(
−um

m
+ |x |2u

)
dx − E0

Entropy production is measured by the Generalized Fisher
information

d

dt
E [u] = −I[u] , I[u] :=

∫

Rd

u
∣∣∇um−1 + 2 x

∣∣2 dx

J. Dolbeault Flows, linearization, entropy methods
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Without weights: relative entropy, entropy production

Stationary solution: choose C such that ‖u∞‖L1 = ‖u‖L1 = M > 0

u∞(x) :=
(
C + |x |2

)−1/(1−m)

+

Relative entropy: Fix E0 so that E [u∞] = 0
Entropy – entropy production inequality [del Pino, J.D.]

Theorem

d ≥ 3, m ∈ [ d−1
d ,+∞), m > 1

2 , m 6= 1

I[u] ≥ 4 E [u]

Corollary

[del Pino, J.D.] A solution u with initial data u0 ∈ L1
+(Rd) such that

|x |2 u0 ∈ L1(Rd), um0 ∈ L1(Rd) satisfies

E [u(t, ·)] ≤ E [u0] e− 4 t

J. Dolbeault Flows, linearization, entropy methods



Symmetry breaking and linearization
Entropy methods without weights

Weighted nonlinear flows and CKN inequalities
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A computation on a large ball, with boundary terms

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2 x

) ]
= 0 τ > 0 , x ∈ BR

where BR is a centered ball in Rd with radius R > 0, and assume that
u satisfies zero-flux boundary conditions

(
∇um−1 − 2 x

)
· x

|x | = 0 τ > 0 , x ∈ ∂BR .

With z(τ, x) := ∇Q(τ, x) := ∇um−1 − 2 x , the relative Fisher
information is such that

d

dτ

∫

BR

u |z |2 dx + 4

∫

BR

u |z |2 dx

+ 2 1−m
m

∫

BR

um
(∥∥D2Q

∥∥2 − (1−m) (∆Q)2
)
dx

=

∫

∂BR

um
(
ω · ∇|z |2

)
dσ ≤ 0 (by Grisvard’s lemma)

J. Dolbeault Flows, linearization, entropy methods
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Another improvement of the GN inequalities

Let us define the relative entropy

E [u] := − 1

m

∫

Rd

(
um − Bm? − mBm−1

? (u − B?)
)
dx

the relative Fisher information

I[u] :=

∫

Rd

u |z |2 dx =

∫

Rd

u
∣∣∇um−1 − 2 x

∣∣2 dx

and R[u] := 2
1−m

m

∫

Rd

um
(∥∥D2Q

∥∥2 − (1−m) (∆Q)2
)
dx

Proposition

If 1− 1/d ≤ m < 1 and d ≥ 2, then

I[u0]− 4 E [u0] ≥
∫ ∞

0

R[u(τ, ·)] dτ
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Entropy – entropy production, Gagliardo-Nirenberg ineq.

4 E [u] ≤ I[u]

Rewrite it with p = 1
2m−1 , u = w2p, um = wp+1 as

1

2

(
2m

2m − 1

)2 ∫

Rd

|∇w |2dx +

(
1

1−m
− d

)∫

Rd

|w |1+pdx − K ≥ 0

for some γ, K = K0

(∫
Rd u dx =

∫
Rd w

2p dx
)γ

w = w∞ = v
1/2p
∞ is optimal

Theorem

[Del Pino, J.D.] With 1 < p ≤ d
d−2 (fast diffusion case) and d ≥ 3

‖w‖L2p(Rd ) ≤ CGN
p,d ‖∇w‖θL2(Rd ) ‖w‖1−θ

Lp+1(Rd )

CGN
p,d =

(
y(p−1)2

2πd

) θ
2
(

2y−d
2y

) 1
2p
(

Γ(y)

Γ(y− d
2 )

) θ
d

, θ = d(p−1)
p(d+2−(d−2)p) , y = p+1

p−1
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Sharp asymptotic rates of convergence

Assumptions on the initial datum v0

(H1) VD0 ≤ v0 ≤ VD1 for some D0 > D1 > 0

(H2) if d ≥ 3 and m ≤ m∗, (v0 − VD) is integrable for a suitable
D ∈ [D1,D0]

Theorem

[Blanchet, Bonforte, J.D., Grillo, Vázquez] Under Assumptions
(H1)-(H2), if m < 1 and m 6= m∗ := d−4

d−2 , the entropy decays according
to

E [v(t, ·)] ≤ C e−2 (1−m) Λα,d t ∀ t ≥ 0

where Λα,d > 0 is the best constant in the Hardy–Poincaré inequality

Λα,d

∫

Rd

|f |2 dµα−1 ≤
∫

Rd

|∇f |2 dµα ∀ f ∈ H1(dµα)

with α := 1/(m − 1) < 0, dµα := hα dx, hα(x) := (1 + |x |2)α
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Rényi entropy powers
Self-similar variables and relative entropies
The role of the spectral gap

Plots (d = 5)

λ01 = −4 α − 2 d

λ10 = −2 α

λ11 = −6 α − 2 (d + 2)

λ02 = −8 α − 4 (d + 2)

λ20 = −4 α

λ30

λ21 λ12

λ03

λcont
α,d := 1

4(d + 2 α − 2)2

α = −d

α = −(d + 2)

α = −d+2
2

α = −d−2
2

α = −d+6
2

α

0

Essential spectrum of Lα,d

α = −
√

d − 1 − d
2

α = −
√

d − 1 − d+4
2

α = − − d+2
2

√
2 d

(d = 5)

Spectrum of Lα,d

mc = d−2
d

m1 = d−1
d

m2 = d+1
d+2

m̃1 = d
d+2

m̃2 = d+4
d+6

m

Spectrum of 
(1 − m) L1/(m−1),d

(d = 5)

Essential spectrum

of (1

1

− m) L1/(m−1),d

2

4

6
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Improved asymptotic rates

[Bonforte, J.D., Grillo, Vázquez] Assume that m ∈ (m1, 1), d ≥ 3.
Under Assumption (H1), if v is a solution of the fast diffusion
equation with initial datum v0 such that

∫
Rd x v0 dx = 0, then the

asymptotic convergence holds with an improved rate corresponding to
the improved spectral gap.

(m1 = d
d+2

m1 = d− 1
d

(m2 = d+4
d+6

m2 = d+1
d+2

4

2

m

1

mc = d− 2
d

(d = 5)

γ (m)

0
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Spectral gaps and best constants

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2
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Comments

The spectral gap corresponding to the red curves relies on a
refined notion of relative entropy with respect to best matching
Barenblatt profiles [J.D., Toscani]

A result by [Denzler, Koch, McCann] Higher order time
asymptotics of fast diffusion in Euclidean space: a dynamical
systems approach

The constant C in

E [v(t, ·)] ≤ C e−2 γ(m) t ∀ t ≥ 0

can be made explicit, under additional restrictions on the initial
data [Bonforte, J.D., Grillo, Vázquez]
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Weighted nonlinear flows:
Caffarelli-Kohn-Nirenberg

inequalities
B Entropy and Caffarelli-Kohn-Nirenberg inequalities

B Large time asymptotics and spectral gaps

B Optimality cases
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CKN and entropy – entropy production inequalities

When symmetry holds, (CKN) can be written as an entropy – entropy
production inequality

1−m
m (2 + β − γ)2 E [v ] ≤ I[v ]

and equality is achieved by Bβ,γ . Here the free energy and the
relative Fisher information are defined by

E [v ] :=
1

m − 1

∫

Rd

(
vm −Bm

β,γ −mBm−1
β,γ (v −Bβ,γ)

) dx

|x |γ

I[v ] :=

∫

Rd

v
∣∣∣∇vm−1 −∇Bm−1

β,γ

∣∣∣
2 dx

|x |β .

If v solves the Fokker-Planck type equation

vt + |x |γ ∇ ·
[
|x |−β v ∇

(
vm−1 − |x |2+β−γ)] = 0 (WFDE-FP)

then
d

dt
E [v(t, ·)] = − m

1−m
I[v(t, ·)]
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Proposition

Let m = p+1
2 p and consider a solution to (WFDE-FP) with nonnegative

initial datum u0 ∈ L1,γ(Rd) such that ‖um0 ‖L1,γ(Rd ) and∫
Rd u0 |x |2+β−2γ dx are finite. Then

E [v(t, ·)] ≤ E [u0] e−(2+β−γ)2t ∀ t ≥ 0

if one of the following two conditions is satisfied:
(i) either u0 is a.e. radially symmetric
(ii) or symmetry holds in (CKN)
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A useful change of variables (reminder)

With

α = 1 +
β − γ

2
and n = 2

d − γ
β + 2− γ ,

(CKN) can be rewritten for a function v(|x |α−1 x) = w(x) as

‖v‖L2p,d−n(Rd ) ≤ Kα,n,p ‖Dαv‖ϑL2,d−n(Rd ) ‖v‖1−ϑ
Lp+1,d−n(Rd )

with the notations s = |x |, Dαv =
(
α ∂v
∂s ,

1
s ∇ωv

)
. Parameters are in

the range

d ≥ 2 , α > 0 , n > d and p ∈ (1, p?] , p? :=
n

n − 2

By our change of variables, w? is changed into

v?(x) :=
(
1 + |x |2

)−1/(p−1) ∀ x ∈ Rd

The symmetry breaking condition (Felli-Schneider) now reads

α > αFS with αFS :=

√
d − 1

n − 1
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Towards a parabolic proof

For any α ≥ 1, let DαW =
(
α∂rW , r−1∇ωW

)
so that

Dα = ∇+ (α− 1)
x

|x |2 (x · ∇) = ∇+ (α− 1)ω ∂r

and define the diffusion operator Lα by

Lα = −D∗αDα = α2

(
∂2
r +

n − 1

r
∂r

)
+

∆ω

r2

where ∆ω denotes the Laplace-Beltrami operator on Sd−1

∂g
∂t = Lαg

m is changed into

∂u

∂τ
= D∗α (u z) , z := Dαq , q := um−1−Bm−1

α , Bα(x) :=

(
1 +
|x |2
α2

) 1
m−1

by the change of variables

g(t, x) =
1

κn Rn
u
(
τ,

x

κR

)
where





dR
dt = R1−µ , R(0) = R0

τ(t) = 1
2 log

(
R(t)
R0

)
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If the weight does not introduce any singularity at x = 0...

m

1−m

d

dτ

∫

BR

u |z |2 dµn

=

∫

∂BR

um
(
ω · Dα |z |2

)
|x |n−d dσ (≤ 0 by Grisvard’s lemma)

− 2 1−m
m

(
m − 1 + 1

n

) ∫

BR

um |Lαq|2 dµn

−
∫

BR

um
(
α4 m1

∣∣∣q′′ − q′

r −
∆ωq

α2 (n−1) r2

∣∣∣
2

+ 2α2

r2

∣∣∣∇ωq′ − ∇ωq
r

∣∣∣
2
)
dµn

− (n − 2)
(
α2
FS − α2

) ∫

BR

|∇ωq|2
r4

dµn

A formal computation that still needs to be justified
(singularity at x = 0 ?)

Other potential application: the computation of Bakry, Gentil and
Ledoux (chapter 6) for non-integer dimensions; weights on manifolds

[...]
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Fast diffusion equations with
weights: large time asymptotics

Relative uniform convergence

Asymptotic rates of convergence

From asymptotic to global estimates

Here v solves the Fokker-Planck type equation

vt + |x |γ ∇ ·
[
|x |−β v ∇

(
vm−1 − |x |2+β−γ)] = 0 (WFDE-FP)

Joint work with M. Bonforte, M. Muratori and B. Nazaret
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Relative uniform convergence

ζ := 1−
(
1− 2−m

(1−m) q

) (
1− 2−m

1−m θ
)

θ := (1−m) (2+β−γ)
(1−m) (2+β)+2+β−γ is in the range 0 < θ < 1−m

2−m < 1

Theorem

For “good” initial data, there exist positive constants K and t0 such that,
for all q ∈

[
2−m
1−m ,∞

]
, the function w = v/B satisfies

‖w(t)− 1‖Lq,γ(Rd ) ≤ K e− 2 (1−m)2

2−m Λ ζ (t−t0) ∀ t ≥ t0

in the case γ ∈ (0, d), and

‖w(t)− 1‖Lq,γ(Rd ) ≤ K e− 2 (1−m)2

2−m Λ (t−t0) ∀ t ≥ t0

in the case γ ≤ 0
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0

Λ0,1

Λ1,0

Λess

Essential spectrum

δδ4δ1 δ5δ2

Λ0,1

Λ1,0

Λess

Essential spectrum

δ4 δ5:=
n

2−η

The spectrum of L as a function of δ = 1
1−m , with n = 5. The

essential spectrum corresponds to the grey area, and its bottom is
determined by the parabola δ 7→ Λess(δ). The two eigenvalues Λ0,1 and
Λ1,0 are given by the plain, half-lines, away from the essential
spectrum. The spectral gap determines the asymptotic rate of
convergence to the Barenblatt functions
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Main steps of the proof:

Existence of weak solutions, L1,γ contraction, Comparison
Principle, conservation of relative mass

Self-similar variables and the Ornstein-Uhlenbeck equation in
relative variables: the ratio w(t, x) := v(t, x)/B(x) solves




|x |−γ wt = − 1

B ∇ ·
(
|x |−βBw ∇

(
(wm−1 − 1)Bm−1

) )
in R+ × Rd

w(0, ·) = w0 := v0/B in Rd

Regularity: [Chiarenza, Serapioni], Harnack inequalities; relative
uniform convergence (without rates) and asymptotic rates
(linearization)

The relative free energy and the relative Fisher information:
linearized free energy and linearized Fisher information

A Duhamel formula and a bootstrap
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Asymptotic rates of convergence

Corollary

Assume that m ∈ (0, 1), with m 6= m∗ := n−4
n−2 . Under the relative mass

condition, for any “good solution” v there exists a positive constant C
such that

E [v(t)] ≤ C e− 2 (1−m) Λ t ∀ t ≥ 0 .

With Csiszár-Kullback-Pinsker inequalities, these estimates provide
a rate of convergence in L1,γ(Rd)

Improved estimates can be obtained using “best matching
techniques”
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From asymptotic to global estimates

When symmetry holds (CKN) can be written as an entropy – entropy
production inequality

(2 + β − γ)2 E [v ] ≤ m

1−m
I[v ]

so that

E [v(t)] ≤ E [v(0)] e− 2 (1−m) Λ? t ∀ t ≥ 0 with Λ? :=
(2 + β − γ)2

2 (1−m)

Let us consider again the entropy – entropy production inequality

K(M) E [v ] ≤ I[v ] ∀ v ∈ L1,γ(Rd) such that ‖v‖L1,γ(Rd ) = M ,

where K(M) is the best constant: with Λ(M) := m
2 (1−m)−2K(M)

E [v(t)] ≤ E [v(0)] e− 2 (1−m) Λ(M) t ∀ t ≥ 0
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Symmetry breaking and global entropy – entropy
production inequalities

Proposition

• In the symmetry breaking range of (CKN), for any M > 0, we have
0 < K(M) ≤ 2

m (1−m)2 Λ0,1

• If symmetry holds in (CKN) then
K(M) ≥ 1−m

m (2 + β − γ)2

Corollary

Assume that m ∈ [m1, 1)

(i) For any M > 0, if Λ(M) = Λ? then β = βFS(γ)

(ii) If β > βFS(γ) then Λ0,1 < Λ? and Λ(M) ∈ (0,Λ0,1] for any M > 0

(iii) For any M > 0, if β < βFS(γ) and if symmetry holds in (CKN), then
Λ(M) > Λ?
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Linearization and optimality

Joint work with M.J. Esteban and M. Loss
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Linearization and scalar products

With uε such that

uε = B?
(
1 + ε f B1−m

?

)
and

∫

Rd

uε dx = M?

at first order in ε→ 0 we obtain that f solves

∂f

∂t
= L f where L f := (1−m)Bm−2

? |x |γ D∗α
(
|x |−β B? Dα f

)

Using the scalar products

〈f1, f2〉 =

∫

Rd

f1 f2 B2−m
? |x |−γ dx and 〈〈f1, f2〉〉 =

∫

Rd

Dα f1 · Dα f2 B? |x |−β dx

we compute

1

2

d

dt
〈f , f 〉 = 〈f ,L f 〉 =

∫

Rd

f (L f )B2−m
? |x |−γ dx = −

∫

Rd

|Dα f |2 B? |x |−β dx = −〈〈f , f 〉〉

for any f smooth enough:

1

2

d

dt
〈〈f , f 〉〉 =

∫

Rd

Dα f · Dα (L f )B? |x |−β dx = −〈〈f ,L f 〉〉
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Linearization of the flow, eigenvalues and spectral gap

Now let us consider an eigenfunction associated with the smallest
positive eigenvalue λ1 of L

−L f1 = λ1 f1

so that f1 realizes the equality case in the Hardy-Poincaré inequality

〈〈g , g〉〉 = − 〈g ,L g〉 ≥ λ1 ‖g − ḡ‖2 , ḡ := 〈g , 1〉 / 〈1, 1〉

− 〈〈g ,L g〉〉 ≥ λ1 〈〈g , g〉〉
Proof: expansion of the square :
−〈〈(g − ḡ),L (g − ḡ)〉〉 = 〈L (g − ḡ),L (g − ḡ)〉 = ‖L (g − ḡ)‖2

Key observation:

λ1 ≥ 4 ⇐⇒ α ≤ αFS :=

√
d − 1

n − 1
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Symmetry breaking in CKN inequalities

Symmetry holds in (CKN) if J [w ] ≥ J [w?] with

J [w ] := ϑ log
(
‖Dαw‖L2,δ(Rd )

)
+(1−ϑ) log

(
‖w‖Lp+1,δ(Rd )

)
−log

(
‖w‖L2p,δ(Rd )

)

with δ := d − n and

J [w? + ε g ] = ε2Q[g ] + o(ε2)

where

2
ϑ ‖Dαw?‖2

L2,d−n(Rd )Q[g ]

= ‖Dαg‖2
L2,d−n(Rd ) + p (2+β−γ)

(p−1)2

[
d − γ − p (d − 2− β)

] ∫

Rd

|g |2 |x|
n−d

1+|x|2 dx

−p (2 p − 1) (2+β−γ)2

(p−1)2

∫

Rd

|g |2 |x|n−d

(1+|x|2)2 dx

is a nonnegative quadratic form if and only if α ≤ αFS

Symmetry breaking holds if α > αFS
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Information – production of information inequality

Let K[u] be such that

d

dτ
I[u(τ, ·)] = −K[u(τ, ·)] = − (sum of squares)

If α ≤ αFS, then λ1 ≥ 4 and

u 7→ K[u]

I[u]
− 4

is a nonnegative functional
With uε = B?

(
1 + ε f B1−m

?

)
, we observe that

4 ≤ C2 := inf
u

K[u]

I[u]
≤ lim
ε→0

inf
f

K[uε]

I[uε]
= inf

f

〈〈f ,L f 〉〉
〈〈f , f 〉〉 =

〈〈f1,L f1〉〉
〈〈f1, f1〉〉

= λ1

if λ1 = 4, that is, if α = αFS, then inf K/I = 4 is achieved in the
asymptotic regime as u → B? and determined by the spectral gap of L

if λ1 > 4, that is, if α < αFS, then K/I > 4
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Symmetry in Caffarelli-Kohn-Nirenberg inequalities

If α ≤ αFS, the fact that K/I ≥ 4 has an important consequence.
Indeed we know that

d

dτ
(I[u(τ, ·)]− 4 E [u(τ, ·)]) ≤ 0

so that
I[u]− 4 E [u] ≥ I[B?]− 4 E [B?] = 0

This inequality is equivalent to J [w ] ≥ J [w?], which establishes that
optimality in (CKN) is achieved among symmetric functions. In other
words, the linearized problem shows that for α ≤ αFS, the function

τ 7→ I[u(τ, ·)]− 4 E [u(τ, ·)]

is monotone decreasing
This explains why the method based on nonlinear flows provides

the optimal range for symmetry
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Entropy – production of entropy inequality

Using d
dτ (I[u(τ, ·)]− C2 E [u(τ, ·)]) ≤ 0, we know that

I[u]− C2 E [u] ≥ I[B?]− C2 E [B?] = 0

As a consequence, we have that

C1 := inf
u

I[u]

E [u]
≥ C2 = inf

u

K[u]

I[u]

With uε = B?
(
1 + ε f B1−m

?

)
, we observe that

C1 ≤ lim
ε→0

inf
f

I[uε]

E [uε]
= inf

f

〈f ,L f 〉
〈f , f 〉 =

〈f1,L f1〉
〈f1, f 〉1

= λ1 = lim
ε→0

inf
f

K[uε]

I[uε]

If limε→0 inf f
K[uε]
I[uε] = C2, then C1 = C2 = λ1

This happens if α = αFS and in particular in the case without weights
(Gagliardo-Nirenberg inequalities)
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Conferences/
B Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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