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Outline

@ Introduction

> Symmetry, symmetry breaking: the principle of Pierre Curie

> The issue of the symmetry for the minimizers

> A competition mechanism: potential or weight versus nonlinearity
> The flow point of view: connecting the issue of the symmetry with
asymptotic states

@ Symmetry in some interpolation inequalities
> Gagliardo-Nirenberg-Sobolev inequalities on the sphere
> Caffarelli-Kohn-Nirenberg inequalities

@ Symmetry in interpolation inequalities involving Aharonov-Bohm
magnetic fields

> Aharonov-Bohm effect

> Subquadratic magnetic interpolation inequalities

> Aharonov-Bohm magnetic interpolation inequalities in R?

@ The Cucker-Smale model: symmetry, phase transition, dynamics
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Symmetry in some interpolation inequalities
Symmetry in Aharonov-Bohm magnetic fields
The Cucker-Smale model

Interpolation on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Symmetry in some interpolation
inequalities
@ Gagliardo-Nirenberg-Sobolev inequalities on the sphere

@ Caffarelli-Kohn-Nirenberg inequalities
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CKN inequalities, symmetry breaking and weighted nonlinear flows

A result of uniqueness on a classical example

On the sphere S9, let us consider the positive solutions of
—Au+Au=uP?

pel2)uU(2,27]ifd >3, 2" = 2%

pell2)U(2,4+00)ifd=1,2

IfX<d, u= A2 js the unique solution l

[Gidas & Spruck, 1981], [Bidaut-Véron & Véron, 1991]

J. Dolbeault Symmetry and symmetry breaking in PDEs



Symmetry in some interpolation inequalities
Symmetry in Aharonov-Bohm magnetic fields
The Cucker-Smale model

Interpolation on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Bifurcation point of view

8 .
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Figure: (p —2) A +— (p — 2) u(A) with d =3

19012200y + A1 = 5O 1000
Taylor expansion of u =1+4¢e¢; as € — 0 with — Ap; =d ¢
d
u(A) < A if and only if A > b2
> The inequality holds with p(A) = A = ﬁ [Bakry & Emery, 1985]
[Beckner, 1993], [Bidaut-Véron & Véron, 1991, Corollary 6.1]
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CKN inequalities, symmetry breaking and weighted nonlinear flows

The Bakry-Emery method on the sphere

Entropy functional
2
Eplo) = 55 {fsd p> dip— (g p du)"] if p#2

— p
52[/)] = fgd p log (HPHLl@d)) du
Fisher information functional
1
Lolol = Jou VPP ? du

[Bakry & Emery, 1985] carré du champ method: use the heat flow

dp

LA

ot
and observe that £&,[p] = — Z,[0],

(Ll -~ d&l)) <0 = Tlo] > d& L

. . 2
with p = |u|P, if p < 27 := %
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CKN inequalities, symmetry breaking and weighted nonlinear flows

The evolution under the fast diffusion flow

To overcome the limitation p < 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

Op
ot
(Demange), (JD, Esteban, Kowalczyk, Loss): for any p € [1,2*]

Kolel = 5 (Tl -~ d&50al) <0

Am

L L
25 30

(p, m) admissible region, d =5
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T\ F(\ e 5’" ‘“( m‘fj(‘ CKN inequalities, symmetry breaking and weighted nonlinear flows

Caffarelli-Kohn-Nirenberg,

symmetry and symmetry breaking
results, and weighted nonlinear flows

> The critical Caffarelli-Kohn-Nirenberg inequality
[JD, Esteban, Loss]

[> A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities]
[JD. Esteban, Loss, Muratori]
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Critical Caffarelli-Kohn-Nirenberg inequality

Let D, p = { veLP(RY, [x|Pdx) : |x|7?|Vv| € L? (RY, dx) }

VP O\ [vv[?
</Rd |X‘bp dx < Ca,b |X‘2 dx VYve Da,b

holds under conditions on a and b

2d
d—2+2(b—a)

p= (critical case)

> An optimal function among radial functions:
X~ v I3

2
_ (p—2) (2c—2)) 72 -
Vi (x) (1 + |x] ) and Cj, v 2

N0

Question: Cyp = Cj , (symmetry) or Cyp > C} , (symmetry breaking)
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CKN inequalities, symmetry breaking and weighted nonlinear flows

Critical CKN: range of the parameters

Figure: d =3 b b—at
v NP %
5 dx < Cap 52 dx
re |X| re |X| 1 )
g T
/ 0 o
b=a

a<b<a+lifd>3
a<b<a+lifd=2a+1/2<b<a+lifd=1
and a < ac := (d — 2)/2
B 2d (Glaser, Martin, Grosse, Thirring (1976))
P= d—2+2(b—a) (Caffarelli, Kohn, Nirenberg (1984))
[F. Catrina, Z.-Q. Wang (2001)]
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CKN inequalities, symmetry breaking and weighted nonlinear flows

Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve b
d(a. — a)

brs(a) = +a—a
rs(2) 2/(ac—aR +d—1 ‘

/ 0

[Smets|, [Smets, Willem], [Catrina, Wang], [Felli, Schneider]

The functional
2 p 2/p
;_b/ \V\;| dx — / |VL dx
" Jra |x]22 Rra |x[PP

is linearly instable at v = v,
J. Dolbeault Symmetry and symmetry breaking in PDEs
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Symmetry versus symmetry breaking:

the sharp result in the critical case "

[JD, Esteban, Loss (2016)]

Let d > 2 and p < 2*. If either a € [0,a.) and b > 0, or a < 0 and
b > bgs(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Symmetry in some in
Symmetry in Aharono

Terllacs Interpolation on the sphere
”“‘ 'f e CKN inequalities, symmetry breaking and weighted nonlinear flows

The Emden-Fowler transformation and the cylinder

Tt

> With an Emden-Fowler transformation, critical the
Caffarelli-Kohn-Nirenberg inequality on the Fuclidean space are
equivalent to Gagliardo-Nirenberg inequalities on a cylinder

X
v(r,w) =r"%* p(s,w) with r=]|x|, -

s=—logr and w=

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as the subcritical interpolation inequality

10:211E2(cy + IVwllaiey + Alleliaey = M) Iliirey Ve € HY(C)

where A := (a — a)?, C = R x S?~! and the optimal constant u(A) is

d
uN) = c— with a=a.+ VA and b:Eiﬁ
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Interpolation on the sphere

Symmetry in some mterpo\atlon inequalities
% Wiz [ CKN inequalities, symmetry breaking and weighted nonlinear flows

etr hr \,,ym\ d.
Tv Cucker-Smale model

Linearization around symmetric critical points

Up to a normalization and a scaling
©«(s,w) = (cosh s)fﬁ
is a critical point of
HY(C) 5 ¢ = [0s0l22(c) + I Vuplliae) + Mellize
under a constraint on ||<p\|%p(c)
@« is not optimal for (CKN) if the Poschl-Teller operator
—R D+ NP P = - NN ———

has a negative eigenvalue, i.e., for A > Ay (explicit)
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CKN inequalities, symmetry breaking and weighted nonlinear flows

The variational problem on the cylinder

A= p(A) == min 105012cy + IVwpllF2ey + Aol

peH(C) H‘PH%;:(C)

is a concave increasing function

Restricted to symmetric functions, the variational problem becomes

'u*(/\) — min ||as§0||i2(Rd) + A ”('0”%42(]1@1) _
)

(1) A
€H(R) ||90||ip(]Rd) ( )

Symmetry means p(A) = p(A)
Symmetry breaking means p(A) < p,(A)

J. Dolbeault Symmetry and symmetry breaking in PDEs



o Symmetry in some interpolation inequalties |} ccrpolation on the sphere
Symmetry in Aharonov-Bohm magnetic fielc . e q q A
T S e CKN inequalities, symmetry breaking and weighted nonlinear flows
1e Cucker-Smale mode

Numerical results

50

--- asymptotic

30

-------- symmetric
20

non-symmetric

Parametric plot of the branch of optimal functions for p = 2.8, d = 5.
Non-symmetric solutions bifurcate from symmetric ones at a bifurcation
point N1 computed by V. Felli and M. Schneider. The branch behaves for
large values of N\ as predicted by F. Catrina and Z.-Q. Wang
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magpnetic fields
er-Smale model

Interpolation on the sphere

Symmetry in some i
A CKN inequalities, symmetry breaking and weighted nonlinear flows

ymmetry in Aharc

Symmetry in one slide: 3 steps

@ A change of variables: v(|x|*1x) = w(x), Dov = (o 2%, L V,v)
HV||L2Pd n(R9) < Ka ,n,p ”D(XVHLM n(R9) ”VHLPH d=n(RR9) Vve Hzfn,dfn(Rd)

@ Concavity of the Rényi entropy power: with
Lo =—DD, = a? (u”—l—”%lu’) —i—s%Awuand % = L,um

< Glu(t, )] (fga u™ du)

2 2
> (1= m) (0= 1) fy um | £aP — Lo oemie
#2 fpe (a* 1= 3

+2fRd <(”*2) (a%s )|V P2 + c(n, m, d) W Pl ) u™dp

du

nm_ P AyP
P" — s a?(n—1)s?

(9P )

@ Elliptic regularity and the Emden-Fowler transformation: justifying
the integrations by parts

J. Dolbeault Symmetry and symmetry breaking in PDEs
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CKN inequalities, symmetry breaking and weighted nonlinear flows

Three references

@ Lecture notes on Symmetry and nonlinear diffusion flows...
a course on entropy methods (see webpage)

@ [JD, Maria J. Esteban, and Michael Loss| Symmetry and
symmetry breaking: rigidity and flows in elliptic PDEs

... the elliptic point of view: Proc. Int. Cong. of Math., Rio de
Janeiro, 3: 2279-2304, 2018.

@ [JD, Maria J. Esteban, and Michael Loss| Interpolation
inequalities, nonlinear flows, boundary terms, optimality and
linearization... the parabolic point of view

Journal of elliptic and parabolic equations, 2: 267-295, 2016.

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Symmetry in Aharonov-Bohm
magnetic fields
@ Aharonov-Bohm effect
@ Subquadratic magnetic interpolation inequalities
> on the circle: magnetic rings
> on the torus

@ Aharonov-Bohm magnetic interpolation inequalities in R?

Joint work with D. Bonheure, M.J. Esteban, A. Laptev, & M. Loss

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Aharonov-Bohm effect

A major difference between classical mechanics and quantum
mechanics is that particles are described by a non-local object, the
wave function. Quantum particles can interact with an
electromagnetic field even if they are “localized” (from the
experimental point of view) in a region where the fields are zero, or if
the fields are supported on zero-measure sets

In 1959 Y. Aharonov and D. Bohm proposed a series of experiments
intended to put in evidence such phenomena which are nowadays
called Aharonov-Bohm effects

One of the proposed experiments relies on a long, thin solenoid which
produces a magnetic field such that the region in which the magnetic
field is non-zero can be approximated by a line in dimension d = 3
and by a point in dimension d = 2

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Aharonov-Bohm magnetic interpolation inequalities in R2

Notation

The magnetic Laplacian is defined via a magnetic potential A by
—Aptp = =AY — 2iA-VY + |APPY — i(divA)y
The magnetic field is B = curl A
HA(RY) := {¢ € L*(RY) : Vatp € LA(RY)}
The magnetic gradient takes the form
Va =V +IiA

@ Dimension d =2 : polar coordinates (r,6)

r=|x|=4/x}+x and re' = x4+ ix

@ Dimension d = 3 : cylindrical coordinates (p, 6, z)

p=1/x2+ X2, pe =xi+ix, and z=x3

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Aharonov-Bohm magnetic fields

2

@ Dimension d =1 :
. L2
Va—2—ia, —Da=—(&—ia)

. . a a
@ Dimension d=2: A= = (—x,x1) = — €
r2 ’ r2

. 2 . \2
Vo= (B - ia) . —ba=—F-tE - (B

{e, = %, ep} is the local orthogonal basis
a
@ Dimension d =3: A= — (—x2,x1,0)
P2
(0o 1(0 ; ) __ 9 _ 10 _ 1 (8 _;
Va = (a*pa (5 —ia), E) » —la=—gp— g (gp—ia

A is singular at x; = x, = 0 and the magnetic field B=V x A is a
measure supported in the set x; = x =0

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Subquadratic magnetic interpolation
inequalities

Inequalities involving L? norms with 1 < p < 2 are generically

designated as subquadratic inequalities

> Magnetic rings in the subquadratic range
> A result of symmetry and symmetry breaking on the torus

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Magnetic rings: interpolation inequalities on S*

p € [1,2), a non-magnetic interpolation inequality [Bakry, Emrey,
1984]

2= p) 1 [F2gy + lulfosy > Nullfe@y VueHY(SY

Let a€ R and p € [1,2). Then there exists a concave monotone
increasing function p — X, p(p) on R such that

19" — i agllfzgy + p 19lEpsy = Xap(i) 19]F2ery Vo € HY(S', C)

@ Diamagnetic inequality and non-magnetic interpolation inequality
@ Existence of an optimal function: Sobolev’s inequalities,
compactness and semi-continuity

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Aharonov-Bohm magnetic interpolation inequalities in R2

Properties

@ A non-vanishing property: if 1 € H'(S') is a non-trivial optimal
function, then ¢ (s) # 0 for any s € S*. Take v1(s) + i va(s) = 1(s) e
and consider the Wronskian w = (v; v — v{ v»)

@ Use the Euler-Lagrange equation for the phase

_1y-2
H“/”%Z(sl) +a*|u 1||L2(Sl) +tu ||U||ip(sl)

Qa,p,u[”] =

| “H%Z(sl)
@ The minimization problem is reduced to the study of the inequality
"1y +a° llu™ ey Ha llullEoery = Xap() lullfaey ¥ u € HY(S)

where u is now a real valued function

J. Dolbeault Symmetry and symmetry breaking in PDEs
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A rigidity result

0l aeny+2° u™ gy o lulfoery = Xap(u) ullEeey ¥ u € HY(SY)

Proposition

Let p € (1,2), a€ (0,1/2), and pu > 0.

(i) If 1 (2 — p) + 42> <1, then \, (1) = a° + u and equality is achieved
only by the constants

(ii) If 1 (2 — p) +4a° > 1, then X\, ,(11) < a° + p and equality is not
achieved by the constants

14 Bagy + 22 2y + oy
1
= (1-42) (1B + 755 1l

1. _
+4a <||U/||i2(s1) T2 [|u 1”%,2(81))

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Aharonov-Bohm magnetic interpolation inequalities on T?

T? =S x St & [, 7) x [-7,7) > (x,Y)
do the uniform probability measure

Vav = (tyiav). [| 1Vavldo= [[ (0P +lv, - iauf)do

Lemma (A magnetic ground state estimate)

Assume that a € (0,1/2). Then

//TZWAWZdUZ32//T2|1/)|2dJ v € HY(T?)

We make a Fourier decomposition on the basis (e #* eiky)k,gez
If a € (0,1/2), then Ay is the lowest mode

k=0,0=0: Mg =2a°
k=1,0=0: \po=(1—a)*>a°
k=0,0=1: A1 =1+2°

J. Dolbeault Symmetry and symmetry breaking in PDEs
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A magnetic interpolation inequality in the flat torus

2

By tensorization, for any p € [1,2)

(2= P IVulfaiy + lullfore) = lullfamey Vu e HY(T?)

Let p € [1,2), a€ (0,1/2). Then
IVa ullfoerey + pllullomey = Nap(p) lullfoey ¥ u € HA(T?)

w > Ns (1) is concave increasing on (0, +00), lim, o, Asp(p) = a°

1
Nap(p) > p+ (L= p(2—p))a® for any g

J. Dolbeault Symmetry and symmetry breaking in PDEs
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A symmetry result in the subquadratic regime

Aap(p): the optimal constant on S*
Aap(p): the optimal constant on T2
We recall that the magnetic energy on T? is

//TZIVAwlzdo—://Tz ([l + [, — i aP) do

Proposition

Let p€[1,2), a€ (0,1/2). Then
. 1
Nap(p) = Aap(p) if p< m
and any optimal function is then constant w.r.t. x

Nap(p) =%+ ifand only if n(2—p)+4a*> <1

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Aharonov-Bohm magnetic interpolation inequalities in R2

Proof

Notation f f dx := 5= [ f dx
IVa ullZ2erey + 10102y
2
> 100 ey g0 19 ey 60y f (f o o)
Let us define u := [¢|, v(x) := (f |u(x,y)[P dy)l/p. By Holder (p < 2)

[vy| = vl”’][upf1 U dy < vi7P (][ uP dy> ’ <][ |uX|2 dy>

that is, [vx|*> < f |ux[?dy < £ [0x¢|* dy. With u < 1/(2 — p),

2/p
[ o ([ 1o de) < [ 12 do xni) 1ol
> Xa0) 1B

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Aharonov-Bohm magnetic
interpolation inequalities in R?

> On R? without weights, there is a loss of compactness
> On R? with weights, optimal functions exist
> there is a range of symmetry breaking and a range of symmetry

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Magnetic interpolation inequalities without weights

Symmetry in Aharonov-Bohm magnetic fields

IV ¥ 2ey + AMYlTme) = Hap(A) [9lFomey V0 € Hi(R?)

Aharonov-Bohm magnetic potential A(x) = a|x| 2 ep

Proposition

Let a€ R\ Z and p € (2,00). The optimal constant is
ap(A) = CpAf YA>0

and equality is not achieved on H'(R?) N LP(R?2)

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Magnetic Hardy-Sobolev interpolation inequalities (d = 2)

The Caffarelli-Kohn-Nirenberg inequality with b=c+2/p

Vv|? v|P 2/p
/ | 2|C dx > C. / | Lp dx
r2 |X| Rz |X]

By considering v(x) = |x|° u(x): the Hardy-Sobolev inequality

|ul?

2 2/p
/ |Vu|2dx+c2/ |u—|dX2CC / T dx
R2 R x[? R |x[?

The optimal functions are radially symmetric if and only if

C

b > bpg(c) i =c— ——
> brg(c) Ve

according to [Felli-Schneider (2003)], [D.-Esteban-Loss (2015)]

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Theorem (magnetic Hardy-Sobolev type inequality)

Let a€[0,1/2) and p > 2. For any A > — a°

2 p 2/p
/ﬂ{2|VA¢|2dX+)\/RZ%dx2u()\) (/Rz%dx) Ve € Hy(R?)

[x[2
_ 2
with optimal function 1(x) = (|x|* + [x|~%) 72, a = £33 /X + a2 if

1-422
)\SA*Z:‘]-ﬁ—a

Conversely, there is symmetry breaking if

4 2
pP—4

A > )\Fs(a) =

_»p 1-2 2\ 1+3 WW) N
If A S )\*7 /’[/()\) - 2 (27T) ()\ + a ) ((p2)r(PP2+%)

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Corollary 1

Corollary (A magnetic Caffarelli-Kohn-Nirenberg inequality)

Assume that p € (2,+00), A(x) = a|x| 2 ey for some a € [0,1/2) and
c < 0. With p as in Theorem 2, for any v < c® + a®, we have that

Va ¢[? / |62 : / P \?
dx > — _d —
/Rz xpe X2 [, e X HE =D [ jerrz &

and p(c? — ) is the optimal constant

Take ¢(x) = |x|¢(x)

VadP [ wavise [ P2
dx = Va|=dx + = dx
/. e o VAV B R

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Aharonov-Bohm magnetic interpolation inequalities in R2

Corollary 2

Proposition (A magnetic Hardy inequality in R?)

Assume that q € (1,2), A(x) = a|x|~2ep for some a € [0,1/2). Then
for any function ¢ € L9 (R? |x| 2 dx), we have

; 619 \NTF [ 6o .
[ 1vavl C’X>/‘(°)</RQ|X|2"X) [ Rl ex Vo e HA®)

Moreover, 11(0) is the optimal constant and

2

2Ar(25) \'7?
vr(:5) . iR < —r
=272 + D) Z+ 7

Tl

u(0) =

NS

(2 7r)17% at

J. Dolbeault Symmetry and symmetry breaking in PDEs
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The Cucker-Smale model

@ The homogeneous model
@ Phase transition

@ Dynamics

Xingyu Li, in preparation

J. Dolbeault Symmetry and symmetry breaking in PDEs
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The Cucker Smale model

A simple version of the Cucker-Smale model

A model for bird flocking (simplified version)

of
i =DA,f+V, - (V,®(v)f —Usf)
where Us = [ v f dv is the average velocity (f is a probability measure)
1, 1,
d(v) = 2V T3V

20f B

[J. Tugaut, 2014]
[A. Barbaro, J. Canizo, J.A. Carrillo, and P. Degond, 2016]

J. Dolbeault Symmetry and symmetry breaking in PDEs
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Stationary solutions: phase transition

0.4 0.5

Q@ d = 1: there exists a bifurcation point D = D, such that the only
stationary solution corresponds to Uy = 0 if D > D, and there are
three solutions corresponding to Ur = 0, £u(D) if D < D,
Q@ Ur = 0 is linearly unstable if D < D,

Notation: f*(o), f*(+) f(_)

v I
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Dynamics

The free energy
1
Flf] == D/ f Iogfdv+/ fodv— = |[Us|?
Rd Rd 2
decays according to

s | Jo% .

@ d=1If F[f(t=0,")] < F[FV] and D < D,, then

2
f dv

Flf(e )] = —F [£9] < ce™

Q@ )\ is the eigenvalue of the linearized problem at f*(i) in the
weighted space L2 (( f*(i))*l) with scalar product

—1
(f,g)s ::D/ fg(f*(i)) dv — Us Uy
Rd
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These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Conferences/
> Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list /
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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