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Sharp asymptotics for the
subcritical Keller-Segel model
1 Literature is huge
2 Physics can be addressed in various ways: gravitation

(Smoluchowski-Poisson) and statistics of gravitating systems,
aggregation dynamics (sticky systems), biology (Patlak,
Keller-Segel)

3 Standard techniques have been reinvented many times: virial
estimates, cumulated mass densities, matched asymptotics

do not specialize to radial solutions
put emphasis on functional analysis
insist on nonlinear evolution
deal with the subcritical case
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The parabolic-elliptic Keller – Segel system


∂u

∂t
= ∆u−∇ · (u∇v) x ∈ R2 , t > 0

−∆v = u x ∈ R2 , t > 0

u(·, t = 0) = n0 ≥ 0 x ∈ R2

We make the choice:

v(t, x) = − 1
2π

∫
R2

log |x− y|u(t, y) dy

and observe that

∇v(t, x) = − 1
2π

∫
R2

x− y
|x− y|2

u(t, y) dy

Mass conservation: d

dt

∫
R2
u(t, x) dx = 0
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Blow-up: the virial computation

Collapse (S. Childress, J.K. Percus 81) M =
∫
R2 n0 dx > 8π and∫

R2 |x|2 n0 dx <∞: blow-up in finite time
A solution u of

∂u

∂t
= ∇ · (∇u− u∇v)

satisfies

d

dt

∫
R2
|x|2 u(t, x) dx

= −
∫
R2

2x · ∇u dx︸ ︷︷ ︸
−4M

+ 1
2π

∫∫
R2×R2

2x·(y−x)
|x−y|2 u(t, x)u(t, y) dx dy︸ ︷︷ ︸
(x−y)·(y−x)
|x−y|2 u(t,x)u(t,y) dx dy

= 4M − M2

2π < 0 if M > 8π
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The super-critical range: regularization & life after
blow-up

Regularize the Poisson kernel

(−∆)−1
ε ∗ ρ (x) = − 1

2π

∫
R2

log(|x− y|+ ε) ρ(y) dy

[F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler
equations, Meth. Appl. Anal. 9 (2002), pp. 533–561]

Proposition (JD, C. Schmeiser 2009)
For every ε > 0, the regularized problem has a global solution
satisfying

‖ρε(·, t)‖L1(R2) = ‖ρ0‖L1(R2) := M

‖ρε(t, ·)‖L∞(R2) ≤ c
(

1 + 1
ε2

)
with an ε-independent constant c
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The nonlinear term

mε(t, x) :=
∫
R2

Kε(x− y) ρε(t, x) ρε(t, y)dy with Kε(x) = x⊗2

|x|(|x|+ ε)

Lemma (Poupaud)
The families {ρε(t)}ε>0 and {mε(t)}ε>0 are tightly bounded locally
uniformly in t, and {ρε(t)}ε>0 is tightly equicontinuous in t

Tight boundedness and equicontinuity of ρε(t) =⇒ compactness∫
R2

∫
R2 ϕ(x, y) ρε(t, x) ρε(t, y) dx dy →

∫
R2

∫
R2 ϕ(x, y) ρ(t, x) ρ(t, y) dx dy∫ t2

t1

∫
R2 ϕ(t, x)mε(t, x) dx dt→

∫ t2
t1

∫
R2 ϕ(t, x)m(t, x) dx dt

for all ϕ ∈ Cb([t1, t2]× R2)
Defect measure

ν(t, x) = m(t, x)−
∫
R2

K(x− y) ρ(t, x) ρ(t, y) dy , K(x) = x⊗2

|x|2
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Atomic support
The limit is characterized by the pair (ρ, ν), the atomic support of ρ
is an at most countable set
Lemma (Poupaud 2002)
ν is symmetric, nonnegative, and satisfies

tr(ν(t, x)) ≤
∑

a∈Sat(ρ(t))

(ρ(t)({a}))2δ(x− a)

M: Radon measures, M+
1 : nonnegative bounded measures

DM+(I;R2) =
{

(ρ, ν) : ρ(t) ∈M+
1 (R2) ∀t ∈ I, ν ∈M(I × R2)2×2

ρ is tightly continuous with respect to t
ν is a nonnegative, symmetric, matrix valued measure

tr(ν(t, x)) ≤
∑

a∈Sat(ρ(t))

(ρ(t)({a}))2δ(x− a)
}
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Limiting problem

∀ϕ ∈ C1
b ((0, T ) ,×R2)

∫ T
0
∫
R2 ϕ(t, x) j[ρ, ν](t, x) dx dt

= − 1
4π
∫ T

0
∫
R4(ϕ(t, x)− ϕ(t, y))K(x− y) ρ(t, x) ρ(t, y) dx dy dt

− 1
4π
∫ T

0
∫
R2 ν(t, x)∇ϕ(t, x) dx dt

Theorem (JD, C. Schmeiser 2009)

For every T > 0, ρε converges tightly and uniformly in time to ρ(t)
and there exists ν(t) such that (ρ, ν) ∈ DM+((0, T );R2) is a
generalized solution of

∂tρ+∇ · (j[ρ, ν]−∇ρ) = 0

ρ(t = 0) = ρ0 holds in the sense of tight continuity

J. Dolbeault Drift-Diffusion and reverse HLS inequalities
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Strong formulation (formal) : an ansatz
ρ = ρ+ ρ̂, ρ̂(t, x) =

∑
n∈N Mn(t) δn(t, x), δn(t, x) = δ(x− xn(t))

(ρ, ν) ∈ DM+((0, T );R2)
=⇒ ν(t, x) =

∑
n∈N νn(t) δn(t, x), tr(νn) ≤M2

n

j[ρ, ν] = ρ∇S0[ρ+ρ̂]+
∑
n

Mn δn∇S0

ρ+
∑
m 6=n

Mm δm

+ 1
4π
∑
n

Mn νn∇δn

∂tρ+∇ · (ρ∇S0[ρ]−∇ρ) +∇ρ · ∇S0[ρ̂]

+
∑
n

δn(Ṁn − ρMn)

−
∑
n

Mn∇δn
(
ẋn −∇S0

[
ρ+

∑
m 6=nMm δm

])
+
∑
n

( 1
4πνn : ∇2δn −Mn ∆δn

)
= 0
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Keller-Segel model: the subcritical range
M =

∫
R2 n0 dx ≤ 8π: global existence (W. Jäger, S. Luckhaus 1992),

(JD, B. Perthame 2004), (A. Blanchet, JD, B. Perthame 2006)

If u solves
∂u

∂t
= ∇ · [u (∇ (log u)−∇v)]

the free energy

F [u] :=
∫
R2
u log u dx− 1

2

∫
R2
u v dx

satisfies
d

dt
F [u(t, ·)] = −

∫
R2
u |∇ (log u)−∇v|2 dx

(log HLS) inequality (E. Carlen, M. Loss 1992):
F is bounded from below if M ≤ 8π

... M = 8π the critical case (A. Blanchet, J.A. Carrillo, N. Masmoudi
2008), (A. Blanchet et al.)
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The existence setting for the subcritical regime


∂u

∂t
= ∆u−∇ · (u∇v) x ∈ R2 , t > 0

−∆v = u x ∈ R2 , t > 0

u(·, t = 0) = n0 ≥ 0 x ∈ R2

Initial conditions

n0 ∈ L1
+(R2, (1+|x|2) dx) , n0 logn0 ∈ L1(R2, dx) , M :=

∫
R2
n0(x) dx < 8π

Global existence and mass conservation: M =
∫
R2 u(x, t) dx ∀ t ≥ 0

v = − 1
2π log | · | ∗ u
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Time-dependent rescaling

u(x, t) = 1
R2(t) n

(
x

R(t) , τ(t)
)

and v(x, t) = c

(
x

R(t) , τ(t)
)

with R(t) =
√

1 + 2t and τ(t) = logR(t)
∂n

∂t
= ∆n−∇ · (n (∇c− x)) x ∈ R2 , t > 0

c = − 1
2π log | · | ∗ n x ∈ R2 , t > 0

n(·, t = 0) = n0 ≥ 0 x ∈ R2

(A. Blanchet, JD, B. Perthame) Convergence in self-similar variables

lim
t→∞

‖n(·, ·+ t)− n∞‖L1(R2) = 0 and lim
t→∞

‖∇c(·, ·+ t)−∇c∞‖L2(R2) = 0

means intermediate asymptotics in original variables:

‖u(x, t)− 1
R2(t) n∞

(
x

R(t) , τ(t)
)
‖L1(R2) ↘ 0

J. Dolbeault Drift-Diffusion and reverse HLS inequalities



Sharp asymptotics for the subcritical Keller-Segel model
Reverse Hardy-Littlewood-Sobolev inequality

Existence of minimizers and relaxation
Regions of no concentration and regularity

Free energy point of view

An introduction to the Keller-Segel model
The super-critical range: life after blow-up
The subcritical range
Functional framework and sharp asymptotics

The stationary solution in self-similar variables

n∞ = M
e c∞−|x|

2/2∫
R2 ec∞−|x|

2/2 dx
= −∆c∞ , c∞ = − 1

2π log | · | ∗ n∞

Radial symmetry (Y. Naito)
Uniqueness (P. Biler, G. Karch, P. Laurençot, T. Nadzieja)
As |x| → +∞, n∞ is dominated by e−(1−ε)|x|2/2 for any ε ∈ (0, 1)
(A. Blanchet, JD, B. Perthame)
Bifurcation diagram of ‖n∞‖L∞(R2) as a function of M

lim
M→0+

‖n∞‖L∞(R2) = 0

(D.D. Joseph, T.S. Lundgren) (JD, R. Stańczy)
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The stationary solution when mass varies

0.5 1.0 1.5 2.0

2

4

6

8

Figure: Representation of the solution appropriately scaled so that the 8π
case appears as a limit (in red)
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The free energy in self-similar variables

∂n

∂t
= ∇

[
n (logn− x+∇c)

]
F [n] :=

∫
R2
n logn dx+

∫
R2

1
2 |x|

2 n dx− 1
2

∫
R2
n c dx

satisfies
d

dt
F [n(t, ·)] = −

∫
R2
n |∇ (logn) + x−∇c|2 dx

A last remark on 8π and scalings: nλ(x) = λ2 n(λx)

F [nλ] = F [n]+
∫
R2
n log(λ2) dx+

∫
R2

λ−2−1
2 |x|2 n dx+ 1

4π

∫
R2×R2

n(x)n(y) log 1
λ
dx dy

F [nλ]− F [n] =
(

2M − M2

4π

)
︸ ︷︷ ︸
>0 ifM<8π

log λ+ λ−2 − 1
2

∫
R2
|x|2 n dx
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Keller-Segel with subcritical mass in self-similar
variables


∂n

∂t
= ∆n−∇ · (n (∇c− x)) x ∈ R2 , t > 0

c = − 1
2π log | · | ∗ n x ∈ R2 , t > 0

n(·, t = 0) = n0 ≥ 0 x ∈ R2

lim
t→∞

‖n(·, ·+ t)− n∞‖L1(R2) = 0 and lim
t→∞

‖∇c(·, ·+ t)−∇c∞‖L2(R2) = 0

n∞ = M
e c∞−|x|

2/2∫
R2 ec∞−|x|

2/2 dx
= −∆c∞ , c∞ = − 1

2π log | · | ∗ n∞
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A parametrization of the solutions and the linearized
operator

(J. Campos, JD)
−∆c = M

e−
1
2 |x|

2+c∫
R2 e
− 1

2 |x|2+c dx

Solve
−ϕ′′ − 1

r
ϕ′ = e−

1
2 r

2+ϕ , r > 0

with initial conditions ϕ(0) = a, ϕ′(0) = 0 and get with r = |x|

M(a) := 2π
∫
R2
e−

1
2 r

2+ϕa dx

na(x) = M(a) e−
1
2 r

2+ϕa(r)

2π
∫
R2 r e

− 1
2 r

2+ϕa dx
= e−

1
2 r

2+ϕa(r)
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Mass

-4 -2 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Figure: The mass can be computed as M(a) = 2π
∫∞

0 na(r) r dr. Plot of
a 7→M(a)/8π
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Bifurcation diagram

1.5 2.0 2.5 3.0 3.5 4.0

5

10

15

Figure: The bifurcation diagram can be parametrized by
a 7→ ( 1

2π M(a), ‖ca‖∞) with ‖ca‖∞ = ca(0) = a− b(a) (cf. Keller-Segel
system in a ball with no flux boundary conditions)
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Linearization

We can introduce two functions f and g such that

n = n∞ (1 + f) and c = c∞(1 + g)

and rewrite the Keller-Segel model as

∂f

∂t
= L f + 1

n∞
∇(f n∞∇(c∞ g))

where the linearized operator is

L f = 1
n∞
∇ ·
(
n∞∇(f − c∞ g)

)
and

−∆(c∞ g) = n∞ f

J. Dolbeault Drift-Diffusion and reverse HLS inequalities
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Spectrum of L (lowest eigenvalues only)

5 10 15 20 25

1
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Figure: The lowest eigenvalues of −L = (−∆)−1(na f) (shown as a function
of the mass) are 0, 1 and 2, thus establishing that the spectral gap of −L is
1

(A. Blanchet, JD, M. Escobedo, J. Fernández), (J. Campos, JD),
(V. Calvez, J.A. Carrillo), (J. Bedrossian, N. Masmoudi)
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Functional framework and sharp asymptotics

Lemma (A. Blanchet, JD, B. Perthame)
Sub-critical HLS inequality (A. Blanchet, JD, B. Perthame)

F [n] :=
∫
R2
n log

(
n

n∞

)
dx− 1

2

∫
R2

(n− n∞) (c− c∞) dx ≥ 0

achieves its minimum for n = n∞

Q1[f ] = lim
ε→0

1
ε2 F [n∞(1 + ε f)] ≥ 0

if
∫
R2 f n∞ dx = 0. Notice that f0 generates the kernel of Q1

〈f, f〉 :=
∫
R2
|f |2 n∞ dx−

∫
R2
f n∞ (g c∞) dx

J. Dolbeault Drift-Diffusion and reverse HLS inequalities



Sharp asymptotics for the subcritical Keller-Segel model
Reverse Hardy-Littlewood-Sobolev inequality

Existence of minimizers and relaxation
Regions of no concentration and regularity

Free energy point of view

An introduction to the Keller-Segel model
The super-critical range: life after blow-up
The subcritical range
Functional framework and sharp asymptotics

Eigenvalues
With g such that −∆(g c∞) = f n∞, Q1 determines a scalar product

〈f1, f2〉 :=
∫
R2
f1 f2 n∞ dx−

∫
R2
f1 n∞ (g2 c∞) dx

on the orthogonal space to f0 in L2(n∞ dx)

Q2[f ] :=
∫
R2
|∇(f − g c∞)|2 n∞ dx with g = − 1

c∞

1
2π log |·|∗(f n∞)

is a positive quadratic form, whose polar operator is the self-adjoint
operator L

〈f,L f〉 = Q2[f ] ∀ f ∈ D(L2)

Lemma (J. Campos, JD)
L has pure discrete spectrum and its lowest eigenvalue is 1
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Linearized Keller-Segel theory

L f = 1
n∞
∇ ·
(
n∞∇(f − c∞ g)

)
Corollary (J. Campos, JD)

〈f, f〉 ≤ 〈L f, f〉

The linearized problem takes the form
∂f

∂t
= L f

where L is a self-adjoint operator on the orthogonal of f0 equipped
with 〈·, ·〉. Exponential decay:

d

dt
〈f, f〉 = − 2 〈L f, f〉

(J. Campos, JD, 2014) (G. E. Fernández, S. Mischler, 2016)
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The reverse HLS inequality
For any λ > 0 and any measurable function ρ ≥ 0 on RN , let

Iλ[ρ] :=
∫∫

RN×RN
|x− y|λ ρ(x) ρ(y) dx dy

N ≥ 1 , 0 < q < 1 , α := 2N − q (2N + λ)
N (1− q)

Convention: ρ ∈ Lp(RN ) if
∫
RN |ρ(x)|p dx for any p > 0

Theorem

The inequality
Iλ[ρ] ≥ CN,λ,q

(∫
RN

ρ dx

)α(∫
RN

ρq dx

)(2−α)/q
(1)

holds for any ρ ∈ L1
+ ∩ Lq(RN ) with CN,λ,q > 0 if and only if

q > N/(N + λ)
If either N = 1, 2 or if N ≥ 3 and q ≥ min

{
1− 2/N , 2N/(2N + λ)

}
,

then there is a radial nonnegative optimizer ρ ∈ L1 ∩ Lq(RN )
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The conformally invariant case q = 2N/(2N + λ)

Iλ[ρ] =
∫∫

RN×RN
|x− y|λ ρ(x) ρ(y) dx dy ≥ CN,λ,q

(∫
RN

ρq dx

)2/q

2N/(2N + λ) ⇐⇒ α = 0
(Dou, Zhu 2015) (Ngô, Nguyen 2017)

The optimizers are given, up to translations, dilations and
multiplications by constants, by

ρ(x) =
(
1 + |x|2

)−N/q ∀x ∈ RN

and the value of the optimal constant is

CN,λ,q(λ) = 1
π
λ
2

Γ
(
N
2 + λ

2
)

Γ
(
N + λ

2
) ( Γ(N)

Γ
(
N
2
))1+ λ

N
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∫∫
RN×RN

|x−y|λ ρ(x) ρ(y) dx dy ≥ CN,λ,q

(∫
RN

ρ dx

)α(∫
RN

ρq dx

)(2−α)/q
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A Carlson type inequality

Lemma

Let λ > 0 and N/(N + λ) < q < 1

(∫
RN

ρ dx

)1−N (1−q)
λ q

(∫
RN
|x|λ ρ dx

)N (1−q)
λ q

≥ cN,λ,q
(∫

RN
ρq dx

) 1
q

cN,λ,q = 1
λ

(
(N+λ) q−N

q

) 1
q
(

N (1−q)
(N+λ) q−N

)N
λ

1−q
q

(
Γ(N2 ) Γ( 1

1−q )
2π

N
2 Γ( 1

1−q−
N
λ ) Γ(Nλ )

) 1−q
q

Equality is achieved if and only if

ρ(x) =
(
1 + |x|λ

)− 1
1−q

up to dilations and constant multiples

(Carlson 1934) (Levine 1948)
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An elementary proof of Carlson’s inequality

∫
{|x|<R}

ρq dx ≤
(∫

RN
ρ dx

)q
|BR|1−q = C1

(∫
RN

ρ dx

)q
RN (1−q)

and ∫
{|x|≥R}

ρq dx ≤
(∫

RN
|x|λ ρ dx

)q (∫
{|x|≥R}

|x|−
λ q

1−q dx

)1−q

= C2

(∫
RN
|x|λ ρ dx

)q
R−λq+N (1−q)

and optimize over R > 0
... existence of a radial monotone non-increasing optimal function;
rearrangement; Euler-Lagrange equations
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Proposition

Let λ > 0. If N/(N + λ) < q < 1, then CN,λ,q > 0

By rearrangement inequalities: prove the reverse HLS inequality for
symmetric non-increasing ρ’s so that∫

RN
|x− y|λ ρ(y) dx ≥

∫
RN
|x|λ ρ dx for all x ∈ RN

implies
Iλ[ρ] ≥

∫
RN
|x|λ ρ dx

∫
RN

ρ dx

In the range N
N+λ < q < 1

Iλ[ρ](∫
RN ρ(x) dx

)α ≥ (∫
RN

ρ dx dx

)1−α∫
RN
|x|λ ρ dx ≥ c2−αN,λ,q

(∫
RN

ρq dx

) 2−α
q

and conclude with Carlson’s inequality
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The case λ = 2

Corollary

Let λ = 2 and N/(N + 2) < q < 1. Then the optimizers for (1) are
given by translations, dilations and constant multiples of

ρ(x) =
(
1 + |x|2

)− 1
1−q

and the optimal constant is

CN,2,q = 1
2 c

2 q
N (1−q)
N,2,q

By rearrangement inequalities it is enough to prove (7) for symmetric
non-increasing ρ’s, and so

∫
RN x ρ dx = 0. Therefore

I2[ρ] = 2
∫
RN

ρ dx

∫
RN
|x|2ρ dx

and the optimal function is optimal for Carlson’s inequality
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The threshold case q = N/(N + λ) and below

Proposition

If 0 < q ≤ N/(N + λ), then CN,λ,q = 0 = limq→N/(N+λ)+ CN,λ,q

Let ρ, σ ≥ 0 such that
∫
RN σ dx = 1, smooth (+ compact support)

ρε(x) := ρ(x) +M ε−N σ(x/ε)
Then

∫
RN ρε dx =

∫
RN ρ dx+M and, by simple estimates,∫

RN
ρqε dx→

∫
RN

ρq dx as ε→ 0+

and
Iλ[ρε]→ Iλ[ρ] + 2M

∫
RN
|x|λ ρ dx as ε→ 0+

If 0 < q < N/(N + λ), i.e., α > 1, take ρε as a trial function,

CN,λ,q ≤
Iλ[ρ] + 2M

∫
RN |x|

λ ρ dx(∫
RN ρ dx+M

)α (∫
RN ρ

q dx
)(2−α)/q =: Q[ρ,M ]

and let M → +∞
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The threshold case: If α = 1, i.e., q = N/(N + λ), by taking the limit
as M → +∞, we obtain

CN,λ,q ≤
2
∫
RN |x|

λ ρ dx(∫
RN ρ

q dx
)(2−α)/q

For any R > 1, we take

ρR(x) := |x|−(N+λ)
11≤|x|≤R(x)

Then ∫
RN
|x|λ ρR dx =

∫
RN

ρqR dx =
∣∣SN−1∣∣ logR

and, as a consequence,∫
RN |x|

λ ρR dx(∫
RN ρ

N/(N+λ)
R dx

)(N+λ)/N =
(∣∣SN−1∣∣ logR

)−λ/N → 0 as R→∞

This proves that CN,λ,q = 0 for q = N/(N + λ)
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A relaxed inequality

Iλ[ρ]+2M
∫
RN
|x|λ ρ dx ≥ CN,λ,q

(∫
RN

ρ dx+M

)α(∫
RN

ρq dx

)(2−α)/q

(2)

Proposition
If q > N/(N + λ), the relaxed inequality (2) holds with the same
optimal constant CN,λ,q as (1) and admits an optimizer (ρ,M)

Heuristically, this is the extension of the reverse HLS inequality (1)

Iλ[ρ] ≥ CN,λ,q

(∫
RN

ρ dx

)α(∫
RN

ρq dx

)(2−α)/q

to measures of the form ρ+M δ
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Existence of minimizers and
relaxation
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Existence of a minimizer: first case
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The α < 0 case: dark grey region

Proposition

If λ > 0 and 2N
2N+λ < q < 1, there is a minimizer ρ for CN,λ,q

The limit case α = 0, q = 2N
2N+λ is the conformally invariant case: see

(Dou, Zhu 2015) and (Ngô, Nguyen 2017)
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A minimizing sequence ρj can be taken radially symmetric
non-increasing by rearrangement, and such that∫

RN
ρj(x) dx =

∫
RN

ρj(x)q dx = 1 for all j ∈ N

Since ρj(x) ≤ C min
{
|x|−N , |x|−N/q

}
by Helly’s selection theorem we

may assume that ρj → ρ a.e., so that

lim inf
j→∞

Iλ[ρj ] ≥ Iλ[ρ] and 1 ≥
∫
RN

ρ(x) dx

by Fatou’s lemma. Pick p ∈ (N/(N + λ), q) and apply (1) with the
same λ and α = α(p):

Iλ[ρj ] ≥ CN,λ,p

(∫
RN

ρpj dx

)(2−α(p))/p

Hence the ρj are uniformly bounded in Lp(RN ): ρj(x) ≤ C ′ |x|−N/p,∫
RN

ρqj dx→
∫
RN

ρq dx = 1

by dominated convergence
J. Dolbeault Drift-Diffusion and reverse HLS inequalities
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Existence of a minimizer: second case
If N/(N + λ) < q < 2N/(2N + λ) we consider the relaxed inequality

Iλ[ρ] + 2M
∫
RN |x|

λ ρ dx ≥ CN,λ,q
(∫

RN ρ dx+M
)α (∫

RN ρ
q dx

)(2−α)/q
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The 0 < α < 1 case: dark grey region

Proposition
If q > N/(N + λ), the relaxed inequality holds with the same optimal
constant CN,λ,q as (1) and admits an optimizer (ρ,M)
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Let (ρj ,Mj) be a minimizing sequence with ρj radially symmetric
non-increasing by rearrangement, such that∫

RN
ρj dx+Mj =

∫
RN

ρqj = 1

Local estimates + Helly’s selection theorem: ρj → ρ almost
everywhere and Mj →M := L+ limj→∞Mj , so that∫
RN ρ dx+M = 1, and

∫
RN ρ(x)q dx = 1

We cannot invoke Fatou’s lemma because α ∈ (0, 1): let dµj := ρj dx

µj
(
RN \BR(0)

)
=
∫
{|x|≥R}

ρj dx ≤ C
∫
{|x|≥R}

dx

|x|N/q
= C ′R−N (1−q)/q

µj are tight: up to a subsequence, µj → µ weak * and dµ = ρ dx+ Lδ

lim inf
j→∞

Iλ[ρj ] ≥ Iλ[ρ] + 2M
∫
RN
|x|λ ρ dx ,

lim inf
j→∞

∫
RN
|x|λ ρj dx ≥

∫
RN
|x|λ ρ dx

Conclusion: lim infj→∞ Q[ρj ,Mj ] ≥ Q[ρ,M ]
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Optimizers are positive

Q[ρ,M ] :=
Iλ[ρ] + 2M

∫
RN |x|

λ ρ dx(∫
RN ρ dx+M

)α (∫
RN ρ

q dx
)(2−α)/q

Lemma

Let λ > 0 and N/(N + λ) < q < 1. If ρ ≥ 0 is an optimal function for
some M > 0, then ρ is radial (up to a translation), monotone
non-increasing and positive a.e. on RN

If ρ vanishes on a set E ⊂ RN of finite, positive measure, then

Q
[
ρ,M + ε1E

]
= Q[ρ,M ]

(
1− 2− α

q

|E|∫
RN ρ(x)q dx

εq + o(εq)
)

as ε→ 0+, a contradiction if (ρ,M) is a minimizer of Q

J. Dolbeault Drift-Diffusion and reverse HLS inequalities



Sharp asymptotics for the subcritical Keller-Segel model
Reverse Hardy-Littlewood-Sobolev inequality

Existence of minimizers and relaxation
Regions of no concentration and regularity

Free energy point of view
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Euler–Lagrange equation

Euler–Lagrange equation for a minimizer (ρ∗,M∗)

2
∫
RN |x− y|

λ ρ∗(y) dy +M∗|x|λ

Iλ[ρ∗] + 2M∗
∫
RN |y|λ ρ∗ dy

− α∫
RN ρ∗ dy +M∗

− (2− α) ρ∗(x)−1+q∫
RN ρ∗(y)q dy

= 0

We can reformulate the question of the optimizers of (1) as: when is
it true that M∗ = 0 ? We already know that M∗ = 0 if

2N
2N + λ

< q < 1
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λ

q

q = N−2
N

q=q̄(λ,N)

q = 2N
2N+λ

q = N
N+λ
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No concentration 1
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Proposition

Let N ≥ 1, λ > 0 and N

N + λ
< q <

2N
2N + λ

If N ≥ 3 and λ > 2N/(N − 2), assume further that q ≥ N − 2
N

If (ρ∗,M∗) is a minimizer, then M∗ = 0
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Two ingredients of the proof
Based on the Brézis–Lieb lemma
Lemma

Let 0 < q < p, let f ∈ Lp ∩ Lq(RN ) be a symmetric non-increasing
function and let g ∈ Lq(RN ). Then, for any τ > 0, as ε→ 0+,∫

RN

∣∣∣f(x) + ε−N/p τ g(x/ε)
∣∣∣q dx =

∫
RN

fq dx

+ εN(1−q/p) τ q
∫
RN
|g|q dx+ o

(
εN(1−q/p) τ q

)
Iλ
[
ρ∗ + ε−Nτ σ(·/ε)

]
+ 2 (M∗ − τ)

∫
RN
|x|λ

(
ρ∗(x) + ε−Nτ σ(x/ε)

)
dx

=Iλ[ρ∗]+2M∗
∫
RN
|x|λ ρ? dx+

{
2 τ
∫∫

RN×RN ρ∗(x)
(
|x− y|λ − |x|λ

) σ( yε )
εN

dx dy

+ ελ τ2 Iλ[σ] + 2 (M∗ − τ) τ ελ
∫
RN |x|

λ σ dx︸ ︷︷ ︸
=O(εβ τ) with β:=min{2,λ}
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Regularity and concentration
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Proposition

If N ≥ 3, λ > 2N/(N − 2) and

N

N + λ
< q < min

{
N − 2
N

,
2N

2N + λ

}
,

and (ρ∗,M∗) ∈ LN (1−q)/2(RN )× [0,+∞) is a minimizer, then M∗ = 0
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Regularity

Proposition

Let N ≥ 1, λ > 0 and N/(N + λ) < q < 2N/(2N + λ)
Let (ρ∗,M∗) be a minimizer

1 If
∫
RN ρ∗ dx >

α
2

Iλ[ρ∗]∫
RN
|x|λ ρ∗ dx

, then M∗ = 0 and ρ∗, bounded and

ρ∗(0) =
(

(2− α)Iλ[ρ∗]
∫
RN ρ∗ dx(∫

RN ρ
q
∗ dx

) (
2
∫
RN |x|λ ρ∗ dx

∫
RN ρ∗ dx− αIλ[ρ∗]

)) 1
1−q

2 If
∫
RN ρ∗ dx = α

2
Iλ[ρ∗]∫

RN
|x|λ ρ∗ dx

, then M∗ = 0 and ρ∗ is unbounded

3 If
∫
RN ρ∗ dx <

α
2

Iλ[ρ∗]∫
RN
|x|λ ρ∗ dx

, then ρ∗ is unbounded and

M∗ =
αIλ[ρ∗]− 2

∫
RN |x|

λ ρ∗ dx
∫
RN ρ∗ dx

2 (1− α)
∫
RN |x|λ ρ∗ dx

> 0
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An ingredient of the proof

Lemma

For constants A, B > 0 and 0 < α < 1, define

f(M) = A+M

(B +M)α for M ≥ 0

Then f attains its minimum on [0,∞) at M = 0 if αA ≤ B and at
M = (αA−B)/(1− α) > 0 if αA > B
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No concentration 2
For any λ ≥ 1 we deduce from

|x− y|λ ≤
(
|x|+ |y|

)λ ≤ 2λ−1 (|x|λ + |y|λ
)

that
Iλ[ρ] < 2λ

∫
RN
|x|λ ρ dx

∫
RN

ρ(x) dx

For all α ≤ 2−λ+1, we infer that M∗ = 0 if

q ≥
2N
(
1− 2−λ

)
2N
(
1− 2−λ

)
+ λ
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No concentration 3
Layer cake representation (superlevel sets are balls)

Iλ[ρ] ≤ 2AN,λ
∫
RN
|x|λ ρ dx

∫
RN

ρ(x) dx

AN,λ := sup
0≤R,S<∞

∫∫
BR×BS |x− y|

λ dx dy

|BR|
∫
BS
|x|λ dx+ |BS |

∫
BR
|y|λ dy
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Proposition

Assume that N ≥ 3 and λ > 2N/(N − 2) and observe that

N

N + λ
< q̄(λ,N) ≤

2N
(
1− 2−λ

)
2N
(
1− 2−λ

)
+ λ

<
2N

2N + λ

for λ > 2 large enough. If

max
{
q̄(λ,N), N

N + λ

}
< q <

N − 2
N

and if (ρ∗,M∗) is a minimizer, then M∗ = 0 and ρ∗ ∈ L∞(RN )
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More on regularity

Lemma

Assume that ρ∗ is an unbounded minimizer
if λ < 2, there is a constant c > 0 such that

ρ∗(x) ≥ c |x|−λ/(1−q) as x→ 0

if λ ≥ 2, there is a constant C > 0 such that

ρ∗(x) = C |x|−2/(1−q) (1 + o(1)
)

as x→ 0

Corollary

q 6= 2N
2N + λ

,
N

N + λ
< q < 1 and q ≥ N − 2

N
if N ≥ 3

If ρ∗ is a minimizer for CN,λ,q, then ρ∗ ∈ L∞(RN )
J. Dolbeault Drift-Diffusion and reverse HLS inequalities
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A toy model
Assume that u solves the fast diffusion with external drift V given by

∂u

∂t
= ∆uq + ∇ ·

(
u∇V

)
To fix ideas: V (x) = 1 + 1

2 |x|
2 + 1

λ |x|
λ. Free energy functional

F[u] :=
∫
RN

V u dx− 1
1− q

∫
RN

uq dx

Under the mass constraint M =
∫
RN u dx, smooth minimizers are

uµ(x) =
(
µ+ V (x)

)− 1
1−q

The equation can be seen as a gradient flow

d

dt
F[u(t, ·)] = −

∫
RN

u
∣∣∣ q

1−q∇u
q−1 −∇V

∣∣∣2 dx
J. Dolbeault Drift-Diffusion and reverse HLS inequalities
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A toy model (continued)

If λ = 2, the so-called Barenblatt profile uµ has finite mass if and only
if

q > qc := N − 2
N

For λ > 2, the integrability condition is q > 1− λ/N but q = qc is
a threshold for the regularity: the mass of uµ = (µ+ V )1/(1−q) is

M(µ) :=
∫
RN

uµ dx ≤M? =
∫
RN

( 1
2 |x|

2 + 1
λ |x|

λ
)− 1

1−q dx

If one tries to minimize the free energy under the mass contraint∫
RN u dx = M for an arbitrary M > M?, the limit of a minimizing
sequence is the measure (

M −M?

)
δ + u−1
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A model for nonlinear springs: heuristics

V = ρ ∗Wλ , Wλ(x) := 1
λ |x|

λ

is motivated by the study of the nonnegative solutions of the
evolution equation

∂ρ

∂t
= ∆ρq + ∇ · (ρ∇Wλ ∗ ρ)

Optimal functions for (1) are energy minimizers (eventually measure
valued) for the free energy functional

F[ρ] := 1
2

∫
RN

ρ (Wλ∗ρ) dx− 1
1− q

∫
RN

ρq dx = 1
2λ Iλ[ρ]− 1

1− q

∫
RN

ρq dx

under a mass constraint M =
∫
RN ρ dx while smooth solutions obey to

d

dt
F[ρ(t, ·)] = −

∫
RN

ρ
∣∣∣ q

1−q∇ρ
q−1 −∇Wλ ∗ ρ

∣∣∣2 dx
J. Dolbeault Drift-Diffusion and reverse HLS inequalities
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Free energy or minimization of the quotient

F[ρ] = − 1
1− q

∫
RN

ρq dx+ 1
2λIλ[ρ]

If 0 < q ≤ N/(N + λ), then CN,λ,q = 0: take test functions
ρn ∈ L1

+ ∩ Lq(RN ) such that ‖ρn‖L1(RN ) = Iλ[ρn] = 1 and∫
RN ρ

q
n dx = n ∈ N

lim
n→+∞

F[ρn] = −∞

If N/(N + λ) < q < 1, ρ`(x) := `−N ρ(x/`)/‖ρ‖L1(RN )

F[ρ`] = − `(1−q)N A + `λ B
has a minimum at ` = `? and

F[ρ] ≥ F[ρ`? ] = −κ? (Qq,λ[ρ])−
N (1−q)

λ−N (1−q)

Proposition

F is bounded from below if and only if CN,λ,q > 0
J. Dolbeault Drift-Diffusion and reverse HLS inequalities
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Relaxed free energy

Frel[ρ,M ] := − 1
1− q

∫
RN

ρq dx+ 1
2λ Iλ[ρ] + M

λ

∫
RN
|x|λ ρ dx

Corollary
Let q ∈ (0, 1) and N/(N + λ) < q < 1

inf
{
Frel[ρ,M ] : 0 ≤ ρ ∈ L1 ∩ Lq(RN ) , M ≥ 0 ,

∫
RN

ρ dx+M = 1
}

is achieved by a minimizer of (2) such that
∫
RN ρ∗ dx+M∗ = 1 and

Iλ[ρ∗] + 2M∗
∫
RN
|x|λ ρ∗ dx = 2N

∫
RN

ρq∗ dx
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Uniqueness

Proposition
Let N/(N + λ) < q < 1 and assume either that (N − 1)/N < q < 1
and λ ≥ 1, or 2 ≤ λ ≤ 4. Then the minimizer of

Frel[ρ,M ] := 1
2λ Iλ[ρ] + M

λ

∫
RN
|x|λ ρ dx− 1

1− q

∫
RN

ρq dx

is unique up to translation, dilation and multiplication by a positive
constant
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If (N − 1)/N < q < 1 and λ ≥ 1, the lower semi-continuous
extension of F to probability measures is strictly geodesically convex
in the Wasserstein-p metric for p ∈ (1, 2)

By strict rearrangement inequalities a minimizer (ρ,M) such that
M ∈ [0, 1) of the relaxed free energy Frel is (up to a translation) such
that ρ is radially symmetric and

∫
RN x ρ dx = 0

Let (ρ,M) and (ρ′,M ′) be two minimizers and

[0, 1] 3 t 7→ f(t) := Frel[(1− t) ρ+ t ρ′, (1− t)M + tM ′
]

f ′′(t) = 1
λ
Iλ[ρ′ − ρ] + 2

λ
(M ′ −M)

∫
RN
|x|λ (ρ′ − ρ) dx

+ q

∫
RN

(
(1− t) ρ+ t ρ′

)q−2(ρ′ − ρ)2 dx

(Lopes, 2017) Iλ[h] ≥ 0 if 2 ≤ λ ≤ 4, for all h such that∫
RN
(
1 + |x|λ

)
|h| dx <∞ with

∫
RN h dx = 0 and

∫
RN xh dx = 0
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