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Outline

Introduction : critical Sobolev exponent, dimension, interpolation, S2,
Onofri’s inequality

Generalized Onofri inequalities

Caffarelli-Kohn-Nirenberg inequalities

Symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities

A symmetry result for Caffarelli-Kohn-Nirenberg inequalities

Goals of this talk:

emphasize the structure of a family of inequalities in the “critical”
case N = 2

relate families of inequalities : Hardy-Sobolev /
Caffarelli-Kohn-Nirenberg / Moser-Trudinger-Onofri

identify extremal functions and optimal constants

understand symmetry breaking
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1. Critical Sobolev exponent, dimension,
interpolation, S

2, Onofri’s inequality
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Some naive remarks about Sobolev’s embeddings

In the euclidean space RN , with N ≥ 3:

(
∫

RN

|u|2∗ dx
)2/2∗

≤ S(N)

∫

RN

|∇u|2 dx

Here 2∗ = 2∗(N) = 2 N
N−2 . Optimal functions are (up to the invariances):

u(x) = (1 + r2)−(N−2)/2, r = |x|

S(N) =

(

∫ ∞
0

rN−1

(1+r2)N dr
)1− 2

N

(N − 2)2 |SN−1| 2
N

∫ ∞
0

rN+1

(1+r2)N dr
=

1

πN (N − 2)

[

Γ (N)

Γ
(

N
2

)

]
2
N

For radial functions, N can be considered as real. With
s(N) = S(N) |SN−1| 2

N

(
∫ ∞

0

|u|2∗ rN−1 dr

)2/2∗

≤ s(N)

∫ ∞

0

|∇u|2 rN−1 dr
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The case of N = 2

For radial functions, we can consider the limit case corresponding to
N → 2.

[ J. Moser. A sharp form of an inequality by N. Trudinger. Indiana Univ.
Math. J., 20: 1077-1092, 1970/71 ]
[ N. S. Trudinger. On imbeddings into Orlicz spaces and some
applications. J. Math. Mech., 17: 473-483, 1967 ]

Result 1: ∃C2 > 0 such that, if u ∈ H1(S2) is s. t.
∫

S2 |∇u|2 dσ ≤ 1 and
∫

S2 u dσ = 0
∫

S2

eu2

dσ ≤ C2

Result 2: ∃C1 > 0 such that, if u ∈ H1(S2), then

∫

S2

e2u−2
R

S2 u dσ dσ ≤ C1 e
R

S2 |∇u|2 dσ

σ is induced by Lebesgue’s measure R3 ⊃ S2, such that σ(S2) = 1
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Onofri’s inequality

[ E. Onofri. On the positivity of the effective action in a theory of random
surfaces. Comm. Math. Phys., 86 (3): 321-326, 1982 ]

∫

S2

e2 u−2
R

S2 u dσ dσ ≤ e
‖∇u‖2

L2(S2,dσ)

for all u ∈ E = {u ∈ L1(S2, dσ) : |∇u| ∈ L2(S2, dσ)}

By the stereographic projection from S2 onto R2, we get an Onofri type
inequality in R

2

∫

R2

ev−
R

R2 v dµ dµ ≤ e
1

16 π ‖∇v‖2
L2(R2,dx)

for all v ∈ D = {v ∈ L1(R2, dµ) : |∇v| ∈ L2(R2, dx)} and

dµ =
dx

π (1 + |x|2)2
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Sobolev’s inequality on the sphere

[ E. H. Lieb. Sharp constants in the Hardy-Littlewood-Sobolev and related
inequalities. Ann. of Math. (2), 118 (2): 349-374, 1983 ]

4

N(N − 2)
‖∇u‖2

L2(SN ,dσ) +‖u‖2
L2(SN ,dσ) ≥ ‖u‖2

L
2N

N−2 (SN ,dσ)
∀u ∈ H1(SN )

if N ≥ 3 and equality is achieved by constants
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Stereographic projection

Coordinates on SN : (ρω, z) ∈ RN × (−1, 1), z = sin θ, ρ = cos θ

Coordinates on RN : x ∈ RN , r = |x|, ω = x
|x| , z = r2−1

r2+1 = 1 − 2
r2+1 ,

ρ = 2 r
r2+1

u ◦ Σ−1
0 (x) = h(r) v(x) , h(r) =

(

1 + r2

2

)

N−2
2

... elementary computations

|SN |
[

‖∇u‖2
L2(SN ,dσ) +

N(N − 2)

4
‖u‖2

L2(SN ,dσ)

]

=

∫

RN

|∇v|2 dx

|SN |
∫

SN

|u| 2N
N−2 dµ =

∫

RN

|v| 2N
N−2 dx

Equality case is achieved for u = Const, i.e. v = 1/h

Optimal constant in Sobolev’s inequality is : S = 4
N(N−2) |SN |N−2

N −1
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Interpolation on the sphere

[ W. Beckner. Sharp Sobolev inequalities on the sphere and the
Moser-Trudinger inequality. Ann. of Math. (2), 138 (1): 213-242, 1993 ]

For any N ≥ 3, if q ∈ [2, 2N
N−2 ]

q − 2

N
‖∇u‖2

L2(SN ,dσ) + ‖u‖2
L2(SN ,dσ) ≥ ‖u‖2

Lq(SN ,dσ) ∀u ∈ H1(SN )

Also true for any q ∈ (2,+∞) if N = 2

q − 2

2
‖∇u‖2

L2(S2,dσ) + ‖u‖2
L2(S2,dσ) ≥ ‖u‖2

Lq(S2,dσ) ∀u ∈ H1(S2)
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Limit cases: logarithmic Sobolev and Onofri’s inequalities

q − 2

N
‖∇u‖2

L2(SN ,dσ) + ‖u‖2
L2(SN ,dσ) ≥ ‖u‖2

Lq(SN ,dσ) ∀u ∈ H1(SN )

A derivation at q = 2 gives a logarithmic Sobolev inequality on SN

∫

SN

|u|2 log

( |u|2
∫

SN |u|2 dσ

)

dσ ≤ N

2

∫

SN

|u|2 dσ log

(

2

π N e

∫

SN |∇u|2 dσ
∫

SN |u|2 dσ

)

Let N = 2, q = 2 (1 + t), t→ +∞, u = 1 + 1
t F s.t.

∫

S2 F dσ = 0,
dν = 4π dσ,

(

21+ε Γ(1+ε/2)
Γ(2+ε)

)t
∫

S2

∣

∣

∣
1 + 1

t F
∣

∣

∣

2(1+t)

dν ≤
(R

S2 |∇F |2 dν

1+t + 1 + 1
t2

∫

S2 |F |2 dν
)1+t

gives
∫

S2 e
2F dσ ≤ e

R

S2 |∇F |2 dσ
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2. Generalized Onofri inequalities
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A first result: generalized Onofri inequalities

[ J.D., M. Esteban, G. Tarantello. The role of Onofri type inequalities in the
symmetry properties of extremals for Caffarelli-Kohn-Nirenberg
inequalities, in two space dimensions. To appear in Annali SNS Pisa ]

On R
2 for α > −1, consider the family of probability measures

dµα =
α+ 1

π

|x|2α dx

(1 + |x|2 (α+1))2

Theorem 1. Theorem [ J.D., M. Esteban, G. Tarantello ]

∫

R2

ev−
R

R2 v dµα dµα ≤ e
1

16 π (α+1)
‖∇v‖2

L2(R2, dx)

holds in the space Eα =
{

v ∈ L1(R2, dµα) : |∇v| ∈ L2(R2, dx)
}

restricted to

radially symmetric functions ∀α > −1, and without restriction iff α ∈ (−1, 0]
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Proof (1/2)

Proposition 2. Let α > −1. For all v ∈ Eα, there holds

∫

R2

ev−
R

R2 v dµα dµα ≤ e
1

16 π (α+1) (‖∇v‖2
2+α (α+2) ‖ 1

r ∂θv ‖2
2)

C ≈ R2 3 x = r eiθ, r ≥ 0, θ ∈ [0, 2π). Stereographic projection: Σ0

Let α > −1 and define the inverse of a dilated stereographic projection

Σ−1
α

(

r eiθ
)

:=

(

2 rα+1 eiθ

1 + r2(α+1)
,
r2(α+1) − 1

1 + r2(α+1)

)

= Σ−1
0 (r1+α eiθ)

If f ∈ C(R), f(u), |∇u|2 ∈ L1(S2) and v = u ◦ Σ−1
α , then

∫

S2 f(u) dσ =
∫

R2 f(v) dµα

4π
∫

S2 |∇u|2 dσ = 1
α+1

∫

R2

(

|∇v|2 + α (α+ 2)
∣

∣

∣

1
r ∂θv

∣

∣

∣

2 )

dx

The result follows from Onofri’s inequality
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Proof (2/2)

Corollary 3. If α ∈ (−1, 0], then the inequality holds true for any v ∈ Eα

α ∈ (−1, 0] =⇒ α (α+ 2) ≤ 0

‖∇v‖2
2 + α (α+ 2) ‖ 1

r
∂θv ‖2

2 ≤ ‖∇v‖2
2

Proposition 4. If α > 0, then the inequality fails to hold in Eα

Let α > 0, ε ∈ (0, 1), x̄ = (1, 0)

2 vε =







log
(

ε
(ε+π |x−x̄|2)2

)

if |x− x̄| ≤ 1

log
(

ε
(ε+π)2

)

if |x− x̄| > 1

limε→0 µα(e2vε) = α+1
4π

1
4π (α+1) ‖∇vε‖2

2 + 2µα(vε) = α
1+α log ε+O(1) as ε→ 0
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Generalized Onofri inequality on the cylinder

Eα =
{

w = w(t, θ) ∈ L1(C, dνα) : |∇w| ∈ L2(C, dx)
}

C = R × S1 , dνα :=
α+ 1

2

dt dθ
[

cosh
(

(α+ 1) t
)]2

Proposition 5. If α > −1, then for any w ∈ Eα,

∫

C
ew−

R

C
w dνα dνα ≤ e

1
16 π (α+1)

“

‖∇w‖2
L2(C)

+α (α+2) ‖ ∂θw ‖2
L2(C)

”

If −1 < α ≤ 0, then for any w ∈ Eα,

∫

C
ew−

R

C
w dνα dνα ≤ e

1
16 π (α+1)

‖∇w‖2
L2(C)
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3. Caffarelli-Kohn-Nirenberg inequalities
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Caffarelli-Kohn-Nirenberg (Hardy-Sobolev) inequalities

[ L. Caffarelli, R. Kohn, and L. Nirenberg. First order interpolation
inequalities with weights. Compositio Math., 53 (3): 259-275, 1984 ]
[ F. Catrina and Z.-Q. Wang. On the Caffarelli-Kohn-Nirenberg inequalities:
sharp constants, existence (and nonexistence), and symmetry of extremal
functions. Comm. Pure Appl. Math., 54 (2): 229-258, 2001 ]

(
∫

RN

|u|p
|x|bp

dx

)2/p

≤ Ca,b

∫

RN

|∇u|2
|x|2a

dx ∀ u ∈ Da,b

a < b ≤ a+ 1 , p =
2N

N − 2 + 2 (b− a)]
, a ≤ N − 2

2
, N ≥ 3

Da,b = {|x|−b u ∈ Lp(RN , dx) : |x|−a |∇u| ∈ L2(RN , dx)}

The space Da,b is obtained as the completion of C∞
c (RN ) with respect to

the norm ‖u‖2 = ‖ |x|−b u ‖2
p + ‖ |x|−a ∇u ‖2

2

If N = 2, same inequality for a < 0
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Inequalities on the cylinder

Emden-Fowler transformations

t = log |x| , θ =
x

|x| ∈ SN−1 , w(t, θ) = |x|N−2−2a
2 u(x)

CKN inequality for u is equivalent to a Sobolev inequality for w on
R × SN−1 =: C

‖w‖2
Lp(R×SN−1) ≤ Ca,b

[

‖∇w‖2
L2(R×SN−1) +

1
4(N − 2 − 2a)2‖w‖2

L2(R×SN−1)

]

for w ∈ H1(R × SN−1), with p = 2N/[(N − 2) + 2 (b− a)], a 6= (N − 2)/2

For N = 2, the inequality holds for functions w = w(t, θ) defined over the
two-dimensional cylinder C = R × S1 ≈ R × (R/2πZ)

‖w‖2
Lp(C) ≤ Ca,a+2/p

(

‖∇w‖2
L2(C) + a2 ‖w‖2

L2(C)

)

∀ w ∈ H1(C)

for all a 6= 0 and p > 2, with b = a+ 2/p

A weighted Moser-Trudinger inequality and its relation to the Caffarelli-Kohn-Nirenberg inequalities in two space dimensions – p.18/43



An extended Caffarelli-Kohn-Nirenberg inequality

The “modified inversion symmetry” transforms extremal points into

solutions of the same equation: u(x) 7→
∣

∣

x
τ

∣

∣

−(N−2−2a)
u

(

τ2 x
|x|2

)

= v(x)

Lemma 6. [ J.D., M. Esteban, G. Tarantello ] If N = 2, then the CKN inequality holds for
any a 6= 0 and b such that a < b ≤ a+ 1. If N ≥ 3, then the CKN inequality holds for
any a 6= (N − 2)/2 and b such that a ≤ b ≤ a+ 1.

Let N = 2, a > 0, a′ = −a, b′ = b− 2a ∈ (−a,−a+ 1]

∫

R2

(

|v|p
|x|b′p dx

)2/p

≤ Ca′,b′
∫

R2

|∇v|2
|x|2a′ dx in Da′,b′

Ca,b = Ca′,b′ , 4 − b′p = bp, −2a′ = 2a, p = 2/(b′ − a′) = 2/(b− a)

∫

R2

( |u|p
|y|4−b′p

dy

)2/p

≤ Ca′,b′

∫

R2

|∇u|2
|y|−2a′

dy in Da,b

N ≥ 3: a = N − 2 − a′, b p = 2N − b′ p, p = 2N
N−2−2(b′−a′) = 2N

N−2−2(b−a)
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Which space of functions ?

DN
a,b is given by the completion with respect to ‖ · ‖ of the set

{u ∈ C∞
c (R2) : supp(u) ⊂ R

2 \ {0}}

Norm: ‖u‖2 = ‖ |x|−b u ‖2
p + ‖ |x|−a ∇u ‖2

2
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Radial symmetry of extremal functions...

[ K. S. Chou and C. W. Chu. On the best constant for a weighted
Sobolev-Hardy inequality. J. London Math. Soc. (2), 48 (1): 137-151,
1993 ]

If N ≥ 3, 0 ≤ a < (N − 2)/2, extremal functions are radially symmetric
given up to scalar multiplication and dilation by

urad
a,b (x) =

(

1 + |x|−
2a (1+a−b)

b−a

)− b−a
1+a−b

For radial functions: Hardy-Sobolev inequalities in dimension “N − 2a”

(

∫ ∞
0

|u|p
rbp rN−1 dr

)2/p

≤ Ca,b |SN−1|1−2/p
∫ ∞
0

|u′|2 rN−2a−1 dr

With w(t) = r
N−2−2a

2 u(r), t = log r, up to a scaling and a multiplication by
a constant, w is a positive “Aubin-Talenti” type solution of

−w′′ + w = wp−1 , lim
t→±∞

w(t) = 0
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. . . vs. symmetry breaking

Extremals are known to be non-radially symmetric for a certain range of
parameters (a, b) if N ≥ 3

[ F. Catrina and Z.-Q. Wang. On the Caffarelli-Kohn-Nirenberg inequalities:
sharp constants, existence (and nonexistence), and symmetry of extremal
functions. Comm. Pure Appl. Math., 54 (2): 229-258, 2001 ]

[ V. Felli and M. Schneider. Perturbation results of critical elliptic equations
of Caffarelli-Kohn-Nirenberg type. J. Differential Equations, 191 (1):
121-142, 2003 ]

The case of dimension N = 2 will be considered later
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The Onofri ineq. as a limit case of the CKN inequalities (1/2)

For N = 2, α > −1, ε ∈ (0, 1), a < 0, let

a = − ε

1 − ε
(α+ 1) , b = a+ ε and p =

2

ε

Let uε(x) =
(

1 + |x|2(α+1)
)− ε

1−ε

be a radial extremal function

κε, λε are numerical coefficients and fε is a weight

Lemma 7. Let α0 > −1, v ∈ C∞
c (R2), wε = (1 + ε v)uε

1

κε

∫

R2

|wε|p
|x|bp

dx =

∫

R2

|1 + ε v| 2ε fε dx
∫

R2 fε dx

and, as ε→ 0, uniformly with respect to α ≥ α0,

∫

R2

|∇wε|2
|x|2a

dx = λε+ε
2

[

8(1+α)2

(1−ε)2

∫

R2

u
2/ε
ε v

|x|2(a−α)
dx+

∫

R2

|∇v|2 u2
ε

|x|2a
dx+O(a2ε)

]
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The Onofri ineq. as a limit case of the CKN inequalities (1/2)

|x|−bp fε dx
∫

R2 fε dx
∼ α+ 1

π
|x|2α u2/ε

ε dx ∼ dµα(x) =
α+ 1

π

|x|2α dx

(1 + |x|2 (α+1))2

as ε→ 0+. With wε = (1 + ε v)uε, we have, up to O(a2ε2) terms,

∫

R2

|1 + ε v| 2ε fε dx
∫

R2 fε dx
.

(

1+ ε2

λε

[

8(1+α)2

(1−ε)2

∫

R2

u2/ε
ε v

|x|2(a−α) dx+
∫

R2

|∇v|2 u2
ε

|x|2a dx
])1/ε

Proposition 8. Let α > −1, εn → 0 such that the radial extremal function uεn is also

extremal for CKN with pn = 2
εn

, an = − εn

1−εn
(α+ 1), bn = an + εn. Then the

generalized Onofri inequality holds true in Eα

∫

R2

ev−
R

R2 v dµα dµα ≤ e
1

16 π (α+1)
‖∇v‖2

L2(R2, dx)

NB. This gives a proof of the Onofri inequality in R2
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4. Symmetry breaking in
Caffarelli-Kohn-Nirenberg inequalities
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A first result of symmetry breaking

Take an < 0, 0 < bn − an = εn → 0+, αn = −1 − an (1 − εn)/εn

Corollary 9. Let N = 2. For every ε > 0, there exists δ > 0 such that if |a| ∈ (0, δ),
b ∈ (a, a+ 1), if one of the following conditions holds

(i) a > 0 and b/a < 2 − ε

(ii) a < 0 and b/a > ε

then CKN inequalities cannot admit a radially symmetric extremal

If αn converges to some α0, then the generalized Onofri inequality
would be true without radial symmetry

αn → ∞ means bn/an → 1 and requires a special analysis
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A second result of symmetry breaking

Adaptation to the case N = 2 of

[ V. Felli and M. Schneider. Perturbation results of critical elliptic equations
of Caffarelli-Kohn-Nirenberg type. J. Differential Equations, 191 (1):
121-142, 2003 ]

Theorem 10. Let a 6= 0 andN = 2. If a < b < h(a) = a+ |a|√
1+a2 , then CKN

inequalities admit only non radially symmetric extremals
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Reformulation in the cylinder

Emden-Fowler transformations

t = log |x| , θ =
x

|x| ∈ SN−1 , w(t, θ) = |x|N−2−2a
2 u(x)

For N = 2, CKN inequality for u is equivalent to a Sobolev inequality for
w = w(t, θ) defined over the cylinder C = R × S1 ≈ R × (R/2πZ)

‖w‖2
Lp(C) ≤ Ca,a+2/p

(

‖∇w‖2
L2(C) + a2 ‖w‖2

L2(C)

)

∀ w ∈ H1(C)

for all a 6= 0 and p > 2, with b = a+ 2/p. Equality is achieved if











−(wtt + wθθ) + a2 w = wp−1 in R × [−π, π]

w > 0 , w(t, ·) is 2π-periodic ∀ t ∈ R

The radial solution w∗
a,p(t) =

(

a2 p
2

)
1

p−2
[

cosh
(

p−2
2 a t

)]− 2
p−2 is unique
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a proof by linearization

Theorem 11. Let a 6= 0, p > 2. If |a| p > 2
√

1 + a2, extremal functions are not radial

Let Q(ψ) := ‖∇ψ‖2
L2(C) + a2 ‖ψ‖2

L2(C) − (p− 1)
∫

C |w∗
a,p|p−2 |ψ|2 dx. On the

set of functions ψ ∈ H1(C) such that
∫ π

−π
ψ(t, θ) dθ = 0, t ∈ R a.e.,

inf
Q(ψ)

‖ψ‖2
L2(C)

= a2 + 1 −
(a p

2

)2

is achieved by ψ(t, θ) =
(

cosh((α+ 1) t)
)− p

p−2 cos θ, with α = (p− 2) a
2 − 1

decompose on Fourier modes

derive the equation for w∗
a,p and scale
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5. A symmetry result for
Caffarelli-Kohn-Nirenberg inequalities
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Statement of the result

[ J.D., M. Esteban, G. Tarantello. The role of Onofri type inequalities in the
symmetry properties of extremals for Caffarelli-Kohn-Nirenberg
inequalities, in two space dimensions. To appear in Annali SNS Pisa ]

Theorem 12. Let a 6= 0 andN = 2. For every ε > 0, there exists δ > 0 such that for
|a| ∈ (0, δ), b ∈ (a, a+ 1), if one of the following conditions holds

(i) a > 0 and b/a > 2 + ε

(ii) a < 0 and b/a < −ε
then the extremals of CKN inequalities are radially symmetric, and given, up to scalar

multiplication and dilation, by urad
a,b

This can be rewritten in the cylinder as

Theorem 13. Let a 6= 0, p > 2. For every ε > 0, there exists δ > 0 such that, if
0 < |a| < δ and |a| p < 2 − ε, then w∗

a,p is an extremal function
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Previously known results

Moving planes: [ K. S. Chou and C. W. Chu. On the best constant for a
weighted Sobolev-Hardy inequality. J. London Math. Soc. (2), 48 (1):
137-151, 1993 ]

Symmetrization: [ T. Horiuchi. Best constant in weighted Sobolev
inequality with weights being powers of distance from the origin. J.
Inequal. Appl., 1 (3): 275-292, 1997 ]

Partial symmetry: [ C.-S. Lin and Z.-Q. Wang. Symmetry of extremal
functions for the Caffarrelli-Kohn-Nirenberg inequalities. Proc. Amer.
Math. Soc., 132 (6): 1685-1691 (electronic), 2004 ]

Schwartz foliated symmetry, symmetry close to a = 0, N ≥ 3: [ D. Smets
and M. Willem. Partial symmetry and asymptotic behavior for some elliptic
variational problems. Calc. Var. Partial Differential Equations, 18 (1):
57-75, 2003 ]
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A preliminary result: a Pohozaev type identity

On H1(C) \ {0} consider the functional

F(w) =
‖∇w‖2

L2(C) + a2 ‖w‖2
L2(C)

‖w‖2
Lp(C)

It has a minimizer with symmetry and monotonicity (sliding method)
properties



















wa,p(t, θ) = wa,p(−t, θ) ∀ t ∈ R , θ ∈ [−π, π)

∂wa,p

∂t (t, θ) < 0 ∀ t > 0 ∀ θ ∈ [−π, π)

maxR×[−π,π)wa,p = wa,p(0, 0)

Lemma 14.

∫ π

−π

(∂w

∂θ

)2

dθ =

∫ π

−π

(∂w

∂t

)2

dθ − a2

∫ π

−π

w2 dθ +
2

p

∫ π

−π

wp dθ
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Proof. Multiply the equation by ∂w
∂t (≈ r ∂(ra u(r, θ))/∂r) and integrate over [−π, π]

∫ π

−π

(

−∂
2w

∂t2
∂w

∂t
− ∂2w

∂θ2

∂w

∂t
+ a2 ∂w

∂t
w

)

dθ =

∫ π

−π

wp−1 ∂w

∂t
dθ

∫ π

−π

{

− ∂
∂θ

(

∂w
∂θ

∂w
∂t

)

+ 1
2

d
dt

[

(

∂w
∂θ

)2 −
(

∂w
∂t

)2
+ a2 w2

]}

dθ =
1

p

∫ π

−π

d (wp)

dt
dθ

Since
∫ π

−π
∂
∂θ

(

∂w
∂θ

∂w
∂t

)

dθ = 0, we get

d

dt

∫ π

−π

[

(

∂w

∂t

)2

−
(

∂w

∂θ

)2

− a2 w2 +
2

p
wp

]

dθ = 0

for all t ∈ R. Hence as a function of t, the above integral must be a constant. Since it is
also integrable over R 3 t, then it must vanish identically
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Proof of the symmetry result

The method is based on the strong convergence properties of a suitable
rescaling of the minimizer wa,p of F towards a solution of a Liouville
equation. We argue by contradiction and suppose that there exists
ε0 ∈ (0, 1) and, for all n ∈ N, an > 0, pn > 2, such that

lim
n→+∞

an = 0 , an pn < 2 − ε0 and F(wan, pn) < F(w∗
an, pn

)

For simplicity, set wn = wan, pn and w∗
n = w∗

an, pn
. By the previous

identity and using symmetry,

p2
n a

2
n

2

∫ π

−π

w2
n(0, θ) dθ ≤ pn

∫ π

−π

wpn
n (0, θ) dθ ≤ pn ‖wn‖pn−2

L∞(C)

∫ π

−π

w2
n(0, θ) dθ

Lemma 15. pn ‖wn‖pn−2
L∞(C) ≥ 1

2 p
2
n a

2
n

Lemma 16. lim infn→+∞ pn ‖wn‖pn−2
L∞(C) ≥ 1
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Next we introduce the new parameters

εn =
2

pn
and αn = −1 + (1 − εn)

an

εn
= −1 +

1

2
(1 − εn) an pn

Lemma 17. lim
n→+∞

αn = α ∈ [−1, 0), lim
n→+∞

pn = +∞ and lim
n→+∞

εn = 0

If lim infn→+∞ wn(0, 0) < 1, then lim infn→+∞ pn ‖wn‖pn−2
L∞(C) = 0

Lemma 18. lim infn→+∞ wn(0, 0) ≥ 1
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Lemma 19. lim supn→+∞ pn ‖wn‖pn−2
L∞(C) < +∞

By contradiction: if δn =
(

pn ‖wn‖pn−2
L∞(C)

)−1/2 → 0, then

Wn(t, θ) = pn

(wn(δn t, δn θ)
wn(0,0) − 1

)

on Cn = R × [−π/δn, π/δn] satisfies











−∆Wn =
(

1 + Wn

pn

)pn−1

− a2
n pn δ

2
n

(

1 + Wn

pn

)

in Cn

Wn ≤ 0 = Wn(0, 0)

lim
n→+∞

‖1 +Wn/pn‖pn

Lpn (Cn) ≤ lim
n→+∞

1

wn(0, 0)2
pn

∫

C
|w∗

n|pn dx ≤ 8π (1 + α)

Harnack’s inequality, elliptic regularity theory: Wn converges pointwise to
W (change C to R

2) which satisfies

−∆W = eW in R
2
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[ W. X. Chen and C. Li. Classification of solutions of some nonlinear
elliptic equations. Duke Math. J., 63 (3): 615-622, 1991 ]

Every solution W of −∆W = eW in R2 with eW ∈ L1(R2), must satisfy
∫

R2 e
W dx = 8π

By Fatou’s Lemma,

∫

R2

eW dx ≤ lim
n→+∞

∫

Cn

(

1 +
Wn

pn

)pn

dx ≤ 8π (1 + α) < 8π

a contradiction, as α ∈ [−1, 0)

Some technical consequences

limn→+∞ wn(0, 0) = 1

limn→+∞
[

wn(0, 0)
]pn = 0

limn→+∞ pn

[

wn(0, 0)
]pn−2

= µ ∈ [1,+∞)
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Define the function Vn(t, θ) := pn

(

wn(t,θ)
wn(0,0) − 1

)

∀ (t, θ) ∈ C

Lemma 20. Up to a subsequence, Vn converges to a function V pointwise and
C2-uniformly in any compact set in R × [−π, π], and



























−∆V = µ eV in C

maxC V ≤ 0 = V (0, 0) , V (t, ·) is 2π-periodic ∀ t ∈ R

µ
∫

C e
V dx ≤ 8π (1 + α)

V (t, θ) = V (−t, θ) , ∂V

∂t
(t, θ) < 0 ∀ t > 0 , ∀ θ ∈ [−π, π]

∫ π

−π

(∂V

∂θ

)2

dθ =

∫ π

−π

(∂V

∂t

)2

dθ − 8π (1 + α)2 + 2µ

∫ π

−π

eV dθ ∀ t ∈ R
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Lemma 21. µ = 2 (α+ 1)2, V (t) = −2 log
[

cosh((α+ 1) t)
]

and

lim
n→+∞

pn

(

‖wn‖pn

Lpn (C) − ‖w∗
n‖pn

Lpn (C)

)

= 0

∫

C
eV dx = lim

n→+∞

∫

C

(

1 +
Vn

pn

)pn

dx =
4π

α+ 1

lim
n→+∞

sup
C

∣

∣

(

wn

wn(0,0)

)pn−2

− eV
∣

∣ = 0

Proof. The function ϕ(r, θ) := V (− log r , θ) − 2 log r + logµ satisfies

−∆ϕ = −r−2 (Vtt + Vθθ) (− log r , θ) = eϕ in R
2\{0}

∫

R2

eϕ dx ≤ 8π (1 + α) , ϕ
(

r−1 θ
)

= ϕ(r, θ) + 4 log r

[ K. S. Chou and T. Y.-H. Wan. Asymptotic radial symmetry for solutions of ∆u+ eu = 0
in a punctured disc. Pacific J. Math., 163 (2): 269-276, 1994 ]
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Lemma 22. For n large enough, we have wn = w∗
n

Proof. χn := ∂wn

∂θ ∈ H1(C) satisfies
∫ π

−π
χn(t, θ) dθ = 0 and

−∆χn + a2
n χn = (pn − 1)

(

wn(t, θ)
)pn−2

χn

‖∇χn‖2
L2 + a2

n ‖χn‖2
L2 = (pn − 1)

∫

C

(wn(t, θ)

wn(0, 0)

)pn−2

χ2
n dx
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‖∇χn‖2
L2 + a2

n ‖χn‖2
L2 = (pn − 1)

∫

C

(wn(t, θ)

wn(0, 0)

)pn−2

χ2
n dx

0 = ‖∇χn‖2
2 + a2

n ‖χn‖2
L2 − (pn − 1)

∫

C
(

wn(t, θ)
)pn−2

χ2
n dx

≥
[

1 + a2
n − (α+ 1)2 − (pn − 1)

(

wn(0, 0)
)pn−2

rn
]

‖χn‖2
L2(C)

+
[

2 (α+ 1)2 − (pn − 1) (wn(0, 0))pn−2
]

∫

C

χ2
n

(cosh((α+ 1) t))
2 dx

rn := supC
∣

∣

(

wn(t, θ)/wn(0, 0)
)pn−2− eV

∣

∣ → 0

limn→+∞(pn − 1)(wn(0, 0))pn−2 = µ = 2 (α+ 1)2

an → 0

(1 + α)2 < 1

... a contradiction for large n, unless χn ≡ 0: wn = w∗
n
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