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Concavity of the Rényi entropy powers: role of the nonlinear flow

The Bakry-Emery method: curvature, linear and nonlinear flows

Conclusion

In collaboration with M.J. Esteban and M. Loss

J. Dolbeault Symmetry breaking and sharp functional inequalities



Symmetry and symmetry breaking in elliptic PDEs
Caffarelli-Kohn-Nirenberg inequalities

The proof of the symmetry result in 4 steps
Two ingredients for the proof and some remarks

The mexican hat potential in Schrödinger equations
Symmetry and symmetry breaking

An introduction to symmetry and
symmetry breaking results in

weighted elliptic PDEs

⊲ The typical issue is the competition between a potential or a weight
and a nonlinearity
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The mexican hat potential

Let us consider a nonlinear Schrödinger equation in presence of a
radial external potential with a minimum which is not at the origin

−∆u + V (x) u − f (u) = 0
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A one-dimensional potential V (x)
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Radial solutions to −∆u + V (x) u − F ′(u) = 0

� 1

0

1

� 1

0

1

0

5

10

� 1.5 � 1.0 � 0.5 0.0 0.5 1.0 1.5

� 1.5

� 1.0

� 0.5

0.0

0.5

1.0

1.5

... give rise to a radial density of energy x 7→ V |u|2 + F (u)
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symmetry breaking

... but in some cases minimal energy solutions
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Symmetry and symmetry breaking
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Proving symmetry breaking

The most classical method is by perturbation of a radial solution and
energy descent
... but there are other methods, like direct energy estimates
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Methods for proving symmetry

Classical methods (a non exhaustive list)

Alexandrov moving planes and the result of [B. Gidas, W. Ni,
L. Nirenberg (1979, 1980)]

−∆u = f (|x |, u) in R
d d ≥ 3

If f is of class C 1, ∂f
∂r < 0, u ≥ 0 is of class C 2 and sufficiently

decaying at infinity, then u is a radial function and ∂u
∂r < 0.

Reflexion with respect planes and unique continuation [O. Lopes]

Symmetrization methods: Schwarz, Steiner, etc.

A priori estimates, direct energy estimates

Uniqueness or rigidity: [B. Gidas, J. Spruck],
[M.-F. Bidault-Véron, L. Véron, 1991]

... probabilistic methods and carré du champ methods [D. Bakry,
M. Emery, 1984]

⊲ A new method based on entropy functionals and evolution under the
action of a nonlinear flow
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Caffarelli-Kohn-Nirenberg
inequalities

⊲ Nonlinear flows (fast diffusion equation) can be used as a tool for
the investigation of sharp functional inequalities
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Caffarelli-Kohn-Nirenberg inequalities and the symmetry

breaking issue

Let Da,b :=
{

v ∈ Lp
(

Rd , |x |−b dx
)

: |x |−a |∇v | ∈ L2
(

Rd , dx
)

}

(
∫

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇v |2
|x |2 a dx ∀ v ∈ Da,b

hold under the conditions that a ≤ b ≤ a + 1 if d ≥ 3, a < b ≤ a+ 1
if d = 2, a+ 1/2 < b ≤ a+ 1 if d = 1, and a < ac := (d − 2)/2

p =
2 d

d − 2 + 2 (b − a)

⊲ With

v⋆(x) =
(

1 + |x |(p−2) (ac−a)
)− 2

p−2

and C⋆
a,b =

‖ |x |−b v⋆ ‖2p
‖ |x |−a∇v⋆ ‖22

do we have Ca,b = C⋆
a,b (symmetry)

or Ca,b > C⋆
a,b (symmetry breaking) ?

J. Dolbeault Symmetry breaking and sharp functional inequalities
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CKN: range of the parameters

Figure: d = 3
(
∫

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇v |2
|x |2 a dx

a ≤ b ≤ a+ 1 if d ≥ 3
a < b ≤ a+ 1 if d = 2, a+ 1/2 < b ≤ a + 1 if d = 1
and a < ac := (d − 2)/2

p =
2 d

d − 2 + 2 (b − a)

[Glaser, Martin, Grosse, Thirring (1976)]
[F. Catrina, Z.-Q. Wang (2001)]
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Proving symmetry breaking

[F. Catrina, Z.-Q. Wang], [V. Felli, M. Schneider (2003)]

[J.D., Esteban, Loss, Tarantello, 2009] There is a curve which
separates the symmetry region from the symmetry breaking region,
which is parametrized by a function p 7→ a + b
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Moving planes and symmetrization techniques

[Chou, Chu], [Horiuchi]
[Betta, Brock, Marcaldo, Posteraro]
+ Perturbation results: [CS Lin, ZQ Wang], [Smets, Willem], [JD,
Esteban, Tarantello 2007], [J.D., Esteban, Loss, Tarantello, 2009]
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Linear instability of radial minimizers:

the Felli-Schneider curve

[Catrina, Wang], [Felli, Schneider] The functional

C⋆
a,b

∫

Rd

|∇v |2
|x |2 a dx −

(
∫

Rd

|v |p
|x |b p

dx

)2/p

is linearly instable at v = v⋆
J. Dolbeault Symmetry breaking and sharp functional inequalities
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Direct spectral estimates

[J.D., Esteban, Loss, 2011]: sharp interpolation on the sphere and a
Keller-Lieb-Thirring spectral estimate on the line
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Numerical results
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Parametric plot of the branch of optimal functions for p = 2.8, d = 5.

Non-symmetric solutions bifurcate from symmetric ones at a bifurcation

point computed by V. Felli and M. Schneider. The branch behaves for large

values of Λ as predicted by F. Catrina and Z.-Q. Wang
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Other evidences

Further numerical results [J.D., Esteban, 2012] (coarse / refined /
self-adaptive grids)
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Formal commutation of the non-symmetric branch near the
bifurcation point [J.D., Esteban, 2013]

Asymptotic energy estimates [J.D., Esteban, 2013]J. Dolbeault Symmetry breaking and sharp functional inequalities
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Symmetry versus symmetry breaking:

the sharp result

A result based on entropies and nonlinear flows

[J.D., Esteban, Loss, 2015]: http://arxiv.org/abs/1506.03664
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The symmetry result

The Felli & Schneider curve is defined by

bFS(a) :=
d (ac − a)

2
√

(ac − a)2 + d − 1
+ a− ac

Theorem

Let d ≥ 2 and p < 2∗. If either a ∈ [0, ac) and b > 0, or a < 0 and

b ≥ bFS(a), then the optimal functions for the Caffarelli-Kohn-Nirenberg

inequalities are radially symmetric

J. Dolbeault Symmetry breaking and sharp functional inequalities
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The Emden-Fowler transformation and the cylinder

⊲ With an Emden-Fowler transformation, Caffarelli-Kohn-Nirenberg
inequalities on the Euclidean space are equivalent to
Gagliardo-Nirenberg inequalities on a cylinder

v(r , ω) = ra−ac ϕ(s, ω) with r = |x | , s = − log r and ω =
x

r

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as

‖∂sϕ‖2L2(C) + ‖∇ωϕ‖2L2(C) + Λ ‖ϕ‖2
L2(C) ≥ µ(Λ) ‖ϕ‖2

Lp(C) ∀ϕ ∈ H1(C)

where Λ := (ac − a)2, C = R× Sd−1 and the optimal constant µ(Λ) is

µ(Λ) =
1

Ca,b
with a = ac ±

√
Λ and b =

d

p
±
√
Λ

J. Dolbeault Symmetry breaking and sharp functional inequalities
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Generalizations and comments
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Generalized Caffarelli-Kohn-Nirenberg inequalities (CKN)

Let 2∗ = ∞ if d = 1 or d = 2, 2∗ = 2d/(d − 2) if d ≥ 3 and define

ϑ(p, d) :=
d (p − 2)

2 p

[Caffarelli-Kohn-Nirenberg-84] Let d ≥ 1. For any θ ∈ [ϑ(p, d), 1],
with p = 2 d

d−2+2 (b−a) , there exists a positive constant CCKN(θ, p, a)

such that
(
∫

Rd

|u|p
|x |b p

dx

)
2
p

≤ CCKN(θ, p, a)

(
∫

Rd

|∇u|2
|x |2 a dx

)θ (∫

Rd

|u|2
|x |2 (a+1)

dx

)1−θ

In the radial case, with Λ = (a− ac)
2, the best constant when the

inequality is restricted to radial functions is C∗
CKN

(θ, p, a) and

CCKN(θ, p, a) ≥ C∗
CKN(θ, p, a) = C∗

CKN(θ, p) Λ
p−2
2p −θ

C∗
CKN

(θ, p) =
[

2πd/2

Γ(d/2)

]2 p−1
p
[

(p−2)2

2+(2 θ−1) p

]

p−2
2 p
[

2+(2 θ−1) p
2 p θ

]θ [
4

p+2

]

6−p
2 p

[

Γ( 2
p−2+

1
2 )√

π Γ( 2
p−2)

]

p

J. Dolbeault Symmetry breaking and sharp functional inequalities
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Implementing the method of Catrina-Wang /

Felli-Schneider
Among functions w ∈ H1(C) which depend only on s, the minimum of

J [w ] :=

∫

C

(

|∇w |2 + 1
4 (d − 2− 2 a)2 |w |2

)

dx−[C∗(θ, p, a)]−
1
θ

(∫

C |w |p dx
)

2
p θ

(∫

C |w |2 dx
)

1−θ
θ

is achieved by w(y) :=
[

cosh(λ s)
]− 2

p−2 , y = (s, ω) ∈ R× S = C with

λ := 1
4 (d − 2− 2 a) (p − 2)

√

p+2
2 p θ−(p−2) as a solution of

λ2 (p − 2)2 w ′′ − 4w + 2 p |w |p−2 w = 0

Spectrum of L := −∆+ κwp−2 + µ is given for
√

1 + 4 κ/λ2 ≥ 2 j + 1
by

λi ,j = µ+ i (d + i − 2)− λ2

4

(
√

1 + 4κ
λ2 − (1 + 2 j)

)2

∀ i , j ∈ N

The eigenspace of L corresponding to λ0,0 is generated by w

The eigenfunction φ(1,0) associated to λ1,0 is not radially symmetric

and such that
∫

C w φ(1,0) dx = 0 and
∫

C w
p−1 φ(1,0) dx = 0

If λ1,0 < 0, optimal functions for (CKN) cannot be radially
symmetric and C(θ, p, a) > C∗(θ, p, a)

J. Dolbeault Symmetry breaking and sharp functional inequalities



Symmetry and symmetry breaking in elliptic PDEs
Caffarelli-Kohn-Nirenberg inequalities

The proof of the symmetry result in 4 steps
Two ingredients for the proof and some remarks

Results on CKN inequalities
Symmetry and symmetry breaking
The sharp result
Generalizations and comments

Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 2.8, d = 5,

θ = 1
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Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 2.8, d = 5,

θ = 0.8
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Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 2.8, d = 5,

θ = 0.72
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Enlargement for p = 2.8, d = 5, θ = 0.95
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Enlargement for p = 2.8, d = 5, θ = 0.72
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Critical case θ = ϑ(p, d)
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Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 3.15,

d = 5, θ = 1
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Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 3.15, d = 5,

θ = 0.95
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Case p = 3.15, d = 5, θ = ϑ(3.15, 5) ≈ 0.9127
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local and asymptotic criteria
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The main steps of the proof

A change of variables: an equivalent inequality of Sbolev type

The fast diffusion flow and the nonlinear Fisher information

Proving the decay along the flow

The justification of the integration by parts: decay estimates on
the cylinder

J. Dolbeault Symmetry breaking and sharp functional inequalities
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A change of variables

With (r = |x |, ω = x/r) ∈ R+ × Sd−1, the Caffarelli-Kohn-Nirenberg
inequality is

(
∫ ∞

0

∫

Sd−1

|v |p r d−b p dr

r
dω

)
2
p

≤ Ca,b

∫ ∞

0

∫

Sd−1

|∇v |2 r d−2 a dr

r
dω

Change of variables r 7→ rα, v(r , ω) = w(rα, ω)

α1− 2
p

(
∫ ∞

0

∫

Sd−1

|w |p r
d−b p

α
dr

r
dω

)
2
p

≤ Ca,b

∫ ∞

0

∫

Sd−1

(

α2
∣

∣

∂w
∂r

∣

∣

2
+ 1

r2
|∇ωw |2

)

r
d−2 a−2

α +2 dr

r
dω

Choice of α

n =
d − b p

α
=

d − 2 a− 2

α
+ 2

Then p = 2 n
n−2 is the critical Sobolev exponent associated with n

J. Dolbeault Symmetry breaking and sharp functional inequalities
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A Sobolev type inequality

The parameters α and n vary in the ranges 0 < α < ∞ and d < n < ∞
and the Felli-Schneider curve in the (α, n) variables is given by

α =

√

d − 1

n − 1
=: αFS

With
Dw =

(

α ∂w
∂r ,

1
r
∇ωw

)

, dµ := rn−1 dr dω

the inequality becomes

α1− 2
p

(
∫

Rd

|w |p dµ
)

2
p

≤ Ca,b

∫

Rd

|Dw |2 dµ

Proposition

Let d ≥ 2. Optimality is achieved by radial functions and Ca,b = C⋆
a,b if

α ≤ αFS

Gagliardo-Nirenberg inequalities on general cylinders: similar
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Notations

When there is no ambiguity, we will omit the index ω and from now
on write that ∇ = ∇ω denotes the gradient with respect to the
angular variable ω ∈ S

d−1 and that ∆ is the Laplace-Beltrami
operator on Sd−1. We define the self-adjoint operator L by

Lw := −D∗Dw = α2 w ′′ + α2 n − 1

r
w ′ +

∆w

r2

The fundamental property of L is the fact that

∫

Rd

w1 Lw2 dµ = −
∫

Rd

Dw1 · Dw2 dµ ∀w1, w2 ∈ D(Rd )

⊲ Heuristics: we look for a monotonicity formula along a well chosen
nonlinear flow, based on the analogy with the decay of the Fisher
information along the fast diffusion flow in Rd
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Fisher information

Let u
1
2− 1

n = |w | ⇐⇒ u = |w |p, p = 2 n
n−2

I[u] :=
∫

Rd

u |Dp|2 dµ , p =
m

1−m
um−1 and m = 1− 1

n

Here I is the Fisher information and p is the pressure function

Proposition

With Λ = 4α2/(p − 2)2 and for some explicit numerical constant κ, we
have

κµ(Λ) = inf
{

I[u] : ‖u‖L1(Rd ,dµ) = 1
}

⊲ Optimal solutions solutions of the elliptic PDE) are (constrained)
critical point of I
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The fast diffusion equation

∂u

∂t
= L um , m = 1− 1

n

Barenblatt self-similar solutions

u⋆(t, r , ω) = t−n

(

c⋆ +
r2

2 (n− 1)α2 t2

)−n

Lemma

Barenblatt solutions realize the minimum of I among radial functions:

κµ⋆(Λ) = I[u⋆(t, ·)] ∀ t > 0

⊲ Strategy:
1) prove that d

dt
I[u(t, ·)] ≤ 0,

2) prove that d
dt
I[u(t, ·)] = 0 means that u = u⋆ up to a time shift
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Decay of the Fisher information along the flow ?

The pressure function p = m
1−m

um−1 satisfies

∂p

∂t
=

1

n
pL p− |Dp|2

Q[p] :=
1

2
L |Dp|2 − Dp · DL p

K[p] :=

∫

Rd

(

Q[p]− 1

n
(L p)2

)

p1−n dµ

Lemma

If u solves the weighted fast diffusion equation, then

d

dt
I[u(t, ·)] = − 2 (n− 1)n−1 K[p]

If u is a critical point, then K[p] = 0
⊲ Boundary terms ! Regularity !
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Proving decay (1/2)

k[p] := Q(p)− 1

n
(L p)2 =

1

2
L |Dp|2 − Dp · DL p− 1

n
(L p)2

kM[p] :=
1

2
∆ |∇p|2 −∇p · ∇∆p− 1

n−1 (∆p)2 − (n − 2)α2 |∇p|2

Lemma

Let n 6= 1 be any real number, d ∈ N, d ≥ 2, and consider a function

p ∈ C 3((0,∞)×M), where (M, g) is a smooth, compact Riemannian

manifold. Then we have

k[p] = α4

(

1− 1

n

)[

p′′ − p′

r
− ∆p

α2 (n − 1) r2

]2

+ 2α2 1

r2

∣

∣

∣

∣

∇p′ − ∇p

r

∣

∣

∣

∣

2

+
1

r4
kM[p]
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Proving decay (2/2)

Lemma

Assume that d ≥ 3, n > d and M = Sd−1. For some ζ⋆ > 0 we have
∫

Sd−1

kM[p] p1−n dω ≥
(

λ⋆ − (n − 2)α2
)

∫

Sd−1

|∇p|2 p1−n dω

+ ζ⋆ (n − d)

∫

Sd−1

|∇p|4 p1−n dω

Proof based on the Bochner-Lichnerowicz-Weitzenböck formula

Corollary

Let d ≥ 2 and assume that α ≤ αFS. Then for any nonnegative function

u ∈ L1(Rd ) with I[u] < +∞ and
∫

Rd u dµ = 1, we have

I[u] ≥ I⋆

When M = Sd−1, λ⋆ = (n − 2) d−1
n−1
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A perturbation argument

If u is a critical point of I under the mass constraint
∫

Rd u dµ = 1,
then

o(ε) = I[u + εL um]− I[u] = − 2 (n− 1)n−1 εK[p] + o(ε)

because εL um is an admissible perturbation (formal). Indeed, we
know that

∫

Rd

(u + εL um) dµ =

∫

Rd

u dµ = 1

but positivity of u + εL um is an issue: compute

0 = DI[u] · L um = −K[p]

Regularity issues (uniform decay of various derivatives up to
order 3) and boundary terms

If α ≤ αFS, then K[p] = 0 implies that u = u⋆
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The justification of the integration by parts:

decay estimates on the cylinder

After then Emden-Fowler transformation, a critical point satisfies the
Euler-Lagrange equation

− ∂2
s ϕ− ∆ω ϕ+ Λϕ = ϕp−1 in C = R×M

(up to a multiplication by a constant; M = S
d−1 e.g.)

Proposition

For all (s, ω) ∈ C, we have C1 e
−
√
Λ |s| ≤ ϕ(s, ω) ≤ C2 e

−
√
Λ |s|

|ϕ′(s, ω)| , |ϕ′′(s, ω)| , |∇ϕ(s, ω)| , |∆ϕ(s, ω)| ≤ C2 e
−
√
Λ |s|

and
∫

M
|p′(r , ω)|2 d vg ≤ O(1),

∫

M
|∇p(r , ω)|2 d vg ≤ O(r2),

∫

M
|p′′(r , ω)|2 d vg ≤ O(1/r2)

∫

M

∣

∣∇p′(r , ω)− 1
r
∇p(r , ω)

∣

∣

2
d vg ≤ O(1),

∫

M
|∆p(r , ω)|2 d vg ≤ O(1/r2)
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Two ingredients for the proof

⊲ Rényi entropy powers and fast diffusion
⊲ Flows on the sphere
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Rényi entropy powers and fast
diffusion

⊲ Rényi entropy powers, the entropy approach without rescaling:
[Savaré, Toscani]: scalings, nonlinearity and a concavity property
inspired by information theory

⊲ faster rates of convergence: [Carrillo, Toscani], [JD, Toscani]
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Rényi entropy powers and fast diffusion
Flows on the sphere
Constraints and improvements

The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in Rd , d ≥ 1

∂u

∂t
= ∆um

with initial datum u(x , t = 0) = u0(x) ≥ 0 such that
∫

Rd u0 dx = 1 and
∫

Rd |x |2 u0 dx < +∞. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

U⋆(t, x) :=
1

(

κ t1/µ
)d

B⋆

( x

κ t1/µ

)

where

µ := 2 + d (m − 1) , κ :=
∣

∣

∣

2µm

m − 1

∣

∣

∣

1/µ

and B⋆ is the Barenblatt profile

B⋆(x) :=







(

C⋆ − |x |2
)1/(m−1)

+
if m > 1

(

C⋆ + |x |2
)1/(m−1)

if m < 1
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The Rényi entropy power F

The entropy is defined by

E :=

∫

Rd

um dx

and the Fisher information by

I :=

∫

Rd

u |∇p|2 dx with p =
m

m − 1
um−1

If u solves the fast diffusion equation, then

E′ = (1−m) I

To compute I′, we will use the fact that

∂p

∂t
= (m − 1) p∆p + |∇p|2

F := Eσ with σ =
µ

d (1−m)
= 1+

2

1−m

(

1

d
+m − 1

)

=
2

d

1

1−m
−1

has a linear growth asymptotically as t → +∞
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The concavity property

Theorem

[Toscani-Savaré] Assume that m ≥ 1− 1
d
if d > 1 and m > 0 if d = 1.

Then F (t) is increasing, (1−m) F′′(t) ≤ 0 and

lim
t→+∞

1

t
F(t) = (1 −m)σ lim

t→+∞
Eσ−1 I = (1−m)σ Eσ−1

⋆ I⋆

[Dolbeault-Toscani] The inequality

Eσ−1 I ≥ Eσ−1
⋆ I⋆

is equivalent to the Gagliardo-Nirenberg inequality

‖∇w‖θ
L2(Rd ) ‖w‖1−θ

Lq+1(Rd )
≥ CGN ‖w‖L2q(Rd )

if 1− 1
d
≤ m < 1. Hint: um−1/2 = w

‖w‖
L2q (Rd )

, q = 1
2m−1
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Rényi entropy powers and fast diffusion
Flows on the sphere
Constraints and improvements

The proof

Lemma

If u solves ∂u
∂t = ∆um with 1

d
≤ m < 1, then

I′ =
d

dt

∫

Rd

u |∇p|2 dx = − 2

∫

Rd

um
(

‖D2p‖2 + (m − 1) (∆p)2
)

dx

‖D2p‖2 = 1

d
(∆p)2 +

∥

∥

∥

∥

D2p− 1

d
∆p Id

∥

∥

∥

∥

2

1

σ (1 −m)
E2−σ (Eσ)

′′
= (1−m) (σ − 1)

(
∫

Rd

u |∇p|2 dx
)2

− 2

(

1

d
+m − 1

)
∫

Rd

um dx

∫

Rd

um (∆p)2 dx

− 2

∫

Rd

um dx

∫

Rd

um
∥

∥

∥

∥

D2p− 1

d
∆p Id

∥

∥

∥

∥

2

dx
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Flows on the sphere

⊲ The heat flow introduced by D. Bakry and M. Emery (carré du
champ method) does not cover all exponents up to the critical one

[Bakry, Emery, 1984]
[Bidault-Véron, Véron, 1991], [Bakry, Ledoux, 1996]
[Demange, 2008][JD, Esteban, Loss, 2014 & 2015]
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The interpolation inequalities

On the d-dimensional sphere, let us consider the interpolation
inequality

‖∇u‖2
L2(Sd ) +

d

p − 2
‖u‖2

L2(Sd ) ≥
d

p − 2
‖u‖2

Lp(Sd ) ∀ u ∈ H1(Sd , dµ)

where the measure dµ is the uniform probability measure on
Sd ⊂ Rd+1 corresponding to the measure induced by the Lebesgue
measure on Rd+1, and the exposant p ≥ 1, p 6= 2, is such that

p ≤ 2∗ :=
2 d

d − 2

if d ≥ 3. We adopt the convention that 2∗ = ∞ if d = 1 or d = 2.
The case p = 2 corresponds to the logarithmic Sobolev inequality

‖∇u‖2
L2(Sd ) ≥

d

2

∫

Sd

|u|2 log

(

|u|2
‖u‖2

L2(Sd )

)

d vg ∀ u ∈ H1(Sd , dµ) \ {0}
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The Bakry-Emery method

Entropy functional

Ep[ρ] :=
1

p − 2

[

∫

Sd

ρ
2
p d vg −

(
∫

Sd

ρ d vg

)
2
p

]

if p 6= 2

E2[ρ] :=
∫

Sd

ρ log
(

ρ
‖ρ‖

L1(Sd )

)

d vg

Fisher information functional

Ip[ρ] :=
∫

Sd

|∇ρ
1
p |2 d vg

Bakry-Emery (carré du champ): use the heat flow

∂ρ

∂t
= ∆ρ

where ∆ denotes the Laplace-Beltrami operator on Sd , and compute

d

dt
Ep[ρ] = −Ip[ρ] and

d

dt
Ip[ρ] ≤ − d Ip[ρ]

d
dt
(Ip[ρ]− d Ep[ρ]) ≤ 0 =⇒ Ip[ρ] ≥ d Ep[ρ] with ρ = |u|p , ifJ. Dolbeault Symmetry breaking and sharp functional inequalities
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The evolution under the fast diffusion flow

To overcome the limitation p ≤ 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

∂ρ

∂t
= ∆ρm . (1)

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any p ∈ [1, 2∗]

Kp[ρ] :=
d

dt

(

Ip[ρ]− d Ep[ρ]
)

≤ 0 ,

1.0 1.5 2.5 3.0

0.0

0.5

1.5

2.0

(p,m) admissible region, d = 5
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Sobolev’s inequality

The stereographic projection of Sd ⊂ Rd × R ∋ (ρ φ, z) onto Rd :
to ρ2 + z2 = 1, z ∈ [−1, 1], ρ ≥ 0, φ ∈ Sd−1 we associate x ∈ Rd such
that r = |x |, φ = x

|x|

z =
r2 − 1

r2 + 1
= 1− 2

r2 + 1
, ρ =

2 r

r2 + 1

and transform any function u on Sd into a function v on Rd using

u(y) =
(

r
ρ

)

d−2
2 v(x) =

(

r2+1
2

)

d−2
2 v(x) = (1− z)−

d−2
2 v(x)

p = 2∗, Sd = 1
4 d (d − 2) |Sd |2/d : Euclidean Sobolev inequality

∫

Rd

|∇v |2 dx ≥ Sd

[
∫

Rd

|v | 2 d
d−2 dx

]
d−2
d

∀ v ∈ D1,2(Rd )
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Schwarz symmetrization and the ultraspherical setting

(ξ0, ξ1, . . . ξd) ∈ Sd , ξd = z ,
∑d

i=0 |ξi |2 = 1 [Smets-Willem]

Lemma

Up to a rotation, any minimizer of Q depends only on ξd = z

• Let dσ(θ) := (sin θ)d−1

Zd
dθ, Zd :=

√
π

Γ(
d
2 )

Γ(
d+1
2 )

: ∀ v ∈ H1([0, π], dσ)

p − 2

d

∫ π

0

|v ′(θ)|2 dσ +

∫ π

0

|v(θ)|2 dσ ≥
(
∫ π

0

|v(θ)|p dσ

)
2
p

• Change of variables z = cos θ, v(θ) = f (z)

p − 2

d

∫ 1

−1

|f ′|2 ν dνd +

∫ 1

−1

|f |2 dνd ≥
(
∫ 1

−1

|f |p dνd

)

2
p

where νd (z) dz = dνd(z) := Z−1
d ν

d
2 −1 dz , ν(z) := 1− z2
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The ultraspherical operator

With dνd = Z−1
d ν

d
2 −1 dz , ν(z) := 1− z2, consider the space

L2((−1, 1), dνd) with scalar product

〈f1, f2〉 =
∫ 1

−1

f1 f2 dνd , ‖f ‖Lp(Sd ) =

(
∫ 1

−1

f p dνd

)

1
p

The self-adjoint ultraspherical operator is

L f := (1− z2) f ′′ − d z f ′ = ν f ′′ +
d

2
ν′ f ′

which satisfies 〈f1,L f2〉 = −
∫ 1

−1 f
′
1 f

′
2 ν dνd

Proposition

Let p ∈ [1, 2) ∪ (2, 2∗], d ≥ 1

−〈f ,L f 〉 =
∫ 1

−1

|f ′|2 ν dνd ≥ d
‖f ‖2

Lp(Sd ) − ‖f ‖2
L2(Sd )

p − 2
∀ f ∈ H1([−1, 1], dνd)
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Heat flow and the Bakry-Emery method

With g = f p , i.e. f = gα with α = 1/p

(Ineq.) −〈f ,L f 〉 = −〈gα,L gα〉 =: I[g ] ≥ d
‖g‖2α

L1(Sd ) − ‖g 2α‖L1(Sd )

p − 2
=: F [

Heat flow
∂g

∂t
= L g

d

dt
‖g‖L1(Sd ) = 0 ,

d

dt
‖g 2α‖L1(Sd ) = − 2 (p−2) 〈f ,L f 〉 = 2 (p−2)

∫ 1

−1

|f ′|2 ν d

which finally gives

d

dt
F [g(t, ·)] = − d

p − 2

d

dt
‖g 2α‖L1(Sd ) = − 2 d I[g(t, ·)]

Ineq. ⇐⇒ d

dt
F [g(t, ·)] ≤ − 2 d F [g(t, ·)] ⇐=

d

dt
I[g(t, ·)] ≤ − 2 d I[g(t, ·)]
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The equation for g = f p can be rewritten in terms of f as

∂f

∂t
= L f + (p − 1)

|f ′|2
f

ν

−1

2

d

dt

∫ 1

−1

|f ′|2 ν dνd =
1

2

d

dt
〈f ,L f 〉 = 〈L f ,L f 〉+(p−1) 〈 |f

′|2
f

ν,L f 〉

d

dt
I[g(t, ·)] + 2 d I[g(t, ·)] = d

dt

∫ 1

−1

|f ′|2 ν dνd + 2 d

∫ 1

−1

|f ′|2 ν dνd

= − 2

∫ 1

−1

(

|f ′′|2 + (p − 1)
d

d + 2

|f ′|4
f 2

− 2 (p − 1)
d − 1

d + 2

|f ′|2 f ′′
f

)

ν2 dνd

is nonpositive if

|f ′′|2 + (p − 1)
d

d + 2

|f ′|4
f 2

− 2 (p − 1)
d − 1

d + 2

|f ′|2 f ′′
f

is pointwise nonnegative, which is granted if
[

(p − 1)
d − 1

d + 2

]2

≤ (p−1)
d

d + 2
⇐⇒ p ≤ 2 d2 + 1

(d − 1)2
= 2# <

2 d

d − 2
= 2∗
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... up to the critical exponent: a proof in two slides

[

d

dz
,L
]

u = (L u)
′ − L u′ = −2 z u′′ − d u′

∫ 1

−1

(L u)2 dνd =

∫ 1

−1

|u′′|2 ν2 dνd + d

∫ 1

−1

|u′|2 ν dνd

∫ 1

−1

(L u)
|u′|2
u

ν dνd =
d

d + 2

∫ 1

−1

|u′|4
u2

ν2 dνd − 2
d − 1

d + 2

∫ 1

−1

|u′|2 u′′
u

ν2 dνd

On (−1, 1), let us consider the porous medium (fast diffusion) flow

ut = u2−2β

(

L u + κ
|u′|2
u

ν

)

If κ = β (p − 2) + 1, the Lp norm is conserved

d

dt

∫ 1

−1

uβp dνd = β p (κ− β (p − 2)− 1)

∫ 1

−1

uβ(p−2) |u′|2 ν dνd = 0
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f = uβ , ‖f ′‖2
L2(Sd ) +

d
p−2

(

‖f ‖2
L2(Sd ) − ‖f ‖2

Lp(Sd )

)

≥ 0 ?

A :=

∫ 1

−1

|u′′|2 ν2 dνd − 2
d − 1

d + 2
(κ+ β − 1)

∫ 1

−1

u′′
|u′|2
u

ν2 dνd

+

[

κ (β − 1) +
d

d + 2
(κ+ β − 1)

]
∫ 1

−1

|u′|4
u2

ν2 dνd

A is nonnegative for some β if

8 d2

(d + 2)2
(p − 1) (2∗ − p) ≥ 0

A is a sum of squares if p ∈ (2, 2∗) for an arbitrary choice of β in a
certain interval (depending on p and d)

A =

∫ 1

−1

∣

∣

∣

∣

u′′ − p + 2

6− p

|u′|2
u

∣

∣

∣

∣

2

ν2 dνd ≥ 0 if p = 2∗ and β =
4

6− p
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The rigidity point of view

Which computation have we done ? ut = u2−2β
(

L u + κ |u′|2
u

ν
)

−L u − (β − 1)
|u′|2
u

ν +
λ

p − 2
u =

λ

p − 2
uκ

Multiply by L u and integrate

...

∫ 1

−1

L u uκ dνd = − κ

∫ 1

−1

uκ
|u′|2
u

dνd

Multiply by κ |u′|2
u

and integrate

... = + κ

∫ 1

−1

uκ
|u′|2
u

dνd

The two terms cancel and we are left only with the two-homogenous
terms
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Constraints and improvements
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Integral constraints

Proposition

For any p ∈ (2, 2#), the inequality

∫ 1

−1

|f ′|2 ν dνd +
λ

p − 2
‖f ‖22 ≥

λ

p − 2
‖f ‖2p

∀ f ∈ H1((−1, 1), dνd) s.t.

∫ 1

−1

z |f |p dνd = 0

holds with

λ ≥ d +
(d − 1)2

d (d + 2)
(2# − p) (λ⋆ − d)
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Antipodal symmetry

With the additional restriction of antipodal symmetry, that is

u(−x) = u(x) ∀ x ∈ S
d

Theorem

If p ∈ (1, 2) ∪ (2, 2∗), we have

∫

Sd

|∇u|2 d vg ≥ d

p − 2

[

1 +
(d2 − 4) (2∗ − p)

d (d + 2) + p − 1

]

(

‖u‖2
Lp(Sd ) − ‖u‖2

L2(Sd )

)

for any u ∈ H1(Sd , dµ) with antipodal symmetry. The limit case p = 2
corresponds to the improved logarithmic Sobolev inequality

∫

Sd

|∇u|2 d vg ≥ d

2

(d + 3)2

(d + 1)2

∫

Sd

|u|2 log

(

|u|2
‖u‖2

L2(Sd )

)

d vg
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The larger picture: branches of antipodal solutions

8 9 10 11 12 13 14

8

9

10

11

12

13

14

Case d = 5, p = 3: values of the shooting parameter a as a
function of λ
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The optimal constant in the antipodal framework

�

�

�

�

�

1.5 2.0 2.5 3.0

6

7

8

9

10

11

12

Numerical computation of the optimal constant when d = 5 and
1 ≤ p ≤ 10/3 ≈ 3.33. The limiting value of the constant is numerically
found to be equal to λ⋆ = 21−2/p d ≈ 6.59754 with d = 5 and p = 10/3
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Conferences/
⊲ Lectures

Thank you for your attention !
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