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A result of uniqueness on a classical example

On the sphere Sd , let us consider the positive solutions of

−∆u + λ u = up−1

p ∈ [1, 2) ∪ (2, 2∗] if d ≥ 3, 2∗ = 2 d
d−2

p ∈ [1, 2) ∪ (2,+∞) if d = 1, 2

Theorem

If λ ≤ d , u ≡ λ1/(p−2) is the unique solution

[Gidas & Spruck, 1981], [Bidaut-Véron & Véron, 1991]

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Bifurcation point of view
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Figure: (p − 2)λ 7→ (p − 2)µ(λ) with d = 3

‖∇u‖2
L2(Sd ) + λ ‖u‖2

L2(Sd ) ≥ µ(λ) ‖u‖2
Lp(Sd )

Taylor expansion of u = 1 + εϕ1 as ε→ 0 with −∆ϕ1 = d ϕ1

µ(λ) < λ if and only if λ >
d

p − 2

B The inequality holds with µ(λ) = λ = d
p−2 [Bakry & Emery, 1985]

[Beckner, 1993], [Bidaut-Véron & Véron, 1991, Corollary 6.1]
J. Dolbeault Symmetry and symmetry breaking in PDEs
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The Bakry-Emery method on the sphere

Entropy functional

Ep[ρ] := 1
p−2

[´
Sd ρ

2
p dµ−

(´
Sd ρ dµ

) 2
p

]
if p 6= 2

E2[ρ] :=
´
Sd ρ log

(
ρ

‖ρ‖
L1(Sd )

)
dµ

Fisher information functional

Ip[ρ] :=
´
Sd |∇ρ

1
p |2 dµ

[Bakry & Emery, 1985] carré du champ method: use the heat flow

∂ρ

∂t
= ∆ρ

and observe that d
dt Ep[ρ] = −Ip[ρ],

d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0 =⇒ Ip[ρ] ≥ d Ep[ρ]

with ρ = |u|p, if p ≤ 2# := 2 d2+1
(d−1)2

J. Dolbeault Symmetry and symmetry breaking in PDEs
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The evolution under the fast diffusion flow

To overcome the limitation p ≤ 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

∂ρ

∂t
= ∆ρm

(Demange), (JD, Esteban, Kowalczyk, Loss): for any p ∈ [1, 2∗]

Kp[ρ] :=
d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0

1.0 1.5 2.5 3.0

0.0

0.5

1.5

2.0

(p,m) admissible region, d = 5
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Caffarelli-Kohn-Nirenberg,
symmetry and symmetry breaking

results, and weighted nonlinear flows
B The critical Caffarelli-Kohn-Nirenberg inequality
[JD, Esteban, Loss]

[B A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities]
[JD. Esteban, Loss, Muratori]

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Critical Caffarelli-Kohn-Nirenberg inequality

Let Da,b :=
{
v ∈ Lp

(
Rd , |x |−b dx

)
: |x |−a |∇v | ∈ L2

(
Rd , dx

)}
(ˆ

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

ˆ
Rd

|∇v |2
|x |2 a

dx ∀ v ∈ Da,b

holds under conditions on a and b

p =
2 d

d − 2 + 2 (b − a)
(critical case)

B An optimal function among radial functions:

v?(x) =
(

1 + |x |(p−2) (ac−a)
)− 2

p−2

and C?a,b =
‖ |x |−b v? ‖2

p

‖ |x |−a∇v? ‖2
2

Question: Ca,b = C?a,b (symmetry) or Ca,b > C?a,b (symmetry breaking) ?

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Critical CKN: range of the parameters

Figure: d = 3(ˆ
Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

ˆ
Rd

|∇v |2
|x |2 a

dx

a

b

0

1

−1

b = a

b= a+ 1

a = d−2
2

p

a ≤ b ≤ a + 1 if d ≥ 3
a < b ≤ a + 1 if d = 2, a + 1/2 < b ≤ a + 1 if d = 1
and a < ac := (d − 2)/2

p =
2 d

d − 2 + 2 (b − a)

(Glaser, Martin, Grosse, Thirring (1976))
(Caffarelli, Kohn, Nirenberg (1984))

[F. Catrina, Z.-Q. Wang (2001)]

J. Dolbeault Symmetry and symmetry breaking in PDEs



Symmetry in some interpolation inequalities
Symmetry in Aharonov-Bohm magnetic fields

The Cucker-Smale model

Interpolation on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve

bFS(a) :=
d (ac − a)

2
√

(ac − a)2 + d − 1
+ a− ac

a

b

0

[Smets], [Smets, Willem], [Catrina, Wang], [Felli, Schneider]
The functional

C?a,b

ˆ
Rd

|∇v |2
|x |2 a

dx −
(ˆ

Rd

|v |p
|x |b p

dx

)2/p

is linearly instable at v = v?
J. Dolbeault Symmetry and symmetry breaking in PDEs
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Symmetry versus symmetry breaking:
the sharp result in the critical case

[JD, Esteban, Loss (2016)]

a

b

0

Theorem

Let d ≥ 2 and p < 2∗. If either a ∈ [0, ac) and b > 0, or a < 0 and
b ≥ bFS(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

J. Dolbeault Symmetry and symmetry breaking in PDEs
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The Emden-Fowler transformation and the cylinder

B With an Emden-Fowler transformation, critical the
Caffarelli-Kohn-Nirenberg inequality on the Euclidean space are
equivalent to Gagliardo-Nirenberg inequalities on a cylinder

v(r , ω) = r a−ac ϕ(s, ω) with r = |x | , s = − log r and ω =
x

r

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as the subcritical interpolation inequality

‖∂sϕ‖2
L2(C) + ‖∇ωϕ‖2

L2(C) + Λ ‖ϕ‖2
L2(C) ≥ µ(Λ) ‖ϕ‖2

Lp(C) ∀ϕ ∈ H1(C)

where Λ := (ac − a)2, C = R× Sd−1 and the optimal constant µ(Λ) is

µ(Λ) =
1

Ca,b
with a = ac ±

√
Λ and b =

d

p
±
√

Λ

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Linearization around symmetric critical points

Up to a normalization and a scaling

ϕ?(s, ω) = (cosh s)−
1

p−2

is a critical point of

H1(C) 3 ϕ 7→ ‖∂sϕ‖2
L2(C) + ‖∇ωϕ‖2

L2(C) + Λ ‖ϕ‖2
L2(C)

under a constraint on ‖ϕ‖2
Lp(C)

ϕ? is not optimal for (CKN) if the Pöschl-Teller operator

−∂2
s −∆ω + Λ− ϕp−2

? = −∂2
s −∆ω + Λ− 1

(cosh s)2

has a negative eigenvalue, i.e., for Λ > Λ1 (explicit)

J. Dolbeault Symmetry and symmetry breaking in PDEs
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The variational problem on the cylinder

Λ 7→ µ(Λ) := min
ϕ∈H1(C)

‖∂sϕ‖2
L2(C) + ‖∇ωϕ‖2

L2(C) + Λ ‖ϕ‖2
L2(C)

‖ϕ‖2
Lp(C)

is a concave increasing function

Restricted to symmetric functions, the variational problem becomes

µ?(Λ) := min
ϕ∈H1(R)

‖∂sϕ‖2
L2(Rd ) + Λ ‖ϕ‖2

L2(Rd )

‖ϕ‖2
Lp(Rd )

= µ?(1) Λα

Symmetry means µ(Λ) = µ?(Λ)
Symmetry breaking means µ(Λ) < µ?(Λ)

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Numerical results
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(1) Λα

Parametric plot of the branch of optimal functions for p = 2.8, d = 5.

Non-symmetric solutions bifurcate from symmetric ones at a bifurcation

point Λ1 computed by V. Felli and M. Schneider. The branch behaves for

large values of Λ as predicted by F. Catrina and Z.-Q. Wang

J. Dolbeault Symmetry and symmetry breaking in PDEs



Symmetry in some interpolation inequalities
Symmetry in Aharonov-Bohm magnetic fields

The Cucker-Smale model

Interpolation on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Symmetry in one slide: 3 steps

A change of variables: v(|x |α−1 x) = w(x), Dαv =
(
α ∂v
∂s ,

1
s ∇ωv

)
‖v‖L2p,d−n(Rd ) ≤ Kα,n,p ‖Dαv‖ϑL2,d−n(Rd ) ‖v‖1−ϑ

Lp+1,d−n(Rd )
∀ v ∈ Hp

d−n,d−n(Rd)

Concavity of the Rényi entropy power: with
Lα = −D∗α Dα = α2

(
u′′ + n−1

s u′
)

+ 1
s2 ∆ω u and ∂u

∂t = Lαum

− d
dt G[u(t, ·)]

(´
Rd u

m dµ
)1−σ

≥ (1−m) (σ − 1)
´
Rd u

m
∣∣∣LαP−

´
Rd u |DαP|2 dµ´

Rd um dµ

∣∣∣2 dµ
+ 2

´
Rd

(
α4
(
1− 1

n

) ∣∣∣P′′ − P′

s − ∆ω P
α2 (n−1) s2

∣∣∣2 + 2α2

s2

∣∣∇ωP′ − ∇ωP
s

∣∣2) um dµ

+ 2
´
Rd

(
(n − 2)

(
α2
FS − α2

)
|∇ωP|2 + c(n,m, d) |∇ωP|4

P2

)
um dµ

Elliptic regularity and the Emden-Fowler transformation: justifying
the integrations by parts

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Three references

Lecture notes on Symmetry and nonlinear diffusion flows...
a course on entropy methods (see webpage)

[JD, Maria J. Esteban, and Michael Loss] Symmetry and
symmetry breaking: rigidity and flows in elliptic PDEs
... the elliptic point of view: Proc. Int. Cong. of Math., Rio de
Janeiro, 3: 2279-2304, 2018.

[JD, Maria J. Esteban, and Michael Loss] Interpolation
inequalities, nonlinear flows, boundary terms, optimality and
linearization... the parabolic point of view
Journal of elliptic and parabolic equations, 2: 267-295, 2016.

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Symmetry in Aharonov-Bohm
magnetic fields

Aharonov-Bohm effect

Subquadratic magnetic interpolation inequalities
B on the circle: magnetic rings
B on the torus

Aharonov-Bohm magnetic interpolation inequalities in R2

Joint work with D. Bonheure, M.J. Esteban, A. Laptev, & M. Loss

J. Dolbeault Symmetry and symmetry breaking in PDEs



Symmetry in some interpolation inequalities
Symmetry in Aharonov-Bohm magnetic fields

The Cucker-Smale model

Aharonov-Bohm effect
Subquadratic magnetic interpolation inequalities
Aharonov-Bohm magnetic interpolation inequalities in R2

Aharonov-Bohm effect

A major difference between classical mechanics and quantum
mechanics is that particles are described by a non-local object, the
wave function. Quantum particles can interact with an
electromagnetic field even if they are “localized” (from the
experimental point of view) in a region where the fields are zero, or if
the fields are supported on zero-measure sets

In 1959 Y. Aharonov and D. Bohm proposed a series of experiments
intended to put in evidence such phenomena which are nowadays
called Aharonov-Bohm effects

One of the proposed experiments relies on a long, thin solenoid which
produces a magnetic field such that the region in which the magnetic
field is non-zero can be approximated by a line in dimension d = 3
and by a point in dimension d = 2

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Notation

The magnetic Laplacian is defined via a magnetic potential A by

−∆A ψ = −∆ψ − 2 i A · ∇ψ + |A|2ψ − i (divA)ψ

The magnetic field is B = curlA

H1
A(Rd) :=

{
ψ ∈ L2(Rd) : ∇A ψ ∈ L2(Rd)

}
The magnetic gradient takes the form

∇A := ∇+ i A

Dimension d = 2 : polar coordinates (r , θ)

r = |x | =
√

x2
1 + x2

2 and r e iθ = x1 + i x2

Dimension d = 3 : cylindrical coordinates (ρ, θ, z)

ρ =
√

x2
1 + x2

2 , ρ e iθ = x1 + i x2 and z = x3

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Aharonov-Bohm magnetic fields

Dimension d = 1 :

∇A = ∂
∂θ − i a , −∆A = −

(
∂
∂θ − i a

)2

Dimension d = 2 : A =
a

r2
(− x2, x1) =

a

r2
eθ

∇A =
(
∂
∂r ,

1
r

(
∂
∂θ − i a

))
, −∆A = − ∂2

∂r2 − 1
r
∂
∂r − 1

r2

(
∂
∂θ − i a

)2

{er = x
r , eθ} is the local orthogonal basis

Dimension d = 3 : A =
a

ρ2
(− x2, x1, 0)

∇A =
(
∂
∂ρ ,

1
ρ

(
∂
∂θ − i a

)
, ∂
∂z

)
, −∆A = − ∂2

∂ρ2− 1
ρ
∂
∂ρ− 1

ρ2

(
∂
∂θ − i a

)2− ∂2

∂z2

A is singular at x1 = x2 = 0 and the magnetic field B = ∇× A is a
measure supported in the set x1 = x2 = 0

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Subquadratic magnetic interpolation
inequalities

Inequalities involving Lp norms with 1 < p < 2 are generically
designated as subquadratic inequalities
B Magnetic rings in the subquadratic range
B A result of symmetry and symmetry breaking on the torus

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Magnetic rings: interpolation inequalities on S1

p ∈ [1, 2), a non-magnetic interpolation inequality [Bakry, Emrey,
1984]

(2− p) ‖u′‖2
L2(S1) + ‖u‖2

Lp(S1) ≥ ‖u‖2
L2(S1) ∀ u ∈ H1(S1)

Lemma

Let a ∈ R and p ∈ [1, 2). Then there exists a concave monotone
increasing function µ 7→ λa,p(µ) on R+ such that

‖ψ′ − i aψ‖2
L2(S1) + µ ‖ψ‖2

Lp(S1) ≥ λa,p(µ) ‖ψ‖2
L2(S1) ∀ψ ∈ H1(S1,C)

Diamagnetic inequality and non-magnetic interpolation inequality
Existence of an optimal function: Sobolev’s inequalities,

compactness and semi-continuity

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Properties

A non-vanishing property: if ψ ∈ H1(S1) is a non-trivial optimal
function, then ψ(s) 6= 0 for any s ∈ S1. Take v1(s) + i v2(s) = ψ(s) e ias

and consider the Wronskian w = (v1 v
′
2 − v ′1 v2)

Use the Euler-Lagrange equation for the phase

Qa,p,µ[u] :=
‖u′‖2

L2(S1) + a2 ‖u−1‖−2
L2(S1) + µ ‖u‖2

Lp(S1)

‖u‖2
L2(S1)

The minimization problem is reduced to the study of the inequality

‖u′‖2
L2(S1)+a2 ‖u−1‖−2

L2(S1)+µ ‖u‖2
Lp(S1) ≥ λa,p(µ) ‖u‖2

L2(S1) ∀ u ∈ H1(S1)

where u is now a real valued function

J. Dolbeault Symmetry and symmetry breaking in PDEs
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A rigidity result

‖u′‖2
L2(S1)+a2 ‖u−1‖−2

L2(S1)+µ ‖u‖2
Lp(S1) ≥ λa,p(µ) ‖u‖2

L2(S1) ∀ u ∈ H1(S1)

Proposition

Let p ∈ (1, 2), a ∈ (0, 1/2), and µ > 0.
(i) If µ (2− p) + 4 a2 ≤ 1, then λa,p(µ) = a2 + µ and equality is achieved
only by the constants
(ii) If µ (2− p) + 4 a2 > 1, then λa,p(µ) < a2 + µ and equality is not
achieved by the constants

‖u′‖2
L2(S1) + a2 ‖u−1‖−2

L2(S1) + µ ‖u‖2
Lp(S1)

= (1− 4 a2)

(
‖u′‖2

L2(S1) +
µ

1− 4 a2
‖u‖2

Lp(S1)

)
+ 4 a2

(
‖u′‖2

L2(S1) +
1

4
‖u−1‖2

L2(S1)

)
J. Dolbeault Symmetry and symmetry breaking in PDEs
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Aharonov-Bohm magnetic interpolation inequalities on T2

T2 = S1 × S1 ≈ [−π, π)× [−π, π) 3 (x , y)
dσ the uniform probability measure

∇A ψ =
(
ψx , ψy−i aψ

)
,

¨
T2

|∇A ψ|2 dσ =

¨
T2

(
|ψx |2 + |ψy − i aψ|2

)
dσ

Lemma (A magnetic ground state estimate)

Assume that a ∈ (0, 1/2). Then

¨
T2

|∇A ψ|2 dσ ≥ a2

¨
T2

|ψ|2 dσ ∀ψ ∈ H1
A(T2)

We make a Fourier decomposition on the basis (e i ` x e i k y )k,`∈Z
If a ∈ (0, 1/2), then λ00 is the lowest mode

k = 0 , ` = 0 : λ00 = a2

k = 1 , ` = 0 : λ10 = (1− a)2 > a2

k = 0 , ` = 1 : λ01 = 1 + a2

J. Dolbeault Symmetry and symmetry breaking in PDEs
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A magnetic interpolation inequality in the flat torus

By tensorization, for any p ∈ [1, 2)

(2− p) ‖∇u‖2
L2(T2) + ‖u‖2

Lp(T2) ≥ ‖u‖2
L2(T2) ∀ u ∈ H1(T2)

Lemma

Let p ∈ [1, 2), a ∈ (0, 1/2). Then

‖∇A u‖2
L2(T2) + µ ‖u‖2

Lp(T2) ≥ Λa,p(µ) ‖u‖2
L2(T2) ∀ u ∈ H1

A(T2)

µ 7→ Λa,p(µ) is concave increasing on (0,+∞), limµ→0+ Λa,p(µ) = a2

Λa,p(µ) ≥ µ+
(
1− µ (2− p)

)
a2 for any µ ≤ 1

2− p

J. Dolbeault Symmetry and symmetry breaking in PDEs
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A symmetry result in the subquadratic regime

λa,p(µ): the optimal constant on S1

Λa,p(µ): the optimal constant on T2

We recall that the magnetic energy on T2 is

¨
T2

|∇A ψ|2 dσ =

¨
T2

(
|ψx |2 + |ψy − i aψ|2

)
dσ

Proposition

Let p ∈ [1, 2), a ∈ (0, 1/2). Then

Λa,p(µ) = λa,p(µ) if µ ≤ 1

p − 2

and any optimal function is then constant w.r.t. x

Λa,p(µ) = a2 + µ if and only if µ (2− p) + 4 a2 ≤ 1
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Proof

Notation
ffl
f dx := 1

2π

´ π
−π f dx

‖∇A u‖2
L2(T2) + µ ‖ψ‖2

Lp(T2)

≥ ‖∂xψ‖2
L2(T2)+λa,p(µ) ‖ψ‖2

L2(T2)+µ ‖ψ‖2
Lp(T2)−µ

 ( 
|ψ|p dy

) 2
p

dx

Let us define u := |ψ|, v(x) :=
(ffl
|u(x , y)|p dy

)1/p
. By Hölder (p ≤ 2)

|vx | = v1−p
 

up−1 ux dy ≤ v1−p
( 

up dy

) p−1
p
( 
|ux |2 dy

) 1
2

that is, |vx |2 ≤
ffl
|ux |2 dy ≤

ffl
|∂xψ|2 dy . With µ ≤ 1/(2− p),

ˆ
S1

|vx |2 dσ + µ

(ˆ
S1

|v |p dσ
)2/p

− µ
ˆ
S1

|v |2 dσ + λa,p(µ) ‖ψ‖2
L2(T2)

≥ λa,p(µ) ‖ψ‖2
L2(T2)
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Aharonov-Bohm magnetic
interpolation inequalities in R2

B On R2 without weights, there is a loss of compactness
B On R2 with weights, optimal functions exist
B there is a range of symmetry breaking and a range of symmetry
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Magnetic interpolation inequalities without weights

‖∇A ψ‖2
L2(R2) + λ ‖ψ‖2

L2(R2) ≥ µa,p(λ) ‖ψ‖2
Lp(R2) ∀ψ ∈ H1

a(R2)

Aharonov-Bohm magnetic potential A(x) = a |x |−2 eθ

Proposition

Let a ∈ R \ Z and p ∈ (2,∞). The optimal constant is

µa,p(λ) = Cp λ
p
2 ∀λ > 0

and equality is not achieved on H1(R2) ∩ Lp(R2)
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Magnetic Hardy-Sobolev interpolation inequalities (d = 2)

The Caffarelli-Kohn-Nirenberg inequality with b = c + 2/p

ˆ
R2

|∇v |2
|x |2c

dx ≥ Cc

(ˆ
R2

|v |p
|x |b p

dx

)2/p

By considering v(x) = |x |c u(x): the Hardy-Sobolev inequality

ˆ
R2

|∇u|2 dx + c2

ˆ
R2

|u|2
|x |2 dx ≥ Cc

(ˆ
R2

|u|p
|x |2 dx

)2/p

The optimal functions are radially symmetric if and only if

b ≥ bFS(c) := c− c√
1 + c2

according to [Felli-Schneider (2003)], [D.-Esteban-Loss (2015)]
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Theorem (magnetic Hardy-Sobolev type inequality)

Let a ∈ [0, 1/2) and p > 2. For any λ > − a2

ˆ
R2

|∇A ψ|2 dx +λ

ˆ
R2

|ψ|2
|x |2 dx ≥ µ(λ)

(ˆ
R2

|ψ|p
|x |2 dx

)2/p

∀ψ ∈ H1
A(R2)

with optimal function ψ(x) = (|x |α + |x |−α)
− 2

p−2 , α = p−2
2

√
λ+ a2 if

λ ≤ λ? := 4
1− 4 a2

p2 − 4
− a2

Conversely, there is symmetry breaking if

λ > λFS(a) :=
4

p2 − 4
− a2

If λ ≤ λ?, µ(λ) = p
2 (2π)1− 2

p
(
λ+ a2

)1+ 2
p

(
2
√
π Γ
(

p
p−2

)
(p−2) Γ

(
p

p−2 + 1
2

))1− 2
p
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Corollary 1

Corollary (A magnetic Caffarelli-Kohn-Nirenberg inequality)

Assume that p ∈ (2,+∞), A(x) = a |x |−2 eθ for some a ∈ [0, 1/2) and
c ≤ 0. With µ as in Theorem 2, for any γ < c2 + a2, we have that

ˆ
R2

|∇A φ|2
|x |2c

dx ≥ γ
ˆ
R2

|φ|2
|x |2c+2

dx + µ(c2 − γ)

(ˆ
R2

|φ|p
|x |c p+2

dx

)2/p

and µ(c2 − γ) is the optimal constant

Take φ(x) = |x |c ψ(x)

ˆ
R2

|∇A φ|2
|x |2c

dx =

ˆ
R2

|∇A ψ|2 dx +

ˆ
R2

|ψ|2
|x |2 dx
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Corollary 2

Proposition (A magnetic Hardy inequality in R2)

Assume that q ∈ (1, 2), A(x) = a |x |−2 eθ for some a ∈ [0, 1/2). Then
for any function φ ∈ Lq

(
R2 |x |−2 dx

)
, we have

ˆ
R2

|∇A ψ|2 dx ≥ µ(0)

(ˆ
R2

|φ|q
|x |2 dx

)− 1
q
ˆ
R2

φ

|x |2 |ψ|
2 dx ∀ψ ∈ H1

A(R2)

Moreover, µ(0) is the optimal constant and

µ(0) =
p

2
(2π)1− 2

p a2+ 4
p

(
2
√
π Γ
(

p
p−2

)
(p − 2) Γ

(
p

p−2 + 1
2

))1− 2
p

if a2 <
4

12 + p2
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The Cucker-Smale model

The homogeneous model

Phase transition

Dynamics

Xingyu Li, in preparation
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A simple version of the Cucker-Smale model

A model for bird flocking (simplified version)

∂f

∂t
= D ∆v f +∇v · (∇vΦ(v) f − Uf f )

where Uf =
´
v f dv is the average velocity (f is a probability measure)

Φ(v) =
1

4
v4 − 1

2
v2
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[J. Tugaut, 2014]
[A. Barbaro, J. Cañizo, J.A. Carrillo, and P. Degond, 2016]
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Stationary solutions: phase transition

0.1 0.2 0.3 0.4 0.5

-1.0

-0.5

0.5

1.0

d = 1: there exists a bifurcation point D = D∗ such that the only
stationary solution corresponds to Uf = 0 if D > D∗ and there are
three solutions corresponding to Uf = 0, ±u(D) if D < D∗
Uf = 0 is linearly unstable if D < D∗

Notation: f
(0)
? , f

(+)
? , f

(−)
?
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Dynamics

The free energy

F [f ] := D

ˆ
Rd

f log f dv +

ˆ
Rd

f Φ dv − 1

2
|Uf |2

decays according to

d

dt
F [f (t, ·)]−

ˆ
Rd

∣∣∣∣D ∇v f

f
+∇vΦ− Uf

∣∣∣∣2 f dv
d = 1: If F [f (t = 0, ·)] < F [f

(0)
? ] and D < D∗, then

F [f (t, ·)] = −F
[
f

(±)
?

]
≤ C e−λ t

λ is the eigenvalue of the linearized problem at f
(±)
? in the

weighted space L2
(

(f
(±)
? )−1

)
with scalar product

〈f , g〉± := D

ˆ
Rd

f g
(
f

(±)
?

)−1

dv − Uf Ug
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Conferences/
B Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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