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On the notion of entropy
In physics... the notion of entropy goes back to the 19th century:
Gibbs, Clausius, Maxwell, Boltzmann
B Thermodynamics: the steam engine
B Boltzmann: how irreversibility arises in large systems
Fundamental problems in Mathematics
B Linked to the 6th Hilbert problem
Information theory
B Shannon, Rényi,...
B What von Neumann said to Shannon: When Shannon first
derived his famous formula for information, he asked von
Neumann what he should call it and von Neumann replied:
“You should call it entropy for two reasons: first because that is
what the formula is in statistical mechanics but second and more
important, as nobody knows what entropy is, whenever you use
the term you will always be at an advantage!”

(to be continued)
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On Boltzmann’s entropy

Boltzmann’s equation describes the evolution of a gas of particles by

∂f

∂t
+ v · ∇xf = Q(f, f)

t is the time, x the position and v the velocity
f(t, x, v) is the distribution function (a probability density on the
phase space). In a collision, if v and v∗ are the incoming velocities
and v′ and v′∗ the outgoing velocities, f∗ = f(t, x, v∗), etc., then

Q(f, f) =
∫∫

R3×S2
σ(v − v∗, ω)

(
f ′ f ′∗ − ff∗

)
dv∗ dω

is the collision kernel

The cross-section σ is nonnegative and has symmetry properties

J. Dolbeault ϕ-hypocoercivity



Entropy methods and diffusion equations
Hypocoercivity in kinetic equations

Boltzmann’s H theorem

Boltzmann’s entropy

H =
∫∫

R3×R3
f log f dx dv

Boltzmann’s H theorem

dH

dt
= −1

4

∫
(R3)3×S2

σ(v−v∗, ω) ·
(
f ′ f ′∗−ff∗

)
log
(
f ′ f ′∗
ff∗

)
dv∗ dv dx dω

B Carleman (< 1949): first mathematical theory

B DiPerna and Lions (1989): renormalized solutions

B Cercignani, Illner, Pulvirenti (1994): derivation of the equation

Can we compute a rate of convergence to an equilibrium using H ?
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On the notion of entropy (continued)

Many other domains of application:
linear diffusions, Markov processes, semi-group theory... a long
story ! Bakry & Emery (1984): the carré du champ method
PDEs and “entropy methods”: around 1998, Toscani et al.,
del Pino & JD (1999): the entropy for fast diffusion equations (a
nonlinear case)

and also (not discussed here):
Hyperbolic conservation laws
Sinai’s entropy for measure-preserving dynamical system
topological entropy, Perelman’s entropy in differential geometry
etc.
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Outline of the lecture

Entropy methods and diffusion equations

B ϕ-entropies and the carré du champ method of Bakry & Emery

B the gradient flow point of view

B rigidity results and entropy methods on compact manifolds

B Rényi entropy powers on the Euclidean space

B weighted inequalities and results of symmetry

B other applications: the (Patlak)-Keller-Segel in mathematical
biology and the Oseen attractor in 2D Euler equations

Hypocoercivity in kinetic equations

B H1 methods and ϕ-hypocoercivity

B L2-hypocoercivity
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Entropy methods

and
diffusion equations
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ϕ-entropies: definition
The ϕ-entropy of a nonnegative function w ∈ L1(Rd, dγ) is

E[w] :=
∫
Rd
ϕ(w) dγ

where ϕ : R+ → R+ is such that

ϕ′′ ≥ 0 , ϕ ≥ ϕ(1) = 0 and (1/ϕ′′)′′ ≤ 0

A classical example of a such a function ϕ is given by

ϕp(w) := 1
p−1

(
wp − 1− p (w − 1)

)
p ∈ (1, 2]

B Case p = 2: ϕ2(w) = (w − 1)2

B Limit case as p→ 1+ : ϕ1(w) := w logw − (w − 1)
dγ is a probability measure, which is absolutely continuous with
respect to Lebesgue’s measure

dγ = e−ψ dx
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ϕ-entropies and diffusions
If u solves the Fokker-Planck equation

∂u

∂t
= ∆u+∇x · (u∇xψ) .

then w = u eψ solves the Ornstein-Uhlenbeck or backward Kolmogorov
equation

∂w

∂t
= Lw := ∆w −∇ψ · ∇w

The Ornstein-Uhlenbeck operator L on L2(Rd, dγ) is such that

−
∫
Rd

(Lw1)w2 dγ =
∫
Rd
∇w1 · ∇w2 dγ ∀w1, w2 ∈ H1(Rd, dγ)

B the mass is conserved:
∫
Rd w(t, ·) dγ = 1, limt→+∞ w(t, ·) = 1

B the ϕ-entropy decays
d

dt
E[w] = −

∫
Rd
ϕ′′(w) |∇xw|2 dγ =: − I[w]

where I[w] denotes the ϕ-Fisher information functional
J. Dolbeault ϕ-hypocoercivity
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ϕ-entropies: entropy – entropy production inequalities
If for some Λ > 0 the entropy – entropy production inequality

I[w] ≥ ΛE[w] ∀w ∈ H1(Rd, dγ)

holds, then
E[w(t, ·)] ≤ E[w0] e−Λ t ∀ t ≥ 0

Example: with e−ψ = (2π)−d/2 e−|x|2/2 asn ϕ = ϕp

B p = 2, Gaussian Poincaré inequality : Λ = 1∥∥f − f̄∥∥2
L2(Rd,dγ) ≤

∫
Rd
|∇f |2 dγ ∀ f ∈ H1(Rd, dγ) , f̄ =

∫
Rd
f dγ

B p = 1, Logarithmic Sobolev inequality : Λ = 2∫
Rd
f2 log

(
f2

‖f‖2L2(Rd,dγ)

)
dγ ≤ 2

∫
Rd
|∇f |2 dγ ∀ f ∈ H1(Rd, dγ)
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ϕ-entropies: key properties
Generalized Csiszár-Kullback-Pinsker inequality:
if A := infs∈(0,∞) s

2−p ϕ′′(s) > 0, then

E[w] ≥ 2−
2
p A min

{
1, ‖w‖p−2

Lp(Rd,dγ)

}
‖w − 1‖2Lp(Rd,dγ)

Sub-additivity

Eγ1⊗γ2 [w] ≤
∫
Rd2

Eγ1 [w] dγ2 +
∫
Rd1

Eγ2 [w] dγ1

Tensorization

Iγ1⊗γ2 [w] =
∫
Rd1×Rd2

ϕ′′(w) |∇w|2 dγ1 dγ2 ≥ min{Λ1,Λ2}Eγ1⊗γ2 [w]

Generalized Holley-Stroock perturbation lemma:
if e−b dγ ≤ dµ ≤ e−a dγ and w̃ :=

∫
Rd w dµ/

∫
Rd dµ, then

ea−b Λ
∫
Rd

[
ϕ(w)−ϕ(w̃)−ϕ′(w̃)(w− w̃)

]
dµ ≤

∫
Rd
ϕ′′(w) |∇w|2 dµ
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ϕ-entropies: the carré du champ method

(Bakry, Emery, 1984): compute the t-derivative of Fisher
On a convex domain Ω, with w = z2/p so that I[w] =

∫
Ω |∇z|

2 dγ

1
2
d

dt
I[w] = −2

p
(p− 1)

∫
Ω

∥∥Hess z
∥∥2
dγ −

∫
Ω

Hessψ : ∇z ⊗∇z dγ

− 2− p
p

∫
Ω

∥∥∥∥Hess z − ∇z ⊗∇z
z

∥∥∥∥2
dγ

+
∫
∂Ω

Hess z : ∇z ⊗ ν e−ψ dσ

≤ − I[w]

Key observations: [∇, L] = −Hessψ... if ψ(x) = |x|2/2∫
Ω

Hessψ : ∇z ⊗∇z dγ =
∫

Ω
|∇z|2 dγ = I[w]
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ϕ-entropies: a statement

Let p ∈ [1, 2] and assume that for any X ∈ H1(Rd, dγ)d

2
p

(p− 1)
∫
Rd
|∇X|2 dγ +

∫
Rd

Hessψ : X ⊗X dγ ≥ Λ(p)
∫
Rd
|X|2 dγ

Theorem

Assume that q ∈ [1, 2). If Λ = Λ(2/q) > 0, then

‖f‖2L2(Rd,dγ) − ‖f‖
2
Lq(Rd,dγ)

2− q ≤ 1
Λ

∫
Rd
|∇f |2 dγ ∀ f ∈ H1(Rd, dγ)
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ϕ-entropies: improved inequalities
Remainder terms: with κp = (p− 1) (2− p)/p

d

dt
I[w] + 2 I[w] ≤ −κp

I[w]2

1 + (p− 1)E[w]

Let e(t) := 1
p−1

(∫
Rd f

2 dγ − 1
)
where f = wp/2

e′′ + 2 e′ ≥ κp |e′|2
1 + (p− 1) e ≥

κp |e′|2
1 + e

Proposition

Assume that q ∈ (1, 2) and dγ = (2π)−d/2 e−|x|2/2 dx
With F (s) := 1

1−κp

[
1 + s− (1 + s)κp

]
, for any f ∈ H1(Rd, dγ) such

that ‖f‖Lq(Rd,dγ) = 1

1
q
F

(
q
‖f‖2L2(Rd,dγ) − 1

2− q

)
≤ ‖∇f‖2L2(Rd,dγ)
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Bakry-Emery

Photo: Nassif Ghoussoub
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ϕ-entropies: a summary

B To prove the decay of the entropy, we need an entropy – entropy
production inequality ΛE ≤ I

B The best constant in the entropy – entropy production inequality
determines the (exponential) rate of decay: E(t) ≤ E(O) e−Λt

B By differentiating this estimate at t = 0, we see that an exponential
rate of decay is equivalent to an entropy – entropy production
inequality: −I(0) = d

dtE(0) ≤ −ΛE(0)

B The carré du champ method: prove that d
dt (I(t)− ΛE(t)) ≤ 0

B With an improved inequality ΛF (E) ≤ I where F ′′ > 0, F (0) = 0
and F ′(0) = 0, optimality in the entropy – entropy production
inequality can be achieved only in the asymptotic regime and Λ is
given by a spectral gap of a linearized problem

B The Fokker-Planck equation can be seen as a gradient flow of the
ϕ-entropy under an appropriate notion of distance

J. Dolbeault ϕ-hypocoercivity
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A (short) review of applications
to nonlinear equations

B Nonlinear interpolation inequalities

B Rigidity results for nonlinear elliptic equations

B Monotonicity along nonlinear flows

B Symmetry results in weighted inequalities

B Other applications
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Background references (partial)
Rigidity methods, uniqueness in nonlinear elliptic PDE’s: (B. Gidas,
J. Spruck, 1981), (M.-F. Bidaut-Véron, L. Véron, 1991)
Probabilistic methods (Markov processes), semi-group theory and
carré du champ methods (Γ2 theory): (D. Bakry, M. Emery, 1984),
(Bentaleb), (Bakry, Ledoux, 1996), (Demange, 2008), (JD, Esteban,
Kolwalczyk, Loss, 2014 & 2015) → D. Bakry, I. Gentil, and M.
Ledoux. Analysis and geometry of Markov diffusion operators (2014)
Entropy methods in PDEs
B Entropy-entropy production inequalities: Arnold, Carrillo,
Desvillettes, JD, Jüngel, Lederman, Markowich, Toscani, Unterreiter,
Villani..., (del Pino, JD, 2001), (Blanchet, Bonforte, JD, Grillo,
Vázquez) → A. Jüngel, Entropy Methods for Diffusive Partial
Differential Equations (2016)
B Mass transportation: (Otto) → C. Villani, Optimal transport. Old
and new (2009)
B Rényi entropy powers (information theory) (Savaré, Toscani, 2014),
(Dolbeault, Toscani)
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Collaborations

Collaboration with...

M.J. Esteban and M. Loss (symmetry, critical case)
M.J. Esteban, M. Loss and M. Muratori (symmetry, subcritical case)

M. Bonforte, M. Muratori and B. Nazaret (linearization and large
time asymptotics for the evolution problem)

M. del Pino, G. Toscani (nonlinear flows and entropy methods)
A. Blanchet, G. Grillo, J.L. Vázquez (large time asymptotics and

linearization for the evolution equations)

...and also

S. Filippas, A. Tertikas, G. Tarantello, M. Kowalczyk ...
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Rigidity: the Bakry-Emery method on Sd

Entropy functional

Ep[ρ] := 1
p−2

[∫
Sd ρ

2
p dµ−

(∫
Sd ρ dµ

) 2
p

]
if p 6= 2

E2[ρ] :=
∫
Sd ρ log

(
ρ

‖ρ‖L1(Sd)

)
dµ

Fisher information functional

Ip[ρ] :=
∫
Sd |∇ρ

1
p |2 dµ

Bakry-Emery (carré du champ) method: use the heat flow
∂ρ

∂t
= ∆ρ

and compute d
dtEp[ρ] = − Ip[ρ] and d

dtIp[ρ] ≤ − d Ip[ρ] to get
d

dt
(Ip[ρ]− dEp[ρ]) ≤ 0 =⇒ Ip[ρ] ≥ dEp[ρ]

with ρ = |u|p, if p ≤ 2# := 2 d2+1
(d−1)2

J. Dolbeault ϕ-hypocoercivity
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Rigidity: the fast diffusion flow on Sd

To overcome the limitation p ≤ 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

∂ρ

∂t
= ∆ρm . (1)

(Demange), (JD, Esteban, Kowalczyk, Loss): for any p ∈ [1, 2∗]

Kp[ρ] := d

dt

(
Ip[ρ]− dEp[ρ]

)
≤ 0

1.0 1.5 2.5 3.0

0.0

0.5

1.5

2.0

(p,m) admissible region, d = 5
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Rigidity: the functional inequality

The entropy – entropy production method establishes the
interpolation inequality

‖∇u‖2L2(Sd) + d

p− 2 ‖u‖
2
L2(Sd) ≥

d

p− 2 ‖u‖
2
Lp(Sd) ∀u ∈ H1(Sd, dµ)

where dµ is the uniform probability measure on Sd and p ≥ 1, p 6= 2
and p ≤ 2∗ := 2 d

d−2 if d ≥ 3
The case p = 2 corresponds to the logarithmic Sobolev inequality

‖∇u‖2L2(Sd) ≥
d

2

∫
Sd
|u|2 log

(
|u|2

‖u‖2L2(Sd)

)
dµ ∀u ∈ H1(Sd, dµ) \ {0}

(Beckner, 1993)
(Bidaut-Véron, Véron, 1991)
(JD, Esteban, Kowalczyk, Loss)
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Rényi entropy powers: the fast diffusion equation on Rd

Consider the nonlinear diffusion equation in Rd, d ≥ 1
∂v

∂t
= ∆vm

with initial datum v(x, t = 0) = v0(x) ≥ 0 such that
∫
Rd v0 dx = 1 and∫

Rd |x|
2 v0 dx < +∞. The large time behavior of the solutions is

governed by the source-type Barenblatt solutions

U?(t, x) := 1(
κ t1/µ

)d B?( x

κ t1/µ

)
where

µ := 2 + d (m− 1) , κ :=
∣∣∣ 2µm
m− 1

∣∣∣1/µ
and B? is the Barenblatt profile

B?(x) :=


(
C? − |x|2

)1/(m−1)
+ if m > 1(

C? + |x|2
)1/(m−1) if m < 1
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The Rényi entropy power F

The entropy is defined by

E :=
∫
Rd
vm dx

and the Fisher information by

I :=
∫
Rd
v |∇p|2 dx with p = m

m− 1 v
m−1

If v solves the fast diffusion equation, then

E′ = (1−m) I

To compute I′, we will use the fact that
∂p
∂t

= (m− 1) p ∆p + |∇p|2

F := Eσ with σ = µ

d (1−m) = 1+ 2
1−m

(
1
d

+m− 1
)

= 2
d

1
1−m−1

has a linear growth asymptotically as t→ +∞
J. Dolbeault ϕ-hypocoercivity
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Rényi entropy power and Fisher information

Lemma

If v solves ∂v
∂t = ∆vm with 1

d ≤ m < 1, then

I′ = d

dt

∫
Rd
v |∇p|2 dx = − 2

∫
Rd
vm
(
‖D2p‖2 + (m− 1) (∆p)2

)
dx

Explicit arithmetic geometric inequality

‖D2p‖2 − 1
d

(∆p)2 =
∥∥∥∥D2p− 1

d
∆p Id

∥∥∥∥2

Critical case: if m = 1− 1
d : F′ = I and the inequality I ≥ I? =: I[B?] is

Sobolev’s inequality

J. Dolbeault ϕ-hypocoercivity
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Rényi entropy power: the subcritical case

Theorem

(Toscani-Savaré) Assume that m ≥ 1− 1
d if d > 1 and m > 0 if d = 1.

Then (1−m) F′′(t) ≤ 0

(Dolbeault-Toscani) The inequality

Eσ−1 I ≥ Eσ−1
? I?

is equivalent to the Gagliardo-Nirenberg inequality

‖∇w‖θL2(Rd) ‖w‖
1−θ
Lq+1(Rd) ≥ CGN ‖w‖L2q(Rd)

if 1− 1
d ≤ m < 1

J. Dolbeault ϕ-hypocoercivity
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Weighted inequalities and results of
symmetry
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Symmetry: critical Caffarelli-Kohn-Nirenberg inequality

Let Da,b :=
{
v ∈ Lp

(
Rd, |x|−b dx

)
: |x|−a |∇v| ∈ L2 (Rd, dx)}

(∫
Rd

|v|p

|x|b p
dx

)2/p
≤ Ca,b

∫
Rd

|∇v|2

|x|2 a
dx ∀ v ∈ Da,b

holds under conditions on a and b:
a < ac = (d− 2)/2, a ≤ b ≤ a+ 1 if d ≥ 3

p = 2 d
d− 2 + 2 (b− a) (critical case)

B An optimal function among radial functions:

v?(x) =
(

1 + |x|(p−2) (ac−a)
)− 2

p−2 and C?a,b =
‖ |x|−b v? ‖2p
‖ |x|−a∇v? ‖22

Question: Ca,b = C?a,b (symmetry) or Ca,b > C?a,b (symmetry breaking) ?

J. Dolbeault ϕ-hypocoercivity
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Symmetry: the sharp result in the critical case
The Felli & Schneider curve

bFS(a) := d (ac − a)
2
√

(ac − a)2 + d− 1
+ a− ac

a

b

0

(JD, Esteban, Loss, 2016)

Theorem
Let d ≥ 2 and p < 2∗. If either a ∈ [0, ac) and b > 0, or a < 0 and
b ≥ bFS(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

J. Dolbeault ϕ-hypocoercivity
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Symmetry: an approach based on Rényi entropy powers

We compute the derivative of the generalized Rényi entropy power
functional

d

dt
F[u] :=

(∫
Rd
um dµ

)σ−1 ∫
Rd
u |DαP|2 dµ

where σ = 2
d

1
1−m − 1. Here dµ = |x|n−d dx and the pressure variable

is
P := m

1−m um−1

J. Dolbeault ϕ-hypocoercivity
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Symmetry: the formal computation
With Lα = −D∗α Dα = α2 (u′′ + n−1

s u′
)

+ 1
s2 ∆ω u, we consider the

fast diffusion equation
∂u

∂t
= Lαum

in the subcritical range 1− 1/n < m < 1. The key computation is the
proof that

− d
dt G[u(t, ·)]

(∫
Rd u

m dµ
)1−σ

≥ (1−m) (σ − 1)
∫
Rd u

m

∣∣∣∣LαP−
∫
Rd
u |DαP|2 dµ∫
Rd
um dµ

∣∣∣∣2 dµ
+ 2

∫
Rd

(
α4 (1− 1

n

) ∣∣∣P′′ − P′
s −

∆ω P
α2 (n−1) s2

∣∣∣2 + 2α2

s2

∣∣∇ωP′ − ∇ωP
s

∣∣2) um dµ

+ 2
∫
Rd

(
(n− 2)

(
α2

FS − α2) |∇ωP|2 + c(n,m, d) |∇ωP|4
P2

)
um dµ =: H[u]

for some numerical constant c(n,m, d) > 0. Hence if α ≤ αFS, the
r.h.s. H[u] vanishes if and only if P is an affine function of |x|2, which
proves the symmetry result
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Rigidity results by entropy methods
Rényi entropy powers and consequences
Weighted inequalities and results of symmetry

Other applications

The subcritical regime: (JD, Esteban, Loss, Muratori, 2017)
Equations with a mean field coupling

B the (Patlak)-Keller-Segel in mathematical biology
(Campos, JD, 2014)

B the Oseen attractor in 2D Euler equations (with positive
vorticity) (Gallay)
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H1 methods and ϕ-hypocoercivity
Some references

hypoelliptic methods: (Hörmander), (Hérau, Nier), and many
others
H1-hypocoercive methods: (Gallay), (Villani),
(Mouhot-Neumann), (Baudoin), etc.
ϕ-hypocoercivity: (Arnold, Erb), (Achleitner, Arnold, Stürzer),
(Achleitner, Arnold, Carlen), (Monmarché et al.), (Evans), (JD,
Li)
L2-hypocoercive methods: (JD, Mouhot, Schmeiser), (Bouin, JD,
Mouhot, Mischler, Schmeiser), (Arnold et al.)

B Motivation: coupling with mean field equations
Partial results: (Hérau, Thomann), (Herda, Rodrigues)
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The kinetic Fokker-Planck equation

∂f

∂t
+ v · ∇xf −∇xψ · ∇vf = ∆vf +∇v · (v∇vf)

with ψ(x) = |x|2/2. Under the condition ‖f‖L1(Rd×Rd) = 1, it has a
unique stationary solution

f?(x, v) = (2π)− d2 e−ψ(x) e−
1
2 |v|

2
= (2π)−d e−

1
2 (|x|2+|v|2) ∀ (x, v) ∈ Rd×Rd

The function g := f/f? solves

∂g

∂t
+ Tg = L g

where the transport operator T and the Ornstein-Uhlenbeck operator
L are defined respectively by

Tg := v · ∇xg − x · ∇vg and L g := ∆vg − v · ∇vg

Let dµ := f? dx dv be the invariant measure on Rd × Rd
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An optimal decay rate

The function h := gp/2 solves

∂h

∂t
+ Th = Lh+ 2− p

p

|∇vh|2

h
.

At the kinetic level, we consider the ϕp-entropy given by

E[g] :=
∫∫

Rd×Rd
ϕp(g) dµ

Proposition

(Arnold, Erb) With the above notations there exists a constant C > 0
for which

E[g(t, ·, ·)] ≤ C e−t ∀ t ≥ 0
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ϕ-hypocoercivity: the H1 approach

The method is based on the Fisher information

J[h] = 1
2

∫
Rd
|∇vh|2 dµ+ 1

2

∫
Rd
|∇xh|2 dµ+ 1

2

∫
Rd
|∇xh+∇vh|2 dµ

which involves derivatives in x and v
A carré du champ computation shows that

d

dt
J[h(t, ·)] ≤ − J[h(t, ·)]

The result follows from the entropy – entropy production inequality

ΛE[g(t, ·, ·)] = ΛE[h2/p] ≤ J[h]

J. Dolbeault ϕ-hypocoercivity
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ϕ-hypocoercivity: improved rate

Generalized (twisted, time-dependent) Fisher information functional

Jλ[h] = (1−λ)
∫
Rd
|∇vh|2 dµ+(1−λ)

∫
Rd
|∇xh|2 dµ+λ

∫
Rd
|∇xh+∇vh|2 dµ

Theorem

(JD, Li) Let p ∈ (1, 2). There exists a function λ : R+ → [1/2, 1) and
a continuous function ρ on R+ such that ρ > 1/2 a.e., for which we
have

d

dt
Jλ(t)[h(t, ·)] ≤ − 2 ρ(t) Jλ(t)[h(t, ·)]

As a consequence, for any t ≥ 0 we have the global estimate

Jλ(t)[h(t, ·)] ≤ Jλ(0)[h0] exp
(
− 2

∫ t

0
ρ(s) ds

)
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L2-hypocoercivity

B Abstract statement

B A toy model

B Decay estimates

B Diffusion limits
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An abstract evolution equation

Let us consider the equation

dF

dt
+ TF = LF (2)

In the framework of kinetic equations, T and L are respectively the
transport and the collision operators

We assume that T and L are respectively anti-Hermitian and
Hermitian operators defined on the complex Hilbert space (H, 〈·, ·〉)

A :=
(
1 + (TΠ)∗TΠ

)−1(TΠ)∗

∗ denotes the adjoint with respect to 〈·, ·〉

Π is the orthogonal projection onto the null space of L
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Fokker-Planck kernels with general equilibria
We consider the Cauchy problem

∂tf + v · ∇xf = Lf , f(0, x, v) = f0(x, v) (3)

for a distribution function f(t, x, v), with position variable x ∈ Rd or
x ∈ Td the flat d-dimensional torus

Fokker-Planck collision operator with a general equilibrium M

Lf = ∇v ·
[
M ∇v

(
M−1 f

) ]
An admissible local equilibrium M is positive, radially symmetric and∫

Rd
M(v) dv = 1 , dγ = γ(v) dv := dv

M(v)

Typical example: M(v) = (2π)−d/2 e− 1
2 |v|

2 + some technical
assumptions (H)
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Scattering collision operators
Scattering collision operator

Lf =
∫
Rd
σ(·, v′)

(
f(v′)M(·)− f(·)M(v′)

)
dv′

Main assumption on the scattering rate σ: for some positive, finite σ

1 ≤ σ(v, v′) ≤ σ ∀ v, v′ ∈ Rd

Example: linear BGK operator

Lf = Mρf − f , ρf (t, x) =
∫
Rd
f(t, x, v) dv

Local mass conservation ∫
Rd

Lf dv = 0

J. Dolbeault ϕ-hypocoercivity
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The assumptions
λm, λM , and CM are positive constants such that, for any F ∈ H

B microscopic coercivity:
−〈LF, F 〉 ≥ λm ‖(1−Π)F‖2 (H1)

B macroscopic coercivity:
‖TΠF‖2 ≥ λM ‖ΠF‖2 (H2)

B parabolic macroscopic dynamics:
ΠTΠF = 0 (H3)

B bounded auxiliary operators:
‖AT(1−Π)F‖+ ‖ALF‖ ≤ CM ‖(1−Π)F‖ (H4)

The estimate
1
2
d

dt
‖F‖2 = 〈LF, F 〉 ≤ −λm ‖(1−Π)F‖2

is not enough to conclude that ‖F (t, ·)‖2 decays exponentially
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Equivalence and entropy decay
For some δ > 0 to be determined later, the L2 entropy / Lyapunov
functional is defined by

H[F ] := 1
2 ‖F‖

2 + δRe〈AF, F 〉

as in (Dolbeault-Mouhot-Schmeiser) so that 〈ATΠF, F 〉 ∼ ‖ΠF‖2 and

− d

dt
H[F ] = : D[F ]

= − 〈LF, F 〉+ δ 〈ATΠF, F 〉
− δRe〈TAF, F 〉+ δRe〈AT(1−Π)F, F 〉 − δRe〈ALF, F 〉

B for any δ > 0 small enough and λ = λ(δ)

λH[F ] ≤ D[F ]

B norm equivalence of H[F ] and ‖F‖2

2− δ

4 ‖F‖2 ≤ H[F ] ≤ 2 + δ

4 ‖F‖2

J. Dolbeault ϕ-hypocoercivity
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Exponential decay of the entropy

λ = λM
3 (1+λM ) min

{
1, λm, λm λM

(1+λM )C2
M

}
, δ = 1

2 min
{

1, λm, λm λM
(1+λM )C2

M

}
h1(δ, λ) := (δ CM )2 − 4

(
λm − δ − 2 + δ

4 λ

)(
δ λM

1 + λM
− 2 + δ

4 λ

)

Theorem

Let L and T be closed linear operators (respectively Hermitian and
anti-Hermitian) on H. Under (H1)–(H4), for any t ≥ 0

H[F (t, ·)] ≤ H[F0] e−λ? t

where λ? is characterized by

λ? := sup
{
λ > 0 : ∃ δ > 0 s.t. h1(δ, λ) = 0 , λm − δ − 1

4 (2 + δ)λ > 0
}
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Hypocoercivity

Corollary

For any δ ∈ (0, 2), if λ(δ) is the largest positive root of h1(δ, λ) = 0 for
which λm − δ − 1

4 (2 + δ)λ > 0, then for any solution F of (2)

‖F (t)‖2 ≤ 2 + δ

2− δ
e−λ(δ) t ‖F (0)‖2 ∀ t ≥ 0

From the norm equivalence of H[F ] and ‖F‖2

2− δ

4 ‖F‖2 ≤ H[F ] ≤ 2 + δ

4 ‖F‖2

We use 2− δ
4 ‖F0‖2 ≤ H[F0] so that λ? ≥ supδ∈(0,2) λ(δ)
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A toy problem

du

dt
= (L−T )u , L =

(
0 0
0 −1

)
, T =

(
0 −k
k 0

)
, k2 ≥ Λ > 0

Non-monotone decay, a well known picture:
see for instance (Filbet, Mouhot, Pareschi, 2006)

H-theorem: d
dt |u|

2 = − 2u2
2

macroscopic limit: du1
dt = − k2 u1

generalized entropy: H(u) = |u|2 − δ k
1+k2 u1 u2

dH

dt
= −

(
2− δ k2

1 + k2

)
u2

2 −
δ k2

1 + k2 u
2
1 + δ k

1 + k2 u1 u2

≤ −(2− δ)u2
2 −

δΛ
1 + Λ u2

1 + δ

2 u1u2
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Plots for the toy problem
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Further results
(Bouin, JD, Mouhot, Mischler, Schmeiser)
B It is possible to make a mode by mode analysis in Fourier variables

B On the whole space without confinement potential (ψ ≡ 0), we
obtain rates of decay using Nash’s inequality
Consider

∂tf + v · ∇xf = Lf , f(0, x, v) = f0(x, v)
for a distribution function f(t, x, v), with position variable in the
whole space, x ∈ Rd, and with time t ≥ 0
(a) Fokker-Planck collision operator:

Lf = ∇v ·
[
M ∇v

(
M−1 f

) ]
(b) Scattering collision operator:

Lf =
∫
Rd
σ(·, v′)

(
f(v′)M(·)− f(·)M(v′)

)
dv′
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A statement

A typical example of a local equilibrium M is the Gaussian function

M(v) = e−
1
2 |v|

2

(2π)d/2

but our results apply to more general functions M

Theorem

Let us consider an admissible M and a collision operator L satisfying
some additional technical assumptions. Assume that x ∈ Rd, and
γk(v) =

(
1 + |v|2

)k/2 for some k ∈ (d,∞]. There exists a constant
C > 0 such that the solution f satisfies

‖f(t, ·, ·)‖2L2(dx dγk) ≤ C
(
‖f0‖2L2(dx dγk) + ‖f0‖2L2(dγk; L1(dx))

)
(1 + t)− d2
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Diffusion limits:
from kinetic equations to diffusions
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BGK-type kinetic equation as a motivation for
nonlinear diffusions – polytropes and fast diffusion /
porous medium

ε2∂tf
ε + εv · ∇xfε − ε∇xV (x) · ∇vfε = Gfε − fε

fε(x, v, t = 0) = fI(x, v) , x, v ∈ R3

with the Gibbs equilibrium Gf := γ

(
|v|2

2 + V (x)− µρf (x, t)
)

The Fermi energy µρf (x, t) is implicitly defined by∫
R3
γ

(
|v|2

2 + V (x)− µρf (x, t)
)
dv =

∫
R3
f(x, v, t)dv =: ρf (x, t)

fε(x, v, t) . . . phase space particle density
V (x) . . . potential

ε . . . mean free path
=⇒ µρf = µ̄(ρf )
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Diffusion limits
(J.D., P. Markowich, D. Ölz, C. Schmeiser)

Theorem

For any ε > 0, the equation has a unique weak solution
fε ∈ C(0,∞;L1 ∩ Lp(R6)) for all p <∞. As ε→ 0, fε weakly
converges to a local Gibbs state f0 given by

f0(x, v, t) = γ

(
1
2 |v|

2 − µ̄(ρ(x, t))
)

where ρ is a solution of the nonlinear diffusion equation

∂tρ = ∇x · (∇x ν(ρ) + ρ∇xV (x))

with initial data ρ(x, 0) = ρI(x) :=
∫
R3 fI(x, v) dv

ν(ρ) =
∫ ρ

0
s µ̄′(s) ds
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Some slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Conferences/
B Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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