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Sharp asymptotics for the
subcritical Keller-Segel model

@ Literature is huge

@ Physics can be addressed in various ways: gravitation
(Smoluchowski-Poisson) and statistics of gravitating systems,
aggregation dynamics (sticky systems), biology (Patlak,
Keller-Segel)

@ Standard techniques have been reinvented many times: virial
estimates, cumulated mass densities, matched asymptotics

Q@ do not specialize to radial solutions
@ put emphasis on functional analysis
Q insist on nonlinear evolution
@ deal with the subcritical case
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Sharp '1§yn’1pf0tu‘§ for the subcritical Keller Segel model
R dy-Littlew

Exi 1 :nce of minimizer

Regions of no concentration anc

An introduction to the Keller-Segel model
The super-critical range: life after blow-up
The subcritical range

Functional framework and sharp asymptotics

Free energ

The parabolic-elliptic Keller — Segel system

g?—Au—V-(qu) reR?, >0

—Av=u re€R?, t>0
u(,t=0)=mne >0 r € R?
We make the choice:

1
olto) = —5- [ logle—ylu(t.9) dy

and observe that

1 -y
Vo(t,z) = —— [ ——=u(t,y) d
u(t, x) QW/Rz P u(t,y) dy

d
Mass conservation: — [ wu(t,z) dx =0
R2
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Sharp asymptotics for the subcritical Keller-Segel model A ftmedneion ¢ (o Kalm-Semdl modk]
Reverse Hardy-Littlewood-Sobolev inequality AAER U L SO C
; . \tion The super-critical range: life after blow-up
The subcritical range
Functional framework and sharp asymptotics

Existence of minimizer mm\

Regions of no concentration and regu
Free energy point of view

Blow-up: the virial computation

Collapse (S. Childress, J.K. Percus 81) M = [, ng dz > 87 and
Jg2 |22 no dz < co: blow-up in finite time
A solution u of

ou

EzV-(Vu—qu)

satisfies

d

@ 2
7l || u(t, x) de

:_/ 27 - Vudx+—// 2Txy ‘Qw) u(t, ) u(t,y) dedy
e R? XR2 i

R v C WD) 1.0) () dny

M2
=4M - —<0 if M>8r
2w
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Sharp asymptotics for the subcritical Keller-Segel model An introduction to the Keller-Segel model

The super-critical range: life after blow-up
The subcritical range
Functional framework and sharp asymptotics

The super-critical range: regularization & life after
blow-up

Regularize the Poisson kernel
_ 1
() s p (o) = ~5- [ Tog(lo— ul-+ ) ply) dy
™ JRr2

[F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler
equations, Meth. Appl. Anal. 9 (2002), pp. 533-561]

Proposition (JD, C. Schmeiser 2009)

For every € > 0, the reqularized problem has a global solution
satisfying

6% Dl mey = llpollr w2y == M

1
ot Moy < (14 3 )

with an e-independent constant c
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Sharp asymptotics for the subcritical Keller-Segel model An introduction to the Keller-Segel model

The super-critical range: life after blow-up
The subcritical 1ge
Functional framework and sharp asymptotics

The nonlinear term

117®2

m(ta) = [ K ) 0 0) 0Tty it K () =

Lemma (Poupaud)

The families {p®(t)}eso and {m*(t)}c=0 are tightly bounded locally
uniformly in t, and {p°(t)}eso is tightly equicontinuous in t

Tight boundedness and equicontinuity of p(t) = compactness
Jeo Jgz o(@,y) p°(t,2) p°(t,y) dx dy — [go Jgo 0(2,y) p(t,2) p(t,y) do dy
:12 Jgz @(t, ) m* (t, ) de dt — fttf Jge (t, x) m(t, ) du dt
for all p € Cy([t1,t2] x R?)
Defect measure

z®?

v(t,@) = m(t) — [ Kl@—y)plt.2) plty) dy, K(z)=1og
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Sharp asymptotics for the subcritical Keller-Segel model An introduction to the Keller-Segel model

The super-critical range: life after blow-up
The subcritical range
Functional framework and sharp asymptotics

Atomic support

The limit is characterized by the pair (p,v), the atomic support of p
is an at most countable set

Lemma (Poupaud 2002)

v is symmetric, nonnegative, and satisfies

ute) < Y (p()({a})*(x —a)

a€Sat(p(t))

M: Radon measures, M} : nonnegative bounded measures

DM (I;R?) = {(p, V) p(t) € MF(R2) Wt € I, v e M(I x R2)2*2
p is tightly continuous with respect to t

v is a nonnegative, symmetric, matrix valued measure

bt ) < Y (t)({ah)( - o)}

a€Sai(p(t))
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Sharp asymptotics for the subcritical Keller-Segel model

Limiting problem

An introduction to the Keller-Segel model
The super-critical range: life after blow-up
The subcritical 1ge

Functional framework and sharp asymptotics

Vo € CL(0,T), xR2) [ [, o(t,x)

ilp V(@) da dt

= 2 [T fa(o(t @) — ot ) K (x — ) p(t, 2) plt, y) dodydt

— i foT Jpe v(t, 2)Vp(t, ) dadt

Theorem (JD, C. Schmeiser 2009)

For every T > 0, p® converges tightly and uniformly in time to p(t)
and there exists v(t) such that (p,v) € DMT((0,T);R?) is a

generalized solution of

p+V - (jlp,v] = Vp) =0

p(t =0) = po holds in the sense of tight continuity

J. Dolbeault
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harp asymptotics for the subcritical Kellpr egel model 5 q - a
ERazolasymy See An introduction to the Keller-Segel model
R Harc ] -Littlewood-Sobolev i1 J 1ality A H
Exist 1 nd r The super-critical range: life after blow-up
. The subcritical 1ge
Regions of 1 concentration and regular 8 . . N 3
Fres anorgy Doint of vies Functional framework and sharp asymptotics

Strong formulation (formal) : an ansatz

Q@ p=p+p, pt,x) = ¥,en Malt) 0n(t,7), 00 (t,7) = 3(2 — wn(t))
e (p,v) € DMF((0,T); R?)
= v(t,2) =3 ey Vn(t) On(t, 2), tr(vy) < M7

. 1
Jlp,v] =BV So[p+5] ZM 0, VS p—|—ZM Om +E;annv5n

m¥#n

Op+V - (pVSolp] = V) + Vp - VSo[p]
+Z§n(Mn _pMn)
=" M, V3, (i~ VS [p+ > e M 5,4)

+Z : — M, AS,) =0
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An introduction to the Keller-Segel model
The super-critical range: life after blow-up
The subcrlt\cal range

Functional fr rk and sharp asymptotics

Sharp '1§yn)pf0tu‘§ for the subcritical Keller-Segel model
R dy-Littlewood-Sobolev inequality

Keller-Segel model: the subcritical range

M = [z, ngdx < 8m: global existence (W. Jéger, S. Luckhaus 1992),
(JD, B. Perthame 2004), (A. Blanchet, JD, B. Perthame 2006)

If u solves

ou

5= V- [u (V (logu) — V)]

the free energy

1
Flu] ::/ ulogu dr — f/ uv dz
R2 2 Jgre
satisfies

d

— Fu(t, )]:f/ u|V (logu) — Vo|* do
dt R2
(log HLS) inequality (E. Carlen, M. Loss 1992):

F is bounded from below if M < 8«

.. M = 8 the critical case (A. Blanchet, J.A. Carrillo, N. Masmoudi
2008), (A. Blanchet et al.)
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Sharp asymptotics for the subcritical Keller-Segel model An introduction to the Keller-Segel model

Reverse Hardy-Littlewood-Sobolev inequality o . g
g 1 The super-critical range: life after blow-up
Existence of minimizers and relaxation o

5 ! 3 The subcritical range
Regions of no concentration and regularity o . L
! Functional framework and sharp asymptotics
Free energy point of view d

The existence setting for the subcritical regime

%:Au—v'(uV’u) zeR?, t>0

—Av=u r€R?, t>0
u(,t=0)=mng >0 z € R?

Initial conditions

no € LY (R?, (1+|z[*) dz), nglogng € L*(R?,dz), M = _no(z)dz <87
R

Global existence and mass conservation: M = fR2 u(z,t)dz Vit >0

v=—5 log|-|*u
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harp asymptotics for the subcritical Keller-Segel model . . . -
Ehazplesymp) See An introduction to the Keller-Segel model
Reve 11\1 -Littlewood-Sobolev i Hu. ; ; g
. The super-critical range: life after blow-up
Exist nd re . o
Reei . trati nd regularit The subcritical range
vegrons ¢ “I : | . ‘\ boint of o Functional framework and sharp asymptotics

Time-dependent rescaling

1 T T
u(z,t) = R0 n (R(t)’T(t)> and wv(x,t) =c (R(t)’T(t))
with R(t) = /1 + 2t and 7(t) = log R(¢)

Z—Z:Anfv'(n(chx)) reR?, >0
1

c:—2—log\-|*n reR? t>0

n(-,t=0)=ng >0 r € R?

(A. Blanchet, JD, B. Perthame) Convergence in self-similar variables
{7y 48) = ool ey =0 and - lim [[Ve(, - +1) = Voo 22y = 0
means intermediate asymptotics in original variables:

e, £) = gy oo (757 7(8)) ey O
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Sharp asymptotics for the subcritical Keller-Segel model An introduction to the Keller-Segel model

Reverse Hardy-Littlewood-Sobolev inequality o . g
g 1 The super-critical range: life after blow-up
Existence of minimizers and relaxation o

5 ! 3 The subcritical range
Regions of no concentration and regularity o . L
! Functional framework and sharp asymptotics

Free energy point of view

The stationary solution in self-similar variables

ecoo_lx‘Q/z

Noo = M fRQ ecm_lwp/z dr

1
:_ACOO7 Coo—__10g|'|*n00
21

o Radial symmetry (Y. Naito)
@ Uniqueness (P. Biler, G. Karch, P. Laurengot, T. Nadzieja)

o As |z| = 400, neo is dominated by e~ (1=a)lzl?/2 for any € € (0,1)
(A. Blanchet, JD, B. Perthame)
o Bifurcation diagram of [|ne | ;e (g2 as a function of M

Mlg%+ 1700 | oo 2y = 0
(D.D. Joseph, T.S. Lundgren) (JD, R. Staniczy)
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Sharp asymptotics for the subcritical Keller-Segel model An introduction to the Keller-Segel model

Reve Hardy-Littlewood-Sobolev inequality AAA q
Y oo 1 The super-critical range: life after blow-up
ixistence of minimizers and relaxation e
. The subcritical range
Regions of no concentration and regularity

v Functional framework and sharp asymptotics
Free energy point of view 3

The stationary solution when mass varies

0.5 10 T 15 20

Figure: Representation of the solution appropriately scaled so that the 87
case appears as a limit (in red)
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Sharp asymptotics for the subcritical Keller-Segel model
Reve

Harc ] Little 1-Sobole in Lality An introduction to the Keller-Segel model
. g J The super-critical range: life after blow-up
istenc of 1 wtion
5 The subcnt\cal range
Regions of no wm‘\muu\m ty
o S point of vi Functional framework and sha
ee energy point of view

The free energy in self-similar variables

rp asymptotics

% ZV[n(logn—m—i—Vc)}

1 1
F[n] ::/ nlogndm—i—/ f|x|2ndx—f/ necdx
R2 R22 2 R2

satisfies

iF[n(t, )] = f/ n|V (logn) + 2 — Ve|* da
dt R?

A last remark on 87 and scalings: n*(z) = A2 n(Az)

Fn*| = Fln]+ /Rgllog()\Q) d:r—i—/il lz|? n d;zc—|—4i n(z) n(y) log§ dx

R2 xR2
M? A 21
F[n*] — Fn] = <2M— 47r> logA—i—T /}R2 |z|?n dx
————
>0 if M<8n
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Reverse Hardy-Littlewood-Sobolev inequality o . g
g 1 The super-critical range: life after blow-up
Existence of minimizers and relaxation o

5 ! 3 The subcritical range
Regions of no concentration and regularity o . L
! Functional framework and sharp asymptotics
Free energy point of view d

Keller-Segel with subcritical mass in self-similar
variables

Z—ZL:An—V-(n(Vc—x)) r€eR?, >0

1
c=——log|-|*n reR?, t>0
2m
n(,t=0)=mnyg>0 z € R?
B 4 = el =0 and i Vel + )~ Veoelagesy =0
coo—|z|?/2

e

N = M fRQ eCoo_Iw‘2/2 d.’I;

1
= —Acs , coo:—%log|~|>knOo
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Reverse Hardy-Littlewood-Sobolev inequality
Existence of minimizers and relaxation

An introduction to the Keller-Segel model
The super-critical range: life after blow-up
The subcritical range

Functional framework and sharp asymptotics

Regions of no concentration and regularity
Free energy point of view

A parametrization of the solutions and the linearized
operator

(J. Campos, JD) o— 1 lzl*+e
f]Rz e~z lelPte dy

Solve
_SO//_ESD/:G—%rz-Hp’ r>0
T

with initial conditions ¢(0) = a, ¢’(0) = 0 and get with r = ||

M(a) := 277/ e T e g
R2
-3 T2+S‘7a(r)
na(x) = M(a) € I = 6_%T2+‘Pa(r)
27 [por e 2 T +ee dy
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Sharp asymptotics for the subcritical Keller-Segel model

Reverse Hardy-Littlewood-Sobolev inequality
tence of minimizers and relaxation
Regions of no concentration and regularity

Free energy point of view

An introduction to the Keller-Segel model
The super-critical range: life after blow-up
The subcritical range

Functional framework and sharp asymptotics

-4 -2 2 4 6 8 10

Figure: The mass can be computed as M(a) = 2w fooo nq(r)r dr. Plot of
a— M(a)/87
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Sharp asymptotics for the subcritical Keller-Segel model
Reverse Hardy-Littlewood-Sobolev inequality
Existence of minimizers and relaxation

Regions of no concentration and regularity

Free energy point of view

Bifurcation diagram

An introduction to the Keller-Segel model
The super-critical range: life after blow-up
The subcritical range

Functional framework and sharp asymptotics

1.5 20

3.0 35 40

Figure: The bifurcation diagram can be parametrized by
ar (5= M(a), ||lcalloc) with ||callsc = ca(0) = a —b(a) (cf. Keller-Segel
system in a ball with no flux boundary conditions)

J. Dolbeault
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Reverse Hardy-Littlewood-Sobolev inequality
Existence of minimize and relaxation

An introduction to the Keller-Segel model
The super-critical range: life after blow-up
The subcritical range

Functional framework and sharp asymptotics

Regions of no concentration and regularity
Free energy point of view

Linearization

We can introduce two functions f and g such that
n=ne(l+f) and c=c(1+9)

and rewrite the Keller-Segel model as

9
8_{ :Lf+iV(fnooV(Coog))

where the linearized operator is
1
L f = Tv . (noov(f — Coo g))

and
—A(Co0 9) = N f

[
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Sharp asymptotics for the subcritical Keller-Segel model
Reverse Hardy-Littlewood-Sobolev inequality
Existence of minimizers and relaxation

Regions of no concentration and regularity

Free energy point of view

Spectrum of £ (lowest eigenvalues only)

An introduction to the Keller-Segel model
The super-critical range: life after blow-up
The subcritical range

Functional framework and sharp asymptotics

7k

——

H 10 is 20 B

Figure: The lowest eigenvalues of —£ = (—A)"*(n, f) (shown as a function
of the mass) are 0, 1 and 2, thus establishing that the spectral gap of —£ is
1

(A. Blanchet, JD, M. Escobedo, J. Fernandez), (J. Campos, JD),
(V. Calvez, J.A. Carrillo), (J. Bedrossian, N. Masmoudi)
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Sharp asymptotics for the subcritical Keller-Segel model An introduction to the Keller-Segel model

The super-critical range: life after blow-up
The subcritical range
Functional framework and sharp asymptotics

Functional framework and sharp asymptotics

Lemma (A. Blanchet, JD, B. Perthame)

Sub-critical HLS inequality (A. Blanchet, JD, B. Perthame)

Fn] ::/Rgnlog<noo) dm—%/Rz(n—noo)(c—coo)deO

achieves its minimum for n = N

Qi[f] = lim %F[nm(l +ef)l =0

e—0 €

if fR2 fneo dr = 0. Notice that fy generates the kernel of Q

)= [P do= [ fr(gen) do

J. Dolbeault Drift-Diffusion and reverse HLS inequalities



Sharp asymptotics for the subcritical Keller-Segel model An introduction to the Keller-Segel model

The super-critical range: life after blow-up
The subcritical range
Functional framework and sharp asymptotics

Figenvalues

With g such that —A(g cso) = f Neo, Q1 determines a scalar product

i fo) = /R Fi fane d — /R J1 e (g2 ¢o0) da

on the orthogonal space to fy in L?(ns dx)

Q2[f]1=/R2|V(f—gcoo)|2nood:c with g:—ii

1 .
o log (/o)

is a positive quadratic form, whose polar operator is the self-adjoint
operator £

(fLf)=Qa[f] Y feD(Ls)

Lemma (J. Campos, JD)

L has pure discrete spectrum and its lowest eigenvalue is 1
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Sharp asymptotics for the subcritical Keller-Segel model An introduction to the Keller-Segel model

The super-critical range: life after blow-up
The subcritical range
Functional framework and sharp asymptotics

Linearized Keller-Segel theory

Lf= 1V (neV(f — e g)

Noo

Corollary (J. Campos, JD)

(f, ) <L f. [
The linearized problem takes the form

of
o

where £ is a self-adjoint operator on the orthogonal of fy equipped
with (-,-). Exponential decay:

d
e - 2(s
G )= 2L f )
(J. Campos, JD, 2014) (G. E. Fernandez, S. Mischler, 2016)
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Sharp asymptotics for the subcritical Keller-Segel model

Reverse Hardy-Littlewood-Sobolev inequality ‘The inequality and the conformally invariant case
=, SomETeE et 2 A proof based on Carlson’s inequality
Existence of minimizers and relaxation
. 5 The case A = 2
Regions of no concentration and regularity

P . q A Concentration and a relaxed inequality
ree energy point of view

Reverse
Hardy-Littlewood-Sobolev
inequality

o =
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The inequality and the conformally invariant case
A

Reverse Hardy-Littlewood-Sobolev inequality sed om Carloon's inoqnntity

A=2
Concentration and a relaxed inequality

The reverse HLS inequality

For any A > 0 and any measurable function p > 0 on R¥, let

b= [[ el o)t dady

9N —q(2N +\)
N(1-q)
Convention: p € LP(RY) if [Ly [p(2)|P dz for any p > 0

Theorem

The inequality (2—a)/

Bl 2evas ([ oae) ([oa) @

holds for any p € L1 NLY(RYN) with €y x4 > 0 if and only if

qg> N/(N+))

If either N =1, 2 or if N >3 and ¢ > min {1 — 2/N, 2N/(2N + )},
then there is a radial nonnegative optimizer p € LY N LY(RN)

J. Dolbeault Drift-Diffusion and reverse HLS inequalities
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Sharp asymptotics for the subcritical Keller-Segel model
Reverse Hardy-Littlewood-Sobolev inequality
Existence of minimizers and relaxation

Regions of no concentration and regularity

Free energy point of view

The inequality and the conformally invariant case
A proof based on Carlson’s inequality

The case A = 2

Concentration and a relaxed inequality

08

06

04

02

00,

N =4, region of the parameters (X, q) for which Cy x4 >0
Optimal functions exist in the light grey area

[m] =P = =
J. Dolbeault Drift-Diffusion and reverse HLS inequalities
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1arp asymptotics for the critical Keller-Segel model
"Reverse Hardy-Littlewood-Soboley inequality A1 e o e o T erieny csee
=8 se s

»n and a relaxed inequality

The conformally 1nvar1ant case ¢ = 2N/(2N + \)

2/q
pl = // |z =y p(a) py) dedy > Crxq (/ p? dm)
RN xRN RN

2N/2N+)) <= a=0
(Dou, Zhu 2015) (Ng6, Nguyen 2017)

The optimizers are given, up to translations, dilations and
multiplications by constants, by

p(z) = (1+ |w|2)7N/q Yz eRY

and the value of the optimal constant is

A
oy (rn)F
W = T ) T

J. Dolbeault Drift-Diffusion and reverse HLS inequalities




Sharp asymptotics for the subcritical Keller-Segel model T fom lity and the conformally invariant
Reverse Hardy-Littlewood-Sobolev inequality © lnequality and the conformally Invariant case
’ ~=0bo ' A proof based on Carlson’s inequality
E tence of minimizers and relaxation
The case A = 2

Regions of no concentration and regularity = . :
g : Concentration and a relaxed inequality
Free energy point of view

N =4, region of the parameters (X, q) for which Cn x4 >0
The plain, red curve is the conformally invariant case o =0

J. Dolbeault Drift-Diffusion and reverse HLS inequalities



Sharp asymptotics for the subcritical Keller-Segel model
Reverse Hardy-Littlewood-Sobolev inequality
Existence of minimizers and relaxation

Regions of no concentration and regularity
Free energy point of view

The inequality and the conformally invariant case
A proof based on Carlson’s inequality

The case A = 2

Concentration and a relaxed inequality

o (2-a)/q
lz—y|* p(x) ply) dzdy > Cn xq . pdx p? dx

RN xRN RN

1.0
R
0.87— o < 0
0.6
041 0<ax<l
L ..
0.2
I a>1
[ L L L L L L L L L L L L L L L L L L L L L L L L
0 2 4 6 8 10 12
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The inequality and the conformally invariant case
A proof based on Carlson’s inequality

The case A 2

Concentration and a relaxed inequality

Reverse Hardy-Littlewood-Sobolev inequality

A Carlson type inequality

Lemma

Let A\ >0 and N/(N+X) <g<1

(form)

L (N4 a=N\T [ N(1—g) e r(5)r(3) ¢
_ 1 —q
ewra =% ()" (fssit) <2w%r< 1 %)r(%))

Equality is achieved if and only if

N (1-q) N(1-q)
X X

Q=

p(z) = (1+]a])) ™7

up to dilations and constant multiples

(Carlson 1934) (Levine 1948)
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Sharp asymptotics for the subcritical Keller-Segel model Wi fmcamelbity ol e aomiommallly fvmmomy Ceee
Reverse Hardy-Littlewood-Sobolev )rn(_qu‘a‘l‘lt'y" P B N e

Region no concentration and re e eere A = 2

reglons of n ‘|‘H< e “\“‘ it of i Concentration and a relaxed inequality

ixistence of minimizers anc

An elementary proof of Carlson s inequality

q q
/ pldr < (/ pdw) |BR|1_‘1 = </ pdx) RN (-9
{lz|<R} RN RN

and

a
/ pldr < (/ |,r|>‘pdx> / | % dr
{lz|>R} RN {lz|>R}
a
=Cs / lz|* pdz ) RN A-)
RN

and optimize over R > 0

. existence of a radial monotone non-increasing optimal function;
rearrangement; Euler-Lagrange equations
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The inequality and the conformally invariant case
A proof based on Carlson’s inequality
The case A 2

Concentration and a relaxed inequality

Reverse Hardy-Littlewood-Sobolev inequality

Let A\ > 0. If N/(N+ X)) <qg<1, then Cy x4 >0

By rearrangement inequalities: prove the reverse HLS inequality for
symmetric non-increasing p’s so that

/ Iw—yIAp(y)d:cz/ |z pd for all = e RN
RN RN

Dz [ JePpds [ pds
RN RN

In the range NLH <g<l1

W > (/Rdixdx)l_a/]R |z} pda > & 3, </R<Npqu)

and conclude with Carlson’s inequality

implies

2—a

J. Dolbeault Drift-Diffusion and reverse HLS inequalities




The inequality and the conformally invariant case
A proof based on Carlson’s inequality
The case A = 2

Concentration and a relaxed inequality

Reverse Hardy-Littlewood-Sobolev inequality

The case A = 2

Corollary

Let A=2 and N/(N +2) < q < 1. Then the optimizers for (1) are
given by translations, dilations and constant multiples of

1
pla) = (1+[=*) T
and the optimal constant is

2q
_ 1 _NQO-9
Cn2,qg =73 CN,2,q

By rearrangement inequalities it is enough to prove (7) for symmetric
non-increasing p’s, and so f]RN x pdx = 0. Therefore

Ly[p] =2/ pdw/ |z[*pdz
RN RN

and the optimal function is optimal for Carlson’s inequality
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Sharp asymptotics for the subcritical Keller-Segel model

Reverse Hardy-Littlewood-Sobolev inequality
tence of minimizers and relaxation
Regions of no concentration and regularity

Free energy point of view

The inequality and the conformally invariant case

A proof based on Carlson’s inequality
The case A = 2
Concentration and a relaxed inequality

1.0
[N
Y
AN
0.8 i \\
N,
r N\,
0.6 |
04+
0.2}
[ L L L L L L L L L L
0 2 4

N =4, region of the parameters (X,q) for which Cy x4 > 0. The
dashed, red curve is the threshold case ¢ = N/(N + \)

J. Dolbeault
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Reverse Hardy-Littlewood-Sobolev inequality

The inequality and the conformally invariant case
A proof based on Carlson’s inequality
The case k 2

The threshold case ¢ = N/(N + A) and below

Proposition

If0 < g < N/(N+X), then Cna g = 0 = limg_ n/(n4r),

CNrg
Let p, 0 > 0 such that [,y 0 dz =1, smooth (4 compact support)

pe(a) = pla) + M o(a/2)
Then [on pe dz = [pn pdx+ M and, by simple estimates

and

/ pldr — pldx as e — 04
RN RN

IA[pE]—>I>\[p]+2M/ |z} pdz as e — 0y
RN

If0<q< N/(N+DN),ie,a>1, take p. as a trial function
I +2M x| pdx
Crng < Alpl] fRN |z p

—7- = Qp, M]
(fan pda+ M) ( [y pt dx) ®0/

J. Dolbeault
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She as totics for the beritical Keller-Segel odel . . . . .
rarp asymptotl T the subcritical e er-Sege mode The inequality and the conformally invariant case

Reverse Hardy-Littlewood-Sobolev inequalit A ~ e q
) ¥ S quality A ek el o Clhmbems freamelis
xistence of minimizers and relaxation -
Regions of no concentration and regularity e eass A = 2
- . A S Concentration and a relaxed inequality

Free energy point of view

The threshold case: If @ =1, i.e., ¢ = N/(N + A), by taking the limit
as M — + oo, we obtain

2 fon |2 pda
(f]RN P dm)@—a)/q

Caag <

For any R > 1, we take
pr(z) =[x NV 1y <p (@)

Then
/ |z|* pr dx :/ phdr = SN log R
RN RN

and, as a consequence,

fRN |z|* pr dx

(N+X)/
(e o )

A

N:(|SN_1{logR)_ N—>0 as R — o0

This proves that Cy x4 = 0 for ¢ = N/(N + A)
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Reverse Hardy-Littlewood-Sobolev inequality

The inequality and the conformally invariant case
A proof based on Carlson’s inequality
The case A 2

Concentration and a relaxed inequality

A relaxed inequality

« (2-a)/q
I,\[p]—|—2M/ |z pdz > Cnoxyg (/ pdx—i—M) (/ pqdm>
RN RN RN

Proposition

(2)

If g > N/(N + X), the relazed inequality (2) holds with the same

optimal constant Cn x4 as (1) and admits an optimizer (p, M)

Heuristically, this is the extension of the reverse HLS inequality (1)

o (2—a)/q
I\p] = Cng </ Pd$> </ p? d$>
RN RN

to measures of the form p 4+ M §

J. Dolbeault
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Sharp asymptotics for the subcritical Keller-Segel mode
Reverse Hardy-Littlewood-Sobolev inequality . .
Lardy oo lua’ity Above the curve of the conformally invariant case
Existence of minimizers and relaxation q q
- - - . Below the curve of the conformally invariant case
Regions of no concentration and regularity
Free energy point of view

Existence of minimizers and

relaxation
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Above the curve of the conformally invariant case

Existence of minimizers and relaxation o z i
Below the curve of the conformally invariant case

Existence of a minimizer: first case

The a < 0 case: dark grey region

If A > 0 and 55~ 2N+>\ < g < 1, there is a minimizer p for Cy x4

The limit case & =0, g = 5 ]%,JX 5 is the conformally invariant case: see
(Dou, Zhu 2015) and (Ngo, Nguyen 2017)
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Above the curve of the conformally invariant case

Existence of minimizers and relaxation o z i
Below the curve of the conformally invariant case

A minimizing sequence p; can be taken radially symmetric
non-increasing by rearrangement, and such that

/ pj(x)dx :/ pj(x)fdr=1 foralljeN
RN RN

Since p;(z) < C min {|z|~", |z[~N/7} by Helly’s selection theorem we
may assume that p; — p a.e., so that

liminf In[p;] > I\[p] and 1> / p(x) dz

J—00 RN

by Fatou’s lemma. Pick p € (N/(N + A),q) and apply (1) with the
same A and a = «a(p):

(2=a(P)/p
Blps = ey ( [ otas)
RN

Hence the p; are uniformly bounded in LP(RN): p;(z) < O’ |z|=N/P,

/ pj dx — pldr =1
RN RN

bv dominated converegence
J. Dolbeault Drift-Diffusion and reverse HLS inequalities



Above the curve of the conformally invariant case

Existence of minimizers and relaxation 3 3
Below the curve of the conformally invariant case

Existence of a minimizer: second case

If N/(N+X) <q<2N/(2N + X\) we consider the relazed inequality

Lpl +2M [on [z pdz > Cnxg (Jan pdz+ M)™ ([ p d:c)(%a)/q

The 0 < a < 1 case: dark grey region

If g > N/(N + \), the relaxed inequality holds with the same optimal
constant Cn x,q as (1) and admits an optimizer (p, M)
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Above the curve of the conformally invariant case

Existence of minimizers and relaxation 3 3
Below the curve of the conformally invariant case

Let (pj, M;) be a minimizing sequence with p; radially symmetric
non-increasing by rearrangement, such that

/pjdx-i-Mj:/ pj=1
RN RN

Local estimates + Helly’s selection theorem: p; — p almost
everywhere and M; — M := L + lim;_,, M;, so that

Jon pdz+M =1, and [on p(z)?de =1

We cannot invoke Fatou’s lemma because o € (0,1): let du; := p; dx

Hj (RN \BR(O)) = / pjdr <C _dz — ' RN0-a)/q

(21>} {lzl>ry |2/

; are tight: up to a subsequence, p; — p weak * and du = pde+ L6
liminf Iy [p;] > In[p] + 2M/ lz|* pda,
J—00 RN

1iminf/ |x|)‘pjdx2/ lz|* pda
RN RN

j—o0

Conclusion: liminf; . Q[p;, M;] > Q[p, M]
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Above the curve of the conformally invariant case

Existence of minimizers and relaxation 3 3
Below the curve of the conformally invariant case

Optimizers are positive

I\pl +2M [pn |z pda
(Jiw P+ M)" (fyn p7 d) *~ "

Qlp, M] :=

Let A >0 and N/(N 4+ )\) < g <1. If p > 0 is an optimal function for
some M > 0, then p is radial (up to a translation), monotone
non-increasing and positive a.e. on RN

If p vanishes on a set E C RY of finite, positive measure, then

2—« |E|
¢ ow ple)ids

Q[p, M +elg| = Q[p, M] <1 €q+0(5q)>

as € — 04, a contradiction if (p, M) is a minimizer of Q

J. Dolbeault Drift-Diffusion and reverse HLS inequalities



1arp asymptotics for the itical Keller-Segel model
Roverse Hardy-Littlewood-Sobolev in s by

B EENED O mikimierD et sl e

Regions of no concentration and regularity

e Gt et al? e

Below the curve of the conformally invariant case

Euler-Lagrange equation

Above the curve of the conformally invariant case

Euler-Lagrange equation for a minimizer (p., M.)

2 fon lz =yt puly) dy + M2 o (2= ) pufa) e
In[ps] 4 2M, [on [y]* pe dy Jon pxdy+ M, [on pu(y)ddy

We can reformulate the question of the optimizers of (1) as: when is
it true that M, = 0 ? We already know that M, = 0 if

2N

=V 1
N+ “¢<

J. Dolbeault Drift-Diffusion and reverse HLS inequalities
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Sharp asymptotics for the subcritical Keller-Segel model
Reverse Hardy-Littlewood-Sobolev inequality

ixistence of minimizers and relaxation

Regions of no concentration and regularity

Free energy point of view

No concentration: first result
Regularity and concentration

No concentration: further results
More on regularity

Regions of no concentration
and regularity of measure
valued minimizers
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Sharp asymptotics for the subcritical Keller-Segel model
Reverse Hardy-Littlewood-Sobolev inequality
Existence of minimizers and relaxation

Regions of no concentration and regularity

Free energy point of view

No concentration: first result
Regularity and concentration

No concentration: further results
More on regularity

1.0

08+ \

0.6

04+ "

0.2

~

_ 2N
9= 5N

0.0 >
0
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No concentration: first result
Regularity and concentration
No concentration: further results

Regions of no concentration and regularity :
8 3 More on regularity

No concentration 1

10

06

04}

02}

00 L L L L L )

Proposition

2N

N
Let N >1, A >0 and
e > 1, A>0an N+>\<Q<2N+>\

N -2
If N >3 and A > 2N/(N —2), assume further that q > N
If (p«, M) is a minimizer, then M, =0

J. Dolbeault Drift-Diffusion and reverse HLS inequalities



No concentration: first result
Regularity and concentration
o concentration: further results

Regions of no concentration and regularity .
g 3 More on regularity

Two ingredients of the proof

@ Based on the Brézis—Lieb lemma

Lemma

Let 0 < g < p, let f € LPNLYRYN) be a symmetric non-increasing
function and let g € L4(RN). Then, for any T >0, ase — 0,

/]RN ‘f(sc)-l-s*N/pTg(x/e)’q dx = /RN fidz

+ N(A=a/p) 7.q/

9|9 dz + o (EN(I—q/p) Tq)
RN

v

@l [p+e V7o) + 200 =) [ o (@) + eV ola/e)) da

ol — () 25D
N A
RN +er 2 Do)l + 2 (M, — 7) 7 [on 2|} o da

=0(ef7) with g:=min{2,7}
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No concentration: first result
Regularity and concentration
No concentration: further results

Regions of no concentration and regularity :
8 3 More on regularity

Regularity and concentration

10

08

06

04

02

00 L L L L L ,

Proposition

IfN >3, A>2N/(N —2) and

,{N—2 2N }
<g<mmn§y——— R

N+ A N 2N+

and (p., M) € LN O=0/2(RN) x [0, + 00) is a minimizer, then M, = 0
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No concentration: first result
Rgguldr’ and concentration

K : ) N
Regions of no concentration and regularity R

Regularity

Let N>1,A>0 and N/(N +)\) <q<2N/(2N + \)

Let (ps, M) be a minimizer

Q If fRN pxdr > 5 f% then M, = 0 and p., bounded and
RN

| pu d

1

p+(0) = ( (2 — ) \[p] [gn ps da ) =
* (fRN o dx) (2 f]RN |z|* p. da f]RN P+ dx _OJA[,O*])

@ If [pnpudz=% LN% then M, = 0 and p, is unbounded
RN

|z pu d

Q If fRN prdr < 5 %, then ps is unbounded and
R

OJ/\[P*] - ZIRN \l‘|>‘,0* dx fRN Px dx
21— ) fyn o] pr do

J. Dolbeault Drift-Diffusion and reverse HLS inequalities
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No concentration: first result
Regularity and concentration
g 3 1 No concentration: further results
Regions of no concentration and regularity .
S More on regularity

An ingredient of the proof

Lemma

For constants A, B >0 and 0 < a < 1, define

A+ M
f(M):m for M >0

Then f attains its minimum on [0,00) at M =0 if « A < B and at
M=(aA-B)/1-—a)>0ifaA>B
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Sharp asymptotics for the subcritical Keller-Segel model

Reverse Hardy-Littlewood-Sobolev inequality
ixistence of minimizers and relaxation
Regions of no concentration and regularity
Free energy point of view

No concentration 2

No concentration: first result
Regularity and concentration

No concentration: further results
More on regularity

For any A > 1 we deduce from

@ —y* < (2] + [y))*

that

<227 (2 + [y[)

Bl <2 [ laPpde [ pla)ds
RN RN

For all o < 271 we infer that M,

2N (1-277)

>
T=ON -2+

J. Dolbeault
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Sharp asymptotics for the subcritical Keller-Segel model

5 a No concentration: first result
Reverse Hardy-Littlewood-Sobolev inequality : .
g Regularity and concentration
Existence of minimizers and relaxation - N
q q 3 No concentration: further results
Regions of no concentration and regularity N ) .
N More on regularity
Free energy point of view = 9

No concentration 3

Layer cake representation (superlevel sets are balls)

Blol < 24w [ e pdo [ pla)da
RN RN

Any: sup Jaxps 1# = y[* dz dy
N =
0<R,S<occ | BR] st |z|* dz + | Bs| fBR ly|* dy

10

08

06

02

00 L L L L ,
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No concentration: first result
Regularity and concentration
No concentration: further results

Regions of no concentration and regularity :
3 More on regularity

Proposition

Assume that N >3 and X\ > 2N/(N — 2) and observe that

N 2N (1-27%) 2N
<q(\,N) < <

Na “IAN < o oy S IN A

for A > 2 large enough. If

N N -2
max{(j(/\,N),N—H}<q< N

and if (p«, M) is a minimizer, then M, = 0 and p, € L=°(RY)
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No concentration: first result
Regularity and concentration
No concentration: further results

Regions of no concentration and regularity Mors oo ot tartty

More on regularity

Lemma

Assume that p, is an unbounded minimizer

Q if A < 2, there is a constant ¢ > 0 such that
pe() > clz| N a5 z—0

Q if A\ > 2, there is a constant C' > 0 such that

pu(z) = C ||~/ (1-9) (1+o0(1)) as z—0

Corollary

| A

2N

N N -2
1 d g>
q#2N+A, N+A<q< and q >

ifN >3

If p« is a minimizer for Cy x4, then p. € L®°(RY)
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Sharp asymptotics for the subcritical Keller-Segel model
Reverse Hardy-Littlewood-Sobolev inequality
Existence of minimizers and relaxation

Free energy
1 Relaxed free energy
Regions of no concentration and regularity

Uniqueness
Free energy point of view

Free energy point of view
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Free energy
Relaxed free energy
Uniqueness

Free energy point of view

A toy model
Assume that u solves the fast diffusion with external drift V given by
ou
o = Aut+ V- (uVV)

To fix ideas: V(z) =1+ % |z|> + 1 [#|*. Free energy functional

1
Vudx—— u? dx
RN 1—gq Jp~y

@ Under the mass constraint M = fRN u dx, smooth minimizers are

1
uu(2) = (p+V(z) T
@ The equation can be seen as a gradient flow

d — 9 q—1 2
Sl ) = /RNu‘lquu vv‘ dw
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Free energy
Relaxed free energy
Uniqueness

Free energy point of view

A toy model (continued)

If A = 2, the so-called Barenblatt profile u,, has finite mass if and only

if
N -2

Q>QC1:T

@ For A > 2, the integrability condition is ¢ > 1 — A/N but ¢ = ¢. is
a threshold for the regularity: the mass of u,, = (u+ V)19 is

__1
Mp) = /RN upp dv < My = /RN (312 + L]2) T da

Q@ If one tries to minimize the free energy under the mass contraint
fRN udx = M for an arbitrary M > M,, the limit of a minimizing
sequence is the measure

(M—M*)5+u_1
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Free energy
Relaxed free energy
Uniqueness

Free energy point of view

A model for nonlinear springs: heuristics

V=pxWy, Wy(z):= )\|x\)‘
is motivated by the study of the nonnegative solutions of the
evolution equation
p
ot

Optimal functions for (1) are energy minimizers (eventually measure
valued) for the free energy functional
1 1

1
— o7 [ q
F(p] Q/Np(W)\*p)dx 1= ¢ Jax dr = 2)\ Alpl— 14 p Np dz

=ApT+ V- (p VW xp)

under a mass constraint M = fR ~ pdz while smooth solutions obey to

d
affr[P(t»')] = —/ ) A VW)\*/" dx
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Free energy
Relaxed free energy
Uniqueness

Free energy point of view

Free energy or minimization of the quotient

1 . 1
Flpl = T fan dx + ﬂh[ﬂ]
Q If0 < g < N/(N+\), then Cy 4 = 0: take test functions
pn € LY NLI(RY) such that [|pp||r:@y) = Ix[pn] = 1 and
Jan plde=neN
lim Flp,] =—o0

n—-+oo
Q@ If N/(N+ ) <q <1, pe(x) =L p(x/0)/pllLi @~
Flpg) = -1 ONAL B

has a minimum at ¢ = ¢, and

N (1—q)

Flp] 2 Flpe.] = = ko (Qualp]) N0

J is bounded from below if and only if Cn xq > 0
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Free energy
Relaxed free energy
Uniqueness
Free energy point of view

Relazed free energy

1 1 M
?el = = qd 7[ — A d
[p, M] 1iq/RNp T+ 5y A[p]+)\/Rle|px

Corollary

Let ¢ € (0,1) and N/(N +X) <g<1
inf{&”el[p,M] :0< pe L NLIYRY), Mzo,/ pdx—l—M:l}
RN

is achieved by a minimizer of (2) such that [,y psdz+ M, =1 and

I,\[p*]—|—2M*/ \:c|’\p*d:c:2N/ pldx
RN RN
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Free energy
Relaxed free energy
Uniqueness

Free energy point of view

Uniqueness

Proposition

Let N/(N 4+ \) < g <1 and assume either that (N —1)/N < g < 1
and X\ > 1, or 2 < A < 4. Then the minimizer of

1 M 1
Tl M) = g5 o+ [ el pdo— = [ 1

is unique up to tramslation, dilation and multiplication by a positive
constant
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Free energy
Relaxed free energy
Uniqueness

Free energy point of view

@ If (N —1)/N < g<1and X > 1, the lower semi-continuous
extension of F to probability measures is strictly geodesically convex
in the Wasserstein-p metric for p € (1,2)

@_ By strict rearrangement inequalities a minimizer (p, M) such that
M € [0,1) of the relaxed free energy F*°! is (up to a translation) such
that p is radially symmetric and [,y zpdz =0
Let (p, M) and (p’, M') be two minimizers and

0,1] 3t f(t) :=F L —t)p+tp,(1—t) M +tM']

_ !

=50l =+ 0= [ e (f =)o

+Q/RN ((1- t)p+tp’)q72(p’ —p)?dx

(Lopes, 2017) I [h] > 0 if 2 < XA < 4, for all h such that
Jan (L4 |z*) [h| dz < oo with [ox hdx =0 and [ox xhdz =0
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Uniqueness

Free energy point of view
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