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Introduction
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A symmetry breaking mechanism
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The energy point of view (ground state)
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Caffarelli-Kohn-Nirenberg
inequalities (Part I)

Joint work(s) with M. Esteban, M. Loss and G. Tarantello
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Caffarelli-Kohn-Nirenberg (CKN) inequalities

(
∫

Rd

|u|p
|x|b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇u|2
|x|2 a

dx ∀ u ∈ Da,b

with a ≤ b ≤ a+ 1 if d ≥ 3 , a < b ≤ a+ 1 if d = 2 , and a 6= d−2
2 =: ac

p =
2 d

d− 2 + 2 (b− a)

Da,b :=
{

|x|−b u ∈ Lp(Rd, dx) : |x|−a |∇u| ∈ L2(Rd, dx)
}
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The symmetry issue

(
∫

Rd

|u|p
|x|b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇u|2
|x|2 a

dx ∀ u ∈ Da,b

Ca,b = best constant for general functions u
C∗

a,b = best constant for radially symmetric functions u

C
∗
a,b ≤ Ca,b

Up to scalar multiplication and dilation, the optimal radial function is

u∗a,b(x) = |x|a+ d
2

b−a
b−a+1

(

1 + |x|2
)− d−2+2(b−a)

2(1+a−b)

Questions: is optimality (equality) achieved ? do we have ua,b = u∗a,b ?
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Known results

[Aubin, Talenti, Lieb, Chou-Chu, Lions, Catrina-Wang, ...]

Extremals exist for a < b < a+ 1 and 0 ≤ a ≤ d−2
2 ,

for a ≤ b < a+ 1 and a < 0 if d ≥ 2

Optimal constants are never achieved in the following cases
“critical / Sobolev” case: for b = a < 0, d ≥ 3

“Hardy” case: b = a+ 1, d ≥ 2

If d ≥ 3, 0 ≤ a < d−2
2 and a ≤ b < a+ 1, the extremal functions are

radially symmetric ... u(x) = |x|a v(x) + Schwarz symmetrization
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More results on symmetry

Radial symmetry has also been established for d ≥ 3, a < 0, |a| small
and 0 < b < a+ 1: [Lin-Wang, Smets-Willem]

Schwarz foliated symmetry [Smets-Willem]

d = 3: optimality is achieved among solutions which depend only on
the “latitude" θ and on r. Similar results hold in higher dimensions

Branches and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities – p. 10/61



Symmetry breaking

[Catrina-Wang, Felli-Schneider] if a < 0, a ≤ b < bFS(a), the extremal
functions ARE NOT radially symmetric !

bFS(a) =
d (d− 2 − 2a)

2
√

(d− 2 − 2a)2 + 4(d− 1)
− 1

2
(d− 2 − 2a)

[Catrina-Wang] As a→ −∞, optimal functions look like some
decentered optimal functions for some Gagliardo-Nirenberg
interpolation inequalities (after some appropriate transformation)
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Approaching Onofri’s inequality ( d = 2)

[J.D., M. Esteban, G. Tarantello] A generalized Onofri inequality

On R
2, consider dµα = α+1

π
|x|2α dx

(1+|x|2 (α+1))2
with α > −1

log
(

∫

R2

ev dµα

)

−
∫

R2

v dµα ≤ 1

16π (α+ 1)
‖∇v‖2

L2(R2, dx)

For d = 2, radial symmetry holds if −η < a < 0 and −ε(η) a ≤ b < a+ 1

Theorem 1. [J.D.-Esteban-Tarantello] For all ε > 0 ∃ η > 0 s.t. for a < 0, |a| < η

(i) if |a| > 2
p−ε (1 + |a|2), then

Ca,b > C∗
a,b ( symmetry breaking)

(ii) if |a| < 2
p+ε (1 + |a|2), then

Ca,b = C∗
a,b and ua,b = u∗a,b a

b
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A larger symetry region

For d ≥ 2, radial symmetry can be proved when b is close to a+ 1

Theorem 2. [J.D.-Esteban-Loss-Tarantello] Let d ≥ 2. For everyA < 0, there exists
ε > 0 such that the extremals are radially symmetric if a+ 1 − ε < b < a+ 1 and
a ∈ (A, 0). So they are given by u∗a,b, up to a scalar multiplication and a dilation

a

b

d = 2 d ≥ 3
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Two regions and a curve

The symmetry and the symmetry breaking zones are simply connected
and separated by a continuous curve

Theorem 3. [J.D.-Esteban-Loss-Tarantello] For all d ≥ 2, there exists a continuous
function a∗: (2, 2∗)−→ (−∞, 0) such that limp→2∗

−

a∗(p) = 0,

limp→2+ a
∗(p) = −∞ and

(i) If (a, p) ∈
(

a∗(p), d−2
2

)

× (2, 2∗), all extremals radially symmetric

(ii) If (a, p) ∈ (−∞, a∗(p)) × (2, 2∗), none of the extremals is radially symmetric

Open question. Do the curves obtained by Felli-Schneider and ours coincide ?
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Emden-Fowler transformation and the cylinder C = R × S
d−1

t = log |x| , ω =
x

|x| ∈ S
d−1 , w(t, ω) = |x|−a v(x) , Λ =

1

4
(d− 2 − 2a)2

Caffarelli-Kohn-Nirenberg inequalities rewritten on the cylinder become
standard interpolation inequalities of Gagliardo-Nirenberg type

‖w‖2
Lp(C) ≤ CΛ,p

[

‖∇w‖2
L2(C) + Λ ‖w‖2

L2(C)

]

EΛ[w] := ‖∇w‖2
L2(C) + Λ ‖w‖2

L2(C)

C−1
Λ,p := C

−1
a,b = inf

{

EΛ(w) : ‖w‖2
Lp(C) = 1

}

a < 0 =⇒ Λ > a2
c = 1

4 (d− 2)2

“critical / Sobolev” case: b− a → 0 ⇐⇒ p→ 2d

d− 2

“Hardy” case: b− (a+ 1) → 0 ⇐⇒ p → 2+
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Scaling and consequences

A scaling property along the axis of the cylinder (d ≥ 2)
let wσ(t, ω) := w(σ t, ω) for any σ > 0

Fσ2Λ,p(wσ) = σ1+2/p FΛ,p(w) − σ−1+2/p (σ2 − 1)

∫

C |∇ωw|2 dy
(∫

C |w|p dy
)2/p

Lemma 4. [JD, Esteban, Loss, Tarantello] If d ≥ 2, Λ > 0 and p ∈ (2, 2∗)

(i) If Cd
Λ,p = C

d,∗
Λ,p, then Cd

λ,p = C
d,∗
λ,p and wλ,p = w∗

λ,p, for any λ ∈ (0,Λ)

(ii) If there is a non radially symmetric extremal wΛ,p, then Cd
λ,p > C

d,∗
λ,p for all λ > Λ
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A curve separates symmetry and symmetry breaking regions

Corollary 5. [JD, Esteban, Loss, Tarantello] Let d ≥ 2. For all p ∈ (2, 2∗),

Λ∗(p) ∈ (0,ΛFS(p)] and

(i) If λ ∈ (0,Λ∗(p)), then wλ,p = w∗
λ,p and clearly, Cd

λ,p = Cd,∗
λ,p

(ii) If λ = Λ∗(p), then Cd
λ,p = Cd,∗

λ,p

(iii) If λ > Λ∗(p), then Cd
λ,p > Cd,∗

λ,p

Upper semicontinuity
is easy to prove
For continuity,
a delicate spectral
analysis is needed
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One more result on symmetry

[Betta, Brock, Mercaldo, Posteraro]
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Caffarelli-Kohn-Nirenberg
inequalities (Part II)

and
Logarithmic Hardy inequalities

Joint work with M. del Pino, S. Filippas and A. Tertikas
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Generalized Caffarelli-Kohn-Nirenberg inequalities (CKN)

Let 2∗ = ∞ if d = 1 or d = 2, 2∗ = 2d/(d− 2) if d ≥ 3 and define

ϑ(p, d) :=
d (p− 2)

2 p

Theorem 6. [Caffarelli-Kohn-Nirenberg-84] Let d ≥ 1. For any θ ∈ [ϑ(p, d), 1], with

p = 2 d
d−2+2 (b−a) , there exists a positive constant CCKN(θ, p, a) such that

(
∫

Rd

|u|p
|x|b p

dx

)
2
p

≤ CCKN(θ, p, a)

(
∫

Rd

|∇u|2
|x|2 a

dx

)θ (∫

Rd

|u|2
|x|2 (a+1)

dx

)1−θ

In the radial case, with Λ = (a− ac)
2, the best constant when the

inequality is restricted to radial functions is C∗
CKN(θ, p, a) and

CCKN(θ, p, a) ≥ C
∗
CKN(θ, p, a) = C

∗
CKN(θ, p) Λ

p−2
2p −θ

C∗
CKN(θ, p) =

[

2 πd/2

Γ(d/2)

]2 p−1
p
[

(p−2)2

2+(2 θ−1) p

]

p−2
2 p
[

2+(2 θ−1) p
2 p θ

]θ [
4

p+2

]

6−p
2 p

[

Γ( 2
p−2+ 1

2 )√
π Γ( 2

p−2 )

]

p−2
p
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Weighted logarithmic Hardy inequalities (WLH)

A “logarithmic Hardy inequality”

Theorem 7. [del Pino, J.D. Filippas, Tertikas] Let d ≥ 3. There exists a constant

CLH ∈ (0, S] such that, for all u ∈ D1,2(Rd) with
∫

Rd

|u|2
|x|2 dx = 1, we have

∫

Rd

|u|2
|x|2 log

(

|x|d−2|u|2
)

dx ≤ d

2
log

[

CLH

∫

Rd

|∇u|2 dx
]

A “weighted logarithmic Hardy inequality” (WLH)

Theorem 8. [del Pino, J.D. Filippas, Tertikas] Let d ≥ 1. Suppose that a < (d− 2)/2,

γ ≥ d/4 and γ > 1/2 if d = 2. Then there exists a positive constant CWLH such that,

for any u ∈ D1,2
a (Rd) normalized by

∫

Rd

|u|2
|x|2 (a+1) dx = 1, we have

∫

Rd

|u|2
|x|2 (a+1)

log
(

|x|d−2−2 a |u|2
)

dx ≤ 2 γ log

[

CWLH

∫

Rd

|∇u|2
|x|2 a

dx

]
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Weighted logarithmic Hardy inequalities: radial case

Theorem 9. [del Pino, J.D. Filippas, Tertikas] Let d ≥ 1, a < (d− 2)/2 and γ ≥ 1/4.

If u = u(|x|) ∈ D1,2
a (Rd) is radially symmetric, and

∫

Rd

|u|2
|x|2 (a+1) dx = 1, then

∫

Rd

|u|2
|x|2 (a+1)

log
(

|x|d−2−2 a |u|2
)

dx ≤ 2 γ log

[

C
∗
WLH

∫

Rd

|∇u|2
|x|2 a

dx

]

C∗
WLH = 1

γ

[Γ( d
2 )]

1
2 γ

(8 πd+1 e)
1

4 γ

(

4 γ−1
(d−2−2 a)2

)

4 γ−1
4 γ

if γ > 1
4

C∗
WLH = 4

[Γ( d
2 )]

2

8 πd+1 e
if γ = 1

4

If γ > 1
4 , equality is achieved by the function

u =
ũ

∫

Rd

|ũ|2
|x|2 dx

where ũ(x) = |x|− d−2−2 a
2 exp

(

− (d−2−2a)2

4 (4 γ−1)

[

log |x|
]2
)
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Extremal functions for
Caffarelli-Kohn-Nirenberg and
logarithmic Hardy inequalities

Joint work with Maria J. Esteban
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First existence result: the sub-critical case

Theorem 10. [J.D. Esteban] Let d ≥ 2 and assume that a ∈ (−∞, ac)

(i) For any p ∈ (2, 2∗) and any θ ∈ (ϑ(p, d), 1), the Caffarelli-Kohn-Nirenberg
inequality (CKN)

(
∫

Rd

|u|p
|x|b p

dx

)
2
p

≤ C(θ, p, a)

(
∫

Rd

|∇u|2
|x|2 a

dx

)θ (∫

Rd

|u|2
|x|2 (a+1)

dx

)1−θ

admits an extremal function in D1,2
a (Rd)

Critical case: there exists a continuous function a∗ : (2, 2∗) → (−∞, ac) such

that the inequality also admits an extremal function in D1,2
a (Rd) if θ = ϑ(p, d) and

a ∈ (a∗(p), ac)

(ii) For any γ > d/4, the weighted logarithmic Hardy inequality (WLH)

∫

Rd

|u|2
|x|2 (a+1)

log
(

|x|d−2−2 a |u|2
)

dx ≤ 2 γ log

[

CWLH

∫

Rd

|∇u|2
|x|2 a

dx

]

admits an extremal function in D1,2
a (Rd)

Critical case: idem if γ = d/4, d ≥ 3 and a ∈ (a⋆, ac) for some a⋆ ∈ (−∞, ac)
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Existence for CKN

a

b

a

b

d = 3, θ = 1 d = 3, θ = 0.8
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Second existence result: the critical case

Theorem 11 (Critical cases). [J.D. Esteban]

(i) if θ = ϑ(p, d) and CGN(p) < CCKN(θ, p, a), then (CKN) admits an extremal

function in D1,2
a (Rd),

(ii) if γ = d/4, d ≥ 3, and CLS < CWLH(γ, a), then (WLH) admits an extremal

function in D1,2
a (Rd)

If a ∈ (a⋆, ac) then

CLS < CWLH(d/4, a)

a⋆ := ac −
√

(d− 1) e (2d+1 π)−1/(d−1) Γ(d/2)2/(d−1)
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Radial symmetry and symmetry
breaking

Joint work with
M. del Pino, S. Filippas and A. Tertikas (symmetry breaking)
Maria J. Esteban, Gabriella Tarantello and Achilles Tertikas

Branches and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities – p. 27/61



Implementing the method of Catrina-Wang / Felli-Schneider

Among functions w ∈ H1(C) which depend only on s, the minimum of

J [w] :=

Z

C

`

|∇w|2 + 1
4

(d − 2 − 2 a)2 |w|2
´

dy − [C∗(θ, p, a)]−
1
θ

`R

C
|w|p dy

´

2
p θ

`R

C
|w|2 dy

´

1−θ
θ

is achieved by w(y) :=
ˆ

cosh(λ s)
˜−

2
p−2 , y = (s, ω) ∈ R × Sd−1 = C with

λ := 1
4

(d − 2 − 2 a) (p − 2)
q

p+2
2 p θ−(p−2)

as a solution of

λ2 (p − 2)2 w′′ − 4 w + 2 p |w|p−2 w = 0

Spectrum of L := −∆ + κ wp−2 + µ is given for
p

1 + 4 κ/λ2 ≥ 2 j + 1 by

λi,j = µ + i (d + i − 2) − λ2

4

“
q

1 + 4 κ
λ2 − (1 + 2 j)

”2
∀ i , j ∈ N

The eigenspace of L corresponding to λ0,0 is generated by w

The eigenfunction φ(1,0) associated to λ1,0 is not radially symmetric and such that
R

C
w φ(1,0) dy = 0 and

R

C
wp−1 φ(1,0) dy = 0

If λ1,0 < 0, optimal functions for (CKN) cannot be radially symmetric and

C(θ, p, a) > C
∗(θ, p, a)
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Schwarz’ symmetrization

With u(x) = |x|a v(x), (CKN) is then equivalent to

‖|x|a−b v‖2
Lp(RN ) ≤ CCKN(θ, p,Λ) (A− λB)

θ B1−θ

with A := ‖∇v‖2
L2(RN ), B := ‖|x|−1 v‖2

L2(RN ) and λ := a (2 ac − a). We

observe that the function B 7→ h(B) := (A− λB)θ B1−θ satisfies

h′(B)

h(B)
=

1 − θ

B − λ θ

A− λB

By Hardy’s inequality (d ≥ 3), we know that

A− λB ≥ inf
a>0

(

A− a (2 ac − a)B
)

= A− a2
c B > 0

and so h′(B) ≤ 0 if (1 − θ)A < λB ⇐⇒ A/B < λ/(1 − θ)
By interpolation A/B is small if ac − a > 0 is small enough, for θ > ϑ(p, d)
and d ≥ 3
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Regions in which Schwarz’ symmetrization holds

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

Here d = 5, ac = 1.5 and p = 2.1, 2.2, . . . 3.2

Symmetry holds if a ∈ [a0(θ, p), ac), θ ∈ (ϑ(p, d), 1)

Horizontal segments correspond to θ = ϑ(p, d)

Hardy’s inequality: the above symmetry region is contained in θ > (1 − a
ac

)2

Alternatively, we could prove the symmetry by the moving planes method
in the same region
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Summary (1/2): Existence for (CKN)

a

θ

ac0

1

(1)

(2)

(3)

The zones in which existence is known are:

(1) extremals are achieved among radial functions, by the Schwarz
symmetrization method

(1)+(2) this follows from the explicit a priori estimates; Λ1 = (ac − a1)
2

(1)+(2)+(3) this follows by comparison of the optimal constant for (CKN)
with the optimal constant in the corresponding
Gagliardo-Nirenberg-Sobolev inequality
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Summary (2/2): Symmetry and symmetry breaking for (CKN)

The zone of symmetry breaking contains:

(1) by linearization around radial extremals

(1)+(2) by comparison with the Gagliardo-Nirenberg-Sobolev inequality

In (3) it is not known whether symmetry holds or if there is symmetry
breaking, while in (4), that is, for a0 ≤ a < ac, symmetry holds by the
Schwarz symmetrization

a

θ

ac0

1

(1)

(2)
(3)

(4)

(3)
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One bound state Lieb-Thirring
inequalities and symmetry

Joint work with Maria J. Esteban and M. Loss
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Symmetry: a new quantitative approach

b⋆(a) :=
d (d− 1) + 4 d (a− ac)

2

6 (d− 1) + 8 (a− ac)2
+ a− ac .

Theorem 12. Let d ≥ 2 . When a < 0 and b⋆(a) ≤ b < a+ 1 , the extremals of the

Caffarelli-Kohn-Nirenberg inequality with θ = 1 are radial and

Cd
a,b = |Sd−1|

p−2
p

[

(a−ac)
2 (p−2)2

p+2

]

p−2
2 p
[

p+2
2 p (a−ac)2

][

4
p+2

]

6−p
2 p





Γ
(

2
p−2 + 1

2

)

√
π Γ

(

2
p−2

)





p−2
p
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The symmetry region

a

b

0

−1 −

1

2

1

b = a + 1

b = a

b = bFS(a)

Symmetry region

Symmetry breaking region

−2

2
= 1

2

b = b⋆(a) d
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The symmetry result on the cylinder

Λ⋆(p) :=
(d− 1) (6 − p)

4 (p− 2)

dω : the uniform probability measure on S
d−1

L2: the Laplace-Beltrami operator on S
d−1

Theorem 13. Let d ≥ 2 and let u be a non-negative function on C = R × S
d−1 that

satisfies

−∂2
su− L2u+ Λu = up−1

and consider the symmetric solution u∗. Assume that

∫

C
|u(s, ω)|p ds dω ≤

∫

R

|u∗(s)|p ds

for some 2 < p < 6 satisfying p ≤ 2 d
d−2 . If Λ ≤ Λ⋆(p), then for a.e. ω ∈ S

d−1 and

s ∈ R , we have u(s, ω) = u∗(s− s0) for some constant s0
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The one-bound state version of the Lieb-Thirring inequalit y

Let K(Λ, p, d) := Cd
a,b and

Λd
γ(µ) := inf

{

Λ > 0 : µ
2 γ

2 γ+1 = 1/K(Λ, p, d)
}

Lemma 14. For any γ ∈ (2,∞) if d = 1 , or for any γ ∈ (1,∞) such that γ ≥ d−1
2 if

d ≥ 2 , if V is a non-negative potential in Lγ+ 1
2 (C) , then the operator −∂2 − L2 − V

has at least one negative eigenvalue, and its lowest eigenvalue, −λ1(V ) satisfies

λ1(V ) ≤ Λd
γ(µ) with µ = µ(V ) :=

(
∫

C
V γ+ 1

2 ds dω

)
1
γ

Moreover, equality is achieved if and only if the eigenfunction u corresponding to λ1(V )

satisfies u = V (2 γ−1)/4 and u is optimal for (CKN)

Symmetry ⇐⇒ Λd
γ(µ) = Λd

γ(1)µ
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The one-bound state Lieb-Thirring inequality (2)

Let V = V (s) be a non-negative real valued potential in Lγ+ 1
2 (R) for some

γ > 1/2 and let −λ1(V ) be the lowest eigenvalue of the Schrödinger

operator − d2

ds2 − V . Then

λ1(V )γ ≤ cLT(γ)

∫

R

V γ+1/2(s) ds

with cLT(γ) = π−1/2

γ−1/2
Γ(γ+1)

Γ(γ+1/2)

(

γ−1/2
γ+1/2

)γ+1/2

, with equality if and only if, up

to scalings and translations,

V (s) =
γ2 − 1/4

cosh2(s)
=: V0(s)

Moreover λ1(V0) = (γ − 1/2)
2 and the corresponding ground state

eigenfunction is given by

ψγ(s) = π−1/4

(

Γ(γ)

Γ(γ − 1/2)

)1/2
[

cosh(s)
]−γ+1/2
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The generalized Poincaré inequality

Theorem 15. [Bidaut-Véron, Véron] (M, g) is a compact Riemannian manifold of
dimension d− 1 ≥ 2, without boundary, ∆g is the Laplace-Beltrami operator on M, the

Ricci tensor R and the metric tensor g satisfy R ≥ d−2
d−1 (q − 1)λ g in the sense of

quadratic forms, with q > 1, λ > 0 and q ≤ d+1
d−3 . Moreover, one of these two

inequalities is strict if (M, g) is S
d−1 with the standard metric.

If u is a positive solution of

∆g u− λu+ uq = 0

then u is constant with value λ1/(q−1) Moreover, if vol(M) = 1 and

D(M, q) := max{λ > 0 : R ≥ N−2
N−1 (q − 1)λ g} is positive, then

1

D(M, q)

∫

M
|∇v|2 +

∫

M
|v|2 ≥

(
∫

M
|v|q+1

)
2

q+1

∀ v ∈W 1,1(M)

Applied to M = S
d−1: D(Sd−1, q) = q−1

d−1

Branches and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities – p. 39/61



The case: θ < 1

C(p, θ) :=
(p+ 2)

p+2
(2 θ−1) p+2

(2 θ − 1) p+ 2

(

2 − p (1 − θ)

2

)2 2−p (1−θ)
(2 θ−1) p+2

·
(

Γ( p
p−2 )

Γ( θ p
p−2 )

)

4 (p−2)
(2 θ−1) p+2

(

Γ( 2 θ p
p−2 )

Γ( 2 p
p−2 )

)

2 (p−2)
(2 θ−1) p+2

Notice that C(p, θ) ≥ 1 and C(p, θ) = 1 if and only if θ = 1

Theorem 16. With the above notations, for any d ≥ 3 , any p ∈ (2, 2∗) and any

θ ∈ [ϑ(p, d), 1) , we have the estimate

C
∗
CKN(θ, a, p) ≤ CCKN(θ, a, p) ≤ C

∗
CKN(θ, a, p) C(p, θ)

(2 θ−1) p+2
2 p

under the condition

(a− ac)
2 ≤ (d− 1)

C(p, θ)

(2 θ − 3) p+ 6

4 (p− 2)
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Numerical results, formal
expansion

Collaboration with Maria J. Esteban
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Energy: symmetric / non symmetric optimal functions
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Λ 7→ min{‖∇w‖2
L2(C) + Λ ‖w‖2

L2(C) : ‖w‖Lp(C) = 1}
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Non symmetric optimal functions: grid issues
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Coarse / refined / self-adaptive grids
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A self-adaptive grid
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Comparison with the asymptotic regime
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Reparametrization

Qθ
Λ[u] :=

(

‖∇u‖2
L2(C) + Λ ‖u‖2

L2(C)

)θ

‖u‖2 (1−θ)
L2(C)

‖u‖2
Lp(C)

A minimizer solves the Euler-Lagrange equation

− θ∆u+
[

(1 − θ) t[u] + Λ
]

u = up−1 with t[u] :=

∫

C |∇u|2 dy
∫

C u
2 dy

When θ = 1, denote the solution by uµ. We may parametrize the branch
for any θ ≤ 1 by

Λθ(µ) = θ µ− (1 − θ) τ(µ) ,

Jθ(µ) := Qθ
Λ[uµ] = ν(µ) θθ (µ+ τ(µ))θ

where

τ(µ) := t[uµ] and ν(µ) :=
‖uµ‖2

L2(C)

‖uµ‖2
Lp(C)
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Asymptotic behavior of the branch

With ϑ = ϑ(p, d) = d p−2
2 p , denote by KGN = KGN(p, d) the optimal constant

in the Gagliardo-Nirenberg-Sobolev inequality

‖u‖2
Lp(RN ) ≤

KGN

|Sd−1|
p−2

p

‖∇u‖2 ϑ
L2(RN )‖u‖

2 (1−ϑ)

L2(RN )
∀u ∈ H1(Rd)

Theorem 17. With the previous notations, for all θ > ϑ = ϑ(p, d), we have

lim
µ→∞

µϑ−θ Jθ(µ) =
θθ

ϑϑ
(1 − ϑ)ϑ−θ 1

KGN

Moreover, the parametric curve µ 7→ (Λθ(µ), Jθ(µ)) is asymptotic to the curve

Λ 7→ θθ

ϑ(p, d)ϑ(p,d) (θ − ϑ(p, d))θ−ϑ(p,d)

Λθ−ϑ(p,d)

KGN

for large values of µ or, equivalently, for large values of Λ = Λθ(µ)
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Expansion around the bifurcation point

Theorem 18. Assume that θ = 1, d ≥ 3 and p ∈ (2, 2∗]. Under assumption (H), there
exist a constant cp,d and

u(µ) := uµ,∗ +
√

cp,d (µ− µFS)ϕ+ cp,d (µ− µFS)ψ

where ϕ and ψ are two smooth functions with exponential decay as |s| → ∞ such that

for cp,d (µ− µFS) > 0

Qµ[u(µ)] = Qµ[uµ,∗]

(

1 − p2 − 4

8
cp,d (µ− µFS)2 + o

(

(µ− µFS)2
)

)

Moreover, if cp,d is positive, then for µ > µFS, Qµ[u(µ)] minimizes Qµ in a

neighborhood of uµ,∗ among smooth functions with exponential decay as |s| → ∞, up to

terms of order o
(

(µ− µFS)2
)
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Redefine

(A) τ(µ) := t[u(µ)] and ν(µ) :=
‖u(µ)‖2

L2(C)

‖u(µ)‖2
Lp(C)

and then Λθ(µ) and Jθ(µ) accordingly. Let ϑ2(p, d) := τ ′(µFS)
1+τ ′(µFS)

Theorem 19. Under assumption (H) and with definition (A), if cp,d is positive, if

µ ∼ (µFS)+, then

Either ϑ2(p, d) ≤ ϑ(p, d) and then for all θ ∈ (ϑ(p, d), 1], the branch

(Λθ(µ), Jθ(µ)) is concave, nondecreasing in µ and it is below the symmetric

branch (Λθ
∗(µ), Jθ

∗ (µ)).

Or, on the contrary, ϑ2(p, d) > ϑ(p, d) and then we find two different behaviors:

- if θ ∈ (ϑ2(p, d), 1], the branch is concave, nondecreasing in µ and below the
symmetric branch

- if θ ∈ (ϑ(p, d), ϑ2(p, d)), then the branch (Λθ(µ), Jθ(µ)) is above the

symmetric branch (Λθ
∗(µ), Jθ

∗ (µ)) and d
dµ Λθ(µFS) < 0

Branches and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities – p. 49/61



Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 2.8, d = 5, θ = 1
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Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 2.8, d = 5, θ = 0.8
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Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 2.8, d = 5, θ = 0.72
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Enlargement for p = 2.8, d = 5, θ = 0.95
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Enlargement for p = 2.8, d = 5, θ = 0.72
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Critical case θ = ϑ(p, d)
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Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 3.15, d = 5, θ = 1
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Parametric plot of µ 7→ (Λθ(µ), Jθ(µ)) for p = 3.15, d = 5, θ = 0.95
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Case p = 3.15, d = 5, θ = ϑ(3.15, 5) ≈ 0.9127
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cp,d with d = 5 as a function of p
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local and asymptotic criteria
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Thank you !
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