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Scope (1/3): rigidity results

Rigidity results for semilinear elliptic PDEs on manifolds...

Let (90, g) be a smooth compact Riemannian manifold
of dimension d > 2, no boundary, A, is the Laplace-Beltrami operator
the Ricci tensor R has good properties (which ones ?)

Let p € (2,2%), with 2* = 2% if d > 3,2* = oo if d =2

For which values of A > 0 the equation

—Agv—I—)\v:v”*1

has a unique positive solution v € C?(9M): v = A2 ?

A typical rigidity result is: there exists \g > 0 such that
2
v=Xr2 if A € (0, Ag]

Assumptions ?
Optimal Ao ?
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Scope (2/3): interpolation inequalities

Still on a smooth compact Riemannian manifold (90, g)
we assume that volg(90) =1

For any p € (1,2) U (2,2*) or p =2* if d > 3, consider the
interpolation inequality

IV = 2 (Il = 1l Vv < HEOM)
What is the largest possible value of X ¢
Q@ using u =1+ ¢ as a test function proves that A < \;
@ the minimum of v — ||Vv||Lz (om) piQ [||v||ip(m) - ”VHiZ(zm)

under the constraint ||v||peon) = 1 is negative if X is above the rigidity
threshold
Q@ the threshold case p = 2 is the logarithmic Sobolev inequality

2
IV ulaom >)\/ log (T) dv, VueH(M)
u

L2(9)
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Scope (3/3): flows

We shall consider a flow of porous media / fast diffusion type

[Vul?

ut—u22ﬁ<Agu—|—/<; ), k=1+0(p—2)

If v = u”, then Z||v||ps@am) = 0 and the functional

Flul = /WIV(uﬂ)I2dvg+ ﬁ Vzm PP dvg — (/m u;a,,dvg>2/p]

is monotone decaying as long as A is not too big. Hence, if the limit
as t — oo is 0 (convergence to the constants), we know that F[u] > 0

Structure ? Link with computations in the rigidity approach
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The sphere
Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, f

Some references (1/2)

Some references (incomplete) and goals

Q rigidity results and elliptic PDEs: [Gidas-Spruck 1981],
[Bidaut-Véron & Véron 1991}, [Licois & Véron 1995]
— systematize and clarify the strategy

Q semi-group approach and 'y or carré du champ method:
[Bakry-Emery 1985], [Bakry & Ledoux 1996], [Bentaleb et al.,
1993-2010], [Fontenas 1997], [Brouttelande 2003], [Demange, 2005
& 2008]

— emphasize the role of the flow, get various improvements
— get rid of pointwise constraints on the curvature, discuss
optimality

© harmonic analysis, duality and spectral theory: [Lieb 1983],
[Beckner 1993]

— apply results to get new spectral estimates
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Outline

@ The case of the sphere
Q@ Inequalities on the sphere
@ Flows on the sphere
Q@ Spectral consequences
@ Improved inequalities
Q The case of Riemannian manifolds
@ Flows
Q@ Spectral consequences
© Inequalities on the line
Q@ Variational approaches
@ Mass transportation
@ Flows
@ The Moser-Trudinger-Onofri inequality

Joint work with:

M.J. Esteban, G. Jankowiak, M. Kowalczyk, A. Laptev and M. Loss
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The sphere
Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

The sphere

Q@ The case of the sphere as a simple example

[m] = -
J. Dolbeault

A
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The sphere
Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Inequalities on the sphere

<« 0
J. Dolbeault
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The sphere

A family of interpolation inequalities on the sphere

The following interpolation inequality holds on the sphere:

— 2/p
pT2/ |Vul? dvg—i—/ lul> dvg > </ |ulP dvg> Y u e HY(SY, dvg)
Sd s sd

@ for any p € (2,2*] with 2* = 2% if d > 3
@ for any p € (2,00) if d =2

Here dv, is the uniform probability measure: v, (S?) =1

Q@ 1 is the optimal constant, equality achieved by constants
Q p = 2* corresponds to Sobolev’s inequality...
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The sphere
emannian manifolds
The li

The Moser-Trudinger-Onofri inequ

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flow

Stereographic projection

o &’
P d,2)
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The sphere

Sobolev inequality

The stereographic projection of SY C R? x R 3 (p ¢, z) onto R:
top?+2z2=1,z¢€[-1,1],p>0, ¢ € S9! we associate x € R? such
that r = |x|, ¢ = iFl

-1 2 _ 2r
P

= — = 1 -,
rr+1 rr+1
and transform any function u on S? into a function v on R? using

d—2 d—2

u) = (5)F vi) = (52) 7 v = (1= 2)7F v(x)

@ p=2"S4y=1d(d—2)[S?? Euclidean Sobolev inequality
d—2

IVV|2 dx > Sy [/ |v|,dez dx} Vv e D1,2(Rd)
R4 Rd
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The sphere

Extended inequality

2/p
|Vul?> dv, > _d [(/ |ulP dvg) —/ |ul? dvg] Vue HY(SY, dp)
sd P_2 sd sd

is valid
@ for any p € (1,2)U(2,00) if d =1, 2
@ for any p € (1,2)U(2,2*]if d > 3

Q@ Case p = 2: Logarithmic Sobolev inequality

2
/|Vu|2dvg /|u|2 Iog( ||||2d )dvg VueHY(SY, du)
Sd

@ Case p = 1: Poincaré inequality

/Sd|Vu|2dngd/Sd|u—D|2dvg with D::/Sdudvg Y ue HY(S?, du)
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The sphere

A spectral approach when p € (1,2) — 1% step

[Dolbeault-Esteban-Kowalczyk-Loss] adapted from [Beckner] (case of
Gaussian measures).
Nelson’s hypercontractivity result. Consider the heat equation

of

— = A,f

ot g

with initial datum f(t =0,-) = u € L?/P(S9), for some p € (1,2], and
let F(t) := [If(t,)llLso(se). The key computation goes as follows.

F' o s v2 p—1 s

T log [ —2—— ) dv, +4 Vv d

F o pFp [/Sd e (fga v2 dvg) G /Sd Vv v
2,

with v := |f|P(t)/2, With 4 ";1 =2 and t, > 0 e such that p(t.) =
we have

. 1
||f(l'*7 -)”LZ(Sd) < HUHLZ/p(Sd) if m — 2dt
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The sphere

A spectral approach when p € (1,2) — 2° step

Spectral decomposition. Let u =),  ux be a spherical harmonics
decomposition, \y = k(d + k — 1), ax = ||”k||i2(sd so that

lul22(50) = Swen ak and [ Vull2ag0 = 3 pen Ak 2k
| (¢, -)||i2(sd) - Z g e 2Nt
keN

oy ~ By olaeey = It Mo

2—p - 2—p
1 _ a2 Ak ts
7 2 M
kEN*
1 _ 672)\1 Ty 1 _ e72 A1ty
T TN Nea = v
(2 — P) M\ kg* k dk (2 — p) A\ || ||L2(Sd)

The conclusion easily follows if we notice that A\; = d, and
A1 tx
e 2Mt — p 1 s0 that ﬁ =1
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The sphere

Optimality: a perturbation argument

Q@ The optimality of the constant can be checked by a Taylor
expansion of t =1+ e v at order two in terms of € > 0, small
@ Forany pe (1,2*]if d >3,any p>1lifd=1or 2, it is
remarkable that

( )HV“”Lz )

> i
[|u ||LP(§0’ HUHL2(gd) ueH! (S9,du)

Qlu] = Qlu] = ~

is achieved by Q[1 +¢v] as ¢ — 0 and v is an eigenfunction associated
with the first nonzero eigenvalue of A,

@ p > 2 no simple proof based on spectral analysis: [Beckner], an
approach based on Lieb’s duality, the Funk-Hecke formula and some
(non-trivial) computations

@ elliptic methods / ', formalism of Bakry-Emery / flow... they are
the same (main contribution) and can be simplified (!) As a side
result, you can go beyond these approaches and discuss optimality
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The sphere

Schwarz symmetry and the ultraspherical setting

(€0, &1, .-€a) €S9, €9 = 2, 19 &[> = 1 [Smets-Willem]

Up to a rotation, any minimizer of Q depends only on £4 = z

d
o Let do(f) := S0 dp, 7, :— \/—r(rl(jii):VveHl([O,ﬂ],da)
2

—2/077 IV (0)2 da—l—/ow V(O)] do > (/OW v(0)]? da)i

e Change of variables z = cos#, v(#) = f(z)

P_2 ' 112 ' 2 ' p ’
— |f'|* v dvg + |f|° dvg > |f1P dvg
-1 -1 -1

where v4(z) dz = dvgy(z) = ZJl vs-1 dz, v(z) :=1- 22
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The sphere

The ultraspherical operator

With dvy = ZJl vi~ldz, v(z) := 1 — 22, consider the space
L2((—1,1), dvy) with scalar product

1 1 H
()= [ ifodva, ||f||,,—(/ fpdud>
-1 -1

The self-adjoint ultraspherical operator is
Lf:= (1—22)f”—dzf’:z/f”+gz/f’

which satisfies (f, L f) = f i fvdug

Proposition

Let pe[1,2)U(2,2*], d > 1

f 2 _ f 2
171l = 11112 ”; ! 2 Vf e HY([-1,1], dvg)

1
—{f,LFf) :/ If'1? v dvg > d
—il
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The sphere
Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Flows on the sphere

Q@ Heat flow and the Bakry-Emery method

@ Fast diffusion (porous media) flow and the choice of the exponents
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The sphere

Heat flow and the Bakry-Emery method

With g = fP, d.e. f =g* witha=1/p

2o 2«
(neq) (L) = —(g" Lg") = 7[g] > o E1 I8 g
Heat flow 9
g
ot £

1

d _ i 2a _ _ _ o 112
Sl =0, Zle* =22 (F.LA) =2(o-2) [ 17w v,

which finally gives
d d

Gl =~ L =~ 2dT[e(r. )

neq. = SFle(t, )] < -2 Flg(t,)] = S70a(t,)] < ~2dT[g(t, )]
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The sphere

The equation for g = fP can be rewritten in terms of f as

of P

En =Lf+(p—1) v
1d [, 1d |f/|2
—EE/_1|f|ded—§d—<fﬁf> (LFLE+(p=1) (v, LF)

d d 1 1
—T[g(t,)] + 2dZ[g(t,")] = —/ If'1? v dvg + 2d/ If'1? v dug
dt dt .

1 4 12 11
d |f] d—1|f)2f
=-2 )2 -1 —2(p—-1)—— 2
/_1<| I N L I S R

is nonpositive if

d |f/|4 d_1|f-/|2 f”
' -1)—— - 2(p—1)—
Pl -Nm e — 2~ Vg
is pointwise nonnegative, which is granted if

2
d 2241 2d
—1)——| <(p—1)—— <= p< =2
{(p )d+2]—(” )72 P12 d-2

J. Dolbeault
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The sphere

. up to the critical exponent: a proof on two slides

[i,ﬁ] u=(Lu) =LV =-2zu" —du

1 1 1
/ (Lu)? dvg = / | > v? dvg + d/ | v dug
-1 -1

-1
|u/|2 d 1 |u/|4 ) d—l/l |u/|2 u' )
—vd = — dvg — 2 d

UV dvg d—|—2 . u2 v Vd d—|—2 ) u 174 Vg

On (—1,1), let us consider the porous medium (fast diffusion) flow

/12
up = u>2P (Lu—i-/@ <] V)
u
If k = 8(p—2)+ 1, the LP norm is conserved
1

1
%/ uPP dud:ﬂp(ﬁ—ﬁ(p—2)—1)/ WP |12y dug =0
—1 -1
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The sphere

F= 0, ey + 5% (1F1220e) = [F1Ee) 207
1 d [t d
— a By |2 26 _ 428
A Qﬁzdt/1<|(u)|y+p—2(u u))dvd
1 |u/|2 |/|2
:/ (Lu—i—(ﬁ—l) )(L’ +Kr— )dud
1 u u
d m—l/l o
+ — u'l“v dv
p—2 B —1| | I

1 1 /12
d—1
:/ |UN|2V2 dl/d_2ﬂ( +ﬂ—1)/ u”ﬂy2 dl/d
—1 -1

u

1 I4
+{/~e(ﬁ—1)+ diz(mﬂ—n}/ L2 dv,

1
_/u
-1

, pr2|uP|
6—p u

4

V2 dug >0 ifp=2*and = ——
6—p

A tive for some § if 8" (p=1)(2*=p)>0

is nonnegative for some (3 if ——— (p — —
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The sphere
Riemannian manifolds
The line
The Moser-Trudinger-Onofri inequalit
Sobolev and Hardy-Littlewood-Sobolev inequa M es: duality, flows

the rigidity point of view

712
Which computation have we done ? u; = u?~2# (L’ u+k % V)

|u'|2 A A
v+ u= u

—Lu—(-1) u ) )

Multiply by £ u and integrate

P
/L’uu dVd——K/ . dvy

Multiply by & # and integrate

s
..:—l—n/ u” duvy
—1 u

The two terms cancel and we are left only with the two-homogenous
terms
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The sphere
Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Spectral consequences

@ A quantitative deviation with respect to the semi-classical regime

o F

Interpolation inequalities: rigidity results, nonlinear flows and improved inequa
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The sphere

Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequalit
nequa

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Some references (2/2)

Consider the Schrodinger operator H = —A — V on R? and denote by
(Ak)k>1 its eigenvalues

@ Euclidean case [Keller, 1961]

+i
<Ll [ v
Rd

[Lieb-Thirring, 1976]

Yo < L%d/ vt
k>1 Rd
y>1/2ifd=1,7>0ifd=2and 7y > 0if d >3 [Weidl], [Cwikel],
[Rosenbljum], [Aizenman]|, [Laptev-Weidl], [Helffer], [Robert],
[Dolbeault-Felmer-Loss-Paturel]... [Dolbeault-Laptev-Loss 2008]

@ Compact manifolds: log Sobolev case: [Federbusch], [Rothaus];
case v = 0 (Rozenbljum-Lieb-Cwikel inequality): [Levin-Solomyak];
[Lieb], [Levin], [Ouabaz-Poupaud]... [Ilyin]
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The sphere

An interpolation inequality (I)

Lemma (Dolbeault-Esteban-Laptev)

Let g € (2,2*). Then there exists a concave increasing function
i RT — RY with the following properties

pla) = a VaG[O,q;iz] and p(a) < a Vae(q;im—i—oo)

Kgad 1-
(@) = Hampl@) (1+0(1)) 35 = 40, Hamp(a) = <24 o0
a,

such that

IVullae + allullfags > wla) [ullfoss VueH(ST)
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The sphere

Q flasymp(@) = i—d 1=9 9 .= d = corresponds to the

semi-classical regime and Kq,d is the optimal constant in the
FEuclidean Gagliardo-Nirenberg-Sobolev inequality

Kad [VIIEagey < IV VITame) + IVIEa@e Vv € HI(R)

@ Let ¢ be a non-trivial eigenfunction of the Laplace-Beltrami
operator corresponding the first nonzero eigenvalue

—Ap=doyp

Consider u =1+ € as € — 0 Taylor expand Q, around u =1
Ho) < Qull +eel = o+ [d+a@2—q) & [ o dv+o(?)

By taking e small enough, we get (o) < « for all @ > d/(q — 2)
Optimizing on the value of € > 0 (not necessarily small) provides an
interesting test function...
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The sphere

J. Dolbeault
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The sphere

Consider the Schrodinger operator —A — V and the energy

Elu] ::/ |Vu|2—/ V |ul?
Sd Sd

2 [d Vul* = ||U||iq(sd) > —a(p) ||U||i2(sd) if o= ||V llose)
S

Theorem (Dolbeault-Esteban-Laptev)

Let d > 1, p € (max{1,d/2},+00). Then there exists a convex
increasing function a s.t. a(p) = p if p € [0, % (p— 1)] and ap) > p if
pe (5(p—1),+00)

Mi(=2 = V)| < a(llV]ee) YV eLP(S?)

For large values of u, we have a(u)P~2 = Lllj_g 4 (Fg,a )P (1 +0o(1))
4

and the above estimate is optimal
If p=d/2 and d > 3, the inequality holds with a(p) = p iff pu € [0, au]
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The sphere

A Keller-Lieb-Thirring inequality

Corollary (Dolbeault-Esteban-Laptev)

Letd >1~y=p—d/2

d
Ma(-A— V)P ST, /S VI s p= Vg = 0
if either v > max{O 1-d/2} ory=1/2andd =1

However, if = ||V|| Ld(2y+d—2), then we have

L‘V*d Sd) =2
Pa(-a- vyt < [ v

Sd
for any v > max{0,1 — d/2} and this estimate is optimal

L} ; is the optimal constant in the Euclidean one bound state ineq.

(A - @) <1 /dﬂ“ o
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The sphere

Another interpolation inequality (I1)

Let d > 1 and v > d/2 and assume that L' is the optimal
constant in

M(-A+6) 7<L17d/ o4 dx

2y —d d
_ d — —~— =
1=y —d+2 ™ P7 2 —q 172
Theorem (Dolbeault-Esteban-Laptev)
=4 1 w-1(-1
M(=a+W)) " S L q / Wi as f= W Hm—-(sd -
However, ify > 2 + 1 and 3 = |W™Y| ! <1d(2v-d+2)

L7 % (s9)

d_ d
M(=a+W) 7 < [ w2
Sd

and this estimate is optimal
4
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The sphere

Kg.a 1s the optimal constant in the Gagliardo-Nirenberg-Sobolev
1nequahty

Ko IVIE2 ey < IV VT2 (ray + ||V||iq(]Rd) Vv e H'(RY)

-
and L1 ;= (K?;,d) with g =2 5 d+2, 0= ﬁf’dd)

Lemma (Dolbeault-Esteban-Laptev)

Let g € (0,2) and d > 1. There exists a concave increasing function v
v(B)<B VB>0 and v(B)<B Vpe (3, +x)
WB) =B VBE[0,,%] if qell,2)

v(B) =Kl g (kqaB)’ (1+0(1)) as B — +oo
such that

IVullZagey + Bllullfogsy > v(8) lullf2gey ¥ u e HY(SY)
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The sphere

The threshold case: g =2

Lemma (Dolbeault-Esteban-Laptev)

Let p > max{1,d/2}. There exists a concave nondecreasing function &
fla)=a Vae(0,a) and &(a)<a Ya>ap

for some ag € [ (p— 1), 4 p|, and &(a) ~ o= as o — +oo

such that, for any u € H'(SY) with ||ul|i2ge) = 1

/d |u[? log [uf? d vy + p log (%) < p log (1 +1 HVUHiZ(Sd))
S

\

Corollary (Dolbeault-Esteban-Laptev)

A (—A—W)/ o w/ He
e M\TeT ‘1§—</e" "dv)
£(a) Sd £

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequa




The sphere
Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Improvements of the inequalities
(subcritical range)

@ as long as the exponent is either in the range (1,2) or in the range
(2,2*), on can establish improved inequalities

[Dolbeault-Esteban-Kowalczyk-Loss]
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The sphere

What does “improvement” mean ?

An improved inequality is

d ||U||i2(sd) q’(m) <i Vwe Hl(Sd)

for some function ¢ such that ¢(0) =0, ¢'(0) =1, ¢’ > 0 and
®(s) > s for any s. With W(s) :=s— d71(s)

i —de>d||ul[fzge (Vo o)

Lemma (Generalized Csiszdr-Kullback inequalities)
d
nvw@®q—5¢3hwﬁwq—nwéwﬂ
Nalifad) 2 1(qd
[u" = U [|Laey | Vu € HY(ST)

Tl ooy

> d el (Vo ) (€

s(p) := max{2, p} and p € (1,2): q(p) :=2/p, r(p) := p; p € (2,4):
q=p/2,r=2;p>4 q=p/(p—2),r=p—2
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The sphere

Linear flow: improved Bakry-Emery method

Cf. [Arnold, JD]
w2
wi=LWw+K——vV
w

With 2¢ = 2451

— (4L 2( ~1)@*—p) if d>1 —Pl oy g
= d+2 P P ) "= 3 =

If p € [1,2) U (2,2%] and w is a solution, then

d 1 |W'|4 |e/|2
—(i—de) < — dvg < —y4 ———————
dt(I e) = 71/_1 w2 V4= 711—(p—2)e
Recalling that ¢’ = — i, we get a differential inequality
/|2
1 d / > |e |
e’ +de >m 1= (p—2e (,D — 2) .

After integration: d ®(e(0)) < i(0)
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The sphere

Nonlinear flow: the Holder estimate

w2
wy = w220 (ﬁw—i-/f )
w

Forall p € [1,2*], k=6(p—2)+1, & = 11 whp dud*O

_2_é2%f_11 (|(W,6)/|2V_’_E (W25_ W25)) dvy >'yf 1 2 I/ duvy

For all w € H'((—1,1), dvg), such that [*, wPP dvy =1

1 1
[ g 3 LA s
? = 3 3

1w B (f_ll w28 dyd)

.. but there are conditions on 3
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The sphere

Admissible (p, ) for d =1, 2

3
2
2
= ;
= =01
, , , . |
0 6 0 0
-1
-1
e
// -2
2 /
! 3
/ =
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The sphere

Admissible (p, 3) for d = 3, 4

N

5
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The sphere
nannian manifolds

The line
The Moser-Trudinger-Onofri inequality
bod-Sobolev inequalities: duality, flow

Admissible (p, 3) for d =5, 10

Sobolev and Hardy-Litt

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequa



The sphere
Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Riemannian manifolds

Q@ no sign is required on the Ricci tensor and an improved integral
criterion is established

Q@ the flow explores the energy landscape... and shows the
non-optimality of the improved criterion
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Riemannian manifolds

Riemannian manifolds with positive curvature

(9, g) is a smooth compact connected Riemannian manifold
dimension d, no boundary, A, is the Laplace-Beltrami operator
vol(0t) = 1, R is the Ricci tensor, A1 = A1(—Ag)

=inf inf M
p:=inf inf, (€,9)

Theorem (Licois-Véron, Bakry-Ledoux)

Assume d > 2 and p > 0. If

—1)2(p —
/\S(1—19)/\1—|—t9i where 0 = (d=-1)*(p—1)

0
d—1 dd+2)+p_1_

then for any p € (2,2*), the equation

A
— - _ P =
Agv+p_2(v v =0

has a unique positive solution v € C2(IM): v =1
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Riemannian manifolds

Riemannian manifolds: first improvement

Theorem (Dolbeault-Esteban-Loss)

For any p € (1,2) U (2,2%)

0d
/m |:(]. — 0) (Agu)2 —|— m %(VU,VU)] dVg
O< A< A = inf

uEH? (9) Jon |Vul? dvg

there is a unique positive solution in C2(OM): u=1

limp_1, 0(p) = 0 = limp_1, Ac(p) = A1 if p is bounded
AM=A=dp/(d—1)=dif M =S since p=d — 1

(1—9)A1+9%§A*§A1
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Riemannian manifolds

Riemannian manifolds: second improvement

(d-1)°(p—1)
dd+2)+p-1

Hgu denotes Hessian of v and 0 =

Qoumtu_Eay_ @d=DE=1 [Vuwu_g |Vu|2}
g= T & )

d—¢ 0(d+3—p u d u

(1=0) [ (@ dv+ 575 [ [1Quul? +9(Vu. Vo)

inf
weH2(IM)\ {0} / VuPdy,
m g

Theorem (Dolbeault-Esteban-Loss)

Assume that A\, > 0. For any p € (1,2) U (2,2*), the equation has a
unique positive solution in C*(9N) if X € (0,A,): u=1
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Riemannian manifolds

Optimal interpolation inequality

For any p € (1,2) U (2,2*) or p=2*if d >3

A
19vIem = 55 [1VIEsgomy — 1Vl v € B ()

Theorem (Dolbeault-Esteban-Loss)

Assume N, > 0. The above inequality holds for some A = N\ € [A«, M]
If Ay < A1, then the optimal constant N\ is such that

AN <A< )\

Ifp=1, then N = \;

Using u =1+ ey as a test function where ¢ we get A < A\
A minimum of

v [VIRamy = 525 | 1VIEemy = 1VIE2m)

under the constraint ||v||ppon) = 1 is negative if A > Ay
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Riemannian manifolds

The flow

The key tools the flow

v 2
up = u?2P <Agu+ﬁ%) , k=1+8(p-2)

If v = uP, then £||v|[1p(om) = 0 and the functional

Flul = /MIV(uﬁ)l2dvg+ ﬁ Mm PP dvg — (/m ”ﬁ"dvg>2/p]

is monotone decaying
Q@ J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on

manifolds with positive curvature, J. Funct. Anal., 254 (2008),
pp- 593-611. Also see C. Villani, Optimal Transport, Old and New
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Riemannian manifolds

Elementary observations (1/2)

Let d > 2, u€ C?(9M), and consider the trace free Hessian

Lgu:=Hzu— %Agu

d d
/ (Agu)2dvg:—/ ||Lgu||2dvg—|——/ R(Vu,Vu)dvg
o d—1 Jo d—1 Jo

Based on the Bochner-Lichnerovicz-Weitzenbock formula

1
3 AVul? = |[Hgu|? + V(Agu) - Vu + R(Vu, Vi)
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Riemannian manifolds

Elementary observations (2/2)

2
/ AV
m u

d |Vul*
L
d+2 u? g d+2/ [Lgu]

dvg

o

Lemma

Il
3
Q
<
c
A\

/ (Agu)’dvg > /\1/ |Vul?dv, YuecH*(9M)
m m

and A1 is the optimal constant in the above inequality
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Riemannian manifolds

The key estimates

Glul = fon [0 (Bgu? + (n+ 8~ 1) Agu T 4 (5 - 1) S

1 d
57 7= =@ =0) [ (AuPdv =gl + [ [Vuldy,

u2
Qpui=Lgu— 34k (nt+ g — 1) [Teo¥u _ g [NoL]

1)2(f<~'+ﬂ—1)2—/-”~(6—1) (htB—1)—"—

d—|—2
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Riemannian manifolds

The end of the proof

Assume that d > 2. If # = 1, then p is nonpositive if

B-(p) <B < B+(p) Vpe(L,27)

where By 1= BEYD=2 witha =2 — p+ {7(‘171(571)} and b = djﬁf
Notice that 8_(p) < B+(p) if p € (1,2*) and S_(2%) = B+(2*)

_ (d-1)*(p—1) d+2
S d(d+2)+p-1 - d+3-p

Proposition

Letd >2, pe(1,2)U(2,2*) (p#5o0rd+#2)

1
o dt}"[u]_(/\ A) /|Vu| i
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The sphere

Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

The line
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The line

One-dimensional Gagliardo-Nirenberg-Sobolev inequalities

1FllLogz) < Can(p) [ F/ 12y 1FllTaEy i P e (2,00)
12y < Can(p) I I Tamy 1flTahy i P € (1,2)

_ p—2 __2—p
with 6 55 and n = 55

The threshold case corresponding to the limit as p — 2 is the
logarithmic Sobolev inequality

’
) 2 o I
u? log | rt— | dx < 3 |uf2,z) lo
J g(nuuizu{)) 2 [l log { = Tl 2 ey

If p> 2, u,(x) = (cosh x)fﬁ solves

—(p—2%u" +4u—2p|uP2u=0

If p € (1,2) consider u.(x) = (cosx)ﬁ7 x € (—7m/2,7/2)
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The line

Mass transportation

Theorem (Dolbeault-Esteban-Laptev-Loss)

If p € (2,00), we have
2(p—2) 2 (p+2)
f 637::22 ||fl||f2?R2) ||f||52p(ig2)
sup =Cp in f
S (Jo G IyP2 dy) 7 (G dy) ik
and if p € (1,2), we obtain
f Gﬁ dy ||fl||L2 ”fHLp (R)
AT LT
G Iyl dy) 77 dy)** 11l 2y
for some explicit numerical constant c,
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The line

Flow

Let us define on H!(R) the functional
4
FIv] = IV [If ey + -2p V2@ = ClIvIEsm) st Flu] =0

With z(x) := tanh x, consider the flow

ViR, 2p o, p VR 2
Vtim{v-ﬁ-mzv-ﬁ-ETﬂ-ﬁv}

Theorem (Dolbeault-Esteban-Laptev-Loss)

Let p € (2,00). Then
d :
E]—'[v(t)] <0 and tllm Flv(t)] =0

%]:[V(t)] =0 < w(x)=u(x—x)

4

Similar resnlt for n € (1.2)
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The line

The inequality (p > 2) and the ultraspherical operator

Q. The problem on the line is equivalent to the critical problem for the
ultraspherical operator

/|v|2 dx—|— /|v|2 dx>C(/|v|pdx)
With

z(x) =tanhx, v,=(1- ZQ)ﬁ and  v(x) = v (x) f(z(x))

equality is achieved for f = 1 and, if we let v(z) := 1 — 22, then

1 1 1 2

2p 2p P
f'2ud1/—|—7/ fI? dv, >7</ fpdy)
/71| | ¢ (p—2)? —1| | ¢ (p—2)? 71| | ¢

where dv, denotes the probability measure dv,(z) := C_lp Vi dz
_ 2 2d
d=25 <« p=7%

Change of variables = stereographic projection + Emden-Fowler
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The sphere
Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

The Moser-Trudinger-Onofri
inequality

Joint work with Maria J. Esteban and G. Jankowiak
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The Moser-Trudinger-Onofri inequality

Three equivalent forms

> The Euclidean (Moser-Trudinger-)Onofri inequality:

Ton /|Vu|2dx>|og</ e“d,u)—/ udu
™ R2

dp = p(x) dx, p(x) = L (1 +[x?)72, x € R?
> The Onofri inequality on the two-dimensional sphere S?:

1
—/ |Vv[?do > log (/ e"do*) —/ vdo
4’ S2 S2 S2

do is the uniform probability measure
> The Onofri inequality on the two-dimensional cylinder
C=S'xR:

1
—/|VW|2dy2|og /ewudy —/Wl/dy
167w C C I

y=(0,5) €C=S'xR, v(y) = & (coshs)~2
[Moser (1971)], [Onofri (1982)]
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The Moser-Trudinger-Onofri inequality

The inequality seen as a limit case of the
Gagliardo-Nirenberg inequalities

[JD] Assume that u € D(R?) is such that [, udp =0 and let

= E; (Hi)» FoX) = (L +|xP)771 VxeR’

Then we have

IV l1y ke Il iy s Joa 197 o

| fo || L20 ()  Jweetdu

1< lim Cpo
p— 00
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The Moser-Trudinger-Onofri inequality

Rigidity method in the symmetric case

Under an appropriate normalization, a critical point of

1 ' /2 A ' 1 ' f
GA[f]::g 1|f|1/dz—|—§ 1fdzzlog 5 1e dz

solves the Euler-Lagrange equation

—%Ef-ﬁ-)\:ef

For any X € (0,1), the EL equation has a unique smooth solution
f=log\. If \=1, f has to satisfy the differential equation f" = % |f'|?
and is either a constant or

f(z) =G —2log(C — 2)

E ! 2|f//_; f/22 ~f/2 ,d 1-x 1 FlRef2 dz — 0
3 ly 2|||e 1/z—|——4 _11/||e vdz =
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The Moser-Trudinger-Onofri inequality

Rigidity method in the symmetric case: proof

Multiply by £(e~f/2) and integrate by parts
1
0= / (-icf+x—e) L(e?) vdz
-1

1 /! 1
:Z/ 1/2|f//|2e—f/2 de_g/ l/2|f/|2 f,,e_f/zydz

1t 1 [t
+—/ 1/|f’|2e_f/21/dz——/ v|f'1?ef? vdz
2 -1 2 1

Multiply by % |f’|? e~ /2 and integrate by parts
1
0= /1 (=3cf+x—¢) (g |£']? e—f/2) vdz
1t 1t
= —/ I e 2y dz — —/ I 1Y e 2 vdz
8 /.4 16 /_;

A 1t
—|——/ 1/|f'|2e*f/21/dz——/ v|f'1?ef? vdz
2 1 2 1
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The Moser-Trudinger-Onofri inequality

A nonlinear flow method in the general case

On S? let us consider the nonlinear evolution equation

o7 =Be (e =3 [VIPe "

where Ag denotes the Laplace-Beltrami operator. Let us define
1 1 1

R)\[f] = _/ |Lgof — _MSZf||2 e f/2 do+ = (1_>\)/ |Vf|2 e 2 4o
2 §? 2 2 2

where

Leof := Hessg: £ — %Angld and Mgf = Vf® Vf— % |VF?1d

Assume that f is a solution to with initial datum v — log ( [, € do),
where v € L1(S?) is such that Vv € L*(S?). Then for any X € (0,1] we
have

Ga[v] > /oo RA[F(£, )] dt
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The sphere
Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

The Moser-Trudinger-Onofri

inequality on Riemannian manifolds

Joint work with G. Jankowiak and M.J. Esteban
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The Moser-Trudinger-Onofri inequality

We shall also denote by 2R the Ricci tensor, by Hgu the Hessian of u

and by
g
d

the trace free Hessian. Let us denote by M, u the trace free tensor

Leu:=Hgu— = Agu
Myu:=Vu® Vu— % |V ul?
We define
/ [ Lgu— 3 Myu ]2 + (Y, V)| e/ d vy
m

Ay = inf
ueH2(MM)\ {0} / Vul2 e/ dv,
m
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The Moser-Trudinger-Onofri inequality

Assume that d = 2 and A\, > 0. If u is a smooth solution to

1
—EAgu—i—)\:e”

then u is a constant function if A € (0, A)

The Moser-Trudinger-Onofri inequality on 90

1
Z||W|\i2(m)+A/ udvg>)\|og</ e”dvg) Yu e HY(9M)
m m

for some constant A > 0. Let us denote by A; the first positive
eigenvalue of — A,

If d = 2, then the MTO inequality holds with A = A := min{4 7, A\, }.
Moreover, if A is strictly smaller than \1/2, then the optimal constant
in the MTO inequality is strictly larger than N\
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The Moser-Trudinger-Onofri inequality

The flow

of

pri Dg(e™f?) = 3|V e /2

Galf] ;:/ ||Lgf—%Mgf||2e_f/2dvg+/ R(VF,VF)e 72 dy,
m m
—/\/ |VF2e 2dy,
m

Then for any A < A\, we have

%]ﬁ[f(t, )l = /sm (=3 Agf + ) (Ag(e*f/2) ik eff/z) dv,
== GAlf(t,)]

Since F) is nonnegative and lim;_.o, F[f(t,-)] = 0, we obtain that

Falu] > /Ooo Ga[f(t,-)] dt
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The Moser-Trudinger-Onofri inequality

Weighted Moser-Trudinger-Onofri inequalities on the
two-dimensional Euclidean space

On the Euclidean space R?, given a general probability measure s
does the inequality

1
Tox |Vul? dx > A {Iog </ e du) —/ udu]
T JRr2 R2 R2

hold for some A > 0 7 Let

Assume that p is a radially symmetric function. Then any radially
symmetric solution to the EL equation is a constant if A < A, and the
inequality holds with A = N, if equality is achieved among radial functions
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The sphere
Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Sobolev and
Hardy-Littlewood-Sobolev

inequalities: duality, flows

Joint work with G. Jankowiak
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The Moser-Trudinger-Onofri inequality
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Preliminary observations
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Legendre duality: Onofri and log HLS

Legendre’s duality: F*[v] := sup (fRd uvdx — F[U])

1 oo oo
Fi[u] := log / e'du |, Flu] == — |Vul? rd=1 dr+/ up r?=tdr
R2 167 0 0

Onofri’s inequality amounts to Fi[u] < Fo[u] with du(x) := p(x) dx,
Hx) = sy

Proposition

For any v € L1 (R?) with [;* v r?~t dr =1, such that v logv and
(1 + log |x|?) v € LY(R?), we have
Fiivl- Flvl =

Jo~ v log (ﬁ) rd=tdr — 4w [ (v —p) (—A) (v —p) rftdr >0

[E. Carlen, M. Loss] [W. Beckner] [V. Calvez, L. Corrias]
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

A puzzling result of E. Carlen, J.A. Carrillo and M. Loss

[E. Carlen, J.A. Carrillo and M. Loss| The fast diffusion equation

@:Av’" t>0, xeR
ot

with exponent m = d/(d + 2), when d > 3, is such that

Hy[v] = /R V(=) v = Solv 4y

obeys to

1 _
= —Hyq[v(t,")] = 33 [/Rd v(=A)"tv dx — Sy ||v||id%(sd)

— d—1
TR Sa |lul T i) 1V ullaoy = 03 ee

T (d-1y?
with u = v(@=1/(d+2) and g = %. If ‘Z(S‘:)i) Sq = (Cq, d)?9, the r.h.s.
is nonnegative. Optimality is achieved simultaneously in both
functionals (Barenblatt regime): the Hardy-Littlewood-Sobolev
inequalities can be improved by an integral remainder term
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

. and the two-dimensional case

Recall that (—A)~tv = Gy x v with
0 Gy(x) = 75 S HxP9ifd >3
0 Gy(x) = 5L log|x|if d =2

Same computation in dimension d = 2 with m = 1/2 gives

d 4 e o
Vi) d [ T / v(=A)"tv Tt dr - / vilogv rd=tdr
8  dt ||vllLre) Jo 0

= llulltag) IV ullEaeey = 7 V152

The r.h.s. is one of the Gagliardo-Nirenberg inequalities (d = 2,
qg=3): 7(C3,2)° =1

The L.h.s. is bounded from below by the logarithmic
Hardy-Littlewood-Sobolev inequality and achieves its minimum if
v = p with

o 1 2
p(x) = T X VxeR
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev’s inequality in R?, d > 3,
||U||i2*(§d) <S4 ||V“||iZ(Sd) vV u e DY (RY) (1)

and the Hardy-Littlewood-Sobolev inequality

2 AVl 2d d
sd||v||L%(Sd)zédv( A lvde VveL#®RY) ()

are dual of each other. Here S, is the Aubin-Talenti constant and
2* = d2__dz- Can we recover this using a nonlinear flow approach 7 Can
we improve it 7

Keller-Segel model: another motivation [J.A. Carrillo, E. Carlen and
M. Loss| and [A. Blanchet, E. Carlen and J.A. Carrillo]
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The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Using the Yamabe / Ricci flow

J. Dolbeault
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

%:Av’" t>0, xeR (3)
If we define H(t) := Hqy[v(t, )], with

Hq[v] == /R v(=A)"tv dx — Sy Hvlli%(gd)

then we observe that

2
1 d -
—H = —/ v dx + Sy </ v dx> VAV vAVE £ N
2 Rd Rd Rd

d—2

where v = v(t,-) is a solution of (3). With the choice m = 75,

find that m+1 = 2%

we
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

A first statement Q

[JD] Assume that d > 3 and m = d—2 If v is a solution of (3) with

d
nonnegative initial datum in 1L.24/(4+2)(R9), then

/Rd v (~B) v dx— SqlvI? 54 (Sd)]
2

d
= ([ vm o) [SalVullre — el ] 2 0

The HLS inequality amounts to H < 0 and appears as a consequence
of Sobolev, that is H" > 0 if we show that limsup,.oH(t) =0
Notice that 4 = v™ is an optimal function for (1) if v is optimal for (2)
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Improved Sobolev inequality Q

By integrating along the flow defined by (3), we can actually obtain
optimal integral remainder terms which improve on the usual Sobolev
inequality (1), but only when d > 5 for integrability reasons

Theorem

[JD] Assume that d > 5 and let q = 9%2. There exists a positive
constant C < (14 2) (1 — e~9/2) Sy such that

q _ q(_ANY"1,9
Sy ||w |\L5d2(sd) /Rd w9 (—A) w9 dx
< CIWE2 ey [IVWIB ey = S W o

for any w € D?(RY)
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Solutions with separation of variables

Consider the solution of % = Av"™ vanishing at t = T:

d+2

vr(t,x)=c(T —t)* (F(x))7>
where F is the Aubin-Talenti solution of
—AF =d(d —2) Fld+2)/(d-2)
Let ||v]|« := supyepa(1 + |x]?)92 |v(x)|

Lemma

[M. del Pino, M. Saez], [J. L. Vazquez, J. R. Esteban, A. Rodriguez]
For any solution v with initial datum vy € 124/(d+2)(R9), vy > 0, there
exists T >0, A > 0 and xp € RY such that

Jim (T —6)7%5 ||v(t,)/v(t,) ~ 1]l = 0

with V(t,x) = X922 71 (t, (x — x0)/\)

4
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Improved inequality: proof (1/2)

The function J(t) := [gq v(t,x)™" dx satisfies

+1
J/ = —(m—|— 1) ||VVm||i2(Sd) S m 17%

If d > 5, then we also have

J”:2m(m—|—1)/

Notice that

J m+1
J

<

J. Dolbeault

Rd

2 2d T d
4 < — ith x T = — — m+1 < =
s, J7d < —k with & 125, (/}Rdv0 dx) <3

Ry

v (AVT)? dx >0

aln
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Improved inequality: proof (2/2)

By the Cauchy-Schwarz inequality, we have

2 \ 2
— - (m-1)/2 y(m+1)/2
CESCA Vv [T = </Rd vim Av™ . im dx>

< / Vil (Av"’)2 dx/ vl dx = CstJ" )
R R

so that Qt) = [ VY™ (8,2 (e v (816) )~/ is

monotone decreasing, and

/ /
H =2J(S4Q—1), H”:J—H’+2JSdQ’§JjH’§O

J
, 2d 1 . —2/d
HNS—H/H/ with H—d—_’_25—d</RdV0+ldX)
By writing that —H(0) = H(T) — H(0) < H'(0) (1 — e™*T)/k and
using the estimate k T < d/2, the proof is completed 0
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

d = 2: Onofri’s and log HLS inequalities Q

Ho[v] := /OOO (v—p)(=A)Hv—p)rit dr—% /oo v log <5> r?=1dr

0
With zi(x) := 2 (14 [x|?)72. Assume that v is a positive solution of
ov

E:Alog(v/,u) t>0, xcR?

Proposition

If v = pe“? is a solution with nonnegative initial datum v in L'(R?)
such that [ vo rf=tdr =1, vp log vo € L*(R?) and vy log pu € L!(R?),
then

d 1 u
H )= — Vul? r9-1 _/ 5§ 1
= 2[v(t, )] 167r/0 |Vul®> r‘=tdr - (e Judp

> 157 Jo  IVulP r¥7dr + [ udp — log ([ € dpu) >0
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Improved Sobolev inequality by duality Q

[JD, G. Jankowiak] Assume that d > 3 and let g = $3. There exists a
positive constant C < 1 such that

q|2 _ a(_AY1l,9
Sy ||W HLdZdZ(Sd) Adw ( A) w dx

< €S |WE2 oy [IVWIEey = Sa Wl s |

for any w € D?(RY)
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Proof: the completion of a square

Integrations by parts show that

/Rd IV(=A)tv|? dx = /R v(=A)"tvdx

and, if v = u? with g = %,

VU-V(—A)_lvdx:/ uv dx:/ u? dx
R R R

Hence the expansion of the square

o< |
Rd

_8
0 < S |l g0y [Sa IVl a(e0) = 1122 o]

— [Sa w7 5 —/ w9 (~2)7 o ]
Rd

L2 (s¢)

2

4
Sd4 ||u||£2_f(sd) Vu—V(-A)"tv| dx

shows that
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The equality case

Equality is achieved if and only if
a4
Sallul 7270y 0 = (~8) v = (~A) " uS
that is, if and only if u solves

—Au= ||u||L2*(Sd) u?

which means that v is an Aubin-Talenti extremal function

u(x) =1+ xP)"7 V¥xeR?
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An identity

0= Sa 10115 g [0 IV 0By — 0l )]
q _ a(_AY"1,9
S LGP BRIV

_/Rd

2

Sd ||u||§(sd) Vu—V(=A)"tu9| dx
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Another improvement

Jalv] ::/ v#s dx  and Hal[v] ::/ v(=A)"tv dx— Sd||v|| 29
]Rd ]Rd (Sd)

Theorem

Assume that d > 3. Then we have

2 2_
0 < Hg[v] + Sq Ja[v]'H 7 (Jd[V]d ' [Sd IVullEzge) — llullfar S")D
Vue DY(RY), v =uis

where o(x) :=/C?+2Cx —C for any x > 0

Proof: H(t) = —=Y(J(t)) YVt € [0, T), ko := T—(‘:’ and consider the
differential inequality

Y (CSysti+Y) € 200082518 Y(0)= 0 Y(Jo) = — Ho
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but C = 1 is not optimal

Theorem

[JD, G. Jankowiak] In the inequality

q||2 _ q(_AY1l,9
Sa 1712 g4, = [, (=) w7 o

8
< €S IWIEZ 0y [I VW1 (e — Sa 1wl 50
we have

d
— < C 1
d1a =<

based on a (painful) linearization like the one used by Bianchi and
Egnell

@ Extensions: magnetic Laplacian [JD, Esteban, Laptev| or fractional
Laplacian operator [Jankowiak, Nguyen]
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Improved Onofri inequality

Assume that d = 2. The inequality

8 _an A=l
/Rzglog<M)dx M/Rzg( A) " gdx+ M(1+ log )
1 2
S M |:1671’ ||Vf||L2(Sd) +/]R2 fd/J— |OgM:|

holds for any function f € D(R?) such that M = [, e" du and
g=mnep

Recall that 1

=— R?
M) = e T

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequa



The sphere

Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

A summary

J. Dolbeault




Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Q@ the sphere: the flow tells us what to do, and provides a simple
proof (choice of the exponents / of the nonlinearity) once the problem
is reduced to the ultraspherical setting

Q@ the spectral point of view on the inequality: how to measure the
deviation with respect to the semi-classical estimates, a nice example
of bifurcation (and symmetry breaking)

Q@ Riemannian manifolds: no sign is required on the Ricci tensor and
an improved integral criterion is established. We extend the theory
from pointwise criteria to a non-local Schrédinger type estimate
(Rayleigh quotient). The flow explores the energy landscape... and
generically shows the non-optimality of the improved criterion

Q@ the flow is a nice way of exploring an energy space. Rigidity result
tell you that a local result is actually global because otherwise the
flow would relate (far away) extremal points while keeping the energy
minimal
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These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/
> Lectures
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Thank you for your attention !

J. Dolbeault
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