Refined graph convergence

Figure 1: For t > 0 large enough, the two cases $s(t) \leq c_M$ and $s(t) > c_M$ are possible.

Special solutions

Figure 2: The N-wave solution corresponding to $U_0(\xi) = \frac{q}{q-1}\xi^{\frac{1}{q-1}} \mathbb{1}_{[0,1]}(\xi)$ for various $\tau > 0$, in case $q = \frac{3}{2}$.

Figure 3: ThAe solution corresponding to th $U_0(\xi) = \kappa_0 \mathbb{1}_{[a_0,b_0]}(\xi) \xi^{\frac{1}{q-1}} + h \mathbb{1}_{[b_0,c_0]}(\xi)$ is plotted here for various $\tau > 0$, in case $q = \frac{3}{2}$, $a_0 = 0$, $b_0 = \frac{1}{2}$, $c_0 = 1$, $h = \frac{1}{2}$ and κ_0 such that $\int U_0(\xi) d\xi = 1$.

Figure 4: The solution with $U_0(\xi) = \mathbb{1}_{[0,1]}(\xi)$ in case $q = \frac{3}{2}$. This corresponds to the limit situation (in the second case) for which $b_0 = 0$ at $\tau = 0$ and $\kappa(\tau) (b(\tau))^{1/(q-1)} = h$ for any $\tau \in (0, \tau_0)$.

General solutions

Figure 5: A typical solution.

Figure 6: Upper and lower solutions.

6

Figure 7: Left: initial data. Right: for some $\tau > 0$ large enough.