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>> Symmetry breaking and linearization

@ The critical Caffarelli-Kohn-Nirenberg inequality

@ A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities
@ Linearization and spectrum

> Without weights: Gagliardo-Nirenberg inequalities and fast
diffusion flows

@ Rényi entropy powers

@ Self-similar variables and relative entropies

@ The role of the spectral gap

> With weights: Caffarelli-Kohn-Nirenberg inequalities and
weighted nonlinear flows

@ Towards a parabolic proof

@ Large time asymptotics and spectral gaps

@ A discussion of optimality cases
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Background references (partial)

o Rigidity methods, uniqueness in nonlinear elliptic PDE’s:
[B. Gidas, J. Spruck, 1981], [M.-F. Bidaut-Véron, L. Véron, 1991]

@ Probabilistic methods (Markov processes), semi-group theory and
carré du champ methods (' theory): [D. Bakry, M. Emery,
1984], [Bakry, Ledoux, 1996], [Demange, 2008], [JD, Esteban,
Loss, 2014 & 2015] — D. Bakry, I. Gentil, and M. Ledouz.
Analysis and geometry of Markov diffusion operators (2014)

e Entropy methods in PDEs
> Entropy-entropy production inequalities: Arnold, Carrillo,
Desvillettes, JD, Jiingel, Lederman, Markowich, Toscani,
Uunterreiter, Villani..., [del Pino, JD, 2001], [Blanchet, Bonforte,
JD, Grillo, Vézquez]| — A. Jingel, Entropy Methods for Diffusive
Partial Differential Equations (2016)
> Mass transportation: [Otto] — C. Villani, Optimal transport.
Old and new (2009)
> Rényi entropy powers (information theory) [Savaré, Toscani,
2014], [Dolbeault, Toscani]
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Symmetry and symmetry breaking
results

> The critical Caffarelli-Kohn-Nirenberg inequality
> A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities

> Linearization and spectrum
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Critical Caffarelli-Kohn-Nirenberg inequality

Let D, p = { veLP(RY, [x|Pdx) : |x|7?|Vv| € L? (RY, dx) }

VP O\ [vv[?
<Ad |X‘bp dx < Ca,b |X‘2 dx VYve Da,b

holds under conditions on a and b

2d
d—2+2(b—a)

p= (critical case)

> An optimal function among radial functions:

[xI2 v I3

2
_ (p—2) (2c—2)) 72 -
Vi (x) (1 + |x] ) and Cj, v 2

Question: Cyp = Cj ) (symmetry) or C;p > Cj , (symmetry breaking) ¢
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Critical CKN: range of the parameters

Figure: d =3 b b—at
v NP %
5 dx < Cap 52 dx
e |X| re |X| 1 )
g T
/ 0 o
b=a

a<b<a+lifd>3
a<b<a+lifd=2a+1/2<b<a+1lifd=1
and a < ac := (d — 2)/2
B 2d [Glaser, Martin, Grosse, Thirring (1976)]
P= d—2+2(b—a) [Caffarelli, Kohn, Nirenberg (1984)]
[F. Catrina, Z.-Q. Wang (2001)]
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Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve b
d(a. — a)

brs(a) = +a—a
rs(2) 2/(ac—aR +d—1 ‘

/ 0

[Smets|, [Smets, Willem], [Catrina, Wang], [Felli, Schneider]

The functional
2 p 2/p
;_b/ \V\;| dx — / |VL dx
" Jra |x]22 Rra |x[PP

is linearly instable at v = v,
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Symmetry versus symmetry breaking:
the sharp result in the critical case

[JD, Esteban, Loss (Inventiones 2016)]

Let d > 2 and p < 2*. If either a € [0,a.) and b > 0, or a < 0 and
b > bgs(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric
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aking and linearization Critical Caffarelli-Kohn-Nirenberg inequality
thods without we H

Subcritical Caffarelli-Kohn-Nirenberg inequalities
s and CKN inequalitie Linearization and spectrum

The Emden-Fowler transformation and the cylinder

Weighted nonlinear

> With an Emden-Fowler transformation, critical the
Caffarelli-Kohn-Nirenberg inequality on the Fuclidean space are
equivalent to Gagliardo-Nirenberg inequalities on a cylinder
X
v(r,w)=r""*y¢(s,w) with r=|x|, s=—logr and w=-—
With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as the subcritical interpolation inequality

100112y + Vel ey + MellEaey = 1A 2llEsey Vo € HY(C)

where A := (a — a)?, C = R x S?~! and the optimal constant u(A) is

d
uN) = c— with a=a.+ VA and b:Ei\/K
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Linearization around symmetric critical points

Up to a normalization and a scaling

1

©«(s,w) = (coshs)™ 72
is a critical point of
HY(C) 5 ¢ = [0s0l22c) + I Vuplliaie) + Mellize
under a constraint on ||<p\|ip(c)

4 is not optimal for (CKN) if the Péschl-Teller operator
1

—R A+ NP =R A+ A — .
(cosh s)

has a negative eigenvalue
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Subcritical Caffarelli-Kohn-Nirenberg inequalities

_ 1
Norms: [|wl|Len (ge) = (fpo [W|7|X[77 dx) /e, [wllparay = [Iw(lLaoe)
(some) Caffarelli-Kohn-Nirenberg interpolation inequalities (1984)

1Wllzne ety < Coimop VWl Py WIS e (CKN)

Here Cg,,, denotes the optimal constant, the parameters satisfy

d>2, 7=2<fB< 92y, ye(—o0,d), pe(lp] withp, =357
and the exponent ¢ is determined by the scaling invariance, i.e.,

9 = (d=) (p—1)
p (d+ﬁ+2—2’Y—P(d—5—2))

@ Is the equality case achieved by the Barenblatt / Aubin-Talenti
type function

wi(x) = (1+ \x|2+ﬂ_7)_1/(p_1) VxeRY 7

@ Do we know (symmetry) that the equality case is achieved among
radial functions?
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Symmetry breaking and linearization Critical Caffarelli-Kohn-Nirenberg inequality

Suberi

itical Caffarelli-Kohn-Nirenberg inequalities

Linearization and spectrum

Range of the parameters

Here p is given 4
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a Symmetry and symmetry breaking

[JD, Esteban, Loss, Muratori, 2016]

Let us define fps(y) :=d —2 —\/(d —7)2 —4(d — 1)

Symmetry breaking holds in (CKN) if

d—2
~v<0 and ﬁps(7)<ﬁ<77

In the range Brs(v) < B < 92 v
wi(x) = (1+ 2277 D

s mot optimal
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Symmetry breaking and linearization Critical Caffarelli-Kohn-Nirenberg inequality
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The green area is the region of symmetry, while the red area is the
region of symmetry breaking. The threshold is determined by the
hyperbola

(d—7)?—(B—d+2)°—4(d-1)=0
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A useful change of variables

With
d—~

B+2—7’
(CKN) can be rewritten for a function v(|x|*~ x) = w(x) as

and n=2

B—"
=1
« + — 5

1VllL2na-nrey < Kaynp [DavFas-ngea VITae-nge

with the notations s = |x|, Dov = (« 0;, 1V, v). Parameters are in
the range
n

d>2, a>0, n>d and pe(l,p, px:= 5
n_

By our change of variables, w, is changed into
ve(x) == (14 |x?) 7" V¥YxeR?
The symmetry breaking condition (Felli-Schneider) now reads

. d—1
a< aps with apg =4/ ——
n—1

J. Dolbeault Flows, linearization, entropy methods



Symmetry breaking and Imeanzat\on Critical Caffarelli-Kohn-Nirenberg inequality
Entropy methods witho ght Subcritical Caffarelli-Kohn-Nirenberg inequalities
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The second variation

j[v] =9 |Og (||©av||L2,d—n(Rd)) =+ (1 — 19) |Og (||V||Lp+1,d—n(Rd))
+ log Ka’,,’P — log (||V||L2p,d—n(Rd))

Let us define dyus := ps(x) dx, where us(x) := (1 + |x|?)~°. Since v, is
a critical point of 7, a Taylor expansion at order 2 shows that

||®O¢V*Hi2,d—n(Rd) j[V* + € Hs/2 f] = % 62 Y Q[f] + 0(52)

. 2
with 6 = p—_”l and

' 4pa?® [
Q[f] :/ D f 2 |x|"~ dpg — P / 712 %79 dpgsa
R4 pP— 1 RY

We assume that [5, f [x|"" dpusi1 = 0 (mass conservation)
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a Symmetry breaking: the proof

Proposition (Hardy-Poincaré inequality)

Letd >2, a € (0,+00), n>d and § > n. If f has O average, then
a4 dis 2 A [ 1R X" dasa
Rd Rd

with optimal constant A = min{2a? (26 — n),2a?&n} where 1 is the
unique positive solution ton (n+n—2) = (d —1)/a?. The corresponding
(d—1)6°

eigenfunction is not radially symmetric if o2 >

Q > 0 iff 42 012 < A and symmetry breaking occurs in (CKN) if

P
4 2

2020 < P n<l1
p—1
= 04_2 =n(n+n-2)<n—-1 < «a>aps
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Inequalities without weights and fast
diffusion equations

> Rényi entropy powers
> Self-similar variables and relative entropies

> The role of the spectral gap
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Rényi entropy powers and fast diffusion

> Rényi entropy powers, the entropy approach without rescaling:
[Savaré, Toscani]: scalings, nonlinearity and a concavity property
inspired by information theory

> Faster rates of convergence: [Carrillo, Toscani], [JD, Toscani]
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The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in RY. d>1

v

— =AvT"

ot
with initial datum v(x, t = 0) = vp(x) > 0 such that [, vo dx =1 and
Jge X[ vo dx < +00. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

1 X
Uslt,%) = (s tl/u)d B*(n tl/u)
where
| 2pm Yk

=2 -1 = —
i +d(m-1), & —

and B, is the Barenblatt profile
(Co— xRV itm>1
B.(x) = n1/(m=1) .
(G + |x?) ifm<1
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The Rényi entropy power F

The entropy is defined by

E::/ v dx
Rd

and the Fisher information by

I ::/ v|Vpl? dx with p= ym—1
RY m-—1
If v solves the fast diffusion equation, then
E=(1-ml

To compute I, we will use the fact that

Ip 2

—=(m-1)pA

5 = (m—1)pAp+|Vpl

. " 2 1
F:=E° with o= =1 S tm—1)=
e d(l—m) +1—m<d+m )

has a linear growth asymptotically as t — +oo

J. Dolbeault Flows, linearization, entropy methods
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The concavity property

[Toscani-Savaré| Assume that m>1— 2 ifd >1and m>0ifd =1.
Then F(t) is increasing, (1 — m)F"(t) <0 and

) 1 o 2 o—1] __ o—1
lim ;F(t)—(l—m)at_llTooE I=(1-m)oE{ "I,

t—+o0o

[Dolbeault-Toscani] The inequality
EO- I > ETI,
is equivalent to the Gagliardo-Nirenberg inequality
IV W12y WIS ey = Coon W g

1/2 _ w qg= 5=
HWHLZQ(Rd)’ 2m—1

if 1 -4 <m<1 Hint: v

J. Dolbeault Flows, linearization, entropy methods
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The proof

If v solves % = Av™ with % < m< 1, then

(=2 [ VP ox= —2/ v (IID2pI? + (m — 1) (4p)?) o
R R4

Explicit arithmetic geometric inequality

1 1 2
%2 - 3 (80 = | D% - § o1

There are no boundary terms in the integrations by parts

J. Dolbeault Flows, linearization, entropy methods
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Remainder terms

F’ = —o (1 — m)R[v]. The pressure variable is P = {7 v™~1

f]Rd v |VPJ? dx 2

AP - Jra v dx

Rlv] =(c —=1)(1 — m) ngl/ v

Rd

+ 2E"*1/ v™ | D?P — L APTd || dx
Rd

Glv] := U(E[Z]m) = (/Rd v dx>01 /]Rd v|VPJ? dx

The Gagliardo-Nirenberg inequality is equivalent to G[vg] > G[v,]

Let

Proposition

Glvo] > Glw] + /Ooo R[v(t, )] dt

J. Dolbeault Flows, linearization, entropy methods
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Self-similar variables and relative entropies

The large time behavior of the solution of % = Av™ is governed by
the source-type Barenblatt solutions

1 X
valtx) 1= K (p t)d/m B*(;@(M t)l/u) where i :=2+d(m—1)

where B, is the Barenblatt profile (with appropriate mass)

m—1)

B.(x) == (1+ |x])"¢

A time-dependent rescaling: self-similar variables

1 X dR 1— R(t)
V(t, X) = W U(T, /{7,"—\’) where E =R M, T(t) = % |0g (RO
Then the function u solves a Fokker-Planck type equation

%—I—V- [U(Vum_l—Zx)} =0

J. Dolbeault Flows, linearization, entropy methods
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Free energy and Fisher information

@ The function u solves a Fokker-Planck type equation

%-FV- [u(Vumt = 2x) | =0

@ [Ralston, Newman, 1984] Lyapunov functional:
Generalized entropy or Free energy

E[ul ;:/ (—u+x|2u> dx — &
Rd m

@_ Entropy production is measured by the Generalized Fisher
information

ié‘[u] =—TI[u], Z[u]:= / ulVum™ 4 2x 2 dx
dt RY

J. Dolbeault Flows, linearization, entropy methods
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Without weights: relative entropy, entropy production

Q. Stationary solution: choose C such that ||us |1 = [Juljpr =M >0

1/(1—m)

oo (x) := (€ + [x[2)

Relative entropy: Fix & so that E[us] =0
@Q_ Entropy — entropy production inequality [del Pino, J.D.]

Theorem

d23,m€[%,+oo),m>%,m;é1

Tlu] > 4&[u]

Corollary

| \

[del Pino, J.D.] A solution u with initial data u € L (RY) such that
Ix|2 up € LY(RY), uf’ € L1(RY) satisfies

Elu(t, )] < E[ug) e **

J. Dolbeault Flows, linearization, entropy methods
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A computation on a large ball, with boundary terms

ou

E+V'[U(Vum*1—2x)}:0 >0, x€Bg

where Bg is a centered ball in RY with radius R > 0, and assume that
u satisfies zero-flux boundary conditions

(Vumfl - 2X) S

|x|

With z(7, x) := VQ(7, x) := Vu™ ! — 2x, the relative Fisher
information is such that

d
— u|z\2dx+4/ ulz|? dx
dT Br Br

=0 7>0, xecdBg.

vaize [ um (D) - (- m) (A0)7) ox
Br
= / u™ (w- V|z|?) do < 0 (by Grisvard’s lemma)
9B
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Another improvement of the GN inequalities

Let us define the relative entropy

Elu] == 1 (u™ — B — mBy ' (u— B,)) dx

Rd

the relative Fisher information

Z[u] ::/ u\z|2 dx :/ u ’Vum_l — 2x|2 dx
Rd Rd

and R[u] = 27 / (ID?Q)]* - (1 — m) (2Q)?) dx

Proposition

If1—1/d <m<1andd?>2, then

Tluo] — 4 EJuo] > /000 Rlu(r,-)] dr

J. Dolbeault Flows, linearization, entropy methods
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Entropy — entropy production, Gagliardo-Nirenberg ineq.

4&u] < Iu]

— 2 m _ +1
Rewrite it Wlthp—m, u=w<P, um=wPT as

1/ 2m \° ) 1 -
= [Vw|dx + | —— —d |w|*™Pdx — K >0
2\2m -1 Rd 1-m Rd

o for some v, K = Ko ([po udx = [, w? dx)AY
1/2p

@ W =W, = V5 is optimal

Theorem

[Del Pino, J.D.] With 1 < p < 4% (fast diffusion case) and d > 3

GN
||W||L2P(Rd < C ||VW||L2 R9) ||W||1_p+1 (RY)

CON _ (y(p—nz)% (n—d)ﬂ (2 )% g— __dp-1) _ el
p.d 2rd 2y ro-9)) pdr2—(d-2)p)’ Y = p-

J. Dolbeault Flows, linearization, entropy methods
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Sharp asymptotic rates of convergence

Assumptions on the initial datum vy
(H1) Vp, < v < Vp, for some Dy > Dy >0

(H2) if d > 3 and m < m,, (vy — V) is integrable for a suitable
D € [D1, Dy

Theorem

[Blanchet, Bonforte, J.D., Grillo, Vézquez] Under Assumptions
(H1)-(H2), if m < 1 and m # m, := 9=%, the entropy decays according
to

Elv(t,))] < Ce2=mAadt >0

where Ny ,g > 0 is the best constant in the Hardy—Poincaré inequality

/\a,d/ 1F1? dpta—1 S/ |VFf2du, Y feH(dus)
R4 Rd

with a := 1/(m — 1) < 0, dpg 1= hy dx, ho(x) := (1 + |x|?)®

J. Dolbeault Flows, linearization, entropy methods
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Plots (d = 5)

Rényi entropy powers
Self-similar variables and relative entropies
The role of the spectral gap

Spectrum of Lo

Az = 8o —4(d+2)

A =-6a

2(d + 2)

Ao = —~da

Ao 5 —da-2d

Spectrum of
(1=m) L1 om0

Essential spectrum

of (1 =m) £y fm-y

J. Dolbeault
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Improved asymptotic rates

[Bonforte, J.D., Grillo, Vdzquez| Assume that m € (my, 1), d > 3.
Under Assumption (H1), if v is a solution of the fast diffusion
equation with initial datum vy such that fRd X vop dx = 0, then the
asymptotic convergence holds with an improved rate correspondmg to

the improved spectral gap.

J. Dolbeault Flows, linearization, entropy methods
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Rényi entropy powers

Self-similar variables and relative entropies

The role of the spectral gap

Spectral gaps and best constants

d+1

m2 =4

did
d+6

e Case 1
— (ase 2

e Case 3

J. Dolbeault
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Comments

@ The spectral gap corresponding to the red curves relies on a
refined notion of relative entropy with respect to best matching
Barenblatt profiles [J.D., Toscani]

o A result by [Denzler, Koch, McCann| Higher order time
asymptotics of fast diffusion in Euclidean space: a dynamical
systems approach

@ The constant C in
E[v(t, )] < Ce 2Mt >0

can be made explicit, under additional restrictions on the initial
data [Bonforte, J.D., Grillo, Vdzquez]

J. Dolbeault Flows, linearization, entropy methods



Symmetry breaking and linearization A parabolic proof ?
Entropy methods without weights Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

Weighted nonlinear flows:
Caffarelli-Kohn-Nirenberg
inequalities
> Entropy and Caffarelli-Kohn-Nirenberg inequalities
> Large time asymptotics and spectral gaps

> Optimality cases

J. Dolbeault Flows, linearization, entropy methods



A parabolic proof ?
Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

CKN and entropy — entropy production inequalities

When symmetry holds, (CKN) can be written as an entropy — entropy
production inequality

Lm (24 B —9)?E[v] < I[v]

and equality is achieved by B . Here the free energy and the
relative Fisher information are defined by

. 1 m m m—1 o dx
Elv] == — y (v - BE, — mBE (v %g,ﬁ) 7|X\7
2 dx
. m—1 m—1
I[V] = /RdV’VV *v%ﬁ,,‘/ ‘ W

If v solves the Fokker-Planck type equation
Vet [ V- [|x\*/3 vV (vt - |x|2+/3*7)] =0  (WFDE-FP)
then

d m
LW )] = - T Tlv(z, )]

J. Dolbeault Flows, linearization, entropy methods
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Proposition

Let m= ’;—J;l and consider a solution to (WFDE-FP) with nonnegative

initial datum ug € L7(RY) such that ||uf'|[11.~re) and
Jge to [x|*TP727 dx are finite. Then

E[v(t, )] < Elug] e Gt v >0
if one of the following two conditions is satisfied:

(i) either ug is a.e. radially symmetric
(ii) or symmetry holds in (CKN)
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A useful change of variables (reminder)

With

B—"

d—
Oc—l—f—T and n=2 v

B+2—7’
(CKN) can be rewritten for a function v(|x|*~! x) = w(x) as

HV||L2Pd n(R9) < Kaan@ VHde n(R9) HV”]p\ld n(Rd)

with the notations s = |x|, Dav = ( gv 1 + Vo v) Parameters are in

9s
the range

n

d>2, a>0, n>d and pe(l,p], px:= 5
h_

By our change of variables, w, is changed into
vi(x) = (1+ |X|2)71/(p71) Vx € R
The symmetry breaking condition (Felli-Schneider) now reads

d—1

o> aps with apg =
n—1
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Towards a parabolic proof

For any a > 1,let D, W = (a@,W, r1v, W) so that
Do :V—F(a—l)@(x-V):V+(a—1)w3,

and define the diffusion operator L, by

—1 A,
LQZD;;DQ:oF(aH"r a,>+

r2

where A, denotes the Laplace-Beltrami operator on S9~1
% = L,g"™ is changed into

1
0 2\ m-1
8—: =D (uz), z:=Dnq, q:=u"1=B"1  B,(x):= (1 + |)o(z|2>

by the change of variables

dR __ — _
(t,x) 1 ( X) h % =R, R(0)=Ro
g(t,x) = ultT, — where
K1 R kR 7(t) = 1 log (ﬁg))
J. Dolbeault
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If the weight does not introduce any singularity at x = 0...

_m 4
1—-mdT /g,

= / u™ (w- Dy lz?) x|""9do (<0 by Grisvard’s lemma)
OBgr

ulz? dpn

—21_Tm(m—1+%)/8 u™ [Lag|? dpn
R

—/ u™ (a4 my
Br

~(n—2) (ags_(f)/

Br

’

L S Wi
q r a?(n—1)r?

2
) dpn

2
202 /I Ve
+ 55 ‘qu — Led

A formal computation that still needs to be justified

(singularity at x =0 ?)
@ Other potential application: the computation of Bakry, Gentil and
Ledoux (chapter 6) for non-integer dimensions; weights on manifolds

[..]
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Fast diffusion equations with
weights: large time asymptotics

@ Relative uniform convergence
e Asymptotic rates of convergence

e From asymptotic to global estimates

Here v solves the Fokker-Planck type equation

Ve + X[ V- [|x\—ﬂ vV (vt - |x|2+ﬁ—7)} =0  (WFDE-FP)

Joint work with M. Bonforte, M. Muratori and B. Nazaret
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Relative uniform convergence

¢= 1— (1— g (1= 50)

= m) (2+8—7) . -
b=a m) S Gra) s is in the range 0 < 0 < 3= <1

Theorem

For “good” initial data, there exist positive constants KC and ty such that,
for all g € [3=2,cc], the function w = v /B satisfies

HW(t) - 1||L‘7«"r(]Rd) < Ke 2 = AC(t ) vyt >t

in the case v € (0,d), and

”W(t) - 1||Lq,w(Rd) < K:e_2 2 m A(t ) Vit>ty

in the case v < 0

J. Dolbeault Flows, linearization, entropy methods



Symmetry breaking and linearization A parabolic proof ?
Entropy methods withou gh Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

Essential spectrum

Essential spectrum

The spectrum of £ as a function of § = ﬁ, with n =5. The
essential spectrum corresponds to the grey area, and its bottom is
determined by the parabola ¢ — Aess(6). The two eigenvalues Ag 1 and
A1,0 are given by the plain, half-lines, away from the essential
spectrum. The spectral gap determines the asymptotic rate of
convergence to the Barenblatt functions
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Main steps of the proof:

@ Existence of weak solutions, L7 contraction, Comparison
Principle, conservation of relative mass

Q@ Self-similar variables and the Ornstein-Uhlenbeck equation in
relative variables: the ratio w(t,x) := v(t, x)/B(x) solves

X we = — LV (|x\*/3 BwV (w1l - 1)Bm1) ) in R+ x RY
w(0,-) = wp 1= vo/B in R?

Q@ Regularity: [Chiarenza, Serapioni], Harnack inequalities; relative
uniform convergence (without rates) and asymptotic rates
(linearization)

Q@ The relative free energy and the relative Fisher information:
linearized free energy and linearized Fisher information

@ A Duhamel formula and a bootstrap

J. Dolbeault Flows, linearization, entropy methods
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Asymptotic rates of convergence

n—4

Assume that m € (0,1), with m # m, := ——>. Under the relative mass
condition, for any ‘good solution” v there exists a positive constant C
such that

Elv(t)] <Ce 20-mAt y¢ >0,

@ With Csiszar-Kullback-Pinsker inequalities, these estimates provide
a rate of convergence in L17(RY)

Q@ Improved estimates can be obtained using “best matching
techniques”

J. Dolbeault Flows, linearization, entropy methods
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From asymptotic to global estimates

When symmetry holds (CKN) can be written as an entropy — entropy
production inequality

m

2+8 -7 eV < I[v]

1—-m
so that

(2+8-7)°

Elv(t)] < E[v(0)] e 2A-mAt vt >0 with A, = 20—

Let us consider again the entropy — entropy production inequality
K(M)E[v] < Z[v] Vv e LY (R?) such that VIlLisrey =M,
where K(M) is the best constant: with A(M) := 2 (1 — m)=2 K(M)

E[v(t)] < E[v(0)] e~ 2A=mAM) ¢

<

t>0

J. Dolbeault Flows, linearization, entropy methods
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a Symmetry breaking and global entropy — entropy
production inequalities

e In the symmetry breaking range of (CKN), for any M > 0, we have
0<K(M) < 2(1—m)?Nos

o If symmetry holds in (CKN) then
K(M) > 122 (24 8 —7)?

Corollary

| A

Assume that m € [my,1)
(i) For any M > 0, if A(M) = A, then 8 = Brs(7)
(i) If B > Brs(y) then N1 < A and A(M) € (0, Ao 1] for any M > 0

(iii) For any M > 0, if B < Brs(7y) and if symmetry holds in (CKN), then
A(M) > A,

v
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Linearization and optimality

Joint work with M.J. Esteban and M. Loss

J. Dolbeault
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Linearization and scalar products

With u. such that

u. = B, (1 +e fBi_m) and u. dx = M,
Rd
at first order in ¢ — 0 we obtain that f solves
f
% =Lf where Lf:=(1-m)BI ?|x|"D} (|x|"?B.Daf)

Using the scalar products

(fi, ) :/ fihBI™|x|""dx and (A, f) :/ Do fi - Do fo By x| 77 dx
Rd Rd

we compute

1
1d (Ffy=(FLFf)= [ F(LFB|x|7 dx = — / Do f1? B x| 77 dx -
2 dt R4 RY

for any f smooth enough:

GUEA) = [ Daf DL RB X de =~ (£.1)

[

2
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Linearization of the flow, eigenvalues and spectral gap

Now let us consider an eigenfunction associated with the smallest
positive eigenvalue \; of L

—LA=Mh
so that fi realizes the equality case in the Hardy-Poincaré inequality
(g.8) =~ (g.Lg) = Mllg—2l*, &:=(g1)/(1,1)

—(g.Lg) > (g 8)

Proof: expansion of the square :
~((e-2).L(e-8N=(L(e—58)L(g-&)=L(g-8)
@ Key observation:

d—1
n—1
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Symmetry breaking in CKN inequalities

@ Symmetry holds in (CKN) if J[w] > J[w,] with
T(w] = 9 10g (D Wil sz +(1—9) Tog (Wl sey) —1og (1]l pans sy
with 0 ;== d — n and
Jws +eg] = Qlg] + o(£?)
where
2 1D W 25y ]
= [|Da glf2snze) + EEEF [d =y —p(d —2 - / gl 'ﬁimz

_ (2+ﬁ w 2 _Ix"?
(2P ]- / |g| (1+|x|? )2

is a nonnegative quadratic form if and only if a < apg

@ Symmetry breaking holds if a > apg

J. Dolbeault Flows, linearization, entropy methods



A parabolic proof ?
Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

Information — production of information inequality

Let K[u] be such that
d
d—I[u(T7 )] = — Klu(r, )] = — (sum of squares)
-

If o« < apg, then A1 > 4 and

Kld]

g

ur—

is a nonnegative functional
With u. = B, (1+¢fB:~™), we observe that

Kl Klel . (F.LF) _ (6.LA)
t=G=niy) A R T R )

@ if Ay =4, that is, if « = apg, then inf £/Z = 4 is achieved in the

asymptotic regime as u — B, and determined by the spectral gap of £
@ if A\; > 4, that is, if @ < aFg, then K/Z > 4

J. Dolbeault Flows, linearization, entropy methods
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Symmetry in Caffarelli-Kohn-Nirenberg inequalities

If & < apg, the fact that X/Z > 4 has an important consequence.
Indeed we know that
d
o7 Elu(r )] = 4&lu(r,)]) <0
so that
Tlu] — 4&[u] > Z[B,] — 4€[B,] =0

This inequality is equivalent to J[w] > J[ws], which establishes that
optimality in (CKN) is achieved among symmetric functions. In other
words, the linearized problem shows that for a < agg, the function

7= Z[u(r, )] — 4&[u(r, )]

is monotone decreasing
@ This explains why the method based on nonlinear flows provides
the optimal range for symmetry
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Entropy — production of entropy inequality

Using < (Z[u(r,-)] = C2&[u(r,-)]) < 0, we know that
Tlul — C2E[u] = Z[Bs] — CE[BL] =0
As a consequence, we have that

E 1) N0
ST e =T T

With u, = B, (1 +e fBi”"), we observe that

o Tu] L (FLLF) (A LA)
< = = = =
R P R AR R A S ]

@ If lim._qinff I[”E] = (p, then C; = Cr = \;

This happens if @ = apg and in particular in the case without weights
(Gagliardo-Nirenberg inequalities)
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These slides can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Conferences/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list /
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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