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An introduction to symmetry and

symmetry breaking results in
weighted elliptic PDESs

> The typical issue is the competition between a potential or a weight
and a nonlinearity
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The mexican hat potential

Let us consider a nonlinear Schrodinger equation in presence of a
radial external potential with a minimum which is not at the origin

—Au+V(x)u—f(u)=0

05

R K10 K0.5 0.5 1.0 1.5

®0.5

A one-dimensional potential V(x)
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A two-dimensional potential V(x) with mexican hat shape
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Radial solutions to —Au+ V(x)u — F'(u) =0
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... give rise to a radial density of energy x — V |u|® + F(u)
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symmetry breaking

... but in some cases minimal energy solutions

... give Tise to a non-radial density of energy x — V |u|> + F(u)
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Symmetry and symmetry breaking
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Proving symmetry breaking

The most classical method is by perturbation of a radial solution and
energy descent
... but there are other methods, like direct energy estimates
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Methods for proving symmetry

Classical methods (a non exhaustive list)

@ Alexandrov moving planes and the result of [B. Gidas, W. Ni,
L. Nirenberg (1979, 1980)]

—Au=f(]x|,u) in RId>3

If f is of class C*, % <0, u>0is of class C? and sufficiently
decaying at infinity, then u is a radial function and % < 0.
@ Reflexion with respect planes and unique continuation [O. Lopes]
@ Symmetrization methods: Schwarz, Steiner, etc.
@ A priori estimates, direct energy estimates
@ Uniqueness or rigidity: [B. Gidas, J. Spruck],
[M.-F. Bidault-Véron, L. Véron, 1991]

@ ... probabilistic methods and carré du champ methods [D. Bakry,
M. Emery, 1984]

> A new method based on entropy functionals and evolution under the
action of a nonlinear flow
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The proof of the symmetry result in 4 steps
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Results on CKN inequalities

Symmetry and symmetry breaking
The sharp result
Generalizations and comments

Caffarelli-Kohn-Nirenberg
inequalities

> Nonlinear flows (fast diffusion equation) can be used as a tool for

the investigation of sharp functional inequalities
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Tw Generalizations and comments

Caffarelli-Kohn-Nirenberg inequalities and the symmetry
breaking issue

Let D, p 1= { velLlr (Rd, |x| =P dx) X7 | Vv| € L2 (Rd, dx) }

p 2/p 2
/ VP ) < [ Y vuen,,
R " Jre |x]22 ’

@ |x[PP

hold under the conditions that a< b<a+1lifd>3,a<b<a+1
ifd=2,a+1/2<b<a+1lifd=1anda<a.:=(d—-2)/2

- 2d
d—2+2(b—a)

p

> With
= IxI~2 v I3
V*(X) — (1 + |X|(P*2) (ac*a)) 2 and C*. _ _7;7
o X2 Vw3

do we have Cop = C}  (symmetry)
or Cap > C3 , (symmetry breaking) ?
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CKN: range of the parameters

Figure: d =3

p 2/p 2
/ P ) <y [OYVE
Re |X[PP " Jre |x[22

_

a<b<a+1lifd>3
a<b<a+lifd=2a+1/2<b<a+lifd=1
and a < ac := (d — 2)/2
2d [Glaser, Martin, Grosse, Thirring (1976)]
Ped—212(b—a) [F. Catrina, Z.-Q. Wang (2001)]
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Symmetry and symmetry breaking
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The sharp result

Generalizations and comments

Proving symmetry breaking

[F. Catrina, Z.-Q. Wang], [V. Felli, M. Schneider (2003)]

/

4%/
/

[J.D., Esteban, Loss, Tarantello, 2009] There is a curve which
separates the symmetry region from the symmetry breaking region,
which is parametrized by a function p — a+ b
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Moving planes and symmetrization techniques

[Chou, Chu], [Horiuchi]

[Betta, Brock, Marcaldo, Posteraro]

+ Perturbation results: [CS Lin, ZQ Wang], [Smets, Willem], [JD,
Esteban, Tarantello 2007], [J.D., Esteban, Loss, Tarantello, 2009]
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Generalizations and comments

Caffarelli-Kohn-Nirenberg inequalities

Linear instability of radial minimizers:

the Felli-Schneider curve

_

[Catrina, Wang], [Felli, Schneider] The functional

2 p 2/p
Co [ o ([ ik o)
P Jra [x[?2 Rrd |x|PP

is linearly instable at v = v,
J. Dolbeault
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Direct spectral estimates -

[J.D., Esteban, Loss, 2011]: sharp interpolation on the sphere and a
Keller-Lieb-Thirring spectral estimate on the line

o = = = = QR
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Numerical results

sof M

wf

30 - asymptotic

________ symmetric
20

non-symmetric

Parametric plot of the branch of optimal functions for p = 2.8, d = 5.
Non-symmetric solutions bifurcate from symmetric ones at a bifurcation
point computed by V. Felli and M. Schneider. The branch behaves for large
values of N as predicted by F. Catrina and Z.-Q. Wang
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Other evidences

Results on CKN inequalities
Symmetry and symmetry breaking
The sharp result

Generalizations and comments

@ Further numerical results [J.D., Esteban, 2012] (coarse / refined /

self-adaptive grids)
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@ Formal commutation of the non-symmetric branch near the

J. Dolbeault |

bifurcation point [J.D., Esteban, 2013]
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Symmetry versus symmetry breaking:
the sharp result

A result based on entropies and nonlinear flows

[J.D., Esteban, Loss, 2015]: http://arxiv.org/abs/1506.03664
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Results on CKN inequalities
Symmetry and symmetry breaking
The sharp result

Generalizations and comments

Caffarelli-Kohn-Nirenberg inequalities

The symmetry result

The Felli & Schneider curve is defined by

d(ac — a)

brs(a) = +a—a
rs(2) 2y/(ac—a)2+d-1 ‘

Let d > 2 and p < 2*. If either a € [0,a.) and b > 0, or a < 0 and
b > brs(a), then the optimal functions for the Caffarelli-Kohn-Nirenberg

inequalities are radially symmetric

J. Dolbeault Symmetry breaking and sharp functional inequalities



Symmetry and symmetry breaking in elliptic PDEs Results on CKN inequalities

Caffarelli-Kohn-Nirenberg inequalities Symmetry and symmetry breaking
The proof of the symmetry result in 4 steps The sharp result
Two ingredients for the proof and some remarks Generalizations and comments

The Emden-Fowler transformation and the cylinder

> With an Emden-Fowler transformation, Caffarelli-Kohn-Nirenberg
inequalities on the Euclidean space are equivalent to
Gagliardo-Nirenberg inequalities on a cylinder
X
v(r,w)=r""%*p(s,w) with r=|x|, s=—logr and w=-
.

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as

10s2lF2(ey + IVwbllTaey + Mlellae) = #A) @llae) Ve € HY(C)

where A := (a. — a)?, C = R x S9! and the optimal constant u(A) is

w(N) = with a=a.+ VA and b:%i\//_\
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Generalizations and comments
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Generalized Caffarelli-Kohn-Nirenberg inequalities (CKN)

Let 2* =0 ifd =10r d =2,2* =2d/(d —2) if d > 3 and define

I(p, d) = d(’gipz)

[Caffarelli-Kohn-Nirenberg-84] Let d > 1. For any 6 € [J(p, d), 1],
with p = #"(b_a), there exists a positive constant Coxn (9, p, a)

such that

2 v 0 1-6
< ~(8, —_—
(/d |X|bp dx CCK ( , P, a) , |X|2a dx . |X|2(a ) dx

In the radial case, with A = (a — a.)?, the best constant when the
inequality is restricted to radial functions is C&ky (6, p, @) and

Coxn (8, p,a) > Cixn (0, p,a) = Cogen (6, p) A —°

Connt0) = 5] [itin] ™ (=] o] [ )
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The sharp result

Generalizations and comments

Implementing the method of Catrina-Wang /
Felli-Schneider

Among functions w € H*(C) which depend only on s, the minimum of
-3 (Je [wlP dx)>*
1-6
(IC [w|? dx) v

is achieved by w(y) := [cosh(\s)] = y =(s,w) € R x S =C with

A::%(d—2—2a)(p—2),/2;’6)”77m as a solution of

M(p—2P2w' —4w+2p|lwP2w=0
Spectrum of £ := —A 4+ kWP~2 4 p is given for \/1+4x/X2 > 2+ 1

by 2
A;,,-:u+i(d+i—2)_§(\/@_(Hm) Vi jeN

@ The eigenspace of L corresponding to Ao is generated by w

@ The eigenfunction ¢ gy associated to Ao is not radially symmetric
and such that [, W ¢(1,0)dx =0 and [, WP~ ¢1,0)dx =0

Q If A9 <0, optimal functions for (CKN) cannot besradially

J. Dolbeault Symmetry breaking and sharp functional inequalities
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Results on CKN inequalities
Caffarelli-Kohn-Nirenberg inequalities Symmetry and symmetry breaking
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Generalizations and comments

Parametric plot of j +— (A?(p), J%()) for p = 2.8,
6=1

sol-J?
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A ()

20 40 60 80 100

J. Dolbeault Symmetry breaking and sharp functional inequalities



Results on CKN inequalities
Caffarelli-Kohn-Nirenberg inequalities Symmetry and symmetry breaking

The sharp result

Generalizations and comments

Parametric plot of p +— (A%(p), J%(u)) for p = 2.8, d = 5,
0=0.8
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Parametric plot of y > (A%(p), J%(u)) for p = 2.8, d = 5,
6 =0.72
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Results on CKN inequalities
Symmetry and symmetry breaking
The sharp result

Generalizations and comments

Enlargement for p =2.8, d =5, § = 0.95
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Results on CKN inequalities

Symmetry and symmetry breaking
The sharp result
Generalizations and comments

Enlargement for p =2.8, d =5, 6 = 0.72
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The proof of the symmetry result in 4 steps

Two ingredients for the proof and some remarks

Critical case 6 = Y(p, d)

Results on CKN inequalities
Symmetry and symmetry breaking
The sharp result

Generalizations and comments
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The proof of the symmetry result in 4 steps
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Parametric plot of u +— (A(u), J

d = 5,/ GE=Hl

Results on CKN inequalities
Symmetry and symmetry breaking
The sharp result

Generalizations and comments
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Parametric plot of j +— (A%(p), J%()) for p = 3.15, d = 5,
6 =0.95
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Case p=3.15, d =5, § = 9(3.15,5) =~ 0.9127
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local and asymptotic criteria

Results on CKN inequalities
Symmetry and symmetry breaking
The sharp result

Generalizations and comments
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The proof of the symmetry result in 4 steps Decay along the flow
Two ingredients for the proof and some remarks Decay estimates on the cylinder

The main steps of the proof

@ A change of variables: an equivalent inequality of Sbolev type
@ The fast diffusion flow and the nonlinear Fisher information
@ Proving the decay along the flow

@ The justification of the integration by parts: decay estimates on
the cylinder

J. Dolbeault Symmetry breaking and sharp functional inequalities



Symmetry and symmetry breaking in elliptic PDEs
Caffarelli-Kohn-Nirenberg inequalities

The proof of the symmetry result in 4 steps

Two ingredients for the proof and some remarks

A change of variables

A change of variables and a Sobolev type inequality
Fisher information and fast diffusion flow

Decay along the flow

Decay estimates on the cylinder

With (r = |x|, w = x/r) € R* x S971 the Caffarelli-Kohn-Nirenberg
inequality is

2
00 d P o0 d
(/ / vjp rd-or & dw) < Ca,b/ / Vvl rd22 S
0 §d—1 r 0 Sd-1 r
Change of variables r — r®, v(r,w) = w(r*,w)
([ e
§d—1
o [
Sd—1

Choice of «

E1N)

2 5 d—2a-2_ dr
dr + r—lg |vwW| ) r a T T dw

d—b»b d—2a-2
n= P_ 2 +2
o

«
Then p = % is the critical Sobolev exponent associated with n
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A change of variables and a Sobolev type inequality
Fisher information and fast diffusion flow

The proof of the symmetry result in 4 steps Decay along the flow
Decay estimates on the cylinder

A Sobolev type inequality

The parameters a and n vary in the ranges 0 < @ < occ and d < n < >
and the Felli-Schneider curve in the (o, n) variables is given by

d-—1
n—1

=!ars
With

Dw = (a %—"r”, % wa) , du:i=r"tdrdw
the inequality becomes

1-2 ? 2
([ wpdn) < Cop [ 1DWP dp
RY RY

Proposition

Let d > 2. Optimality is achieved by radial functions and C, , = Cj , if
@ < aFs

Gagliardo-Nirenberg inequalities on general cylinders; similar

J. Dolbeault Symmetry breaking and sharp functional inequalities
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Notations

When there is no ambiguity, we will omit the index ,, and from now
on write that V =V, denotes the gradient with respect to the
angular variable w € S97! and that A is the Laplace-Beltrami
operator on S9!, We define the self-adjoint operator £ by

-1 A
LW::—D*DW:a2W"—|—a2n—W/—|——2W
r r

The fundamental property of £ is the fact that

/ W1£de,u:—/ Dwy - Dwodp Vwy, WgED(Rd)
RY Rd

> Heuristics: we look for a monotonicity formula along a well chosen
nonlinear flow, based on the analogy with the decay of the Fisher
information along the fast diffusion flow in R?

J. Dolbeault Symmetry breaking and sharp functional inequalities



A change of variables and a Sobolev type inequality
Fisher information and fast diffusion flow

The proof of the symmetry result in 4 steps Decay along the flow
Decay estimates on the cylinder

Fisher information

2n
n—2

Let uz7n = |w| <= u=|wlP,p=

m 1
T[] = Dp|? d =_— "1t d =1-=
(1] /| pPap. p=—"u" and m=1-1

Here 7 is the Fisher information and p is the pressure function

Proposition

With A = 4a?/(p — 2)? and for some explicit numerical constant r, we
have

K u(A) = inf {I[u] 3 ||U||L1(Rd7dﬂ) = 1}

> Optimal solutions solutions of the elliptic PDE) are (constrained)
critical point of Z

J. Dolbeault Symmetry breaking and sharp functional inequalities



A change of variables and a Sobolev type inequality
Fisher information and fast diffusion flow

The proof of the symmetry result in 4 steps Decay along the flow
Decay estimates on the cylinder

The fast diffusion equation

1
@zﬁu"’, m=1-=

ot n

Barenblatt self-similar solutions

Barenblatt solutions realize the minimum of Z among radial functions:

K pe(A) = Z[uy(t, )] V>0

> Strategy:
1) prove that %I[u(t, J] <0,
2) prove that £7Z[u(t,-)] = 0 means that u = u, up to a time shift

J. Dolbeault Symmetry breaking and sharp functional inequalities



A change of variables and a Sobolev type inequality
Fisher information and fast diffusion flow

The proof of the symmetry result in 4 steps Decay along the flow
Decay estimates on the cylinder

Decay of the Fisher information along the flow ?

The pressure function p = 17— u™ 1 satisfies

op 1 5
_— = = — D
B ~pLp |Dp|

1
Qlpl =5 £ |Dp|?> —Dp-DLp

Kl i= [ (9ol 5 (o) o o

If u solves the weighted fast diffusion equation, then

d n—1
2 Zlu(t, )] = =2(n = 1) K[p]

If u is a critical point, then [p] =0
> Boundary terms ! Regularity !
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A change of variables and a Sobolev type inequality
Fisher information and fast diffusion flow
The proof of the symmetry result in 4 steps Decay along the flow

ey ot @ e @i
Proving decay (1/2)

1 1 1
klp] := Q(p) = — (£Lp)* = 5 L|Dp|> = Dp-D Lp — — (Lp)?

1
ka[p] = 5 A|Vp[* = Vp- VAP — 15 (Ap)* = (n—2)a? [Vp[?

n—1

Lemma

Let n # 1 be any real number, d € N, d > 2, and consider a function
p € C3((0,00) x M), where (M, g) is a smooth, compact Riemannian
manifold. Then we have

= (1-7) [~ - eyl

1
2

Vp2

1
Vp' — — + 7 kon [p]
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A change of variables and a Sobolev type inequality
Fisher information and fast diffusion flow
The proof of the symmetry result in 4 steps Decay along the flow

Proving decay (2/2)

Lemma

Assume that d >3, n > d and 9 = S?~1. For some (, > 0 we have
/ kan[p] p* =" dw > (As — (n — 2)a2)/ [Vp[*p' " dw
Sd-1 Sd—1

LG (n—d) / Vol* P duw
S§d—1

Proof based on the Bochner-Lichnerowicz-Weitzenbock formula

Let d > 2 and assume that o < aps. Then for any nonnegative function
u € LY(RY) with Z[u] < +oc0 and [o, udp =1, we have

Tlu] > Z.

When M =S91, A, = (n—2) <4

J. Dolbeault Symmetry breaking and sharp functional inequalities
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Caffarelli-Kohn-Nirenberg inequalities Fisher information and fast diffusion flow
The proof of the symmetry result in 4 steps Decay along the flow
Two ingredients for the proof and some remarks Decay estimates on the cylinder

A perturbation argument

Q@ If v is a critical point of Z under the mass constraint f]Rd udp=1,
then

o(e)=Z[u+eLu™ —Z[u] = —2(n—1)""teK[p] + o(e)

because € L u™ is an admissible perturbation (formal). Indeed, we

know that
/(u—l—eﬁum)du:/ udp =1
RY RY

but positivity of u 4+ ¢ L u™ is an issue: compute
0= DIZ[u]-Lu™=—K]p]

@ Regularity issues (uniform decay of various derivatives up to
order 3) and boundary terms

@ If a < apg, then K[p] = 0 implies that u = u,
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A change of variables and a Sobolev type inequality
Fisher information and fast diffusion flow

The proof of the symmetry result in 4 steps Decay along the flow
Decay estimates on the cylinder

The justification of the integration by parts:
decay estimates on the cylinder

After then Emden-Fowler transformation, a critical point satisfies the
Euler-Lagrange equation

— R Dup+Ahp=¢Pt in C=RxM
(up to a multiplication by a constant; M = S9! e.g.)

Proposition

For all (s,w) € C, we have C; e~ VAlsl < o(s,w) < G e—VAls|

¢/ (5, @)l 1¢"(5,w)], [Ve(s, @)l |A p(s,w)] < Ge™vAH

and

Jon 1P/ (r,w)Pdv, <01 fm|Vprw)|2dvg<O( ),
Jom P (r (r,w)2dv, < O(l/r )

Jom ‘Vp (r,w) —1Vp(r,w | dvg < 0(1),

[ |Ap(r.w)? dv. < O(1/r2)
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affarelli-Kohn-Nirenberg inequalities
The proof of the symmetry result in 4 steps

Rényi entropy powers and fast diffusion
Two ingredients for the proof and some remarks

Flows on the sphere
Constraints and improvements

Two ingredients for the proof

> Rényi entropy powers and fast diffusion
> Flows on the sphere

o F

Symmetry breaking and sharp functional inequalities
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Symmetry and symmetry breaking in elliptic PDEs
Caffarelli-Kohn-Nirenberg inequalities

The proof of the symmetry result in 4 steps

Two ingredients for the proof and some remarks

Rényi entropy powers and fast diffusion
Flows on the sphere
Constraints and improvements

Rényi entropy powers and fast
diffusion

> Rényi entropy powers, the entropy approach without rescaling:
[Savaré, Toscani]: scalings, nonlinearity and a concavity property
inspired by information theory

o> faster rates of convergence: [Carrillo, Toscani|, [JD, Toscani]
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Rényi entropy powers and fast diffusion
Flows on the sphere

a 5 Constraints and improvements
Two ingredients for the proof and some remarks P

The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in RY, d > 1

Ju

AT

ot !
with initial datum u(x, t = 0) = up(x) > 0 such that [p, updx =1 and
Jge |XI? uo dx < 4-00. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

1 X
U (t, x) = B*( )
( X) (H tl/M)d K tl/#
where
| 2pm Yk

= 2 d — 1 = —

pi=2+d(m-1), r=|——

and B, is the Barenblatt profile

(C— xRV itm>1

B*(X) = ) 1/(m—1) )
(C*—|—|x|) fm<1
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Rényi entropy powers and fast diffusion
Flows on the sphere

a 5 Constraints and improvements
Two ingredients for the proof and some remarks P

The Rényi entropy power F

The entropy is defined by

E ::/ u™ dx
Rd

and the Fisher information by

I::/ u|Vp|Pdx with p= —
Rd m-—1
If u solves the fast diffusion equation, then
E=(1-m)l

To compute I, we will use the fact that

ap 9

—=(m-1)pA \Y

5 = (m=1)pAp+|Vpl

. W 2 1 2 1
F:—E° with o= -1 R L S
W= 1= m) +1—m(d+m ) d1-m

has a linear growth asymptotically as t — +oo
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Rényi entropy powers and fast diffusion

Flows on the sphere
Constraints and improvements

Two ingredients for the proof and some remarks

The concavity property

oscani-Savaré| Assume that m>1— = | >1landm>0.1 =
Toscani-Savaré] A h 1-Lifd>landm>0ifd=1
m)F"(t) <0 and

Then F(t) is increasing, (1 —

. 1 _ . o—1| __ o—1
lim —F(t)—(l—m)at_llTooE I=(1-—m)cEI "1,

[Dolbeault-Toscani] The inequality
Eo11 > E9 LI,

is equivalent to the Gagliardo-Nirenberg inequality

||VW||L2 (R9) ||W||Lq+1 (R9) > Can ||W||L2‘V(]Rd)

3 1 it g m—1/2 w —
ifl1—3= <m<1 Hint: v =t q=

d > A !
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a 5 Constraints and improvements
Two ingredients for the proof and some remarks P

The proof

If u solves 9% = Au™ with 3 < m <1, then

d
v:a/ IVl dx==2 [ ™ (DI + (m— 1) (Ap))
Rd R4

2

1
D%l = 5 (ap + | D% - 5 dpta

Q|+

1

e B E =a-me -y ([ |Vp|2dx)2

—2< +m—1>/udx/ Ap
Rd Rd

—2/ u dx/ D2p—1ApId
R4 Rd d

J. Dolbeault Symmetry breaking and sharp functional inequalities
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Symmetry and symmetry breaking in elliptic PDEs
Caffarelli-Kohn-Nirenberg inequalities

The proof of the symmetry result in 4 steps

Two ingredients for the proof and some remarks

Rényi entropy powers and fast diffusion
Flows on the sphere
Constraints and improvements

Flows on the sphere

> The heat flow introduced by D. Bakry and M. Emery (carré du
champ method) does not cover all exponents up to the critical one

[Bakry, Emery, 1984]
[Bidault-Véron, Véron, 1991], [Bakry, Ledoux, 1996]
[Demange, 2008][JD, Esteban, Loss, 2014 & 2015]
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Rényi entropy powers and fast diffusion
Flows on the sphere

a 5 Constraints and improvements
Two ingredients for the proof and some remarks P

The interpolation inequalities

On the d-dimensional sphere, let us consider the interpolation
inequality

d d
IV ulf2ge) + 2 [ullF2(gey = 2 lullfogey ¥ ueHY(S, du)

where the measure dy is the uniform probability measure on
S9 ¢ Rt corresponding to the measure induced by the Lebesgue
measure on R and the exposant p > 1, p # 2, is such that

2d
<= 29
P= d—2

if d > 3. We adopt the convention that 2* = oo if d =1 or d = 2.
The case p = 2 corresponds to the logarithmic Sobolev inequality

u2
IVl = 5 / lul? log (%) dvg VueH'(S, du)\ {0}

||L2(Sd
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Rényi entropy powers and fast diffusion
Flows on the sphere

a 5 Constraints and improvements
Two ingredients for the proof and some remarks P

The Bakry-Emery method

Entropy functional

1 . ;
5p[p]::m l/gdpﬁ dvg—(/Sdpdvg) ] if p#£2

L [ -E—
&lpl = /Sdﬂ log (upuLl(sd)) 9V

Fisher information functional
1
Liol = [ IVoHP dve
Sd

Bakry-Emery (carré du champ): use the heat flow

0

9P _ A

ot
where A denotes the Laplace-Beltrami operator on S?, and compute

Tl =Tkl and SL) <~ dT,)

dr— 1 g T N N r I In -

N o S BN Be) 1 (VR c
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Rényi entropy powers and fast diffusion
Flows on the sphere

a 5 Constraints and improvements
Two ingredients for the proof and some remarks P

The evolution under the fast diffusion flow

To overcome the limitation p < 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

o _
ot
[Demange], [JD, Esteban, Kowalczyk, Loss]: for any p € [1,2*]

Kolol = 2 (Tolp) — d&la]) <0,

m

(p, m) admissible region, d =5
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Rényi entropy powers and fast diffusion
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a 5 Constraints and improvements
Two ingredients for the proof and some remarks P

Sobolev's inequality

The stereographic projection of SY ¢ R? x R > (p ¢, z) onto RY:
top?+22=1,z E [~1,1], p > 0, ¢ € S~ we associate x € RY such
that r = |x|, ¢ =

- \XI

-1 2 2r

R = |

and transform any function v on S¢ into a function v on RY using

uy) = (£) 7 v(x) = (Z2) 7 v() = (1 2)~°F v(x)

@ p=2",S4=1d(d—2)[S?*? Euclidean Sobolev inequality

d—2

/ |Vv|? dx > Sy [/ |v|% dx} Vv € DV3(RY)
RY RY
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Schwarz symmetrization and the ultraspherical setting

(€0, &1, .-€q) €89, €9 = 2, 10 &[> = 1 [Smets-Willem]

Up to a rotation, any minimizer of Q depends only on £4 = z

la

o Let do(f) = 90 dg, 7, = /7 r(rf,ﬁ

2

): Vv € HY([0, 7], do)

pff OW IV (6)[? da—f—/ow v(0)]* do > </07T v(6)1? da) p

e Change of variables z = cos#, v(#) = f(z)

2
P—< 2 72 ' 2 ' ?
— |f| vdvg + |f|© dvg > |fIP dvy

-1 -1

where v4(2) dz = dvg(z) :== Z;* vildz, v(z) :=1— 22
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a 5 Constraints and improvements
Two ingredients for the proof and some remarks P

The ultraspherical operator

With dvg = Z;* vildz, v(z) := 1 — 22, consider the space
L2((—1,1), dvy) with scalar product

1
1 1 :
(h,h) = / fifadva, |[fllLes = (/ fP dVd)
-1 ~1

The self-adjoint wltraspherical operator is
d
LE=Q=2)"—dzf =vf'+ 0 f

which satisfies (f, L) = f fifvdug

Proposition

Let pe[1,2)U(2,2"], d > 1

1 o f
_<f,£f>:/ |f’|2udud2d“ i S"; ! 570 Vf € HY([-1,1], dva)
-1
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Heat flow and the Bakry-Emery method

Rényi entropy powers and fast diffusion
Flows on the sphere
Constraints and improvements

With g = fP, d.e. f =g* witha=1/p

o o ||g| Li(s9) Hg2aHL1(Sd)
(Ineq.)  —(f,Lf)=—(g" Lg") =1T[g] = d P =
Heat flow 5
g _
ot Le
d d 2 ! 112
p leglliisey =0, p lg=“lLysey = —2(p—2)(f, L) =2(p—2) ) [F'7 v
which finally gives
d d
E]:[g(t, )= o2 E Ig* iy = —2d Z[g(t,)]

eq. = SFlg(t, )] < 2 Flg(t,)] = STla(t,)] < ~2dT[g(t. )]
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Rényi entropy powers and fast diffusion
Flows on the sphere

a 5 Constraints and improvements
Two ingredients for the proof and some remarks P

The equation for g = fP can be rewritten in terms of f as

of IdE

1d [t
_EE/ If'12 v dug =
—1

|f/|2
f‘

%(f,ﬁf)z(ﬁf,ﬁf>+(P—1)< v, L)

N =

d d
EI[g(t,)] +2d7Z[g(t,")] = dt/ If')? v dvg + 2d/ If'1? v dug

1 4 12 £11
d |f] d—1|f)2f
=-2 2+ (p—1 —2(p—-1)—— 2
/_1<| e N L P S R

is nonpositive if

d |f/|4 ( ) d—1 |f/|2 f
d+2 Pmds2 7
is pointwise nonnegative, which is granted if

2
d 2d2 +1 24
-1)——= 1 = p< = S =)
[(” )d+2} <(P-Dg P=Td—1y Sd2

J. Dolbeault Symmetry breaking and sharp functional inequalities
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up to the critical exponent: a proof in two slides

Rényi entropy powers and fast diffusion
Flows on the sphere
Constraints and improvements

i _ I r_ "o /
[dz’ﬁ] u=(Lu) —Lu=-2z4"—du

1 1 1
/ (Lu)? dvg = / |u" > v? dvg + d/ /)2 v duyg
—1 —1 —1
1 112 1 114 1 12
|| d ', d— 1/ L7
Lu)—vd = — dvg — 2 d
1( u) v dvg 12/, 2 v° dug a2 )., o v° duy

On (—1,1), let us consider the porous medium (fast diffusion) flow

22 |u'|?
ut—u_ﬁ(ﬁ + K )
u

If Kk = B(p—2)+ 1, the LP norm is conserved
d 1
dt

1

uPP dud:ﬁp(/@'—ﬁ(p—Z)—l)/ uPP=2) |12y dug =0
-1
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f=uP, ||f/||i2(sd) + p;i2 (||f||i2(sd) -

d+2

1£1s0y) 207

1 1 712
d—1
A::/ |u"|? v dl/d—2—(/i+5—1)/ u”’ il V2 dvg
—1 u

1

1 /14
+[H(ﬁ—1)+di2(1€+ﬂ—l)]/ %ywyd

A is nonnegative for some f if

8 d?

(d+2)? (P

-1

-1)(2"-p) 20

A is a sum of squares if p € (2,2*) for an arbitrary choice of 3 in a
certain interval (depending on p and d)

P2 WP

6—p u

"
u

1
A=/
—1

J. Dolbeault
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The proof of the symmetry result in 4 steps

Two ingredients for the proof and some remarks

Rényi entropy powers and fast diffusion
Flows on the sphere
Constraints and improvements

The rigidity point of view

712
Which computation have we done ? u; = u>=2# (C u+k % y)

|u'? A Ak
v+ u= u

—Lu—(8-1)

Multiply by £ u and integrate

1 1
u
/ Euu“dud:—ﬁ/ u —|dud
—1 —1 u

lu')?

Multiply by « =~ and integrate

’
u
1 /2
...:—i—/f/ u"ﬂdyd
-1 u

The two terms cancel and we are left only with the two-homogenous
terms
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Rényi entropy powers and fast diffusion
Two ingredients for the proof and some remarks

Flows on the sphere
Constraints and improvements

Constraints and improvements

[m] = =
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Rényi entropy powers and fast diffusion
Flows on the sphere

N N Constraint: d i t:
Two ingredients for the proof and some remarks onstraints and improvements

Integral constraints

For any p € (2,2%), the inequality

1
A A
FPvdvg + — |IfI5 > — IIfII3
[P v+ 25 161 = == A1
1

Vf e HY((~1,1), dvg) s.t. / Z|f|P dvg =0
1

holds with

—1)2
/\>d+(d )

= m(z#—P)(/\*_d)
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N N Constraint: d i t:
Two ingredients for the proof and some remarks onstraints and improvements

Antipodal symmetry

With the additional restriction of antipodal symmetry, that is

u(—x) = u(x) VxeSs?

Theorem

Ifpe(1,2)U(2,2*), we have

d (d?> —4)(2* — p)
2 - 2 _ 12
/sd |Vul* dvg ) {1 4 dd+2) +p-1 (HUHLP(Sd) ||U||L2(Sd))

for any u € HY(S9, dp) with antipodal symmetry. The limit case p = 2
corresponds to the improved logarithmic Sobolev inequality

_d@43? [ P
Vol dy, > 2 /| 2 log iy
/ 2 d+1 ||U||L2 (s9) £
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The larger picture: branches of antipodal solutions

Case d =5, p = 3: wvalues of the shooting parameter a as a
function of A
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The pr the symmetry result in 4 steps

Two ingredients for the proof and some remarks

The optimal constant in the antipodal framework

Rényi entropy powers and fast diffusion
Flows on the sphere
Constraints and improvements

15 20 2.5 30

Numerical computation of the optimal constant when d =5 and
1 < p <10/3 = 3.33. The limiting value of the constant is numerically
found to be equal to A\, = 21"2/P d ~ 6.59754 with d =5 and p = 10/3
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These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/
> Lectures

Thank you for your attention !

o F
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