Symmetry breaking issues in Caffarelli-Kohn-Nirenberg inequalities and related problems

Jean Dolbeault

 $http://www.ceremade.dauphine.fr/{\sim}dolbeaul$

Ceremade, Université Paris-Dauphine

November 18, 2015

Torino

<ロト <回ト < 注入 < 注入 = 注

Outline

- An introduction to symmetry and symmetry breaking results in weighted elliptic PDEs
- Caffarelli-Kohn-Nirenberg inequalities
 - \triangleright The symmetry issue
 - \triangleright The result
- The proof
 - ▷ a change of variables and a Sobolev type inequality
 ▷ the fast diffusion flow and the nonlinear Fisher information
 - \triangleright regularity, decay and integrations by parts
- Concavity of the Rényi entropy powers: role of the nonlinear flow
- The Bakry-Emery method: curvature, linear and nonlinear flows
- Conclusion

In collaboration with M.J. Esteban and M. Loss

・ 同 ト ・ ヨ ト ・ ヨ ト

The mexican hat potential in Schrödinger equations Symmetry and symmetry breaking

An introduction to symmetry and symmetry breaking results in weighted elliptic PDEs

 \triangleright The typical issue is the competition between a potential or a weight and a nonlinearity

- 1月 ト - ヨ ト - - - ト

The mexican hat potential in Schrödinger equations Symmetry and symmetry breaking

The mexican hat potential

Let us consider a nonlinear Schrödinger equation in presence of a radial external potential with a minimum which is not at the origin

$$-\Delta u + V(x) u - f(u) = 0$$

A one-dimensional potential V(x)

- ∢ ≣ >

Symmetry and symmetry breaking in elliptic PDEs

Caffarelli-Kohn-Nirenberg inequalities The proof of the symmetry result in 4 steps Two ingredients for the proof and some remarks The mexican hat potential in Schrödinger equations Symmetry and symmetry breaking

A two-dimensional potential V(x) with mexican hat shape

・ロン ・四と ・ヨン ・ヨン

э

The mexican hat potential in Schrödinger equations Symmetry and symmetry breaking

Radial solutions to $-\Delta u + V(x)u - F'(u) = 0$

... give rise to a radial density of energy $x \mapsto V |u|^2 + F(u)$

イロト イポト イヨト イヨト

The mexican hat potential in Schrödinger equations Symmetry and symmetry breaking

symmetry breaking

... but in some cases minimal energy solutions

... give rise to a non-radial density of energy $x \mapsto V |u|^2 + F(u)$

イロト イポト イヨト イヨト

The mexican hat potential in Schrödinger equations Symmetry and symmetry breaking

Symmetry and symmetry breaking

イロト イポト イヨト イヨト

The mexican hat potential in Schrödinger equations Symmetry and symmetry breaking

Proving symmetry breaking

The most classical method is by perturbation of a radial solution and energy descent

... but there are other methods, like direct energy estimates

< 回 ト く ヨ ト く ヨ ト

The mexican hat potential in Schrödinger equations Symmetry and symmetry breaking

Methods for proving symmetry

Classical methods (a non exhaustive list)

• Alexandrov moving planes and the result of [B. Gidas, W. Ni, L. Nirenberg (1979, 1980)]

$$-\Delta u = f(|x|, u)$$
 in $\mathbb{R}^d d \ge 3$

If f is of class C^1 , $\frac{\partial f}{\partial r} < 0$, $u \ge 0$ is of class C^2 and sufficiently decaying at infinity, then u is a radial function and $\frac{\partial u}{\partial r} < 0$.

- Reflexion with respect planes and unique continuation [O. Lopes]
- Symmetrization methods: Schwarz, Steiner, etc.
- A priori estimates, direct energy estimates
- Uniqueness or rigidity: [B. Gidas, J. Spruck], [M.-F. Bidault-Véron, L. Véron, 1991]
- ... probabilistic methods and *carré du champ* methods [D. Bakry, M. Emery, 1984]

 $\triangleright A new method based on entropy functionals and evolution under the action of a nonlinear flow \\ \hline \Box \rightarrow \langle \overline{\sigma} \rangle \land \overline{z} \rightarrow \langle \overline{z} \rangle \land \overline{z} \rightarrow \overline{z}$

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Caffarelli-Kohn-Nirenberg inequalities

 \triangleright Nonlinear flows (fast diffusion equation) can be used as a tool for the investigation of sharp functional inequalities

- 4 回 ト 4 ヨ ト

Caffarelli-Kohn-Nirenberg inequalities The proof of the symmetry result in 4 steps Two ingredients for the proof and some remarks Results on CKN inequalities Symmetry and symmetry breaking The sharp result

Caffarelli-Kohn-Nirenberg inequalities and the symmetry breaking issue

Let
$$\mathcal{D}_{a,b} := \left\{ v \in \mathrm{L}^{p}\left(\mathbb{R}^{d}, |x|^{-b} dx\right) : |x|^{-a} |\nabla v| \in \mathrm{L}^{2}\left(\mathbb{R}^{d}, dx\right) \right\}$$
$$\left(\int_{\mathbb{R}^{d}} \frac{|v|^{p}}{|x|^{b\,p}} dx \right)^{2/p} \leq C_{a,b} \int_{\mathbb{R}^{d}} \frac{|\nabla v|^{2}}{|x|^{2\,a}} dx \quad \forall v \in \mathcal{D}_{a,b}$$

hold under the conditions that a < b < a + 1 if d > 3, a < b < a + 1if d = 2, $a + 1/2 < b \le a + 1$ if d = 1, and $a < a_c := (d - 2)/2$

$$p = \frac{2d}{d-2+2(b-a)}$$

With

$$v_{\star}(x) = \left(1 + |x|^{(p-2)(a_{c}-a)}\right)^{-\frac{2}{p-2}} \quad and \quad C_{a,b}^{\star} = \frac{\||x|^{-b} v_{\star}\|_{p}^{2}}{\||x|^{-a} \nabla v_{\star}\|_{2}^{2}}$$

do we have $C_{a,b} = C^{\star}_{a,b}$ (symmetry) or $C_{a,b} > C^{\star}_{a,b}$ (symmetry breaking)?

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

CKN: range of the parameters

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Symmetry and symmetry breaking

イロト イポト イヨト イヨト

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Proving symmetry breaking

[F. Catrina, Z.-Q. Wang], [V. Felli, M. Schneider (2003)]

[J.D., Esteban, Loss, Tarantello, 2009] There is a curve which separates the symmetry region from the symmetry breaking region, which is parametrized by a function $p \mapsto a + b$

くぼう くちゃ くちゃ

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Moving planes and symmetrization techniques

[Chou, Chu], [Horiuchi]
[Betta, Brock, Marcaldo, Posteraro]
+ Perturbation results: [CS Lin, ZQ Wang], [Smets, Willem], [JD, Esteban, Tarantello 2007], [J.D., Esteban, Loss, Tarantello, 2009]

- 4 回 ト 4 三 ト

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Linear instability of radial minimizers: the Felli-Schneider curve

[Catrina, Wang], [Felli, Schneider] The functional

$$C_{a,b}^{\star} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2a}} \, dx - \left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{bp}} \, dx \right)^{2/p}$$

is linearly instable at $v=v_\star$

< 回 > < 三 > < 三 >

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Direct spectral estimates

[J.D., Esteban, Loss, 2011]: sharp interpolation on the sphere and a Keller-Lieb-Thirring spectral estimate on the line

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Numerical results

Parametric plot of the branch of optimal functions for p = 2.8, d = 5. Non-symmetric solutions bifurcate from symmetric ones at a bifurcation point computed by V. Felli and M. Schneider. The branch behaves for large values of Λ as predicted by F. Catrina and Z.-Q. Wang

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Other evidences

• Further numerical results [J.D., Esteban, 2012] (coarse / refined / self-adaptive grids)

• Formal commutation of the non-symmetric branch near the bifurcation point [J.D., Esteban, 2013]

Results on CKN inequalities Symmetry and symmetry breaking **The sharp result** Generalizations and comments

Symmetry *versus* symmetry breaking: the sharp result

A result based on entropies and nonlinear flows

[J.D., Esteban, Loss, 2015]: http://arxiv.org/abs/1506.03664

Results on CKN inequalities Symmetry and symmetry breaking **The sharp result** Generalizations and comments

The symmetry result

The Felli & Schneider curve is defined by

$$b_{\rm FS}(a) := rac{d(a_c - a)}{2\sqrt{(a_c - a)^2 + d - 1}} + a - a_c$$

Theorem

Let $d \ge 2$ and $p < 2^*$. If either $a \in [0, a_c)$ and b > 0, or a < 0 and $b \ge b_{\rm FS}(a)$, then the optimal functions for the Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

< 回 > < 三 > < 三 >

Results on CKN inequalities Symmetry and symmetry breaking **The sharp result** Generalizations and comments

The Emden-Fowler transformation and the cylinder

▷ With an Emden-Fowler transformation, Caffarelli-Kohn-Nirenberg inequalities on the Euclidean space are equivalent to Gagliardo-Nirenberg inequalities on a cylinder

$$v(r,\omega) = r^{a-a_c} \varphi(s,\omega)$$
 with $r = |x|$, $s = -\log r$ and $\omega = \frac{x}{r}$

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities can be rewritten as

$$\|\partial_{s}\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2}+\|\nabla_{\omega}\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2}+\Lambda\|\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2}\geq\mu(\Lambda)\|\varphi\|_{\mathrm{L}^{p}(\mathcal{C})}^{2}\quad\forall\,\varphi\in\mathrm{H}^{1}(\mathcal{C})$$

where $\Lambda := (a_c - a)^2$, $\mathcal{C} = \mathbb{R} \times \mathbb{S}^{d-1}$ and the optimal constant $\mu(\Lambda)$ is

$$\mu(\Lambda) = \frac{1}{\mathsf{C}_{a,b}} \quad \text{with} \quad a = a_c \pm \sqrt{\Lambda} \quad \text{and} \quad b = \frac{d}{p} \pm \sqrt{\Lambda}$$

- 4 同 6 4 日 6 4 日 6

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Generalizations and comments

イロト イポト イヨト イヨト

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Generalized Caffarelli-Kohn-Nirenberg inequalities (CKN)

Let $2^* = \infty$ if d = 1 or d = 2, $2^* = 2d/(d-2)$ if $d \ge 3$ and define

$$\vartheta(p,d):=\frac{d(p-2)}{2p}$$

[Caffarelli-Kohn-Nirenberg-84] Let $d \ge 1$. For any $\theta \in [\vartheta(p, d), 1]$, with $p = \frac{2d}{d-2+2(b-a)}$, there exists a positive constant $C_{\text{CKN}}(\theta, p, a)$ such that

$$\left(\int_{\mathbb{R}^d} \frac{|u|^p}{|x|^{b\,p}}\,dx\right)^{\frac{2}{p}} \leq \mathsf{C}_{\mathrm{CKN}}(\theta,p,a)\left(\int_{\mathbb{R}^d} \frac{|\nabla u|^2}{|x|^{2\,a}}\,dx\right)^{\theta}\left(\int_{\mathbb{R}^d} \frac{|u|^2}{|x|^{2\,(a+1)}}\,dx\right)^{1-\theta}$$

In the radial case, with $\Lambda = (a - a_c)^2$, the best constant when the inequality is restricted to radial functions is $C^*_{\text{CKN}}(\theta, p, a)$ and

$$\mathsf{C}_{\mathrm{CKN}}(\theta, \boldsymbol{p}, \boldsymbol{a}) \geq \mathsf{C}^*_{\mathrm{CKN}}(\theta, \boldsymbol{p}, \boldsymbol{a}) = \mathsf{C}^*_{\mathrm{CKN}}(\theta, \boldsymbol{p}) \, \Lambda^{\frac{\boldsymbol{p}-2}{2\boldsymbol{p}}-\theta}$$

$$\mathsf{C}^{*}_{\mathrm{CKN}}(\theta, p) = \left[\frac{2\pi^{d/2}}{\Gamma(d/2)}\right]^{2\frac{p-1}{p}} \left[\frac{(p-2)^{2}}{2+(2\theta-1)p}\right]^{\frac{p-2}{2p}} \left[\frac{2+(2\theta-1)p}{2p\theta}\right]^{\theta} \left[\frac{4}{p+2}\right]^{\frac{6-p}{2p}} \left[\frac{\Gamma\left(\frac{2}{p-2}+\frac{1}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{2}{p-2}\right)}\right]^{\frac{p-2}{2p}} \left[\frac{\Gamma\left(\frac{2}{p-2}+\frac{1}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{2}{p-2}\right)}\right]^{\frac{p-2}{2p}} \left[\frac{\Gamma\left(\frac{2}{p-2}+\frac{1}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{2}{p-2}\right)}\right]^{\frac{p-2}{2p}} \left[\frac{\Gamma\left(\frac{2}{p-2}+\frac{1}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{2}{p-2}\right)}\right]^{\frac{p-2}{2p}} \left[\frac{\Gamma\left(\frac{2}{p-2}+\frac{1}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{2}{p-2}\right)}\right]^{\frac{p-2}{2p}} \left[\frac{\Gamma\left(\frac{2}{p-2}+\frac{1}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{2}{p-2}+\frac{1}{2}\right)}\right]^{\frac{p-2}{2p}} \left[\frac{\Gamma\left(\frac{2$$

Caffarelli-Kohn-Nirenberg inequalities The proof of the symmetry result in 4 steps Two ingredients for the proof and some remarks Symmetry and symmetry breaking The sharp result Generalizations and comments

Implementing the method of Catrina-Wang / Felli-Schneider

Among functions $w \in H^1(\mathcal{C})$ which depend only on s, the minimum of

$$\mathcal{J}[w] := \int_{\mathcal{C}} \left(|\nabla w|^2 + \frac{1}{4} \left(d - 2 - 2 \, a \right)^2 |w|^2 \right) \, dx - \left[\mathsf{C}^*(\theta, p, a) \right]^{-\frac{1}{\theta}} \, \frac{\left(\int_{\mathcal{C}} |w|^p \, dx \right)^{\frac{2}{p \, \theta}}}{\left(\int_{\mathcal{C}} |w|^2 \, dx \right)^{\frac{1-\theta}{\theta}}}$$

is achieved by
$$\overline{w}(y) := \left[\cosh(\lambda s)\right]^{-\frac{2}{p-2}}, y = (s, \omega) \in \mathbb{R} \times \mathbb{S} = \mathcal{C}$$
 with $\lambda := \frac{1}{4} \left(d - 2 - 2a\right) \left(p - 2\right) \sqrt{\frac{p+2}{2p\theta - (p-2)}}$ as a solution of $\lambda^2 \left(p - 2\right)^2 w'' - 4w + 2p |w|^{p-2} w = 0$

Spectrum of $\mathcal{L} := -\Delta + \kappa \overline{w}^{p-2} + \mu$ is given for $\sqrt{1 + 4\kappa/\lambda^2} \ge 2j + 1$ by

$$\lambda_{i,j} = \mu + i \left(d + i - 2 \right) - \frac{\lambda^2}{4} \left(\sqrt{1 + \frac{4\kappa}{\lambda^2}} - (1 + 2j) \right)^2 \quad \forall i, j \in \mathbb{N}$$

• The eigenspace of \mathcal{L} corresponding to $\lambda_{0,0}$ is generated by \overline{W} **Q** The eigenfunction $\phi_{(1,0)}$ associated to $\lambda_{1,0}$ is not radially symmetric and such that $\int_{\mathcal{C}} \overline{w} \phi_{(1,0)} dx = 0$ and $\int_{\mathcal{C}} \overline{w}^{p-1} \phi_{(1,0)} dx = 0$ **Q** If $\lambda_{1,0} < 0$, optimal functions for (CKN) cannot be radially =Symmetry breaking and sharp functional inequalities J. Dolbeault

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Parametric plot of $\mu \mapsto (\Lambda^{\theta}(\mu), J^{\theta}(\mu))$ for $p = 2.8, d = 5, \theta = 1$

J. Dolbeault Symmetry breaking and sharp functional inequalities

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Parametric plot of $\mu \mapsto (\Lambda^{\theta}(\mu), J^{\theta}(\mu))$ for $p = 2.8, d = 5, \theta = 0.8$

J. Dolbeault Symmetry breaking and sharp functional inequalities

Symmetry and symmetry breaking The sharp result Generalizations and comments

Parametric plot of $\mu \mapsto (\Lambda^{\theta}(\mu), J^{\theta}(\mu))$ for p = 2.8, d = 5, $\theta = 0.72$

Symmetry breaking and sharp functional inequalities

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Enlargement for p = 2.8, d = 5, $\theta = 0.95$

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Enlargement for p = 2.8, d = 5, $\theta = 0.72$

J. Dolbeault Symmetry breaking and sharp functional inequalities

э

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Critical case $\theta = \vartheta(p, d)$

<ロ> <同> <同> < 回> < 回>

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Parametric plot of $\mu \mapsto (\Lambda^{\theta}(\mu), J^{\theta}(\mu))$ for p = 3.15, d = 5, $\theta = 1$

J. Dolbeault Symmetry breaking and sharp functional inequalities

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Parametric plot of $\mu \mapsto (\Lambda^{\theta}(\mu), J^{\theta}(\mu))$ for p = 3.15, d = 5, $\theta = 0.95$

J. Dolbeault Symmetry breaking and sharp functional inequalities

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Case p = 3.15, d = 5, $\theta = \vartheta(3.15, 5) \approx 0.9127$

イロト イポト イヨト イヨト

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

local and asymptotic criteria

A change of variables and a Sobolev type inequality Fisher information and fast diffusion flow Decay along the flow Decay estimates on the cylinder

The main steps of the proof

- A change of variables: an equivalent inequality of Sbolev type
- The fast diffusion flow and the nonlinear Fisher information
- Proving the decay along the flow
- The justification of the integration by parts: decay estimates on the cylinder

- 4 同 6 4 日 6 4 日 6

A change of variables and a Sobolev type inequality Fisher information and fast diffusion flow Decay along the flow Decay estimates on the cylinder

A change of variables

With $(r = |x|, \omega = x/r) \in \mathbb{R}^+ \times \mathbb{S}^{d-1}$, the Caffarelli-Kohn-Nirenberg inequality is

$$\left(\int_0^\infty \int_{\mathbb{S}^{d-1}} |v|^p r^{d-bp} \frac{dr}{r} d\omega\right)^{\frac{2}{p}} \leq \mathsf{C}_{a,b} \int_0^\infty \int_{\mathbb{S}^{d-1}} |\nabla v|^2 r^{d-2a} \frac{dr}{r} d\omega$$

Change of variables $r \mapsto r^{\alpha}$, $v(r, \omega) = w(r^{\alpha}, \omega)$

$$\begin{split} \alpha^{1-\frac{2}{p}} \left(\int_0^\infty \int_{\mathbb{S}^{d-1}} |w|^p r^{\frac{d-bp}{\alpha}} \frac{dr}{r} d\omega \right)^{\frac{2}{p}} \\ &\leq \mathsf{C}_{a,b} \int_0^\infty \int_{\mathbb{S}^{d-1}} \left(\alpha^2 \left| \frac{\partial w}{\partial r} \right|^2 + \frac{1}{r^2} \left| \nabla_\omega w \right|^2 \right) r^{\frac{d-2s-2}{\alpha}+2} \frac{dr}{r} d\omega \end{split}$$

Choice of α

$$n = \frac{d - b p}{\alpha} = \frac{d - 2 a - 2}{\alpha} + 2$$

Then $p = \frac{2n}{n-2}$ is the critical Sobolev exponent associated with n

A change of variables and a Sobolev type inequality Fisher information and fast diffusion flow Decay along the flow Decay estimates on the cylinder

A Sobolev type inequality

The parameters α and n vary in the ranges $0 < \alpha < \infty$ and $d < n < \infty$ and the *Felli-Schneider curve* in the (α, n) variables is given by

$$\alpha = \sqrt{\frac{d-1}{n-1}} =: \alpha_{\rm FS}$$

With

$$\mathsf{D}w = \left(lpha \, \frac{\partial w}{\partial r}, \frac{1}{r} \, \nabla_{\omega} w \right) \,, \quad d\mu := r^{n-1} \, dr \, d\omega$$

the inequality becomes

$$\alpha^{1-\frac{2}{p}} \left(\int_{\mathbb{R}^d} |w|^p \, d\mu \right)^{\frac{2}{p}} \leq \mathsf{C}_{\mathsf{a},\mathsf{b}} \int_{\mathbb{R}^d} |\mathsf{D}w|^2 \, d\mu$$

Proposition

Let $d\geq 2.$ Optimality is achieved by radial functions and $C_{a,b}=C^{\star}_{a,b}$ if $\alpha\leq \alpha_{\rm FS}$

Gagliardo-Nirenberg inequalities on general cylinders; similar

A change of variables and a Sobolev type inequality Fisher information and fast diffusion flow Decay along the flow Decay estimates on the cylinder

Notations

When there is no ambiguity, we will omit the index ω and from now on write that $\nabla = \nabla_{\omega}$ denotes the gradient with respect to the angular variable $\omega \in \mathbb{S}^{d-1}$ and that Δ is the Laplace-Beltrami operator on \mathbb{S}^{d-1} . We define the self-adjoint operator \mathcal{L} by

$$\mathcal{L} w := -\mathsf{D}^* \mathsf{D} w = \alpha^2 w'' + \alpha^2 \frac{n-1}{r} w' + \frac{\Delta w}{r^2}$$

The fundamental property of \mathcal{L} is the fact that

$$\int_{\mathbb{R}^d} w_1 \mathcal{L} w_2 \, d\mu = - \int_{\mathbb{R}^d} \mathsf{D} w_1 \cdot \mathsf{D} w_2 \, d\mu \quad \forall w_1, w_2 \in \mathcal{D}(\mathbb{R}^d)$$

 \triangleright Heuristics: we look for a monotonicity formula along a well chosen nonlinear flow, based on the analogy with the decay of the Fisher information along the fast diffusion flow in \mathbb{R}^d

イロト イポト イラト イラト

A change of variables and a Sobolev type inequality Fisher information and fast diffusion flow Decay along the flow Decay estimates on the cylinder

Fisher information

Let
$$u^{\frac{1}{2}-\frac{1}{n}} = |w| \iff u = |w|^p$$
, $p = \frac{2n}{n-2}$

$$\mathcal{I}[u] := \int_{\mathbb{R}^d} u \left| \mathsf{Dp} \right|^2 d\mu, \quad \mathsf{p} = \frac{m}{1-m} u^{m-1} \quad \text{and} \quad m = 1 - \frac{1}{n}$$

Here \mathcal{I} is the *Fisher information* and p is the *pressure function*

Proposition

With $\Lambda = 4 \alpha^2 / (p-2)^2$ and for some explicit numerical constant κ , we have

$$\kappa \mu(\Lambda) = \inf \left\{ \mathcal{I}[u] \, : \, \|u\|_{\mathrm{L}^{1}(\mathbb{R}^{d}, d\mu)} = 1 \right\}$$

 \rhd Optimal solutions solutions of the elliptic PDE) are (constrained) critical point of $\mathcal I$

- 4 回 ト - 4 回 ト

A change of variables and a Sobolev type inequality Fisher information and fast diffusion flow Decay along the flow Decay estimates on the cylinder

The fast diffusion equation

$$\frac{\partial u}{\partial t} = \mathcal{L} u^m, \quad m = 1 - \frac{1}{n}$$

Barenblatt self-similar solutions

$$u_{\star}(t,r,\omega) = t^{-n} \left(c_{\star} + \frac{r^2}{2(n-1)\alpha^2 t^2} \right)^{-n}$$

Lemma

Barenblatt solutions realize the minimum of \mathcal{I} among radial functions:

$$\kappa \, \mu_{\star}(\Lambda) = \mathcal{I}[u_{\star}(t, \cdot)] \quad \forall \, t > 0$$

▷ Strategy: 1) prove that $\frac{d}{dt}\mathcal{I}[u(t,\cdot)] \leq 0$, 2) prove that $\frac{d}{dt}\mathcal{I}[u(t,\cdot)] = 0$ means that $u = u_*$ up to a time shift

A change of variables and a Sobolev type inequality Fisher information and fast diffusion flow Decay along the flow Decay estimates on the cylinder

Decay of the Fisher information along the flow ?

The pressure function
$$\mathbf{p} = \frac{m}{1-m} u^{m-1}$$
 satisfies
 $\frac{\partial \mathbf{p}}{\partial t} = \frac{1}{n} \mathbf{p} \mathcal{L} \mathbf{p} - |\mathsf{D}\mathbf{p}|^2$
 $\mathcal{Q}[\mathbf{p}] := \frac{1}{2} \mathcal{L} |\mathsf{D}\mathbf{p}|^2 - \mathsf{D}\mathbf{p} \cdot \mathsf{D}\mathcal{L} \mathbf{p}$
 $\mathcal{K}[\mathbf{p}] := \int_{\mathbb{R}^d} \left(\mathcal{Q}[\mathbf{p}] - \frac{1}{n} (\mathcal{L} \mathbf{p})^2 \right) \mathbf{p}^{1-n} d\mu$

Lemma

If u solves the weighted fast diffusion equation, then

$$\frac{d}{dt}\mathcal{I}[u(t,\cdot)] = -2(n-1)^{n-1}\mathcal{K}[p]$$

If u is a critical point, then $\mathcal{K}[\mathbf{p}] = \mathbf{0}$ \triangleright Boundary terms ! Regularity !

- 4 同 ト 4 ヨ ト 4 ヨ ト

A change of variables and a Sobolev type inequality Fisher information and fast diffusion flow Decay along the flow Decay estimates on the cylinder

Proving decay (1/2)

$$k[\mathbf{p}] := \mathcal{Q}(\mathbf{p}) - \frac{1}{n} (\mathcal{L} \mathbf{p})^2 = \frac{1}{2} \mathcal{L} |\mathsf{D}\mathbf{p}|^2 - \mathsf{D}\mathbf{p} \cdot \mathsf{D} \mathcal{L} \mathbf{p} - \frac{1}{n} (\mathcal{L} \mathbf{p})^2$$
$$k_{\mathfrak{M}}[\mathbf{p}] := \frac{1}{2} \Delta |\nabla \mathbf{p}|^2 - \nabla \mathbf{p} \cdot \nabla \Delta \mathbf{p} - \frac{1}{n-1} (\Delta \mathbf{p})^2 - (n-2) \alpha^2 |\nabla \mathbf{p}|^2$$

Lemma

Let $n \neq 1$ be any real number, $d \in \mathbb{N}$, $d \geq 2$, and consider a function $p \in C^3((0,\infty) \times \mathfrak{M})$, where (\mathfrak{M},g) is a smooth, compact Riemannian manifold. Then we have

$$k[\mathbf{p}] = \alpha^4 \left(1 - \frac{1}{n}\right) \left[\mathbf{p}'' - \frac{\mathbf{p}'}{r} - \frac{\Delta \mathbf{p}}{\alpha^2 (n-1) r^2}\right]^2 + 2 \alpha^2 \frac{1}{r^2} \left|\nabla \mathbf{p}' - \frac{\nabla \mathbf{p}}{r}\right|^2 + \frac{1}{r^4} k_{\mathfrak{M}}[\mathbf{p}]$$

A change of variables and a Sobolev type inequality Fisher information and fast diffusion flow Decay along the flow Decay estimates on the cylinder

Proving decay (2/2)

Lemma

Assume that
$$d \ge 3$$
, $n > d$ and $\mathfrak{M} = \mathbb{S}^{d-1}$. For some $\zeta_{\star} > 0$ we have

$$\int_{\mathbb{S}^{d-1}} k_{\mathfrak{M}}[p] p^{1-n} d\omega \ge (\lambda_{\star} - (n-2)\alpha^2) \int_{\mathbb{S}^{d-1}} |\nabla p|^2 p^{1-n} d\omega$$

$$+ \zeta_{\star} (n-d) \int_{\mathbb{S}^{d-1}} |\nabla p|^4 p^{1-n} d\omega$$

Proof based on the Bochner-Lichnerowicz-Weitzenböck formula

Corollary

Let $d \geq 2$ and assume that $\alpha \leq \alpha_{FS}$. Then for any nonnegative function $u \in L^1(\mathbb{R}^d)$ with $\mathcal{I}[u] < +\infty$ and $\int_{\mathbb{R}^d} u \, d\mu = 1$, we have

 $\mathcal{I}[u] \geq \mathcal{I}_{\star}$

When $\mathfrak{M} = \mathbb{S}^{d-1}$, $\lambda_{\star} = (n-2) \frac{d-1}{n-1}$

🗇 🕨 🖉 🖢 🖌 🖉 🕨

A change of variables and a Sobolev type inequality Fisher information and fast diffusion flow Decay along the flow Decay estimates on the cylinder

A perturbation argument

• If u is a critical point of \mathcal{I} under the mass constraint $\int_{\mathbb{R}^d} u \, d\mu = 1$, then

$$o(\varepsilon) = \mathcal{I}[u + \varepsilon \mathcal{L} u^m] - \mathcal{I}[u] = -2(n-1)^{n-1} \varepsilon \mathcal{K}[p] + o(\varepsilon)$$

because $\varepsilon \, \mathcal{L} \, u^m$ is an admissible perturbation (formal). Indeed, we know that

$$\int_{\mathbb{R}^d} \left(u + \varepsilon \, \mathcal{L} \, u^m \right) d\mu = \int_{\mathbb{R}^d} u \, d\mu = 1$$

but positivity of $u + \varepsilon \, \mathcal{L} \, u^m$ is an issue: compute

$$0 = D\mathcal{I}[u] \cdot \mathcal{L} u^m = -\mathcal{K}[p]$$

• Regularity issues (uniform decay of various derivatives up to order 3) and boundary terms

• If $\alpha \leq \alpha_{\rm FS}$, then $\mathcal{K}[\mathbf{p}] = \mathbf{0}$ implies that $u = u_{\star}$

The justification of the integration by parts: decay estimates on the cylinder

After then Emden-Fowler transformation, a critical point satisfies the Euler-Lagrange equation

$$-\partial_s^2 \varphi - \Delta_\omega \varphi + \Lambda \varphi = \varphi^{p-1} \quad \text{in} \quad \mathcal{C} = \mathbb{R} \times \mathcal{M}$$

(up to a multiplication by a constant; $\mathcal{M} = \mathbb{S}^{d-1}$ e.g.)

Proposition

For all
$$(s,\omega) \in \mathcal{C}$$
, we have $C_1 e^{-\sqrt{\Lambda} |s|} \le \varphi(s,\omega) \le C_2 e^{-\sqrt{\Lambda} |s|}$

$$|arphi'({f s},\omega)|\,,\;|arphi''({f s},\omega)|\,,\;|
abla arphi({f s},\omega)|\,,\;|\Delta\,arphi({f s},\omega)|\leq C_2\,e^{-\sqrt{\Lambda}\,|{f s}|}$$

and
$$\begin{split} \int_{\mathfrak{M}} |\mathsf{p}'(r,\omega)|^2 \, d\, \mathsf{v}_g &\leq O(1), \ \int_{\mathfrak{M}} |\nabla \mathsf{p}(r,\omega)|^2 \, d\, \mathsf{v}_g &\leq O(r^2), \\ \int_{\mathfrak{M}} |\mathsf{p}''(r,\omega)|^2 \, d\, \mathsf{v}_g &\leq O(1/r^2) \\ \\ \int_{\mathfrak{M}} |\nabla \mathsf{p}'(r,\omega) - \frac{1}{r} \, \nabla \mathsf{p}(r,\omega)|^2 \, d\, \mathsf{v}_g &\leq O(1), \\ \int_{\mathfrak{M}} |\Delta \mathsf{p}(r,\omega)|^2 \, d\, \mathsf{v}_r &\leq O(1/r^2) \\ \end{bmatrix}$$

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

Two ingredients for the proof

▷ Rényi entropy powers and fast diffusion▷ Flows on the sphere

・ロン ・四と ・ヨン ・ヨン

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

Rényi entropy powers and fast diffusion

▷ Rényi entropy powers, the entropy approach without rescaling: [Savaré, Toscani]: scalings, nonlinearity and a concavity property inspired by information theory

▷ faster rates of convergence: [Carrillo, Toscani], [JD, Toscani]

- 4 同 6 4 日 6 4 日 6

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in $\mathbb{R}^d,\,d\geq 1$

$$\frac{\partial u}{\partial t} = \Delta u^m$$

with initial datum $u(x, t = 0) = u_0(x) \ge 0$ such that $\int_{\mathbb{R}^d} u_0 \, dx = 1$ and $\int_{\mathbb{R}^d} |x|^2 u_0 \, dx < +\infty$. The large time behavior of the solutions is governed by the source-type Barenblatt solutions

$$\mathcal{U}_{\star}(t,x) \coloneqq rac{1}{ig(\kappa \, t^{1/\mu}ig)^d} \, \mathcal{B}_{\star}ig(rac{x}{\kappa \, t^{1/\mu}}ig)$$

where

$$\mu := 2 + d(m-1), \quad \kappa := \left|\frac{2 \mu m}{m-1}\right|^{1/\mu}$$

and \mathcal{B}_{\star} is the Barenblatt profile

$$\mathcal{B}_{\star}(x) := egin{cases} \left(C_{\star} - |x|^2
ight)_+^{1/(m-1)} & ext{if } m > 1 \ \left(C_{\star} + |x|^2
ight)^{1/(m-1)} & ext{if } m < 1 \end{cases}$$

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

The Rényi entropy power F

The entropy is defined by

$$\Xi := \int_{\mathbb{R}^d} u^m \, dx$$

and the Fisher information by

$$I := \int_{\mathbb{R}^d} u |\nabla p|^2 dx$$
 with $p = \frac{m}{m-1} u^{m-1}$

If \boldsymbol{u} solves the fast diffusion equation, then

$$\mathsf{E}' = (1-m)\mathsf{I}$$

To compute ${\mathsf I}',$ we will use the fact that

$$\frac{\partial p}{\partial t} = (m-1) p \Delta p + |\nabla p|^2$$

$$F := E^{\sigma} \quad \text{with} \quad \sigma = \frac{\mu}{d(1-m)} = 1 + \frac{2}{1-m} \left(\frac{1}{d} + m - 1\right) = \frac{2}{d} \frac{1}{1-m} - 1$$
has a linear growth asymptotically as $t \to \pm \infty$

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

The concavity property

Theorem

[Toscani-Savaré] Assume that $m \ge 1 - \frac{1}{d}$ if d > 1 and m > 0 if d = 1. Then F(t) is increasing, $(1 - m) F''(t) \le 0$ and

$$\lim_{t \to +\infty} \frac{1}{t} \mathsf{F}(t) = (1 - m) \sigma \lim_{t \to +\infty} \mathsf{E}^{\sigma - 1} \mathsf{I} = (1 - m) \sigma \mathsf{E}_{\star}^{\sigma - 1} \mathsf{I}_{\star}$$

[Dolbeault-Toscani] The inequality

$$\mathsf{E}^{\sigma-1}\,\mathsf{I}\geq\mathsf{E}_\star^{\sigma-1}\,\mathsf{I}_\star$$

is equivalent to the Gagliardo-Nirenberg inequality

$$\|\nabla w\|_{\mathrm{L}^2(\mathbb{R}^d)}^{\theta} \|w\|_{\mathrm{L}^{q+1}(\mathbb{R}^d)}^{1-\theta} \geq \mathsf{C}_{\mathrm{GN}} \|w\|_{\mathrm{L}^{2q}(\mathbb{R}^d)}$$

if $1 - \frac{1}{d} \le m < 1$. Hint: $u^{m-1/2} = \frac{w}{\|w\|_{L^{2q}(\mathbb{R}^d)}}, \ q = \frac{1}{2m-1}$

The proof

Lemma

If
$$u$$
 solves $\frac{\partial u}{\partial t} = \Delta u^m$ with $\frac{1}{d} \le m < 1$, then

$$I' = \frac{d}{dt} \int_{\mathbb{R}^d} u |\nabla p|^2 dx = -2 \int_{\mathbb{R}^d} u^m \left(\|D^2 p\|^2 + (m-1) (\Delta p)^2 \right) dx$$

Rényi entropy powers and fast diffusion

$$\|\mathbf{D}^2 \mathbf{p}\|^2 = \frac{1}{d} (\Delta \mathbf{p})^2 + \left\| \mathbf{D}^2 \mathbf{p} - \frac{1}{d} \Delta \mathbf{p} \operatorname{Id} \right\|^2$$

$$\frac{1}{\sigma(1-m)} \mathsf{E}^{2-\sigma} (\mathsf{E}^{\sigma})'' = (1-m)(\sigma-1) \left(\int_{\mathbb{R}^d} u |\nabla \mathsf{p}|^2 \, dx \right)^2 - 2 \left(\frac{1}{d} + m - 1 \right) \int_{\mathbb{R}^d} u^m \, dx \int_{\mathbb{R}^d} u^m \, (\Delta \mathsf{p})^2 \, dx - 2 \int_{\mathbb{R}^d} u^m \, dx \int_{\mathbb{R}^d} u^m \left\| \mathsf{D}^2 \mathsf{p} - \frac{1}{\sigma} \frac{1}{d} \Delta \mathsf{p} \operatorname{Id} \right\|_{\mathbb{R}^d}^2 \, dx = \mathcal{O}(\mathbf{q})$$
J. Dolbeaut

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

Flows on the sphere

 \triangleright The heat flow introduced by D. Bakry and M. Emery (*carré du champ* method) does not cover all exponents up to the critical one

[Bakry, Emery, 1984] [Bidault-Véron, Véron, 1991], [Bakry, Ledoux, 1996] [Demange, 2008][JD, Esteban, Loss, 2014 & 2015]

< 回 ト く ヨ ト く ヨ ト

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

The interpolation inequalities

On the $d\mbox{-dimensional sphere, let us consider the interpolation inequality}$

$$\|\nabla u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 + \frac{d}{p-2} \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \geq \frac{d}{p-2} \|u\|_{\mathrm{L}^p(\mathbb{S}^d)}^2 \quad \forall \, u \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$$

where the measure $d\mu$ is the uniform probability measure on $\mathbb{S}^d \subset \mathbb{R}^{d+1}$ corresponding to the measure induced by the Lebesgue measure on \mathbb{R}^{d+1} , and the exposant $p \geq 1$, $p \neq 2$, is such that

$$p \leq 2^* := \frac{2d}{d-2}$$

if $d \ge 3$. We adopt the convention that $2^* = \infty$ if d = 1 or d = 2. The case p = 2 corresponds to the logarithmic Sobolev inequality

$$\|\nabla u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \geq \frac{d}{2} \int_{\mathbb{S}^{d}} |u|^{2} \log\left(\frac{|u|^{2}}{\|u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2}}\right) dv_{g} \quad \forall u \in \mathrm{H}^{1}(\mathbb{S}^{d}, d\mu) \setminus \{0\}$$

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

The Bakry-Emery method

Entropy functional

1

$$\mathcal{E}_{p}[\rho] := \frac{1}{p-2} \left[\int_{\mathbb{S}^{d}} \rho^{\frac{2}{p}} dv_{g} - \left(\int_{\mathbb{S}^{d}} \rho dv_{g} \right)^{\frac{2}{p}} \right] \quad \text{if} \quad p \neq 2$$
$$\mathcal{E}_{2}[\rho] := \int_{\mathbb{S}^{d}} \rho \log \left(\frac{\rho}{\|\rho\|_{L^{1}(\mathbb{S}^{d})}} \right) dv_{g}$$

Fisher information functional

$$\mathcal{I}_{
ho}[
ho] := \int_{\mathbb{S}^d} |
abla
ho^{rac{1}{
ho}}|^2 \; d \, v_g$$

Bakry-Emery (carré du champ): use the heat flow

$$\frac{\partial \rho}{\partial t} = \Delta \rho$$

where Δ denotes the Laplace-Beltrami operator on \mathbb{S}^d , and compute

$$\frac{d}{dt}\mathcal{E}_{p}[\rho] = -\mathcal{I}_{p}[\rho] \quad \text{and} \quad \frac{d}{dt}\mathcal{I}_{p}[\rho] \leq -d\mathcal{I}_{p}[\rho]$$

Rénvi entropy powers and fast diffusion Flows on the sphere

The evolution under the fast diffusion flow

To overcome the limitation $p \leq 2^{\#}$, one can consider a nonlinear diffusion of fast diffusion / porous medium type

$$\frac{\partial \rho}{\partial t} = \Delta \rho^m \,. \tag{1}$$

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any $p \in [1, 2^*]$

$$\mathcal{K}_{\rho}[\rho] := rac{d}{dt} \Big(\mathcal{I}_{\rho}[\rho] - d \, \mathcal{E}_{\rho}[\rho] \Big) \leq 0 \,,$$

Symmetry breaking and sharp functional inequalities

э

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

Sobolev's inequality

The stereographic projection of $\mathbb{S}^d \subset \mathbb{R}^d \times \mathbb{R} \ni (\rho \phi, z)$ onto \mathbb{R}^d : to $\rho^2 + z^2 = 1$, $z \in [-1, 1]$, $\rho \ge 0$, $\phi \in \mathbb{S}^{d-1}$ we associate $x \in \mathbb{R}^d$ such that $r = |x|, \phi = \frac{x}{|x|}$

$$z = \frac{r^2 - 1}{r^2 + 1} = 1 - \frac{2}{r^2 + 1}, \quad \rho = \frac{2r}{r^2 + 1}$$

and transform any function u on \mathbb{S}^d into a function v on \mathbb{R}^d using

$$u(y) = \left(\frac{r}{\rho}\right)^{\frac{d-2}{2}} v(x) = \left(\frac{r^2+1}{2}\right)^{\frac{d-2}{2}} v(x) = (1-z)^{-\frac{d-2}{2}} v(x)$$

 $\blacksquare \ p=2^*, \, \mathsf{S}_d=\frac{1}{4}\,d\,(d-2)\,|\mathbb{S}^d|^{2/d}\colon$ Euclidean Sobolev inequality

$$\int_{\mathbb{R}^d} |\nabla v|^2 \, dx \ge \mathsf{S}_d \left[\int_{\mathbb{R}^d} |v|^{\frac{2d}{d-2}} \, dx \right]^{\frac{d-2}{d}} \quad \forall \, v \in \mathcal{D}^{1,2}(\mathbb{R}^d)$$

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

Schwarz symmetrization and the ultraspherical setting

$$(\xi_0, \xi_1, \dots \xi_d) \in \mathbb{S}^d, \, \xi_d = z, \, \sum_{i=0}^d |\xi_i|^2 = 1 \, [\text{Smets-Willem}]$$

Lemma

Up to a rotation, any minimizer of ${\mathcal Q}$ depends only on $\xi_d=z$

• Let
$$d\sigma(\theta) := \frac{(\sin \theta)^{d-1}}{Z_d} d\theta$$
, $Z_d := \sqrt{\pi} \frac{\Gamma(\frac{d}{2})}{\Gamma(\frac{d+1}{2})}$: $\forall v \in \mathrm{H}^1([0,\pi], d\sigma)$

$$\frac{p-2}{d}\int_0^\pi |v'(\theta)|^2 \ d\sigma + \int_0^\pi |v(\theta)|^2 \ d\sigma \ge \left(\int_0^\pi |v(\theta)|^p \ d\sigma\right)^{\frac{2}{p}}$$

• Change of variables $z = \cos \theta$, $v(\theta) = f(z)$

$$\frac{p-2}{d} \int_{-1}^{1} |f'|^2 \nu \, d\nu_d + \int_{-1}^{1} |f|^2 \, d\nu_d \ge \left(\int_{-1}^{1} |f|^p \, d\nu_d\right)^{\frac{2}{p}}$$

where $\nu_d(z) dz = d\nu_d(z) := Z_d^{-1} \nu^{\frac{d}{2}-1} dz, \ \nu(z) := 1 - z^2$

Caffarelli-Kohn-Nirenberg inequalities The proof of the symmetry result in 4 steps Two ingredients for the proof and some remarks

Rénvi entropy powers and fast diffusion Flows on the sphere

The ultraspherical operator

With $d\nu_d = Z_d^{-1} \nu^{\frac{d}{2}-1} dz$, $\nu(z) := 1 - z^2$, consider the space $L^{2}((-1,1), d\nu_{d})$ with scalar product

$$\langle f_1, f_2 \rangle = \int_{-1}^1 f_1 f_2 d\nu_d, \quad \|f\|_{\mathrm{L}^p(\mathbb{S}^d)} = \left(\int_{-1}^1 f^p d\nu_d\right)^{\frac{1}{p}}$$

The self-adjoint *ultraspherical* operator is

$$\mathcal{L} \, f := (1 - z^2) \, f'' - d \, z \, f' =
u \, f'' + rac{d}{2} \,
u' \, f'$$

which satisfies $\langle f_1, \mathcal{L} f_2 \rangle = - \int_{-1}^{1} f'_1 f'_2 \nu d\nu_d$

Proposition

Let $p \in [1, 2) \cup (2, 2^*]$, $d \ge 1$

$$-\langle f, \mathcal{L} f \rangle = \int_{-1}^{1} |f'|^2 \ \nu \ d\nu_d \ge d \ \frac{\|f\|_{\mathrm{L}^p(\mathbb{S}^d)}^2 - \|f\|_{\mathrm{L}^2(\mathbb{S}^d)}^2}{p-2} \quad \forall f \in \mathrm{H}^1([-1,1], d\nu_d)$$

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

Heat flow and the Bakry-Emery method

With
$$g = f^{p}$$
, *i.e.* $f = g^{\alpha}$ with $\alpha = 1/p$

(Ineq.)
$$-\langle f, \mathcal{L} f \rangle = -\langle g^{\alpha}, \mathcal{L} g^{\alpha} \rangle =: \mathcal{I}[g] \ge d \frac{\|g\|_{\mathrm{L}^{1}(\mathbb{S}^{d})}^{2\alpha} - \|g^{2\alpha}\|_{\mathrm{L}^{1}(\mathbb{S}^{d})}}{p-2} =: \mathcal{J}$$

Heat flow

$$rac{\partial g}{\partial t} = \mathcal{L} g$$

~

$$\frac{d}{dt} \|g\|_{\mathrm{L}^{1}(\mathbb{S}^{d})} = 0, \quad \frac{d}{dt} \|g^{2\alpha}\|_{\mathrm{L}^{1}(\mathbb{S}^{d})} = -2(p-2)\langle f, \mathcal{L}f \rangle = 2(p-2) \int_{-1}^{1} |f'|^{2} \nu$$

which finally gives

$$\frac{d}{dt}\mathcal{F}[g(t,\cdot)] = -\frac{d}{p-2}\frac{d}{dt}\|g^{2\alpha}\|_{\mathrm{L}^{1}(\mathbb{S}^{d})} = -2\,d\,\mathcal{I}[g(t,\cdot)]$$

Ineq. $\iff \frac{d}{dt} \mathcal{F}[g(t,\cdot)] \leq -2 d \mathcal{F}[g(t,\cdot)] \iff \frac{d}{dt} \mathcal{I}[g(t,\cdot)] \leq -2 d \mathcal{I}[g(t,\cdot)]$

< 回 > < 三 > < 三 >

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

The equation for $g = f^p$ can be rewritten in terms of f as

$$rac{\partial f}{\partial t} = \mathcal{L} f + (p-1) rac{|f'|^2}{f}
u$$

$$-\frac{1}{2}\frac{d}{dt}\int_{-1}^{1}|f'|^{2}\nu d\nu_{d} = \frac{1}{2}\frac{d}{dt}\langle f,\mathcal{L}f\rangle = \langle \mathcal{L}f,\mathcal{L}f\rangle + (p-1)\langle \frac{|f'|^{2}}{f}\nu,\mathcal{L}f\rangle$$

$$\frac{d}{dt}\mathcal{I}[g(t,\cdot)] + 2 d\mathcal{I}[g(t,\cdot)] = \frac{d}{dt} \int_{-1}^{1} |f'|^2 \nu \, d\nu_d + 2 d \int_{-1}^{1} |f'|^2 \nu \, d\nu_d$$
$$= -2 \int_{-1}^{1} \left(|f''|^2 + (p-1) \frac{d}{d+2} \frac{|f'|^4}{f^2} - 2(p-1) \frac{d-1}{d+2} \frac{|f'|^2 f''}{f} \right) \nu^2 \, d\nu_d$$

is nonpositive if

$$|f''|^2 + (p-1)\frac{d}{d+2}\frac{|f'|^4}{f^2} - 2(p-1)\frac{d-1}{d+2}\frac{|f'|^2f''}{f}$$

is pointwise nonnegative, which is granted if

$$\left[(p-1)\frac{d-1}{d+2} \right]^2 \le (p-1)\frac{d}{d+2} \iff p \le \frac{2d^2+1}{(d-1)^2} = 2^{\#} < \frac{2d}{d-2} = 2^{*}$$

J. Dolbeault Symmetry b

Symmetry breaking and sharp functional inequalities

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

... up to the critical exponent: a proof in two slides

$$\left[\frac{d}{dz},\mathcal{L}\right] u = (\mathcal{L} u)' - \mathcal{L} u' = -2 z u'' - d u'$$

$$\int_{-1}^{1} (\mathcal{L} u)^{2} d\nu_{d} = \int_{-1}^{1} |u''|^{2} \nu^{2} d\nu_{d} + d \int_{-1}^{1} |u'|^{2} \nu d\nu_{d}$$
$$\int_{-1}^{1} (\mathcal{L} u) \frac{|u'|^{2}}{u} \nu d\nu_{d} = \frac{d}{d+2} \int_{-1}^{1} \frac{|u'|^{4}}{u^{2}} \nu^{2} d\nu_{d} - 2 \frac{d-1}{d+2} \int_{-1}^{1} \frac{|u'|^{2} u''}{u} \nu^{2} d\nu_{d}$$

On (-1, 1), let us consider the *porous medium (fast diffusion)* flow

$$u_t = u^{2-2\beta} \left(\mathcal{L} \, u + \kappa \, \frac{|u'|^2}{u} \, \nu \right)$$

If $\kappa = \beta (p-2) + 1$, the L^p norm is conserved

$$\frac{d}{dt} \int_{-1}^{1} u^{\beta p} \, d\nu_d = \beta \, p \, (\kappa - \beta \, (p - 2) - 1) \int_{-1}^{1} u^{\beta (p - 2)} \, |u'|^2 \, \nu \, d\nu_d = 0$$

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

$$f = u^{\beta}, \, \|f'\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + \frac{d}{p-2} \, \left(\|f\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} - \|f\|_{\mathrm{L}^{p}(\mathbb{S}^{d})}^{2}\right) \geq 0 \, ?$$

$$egin{aligned} \mathcal{A} &:= \int_{-1}^1 |u''|^2 \,
u^2 \, d
u_d - 2 \, rac{d-1}{d+2} \, (\kappa+eta-1) \int_{-1}^1 u'' \, rac{|u'|^2}{u} \,
u^2 \, d
u_d \ &+ \left[\kappa \, (eta-1) + \, rac{d}{d+2} \, (\kappa+eta-1)
ight] \int_{-1}^1 rac{|u'|^4}{u^2} \,
u^2 \, d
u_d \end{aligned}$$

 \mathcal{A} is nonnegative for some β if

$$\frac{8\,d^2}{(d+2)^2}\,(p-1)\,(2^*-p)\geq 0$$

 \mathcal{A} is a sum of squares if $p \in (2, 2^*)$ for an arbitrary choice of β in a certain interval (depending on p and d)

$$\mathcal{A} = \int_{-1}^{1} \left| u'' - \frac{p+2}{6-p} \frac{|u'|^2}{u} \right|^2 \nu^2 \ d\nu_d \ge 0 \quad \text{if } p = 2^* \text{ and } \beta = \frac{4}{6-p}$$

イロト イポト イヨト イヨト

-

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

The rigidity point of view

Which computation have we done ? $u_t = u^{2-2\beta} \left(\mathcal{L} u + \kappa \frac{|u'|^2}{u} \nu \right)$

$$-\mathcal{L} u - (\beta - 1) \frac{|u'|^2}{u} \nu + \frac{\lambda}{p - 2} u = \frac{\lambda}{p - 2} u^{\kappa}$$

Multiply by $\mathcal{L}\, u$ and integrate

$$\dots \int_{-1}^{1} \mathcal{L} u u^{\kappa} d\nu_{d} = -\kappa \int_{-1}^{1} u^{\kappa} \frac{|u'|^2}{u} d\nu_{d}$$

Multiply by $\kappa \frac{|u'|^2}{u}$ and integrate

$$\dots = +\kappa \int_{-1}^{1} u^{\kappa} \frac{|u'|^2}{u} d\nu_d$$

The two terms cancel and we are left only with the two-homogenous terms

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

Constraints and improvements

イロト イポト イヨト イヨト

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

Integral constraints

Proposition

For any $p \in (2, 2^{\#})$, the inequality

$$\begin{split} \int_{-1}^{1} |f'|^2 \ \nu \ d\nu_d + \frac{\lambda}{p-2} \, \|f\|_2^2 &\geq \frac{\lambda}{p-2} \, \|f\|_p^2 \\ &\forall f \in \mathrm{H}^1((-1,1), d\nu_d) \ \text{s.t.} \ \int_{-1}^{1} z \, |f|^p \ d\nu_d = 0 \end{split}$$

holds with

$$\lambda \geq d + rac{(d-1)^2}{d(d+2)} \left(2^\# - p
ight) \left(\lambda^\star - d
ight)$$

・ロン ・四と ・ヨン ・ヨン

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

Antipodal symmetry

With the additional restriction of antipodal symmetry, that is

$$u(-x) = u(x) \quad \forall x \in \mathbb{S}^d$$

Theorem

If $p \in (1,2) \cup (2,2^*)$, we have

$$\int_{\mathbb{S}^d} |\nabla u|^2 \, d\, \mathsf{v}_g \geq \frac{d}{p-2} \left[1 + \frac{(d^2-4)(2^*-p)}{d(d+2)+p-1} \right] \left(\|u\|_{\mathrm{L}^p(\mathbb{S}^d)}^2 - \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \right)$$

for any $u \in H^1(\mathbb{S}^d, d\mu)$ with antipodal symmetry. The limit case p = 2 corresponds to the improved logarithmic Sobolev inequality

$$\int_{\mathbb{S}^d} |\nabla u|^2 \,\, d\, v_g \geq \frac{d}{2} \frac{(d+3)^2}{(d+1)^2} \int_{\mathbb{S}^d} |u|^2 \,\, \log\left(\frac{|u|^2}{\|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2}\right) \, d\, v_g$$

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

The larger picture: branches of antipodal solutions

伺 ト イヨト イヨト

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

The optimal constant in the antipodal framework

Numerical computation of the optimal constant when d = 5 and $1 \le p \le 10/3 \approx 3.33$. The limiting value of the constant is numerically found to be equal to $\lambda_{\star} = 2^{1-2/p} d \approx 6.59754$ with d = 5 and p = 10/3

Rényi entropy powers and fast diffusion Flows on the sphere Constraints and improvements

These slides can be found at

$\label{eq:http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/ $$ $$ $$ $$ $$ Lectures $$$

Thank you for your attention !

-