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Scope (1/3): rigidity results

Rigidity results for semilinear elliptic PDEs on manifolds...

Let (M, g) be a smooth compact Riemannian manifold
of dimension d ≥ 2, no boundary, ∆g is the Laplace-Beltrami operator
the Ricci tensor R has good properties (which ones ?)

Let p ∈ (2, 2∗), with 2∗ = 2 d
d−2 if d ≥ 3, 2∗ = ∞ if d = 2

For which values of λ > 0 the equation

−∆gv + λ v = vp−1

has a unique positive solution v ∈ C 2(M): v ≡ λ
1

p−2 ?

A typical rigidity result is: there exists λ0 > 0 such that

v ≡ λ
2

p−2 if λ ∈ (0, λ0]
Assumptions ?
Optimal λ0 ?

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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Scope (2/3): interpolation inequalities

Still on a smooth compact Riemannian manifold (M, g)
we assume that volg (M) = 1

For any p ∈ (1, 2) ∪ (2, 2∗) or p = 2∗ if d ≥ 3, consider the
interpolation inequality

‖∇v‖2
L2(M) ≥

λ

p − 2

[

‖v‖2
Lp(M) − ‖v‖2

L2(M)

]

∀ v ∈ H1(M)

What is the largest possible value of λ ?

using u = 1 + ε ϕ as a test function proves that λ ≤ λ1

the minimum of v 7→ ‖∇v‖2
L2(M) − λ

p−2

[

‖v‖2
Lp(M) − ‖v‖2

L2(M)

]

under the constraint ‖v‖Lp(M) = 1 is negative if λ is above the rigidity
threshold

the threshold case p = 2 is the logarithmic Sobolev inequality

‖∇u‖2
L2(M) ≥ λ

∫

M

u2 log

(

u2

‖u‖2
L2(M)

)

dvg ∀ u ∈ H1(M)
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Scope (3/3): flows

We shall consider a flow of porous media / fast diffusion type

ut = u2−2 β

(

∆gu + κ
|∇u|2

u

)

, κ = 1 + β (p − 2)

If v = uβ , then d
dt
‖v‖Lp(M) = 0 and the functional

F [u] :=

∫

M

|∇(uβ)|2 d vg +
λ

p − 2

[

∫

M

u2 β d vg −
(
∫

M

uβ p d vg

)2/p
]

is monotone decaying as long as λ is not too big. Hence, if the limit
as t → ∞ is 0 (convergence to the constants), we know that F [u] ≥ 0

Structure ? Link with computations in the rigidity approach

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities



The sphere
Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Some references (1/2)

Some references (incomplete) and goals

1 rigidity results and elliptic PDEs: [Gidas-Spruck 1981],
[Bidaut-Véron & Véron 1991], [Licois & Véron 1995]
−→ systematize and clarify the strategy

2 semi-group approach and Γ2 or carré du champ method:
[Bakry-Emery 1985], [Bakry & Ledoux 1996], [Bentaleb et al.,
1993-2010], [Fontenas 1997], [Brouttelande 2003], [Demange, 2005
& 2008]
−→ emphasize the role of the flow, get various improvements
−→ get rid of pointwise constraints on the curvature, discuss
optimality

3 harmonic analysis, duality and spectral theory: [Lieb 1983],
[Beckner 1993]
−→ apply results to get new spectral estimates

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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Outline

1 The case of the sphere

Inequalities on the sphere
Flows on the sphere
Spectral consequences
Improved inequalities

2 The case of Riemannian manifolds

Flows
Spectral consequences

3 Inequalities on the line

Variational approaches
Mass transportation
Flows

4 The Moser-Trudinger-Onofri inequality

Joint work with:

M.J. Esteban, G. Jankowiak, M. Kowalczyk, A. Laptev and M. Loss
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The sphere

The case of the sphere as a simple example

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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Inequalities on the sphere
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A family of interpolation inequalities on the sphere

The following interpolation inequality holds on the sphere:

p − 2

d

∫

Sd

|∇u|2 d vg+

∫

Sd

|u|2 d vg ≥
(
∫

Sd

|u|p d vg

)2/p

∀ u ∈ H1(Sd , dvg )

for any p ∈ (2, 2∗] with 2∗ = 2 d
d−2 if d ≥ 3

for any p ∈ (2,∞) if d = 2

Here dvg is the uniform probability measure: vg (Sd ) = 1

1 is the optimal constant, equality achieved by constants
p = 2∗ corresponds to Sobolev’s inequality...

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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Stereographic projection
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Sobolev inequality

The stereographic projection of Sd ⊂ Rd × R ∋ (ρ φ, z) onto Rd :
to ρ2 + z2 = 1, z ∈ [−1, 1], ρ ≥ 0, φ ∈ Sd−1 we associate x ∈ Rd such
that r = |x |, φ = x

|x|

z =
r2 − 1

r2 + 1
= 1 − 2

r2 + 1
, ρ =

2 r

r2 + 1

and transform any function u on Sd into a function v on Rd using

u(y) =
(

r
ρ

)
d−2

2 v(x) =
(

r2+1
2

)
d−2

2 v(x) = (1 − z)−
d−2

2 v(x)

p = 2∗, Sd = 1
4 d (d − 2) |Sd |2/d : Euclidean Sobolev inequality

∫

Rd

|∇v |2 dx ≥ Sd

[
∫

Rd

|v | 2 d
d−2 dx

]

d−2
d

∀ v ∈ D1,2(Rd )

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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Extended inequality

∫

Sd

|∇u|2 d vg ≥ d

p − 2

[

(
∫

Sd

|u|p d vg

)2/p

−
∫

Sd

|u|2 d vg

]

∀ u ∈ H1(Sd , dµ)

is valid
for any p ∈ (1, 2) ∪ (2,∞) if d = 1, 2
for any p ∈ (1, 2) ∪ (2, 2∗] if d ≥ 3

Case p = 2: Logarithmic Sobolev inequality
∫

Sd

|∇u|2 d vg ≥ d

2

∫

Sd

|u|2 log

( |u|2
∫

Sd |u|2 d vg

)

d vg ∀ u ∈ H1(Sd , dµ)

Case p = 1: Poincaré inequality

∫

Sd

|∇u|2 d vg ≥ d

∫

Sd

|u − ū|2 d vg with ū :=

∫

Sd

u d vg ∀ u ∈ H1(Sd , dµ)

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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A spectral approach when p ∈ (1, 2) – 1st step

[Dolbeault-Esteban-Kowalczyk-Loss] adapted from [Beckner] (case of
Gaussian measures).

Nelson’s hypercontractivity result. Consider the heat equation

∂f

∂t
= ∆g f

with initial datum f (t = 0, ·) = u ∈ L2/p(Sd ), for some p ∈ (1, 2], and
let F (t) := ‖f (t, ·)‖Lp(t)(Sd ). The key computation goes as follows.

F ′

F
=

p′

p2 F p

[
∫

Sd

v2 log

(

v2

∫

Sd v2 d vg

)

d vg + 4
p − 1

p′

∫

Sd

|∇v |2 d vg

]

with v := |f |p(t)/2. With 4 p−1
p′

= 2
d

and t∗ > 0 e such that p(t∗) = 2,
we have

‖f (t∗, ·)‖L2(Sd ) ≤ ‖u‖L2/p(Sd ) if
1

p − 1
= e2 d t∗

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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A spectral approach when p ∈ (1, 2) – 2nd step

Spectral decomposition. Let u =
∑

k∈N
uk be a spherical harmonics

decomposition, λk = k (d + k − 1), ak = ‖uk‖2
L2(Sd ) so that

‖u‖2
L2(Sd ) =

∑

k∈N
ak and ‖∇u‖2

L2(Sd ) =
∑

k∈N
λk ak

‖f (t∗, ·)‖2
L2(Sd ) =

∑

k∈N

ak e−2 λk t∗

‖u‖2
L2(Sd ) − ‖u‖2

Lp(Sd )

2 − p
≤

‖u‖2
L2(Sd ) − ‖f (t∗, ·)‖2

L2(Sd )

2 − p

=
1

2 − p

∑

k∈N∗

λk ak

1 − e−2 λk t∗

λk

≤ 1 − e−2 λ1 t∗

(2 − p)λ1

∑

k∈N∗

λk ak =
1 − e−2 λ1 t∗

(2 − p)λ1
‖∇u‖2

L2(Sd )

The conclusion easily follows if we notice that λ1 = d , and

e−2 λ1 t∗ = p − 1 so that 1−e−2 λ1 t∗

(2−p) λ1
= 1

d

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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Optimality: a perturbation argument

The optimality of the constant can be checked by a Taylor
expansion of u = 1 + ε v at order two in terms of ε > 0, small

For any p ∈ (1, 2∗] if d ≥ 3, any p > 1 if d = 1 or 2, it is
remarkable that

Q[u] :=
(p − 2) ‖∇u‖2

L2(Sd )

‖u‖2
Lp(Sd )

− ‖u‖2
L2(Sd )

≥ inf
u∈H1(Sd ,dµ)

Q[u] =
1

d

is achieved by Q[1 + ε v ] as ε → 0 and v is an eigenfunction associated
with the first nonzero eigenvalue of ∆g

p > 2 no simple proof based on spectral analysis: [Beckner], an
approach based on Lieb’s duality, the Funk-Hecke formula and some
(non-trivial) computations

elliptic methods / Γ2 formalism of Bakry-Emery / flow... they are
the same (main contribution) and can be simplified (!) As a side
result, you can go beyond these approaches and discuss optimality

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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Schwarz symmetry and the ultraspherical setting

(ξ0, ξ1, . . . ξd) ∈ Sd , ξd = z,
∑d

i=0 |ξi |2 = 1 [Smets-Willem]

Lemma

Up to a rotation, any minimizer of Q depends only on ξd = z

• Let dσ(θ) := (sin θ)d−1

Zd
dθ, Zd :=

√
π

Γ(
d
2 )

Γ(
d+1

2 )
: ∀ v ∈ H1([0, π], dσ)

p − 2

d

∫ π

0

|v ′(θ)|2 dσ +

∫ π

0

|v(θ)|2 dσ ≥
(
∫ π

0

|v(θ)|p dσ

)
2
p

• Change of variables z = cos θ, v(θ) = f (z)

p − 2

d

∫ 1

−1

|f ′|2 ν dνd +

∫ 1

−1

|f |2 dνd ≥
(
∫ 1

−1

|f |p dνd

)

2
p

where νd (z) dz = dνd(z) := Z−1
d ν

d
2 −1 dz, ν(z) := 1 − z2

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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The ultraspherical operator

With dνd = Z−1
d ν

d
2 −1 dz, ν(z) := 1 − z2, consider the space

L2((−1, 1), dνd) with scalar product

〈f1, f2〉 =

∫ 1

−1

f1 f2 dνd , ‖f ‖p =

(
∫ 1

−1

f p dνd

)

1
p

The self-adjoint ultraspherical operator is

L f := (1 − z2) f ′′ − d z f ′ = ν f ′′ +
d

2
ν′ f ′

which satisfies 〈f1,L f2〉 = −
∫ 1

−1 f ′1 f ′
2 ν dνd

Proposition

Let p ∈ [1, 2) ∪ (2, 2∗], d ≥ 1

−〈f ,L f 〉 =

∫ 1

−1

|f ′|2 ν dνd ≥ d
‖f ‖2

p − ‖f ‖2
2

p − 2
∀ f ∈ H1([−1, 1], dνd)

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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Flows on the sphere

Heat flow and the Bakry-Emery method

Fast diffusion (porous media) flow and the choice of the exponents

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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Heat flow and the Bakry-Emery method

With g = f p , i.e. f = gα with α = 1/p

(Ineq.) −〈f ,L f 〉 = −〈gα,L gα〉 =: I[g ] ≥ d
‖g‖2 α

1 − ‖g 2 α‖1

p − 2
=: F [g ]

Heat flow
∂g

∂t
= L g

d

dt
‖g‖1 = 0 ,

d

dt
‖g 2 α‖1 = − 2 (p−2) 〈f ,L f 〉 = 2 (p−2)

∫ 1

−1

|f ′|2 ν dνd

which finally gives

d

dt
F [g(t, ·)] = − d

p − 2

d

dt
‖g 2 α‖1 = − 2 d I[g(t, ·)]

Ineq. ⇐⇒ d

dt
F [g(t, ·)] ≤ − 2 d F [g(t, ·)] ⇐=

d

dt
I[g(t, ·)] ≤ − 2 d I[g(t, ·)]

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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The equation for g = f p can be rewritten in terms of f as

∂f

∂t
= L f + (p − 1)

|f ′|2
f

ν

−1

2

d

dt

∫ 1

−1

|f ′|2 ν dνd =
1

2

d

dt
〈f ,L f 〉 = 〈L f ,L f 〉+(p−1) 〈 |f

′|2
f

ν,L f 〉

d

dt
I[g(t, ·)] + 2 d I[g(t, ·)] =

d

dt

∫ 1

−1

|f ′|2 ν dνd + 2 d

∫ 1

−1

|f ′|2 ν dνd

= − 2

∫ 1

−1

(

|f ′′|2 + (p − 1)
d

d + 2

|f ′|4
f 2

− 2 (p − 1)
d − 1

d + 2

|f ′|2 f ′′

f

)

ν2 dνd

is nonpositive if

|f ′′|2 + (p − 1)
d

d + 2

|f ′|4
f 2

− 2 (p − 1)
d − 1

d + 2

|f ′|2 f ′′

f

is pointwise nonnegative, which is granted if
[

(p − 1)
d − 1

d + 2

]2

≤ (p − 1)
d

d + 2
⇐⇒ p ≤ 2 d2 + 1

(d − 1)2
<

2 d

d − 2
= 2∗

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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... up to the critical exponent: a proof on two slides

[

d

dz
,L
]

u = (L u)
′ − L u′ = −2 z u′′ − d u′

∫ 1

−1

(L u)2 dνd =

∫ 1

−1

|u′′|2 ν2 dνd + d

∫ 1

−1

|u′|2 ν dνd

∫ 1

−1

(L u)
|u′|2
u

ν dνd =
d

d + 2

∫ 1

−1

|u′|4
u2

ν2 dνd − 2
d − 1

d + 2

∫ 1

−1

|u′|2 u′′

u
ν2 dνd

On (−1, 1), let us consider the porous medium (fast diffusion) flow

ut = u2−2β

(

L u + κ
|u′|2
u

ν

)

If κ = β (p − 2) + 1, the Lp norm is conserved

d

dt

∫ 1

−1

uβp dνd = β p (κ − β (p − 2) − 1)

∫ 1

−1

uβ(p−2) |u′|2 ν dνd = 0

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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f = uβ , ‖f ′‖2
L2(Sd ) + d

p−2

(

‖f ‖2
L2(Sd ) − ‖f ‖2

Lp(Sd )

)

≥ 0 ?

A := − 1

2 β2

d

dt

∫ 1

−1

(

|(uβ)′|2 ν +
d

p − 2

(

u2β − u2β
)

)

dνd

=

∫ 1

−1

(

L u + (β − 1)
|u′|2
u

ν

)(

L u + κ
|u′|2
u

ν

)

dνd

+
d

p − 2

κ − 1

β

∫ 1

−1

|u′|2 ν dνd

=

∫ 1

−1

|u′′|2 ν2 dνd − 2
d − 1

d + 2
(κ + β − 1)

∫ 1

−1

u′′ |u′|2
u

ν2 dνd

+

[

κ (β − 1) +
d

d + 2
(κ + β − 1)

]
∫ 1

−1

|u′|4
u2

ν2 dνd

=

∫ 1

−1

∣

∣

∣

∣

u′′ − p + 2

6 − p

|u′|2
u

∣

∣

∣

∣

2

ν2 dνd ≥ 0 if p = 2∗ and β =
4

6 − p

A is nonnegative for some β if
8 d2

(d + 2)2
(p − 1) (2∗ − p) ≥ 0

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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the rigidity point of view

Which computation have we done ? ut = u2−2β
(

L u + κ |u′|2
u

ν
)

−L u − (β − 1)
|u′|2
u

ν +
λ

p − 2
u =

λ

p − 2
uκ

Multiply by L u and integrate

...

∫ 1

−1

L u uκ dνd = − κ

∫ 1

−1

uκ |u′|2
u

dνd

Multiply by κ |u′|2
u

and integrate

... = + κ

∫ 1

−1

uκ |u′|2
u

dνd

The two terms cancel and we are left only with the two-homogenous
terms

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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Spectral consequences

A quantitative deviation with respect to the semi-classical regime

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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Some references (2/2)

Consider the Schrödinger operator H = −∆ − V on Rd and denote by
(λk )k≥1 its eigenvalues

Euclidean case [Keller, 1961]

|λ1|γ ≤ L1
γ,d

∫

Rd

V
γ+ d

2
+

[Lieb-Thirring, 1976]

∑

k≥1

|λk |γ ≤ Lγ,d

∫

Rd

V
γ+ d

2
+

γ ≥ 1/2 if d = 1, γ > 0 if d = 2 and γ ≥ 0 if d ≥ 3 [Weidl], [Cwikel],
[Rosenbljum], [Aizenman], [Laptev-Weidl], [Helffer], [Robert],
[Dolbeault-Felmer-Loss-Paturel]... [Dolbeault-Laptev-Loss 2008]

Compact manifolds: log Sobolev case: [Federbusch], [Rothaus];
case γ = 0 (Rozenbljum-Lieb-Cwikel inequality): [Levin-Solomyak];
[Lieb], [Levin], [Ouabaz-Poupaud]... [Ilyin]

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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An interpolation inequality (I)

Lemma (Dolbeault-Esteban-Laptev)

Let q ∈ (2, 2∗). Then there exists a concave increasing function
µ : R+ → R+ with the following properties

µ(α) = α ∀α ∈
[

0, d
q−2

]

and µ(α) < α ∀α ∈
(

d
q−2 , +∞

)

µ(α) = µasymp(α) (1+o(1)) as α → +∞ , µasymp(α) :=
Kq,d

κq,d
α1−ϑ

such that

‖∇u‖2
L2(Sd ) + α ‖u‖2

L2(Sd ) ≥ µ(α) ‖u‖2
Lq(Sd ) ∀ u ∈ H1(Sd )

If d ≥ 3 and q = 2∗, the inequality holds with µ(α) = min {α, α∗},
α∗ := 1

4 d (d − 2)

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities
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µasymp(α) :=
Kq,d

κq,d
α1−ϑ, ϑ := d q−2

2 q
corresponds to the

semi-classical regime and Kq,d is the optimal constant in the
Euclidean Gagliardo-Nirenberg-Sobolev inequality

Kq,d ‖v‖2
Lq(Rd ) ≤ ‖∇v‖2

L2(Rd ) + ‖v‖2
L2(Rd ) ∀ v ∈ H1(Rd )

Let ϕ be a non-trivial eigenfunction of the Laplace-Beltrami
operator corresponding the first nonzero eigenvalue

−∆ϕ = d ϕ

Consider u = 1 + ε ϕ as ε → 0 Taylor expand Qα around u = 1

µ(α) ≤ Qα[1 + ε ϕ] = α +
[

d + α (2 − q)
]

ε2

∫

Sd

|ϕ|2 d vg + o(ε2)

By taking ε small enough, we get µ(α) < α for all α > d/(q − 2)
Optimizing on the value of ε > 0 (not necessarily small) provides an
interesting test function...
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J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities



The sphere
Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Consider the Schrödinger operator −∆ − V and the energy

E[u] :=

∫

Sd

|∇u|2 −
∫

Sd

V |u|2

≥
∫

Sd

|∇u|2 − µ ‖u‖2
Lq(Sd ) ≥ −α(µ) ‖u‖2

L2(Sd ) if µ = ‖V+‖Lp(Sd )

Theorem (Dolbeault-Esteban-Laptev)

Let d ≥ 1, p ∈
(

max{1, d/2}, +∞
)

. Then there exists a convex

increasing function α s.t. α(µ) = µ if µ ∈
[

0, d
2 (p − 1)

]

and α(µ) > µ if

µ ∈
(

d
2 (p − 1), +∞

)

|λ1(−∆ − V )| ≤ α
(

‖V ‖Lp(Sd )

)

∀V ∈ Lp(Sd )

For large values of µ, we have α(µ)p−
d
2 = L1

p− d
2 ,d

(κq,d µ)p (1 + o(1))

and the above estimate is optimal
If p = d/2 and d ≥ 3, the inequality holds with α(µ) = µ iff µ ∈ [0, α∗]
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A Keller-Lieb-Thirring inequality

Corollary (Dolbeault-Esteban-Laptev)

Let d ≥ 1,γ = p − d/2

|λ1(−∆ − V )|γ . L1
γ,d

∫

Sd

V γ+ d
2 as µ = ‖V ‖

L
γ+ d

2 (Sd )
→ ∞

if either γ > max{0, 1 − d/2} or γ = 1/2 and d = 1

However, if µ = ‖V ‖
L

γ+ d
2 (Sd )

≤ 1
4 d (2 γ + d − 2), then we have

|λ1(−∆ − V )|γ+ d
2 ≤

∫

Sd

V γ+ d
2

for any γ ≥ max{0, 1 − d/2} and this estimate is optimal

L1
γ,d is the optimal constant in the Euclidean one bound state ineq.

|λ1(−∆ − φ)|γ ≤ L1
γ,d

∫

Rd

φ
γ+ d

2
+ dx
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Another interpolation inequality (II)

Let d ≥ 1 and γ > d/2 and assume that L1
−γ,d is the optimal

constant in

λ1(−∆ + φ)−γ ≤ L1
−γ,d

∫

Rd

φ
d
2 −γ dx

q = 2
2 γ − d

2 γ − d + 2
and p =

q

2 − q
= γ − d

2

Theorem (Dolbeault-Esteban-Laptev)

(

λ1(−∆ + W )
)−γ

. L1
−γ,d

∫

Sd

W
d
2 −γ as β = ‖W−1‖−1

L
γ−

d
2 (Sd )

→ ∞

However, if γ ≥ d
2 + 1 and β = ‖W−1‖−1

L
γ−

d
2 (Sd )

≤ 1
4 d (2 γ − d + 2)

(

λ1(−∆ + W )
)

d
2 −γ ≤

∫

Sd

W
d
2 −γ

and this estimate is optimal
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K∗
q,d is the optimal constant in the Gagliardo-Nirenberg-Sobolev

inequality

K∗
q,d ‖v‖2

L2(Rd ) ≤ ‖∇v‖2
L2(Rd ) + ‖v‖2

Lq(Rd ) ∀ v ∈ H1(Rd )

and L 1
−γ,d :=

(

K∗
q,d

)−γ

with q = 2 2 γ−d
2 γ−d+2 , δ := 2 q

2 d−q (d−2)

Lemma (Dolbeault-Esteban-Laptev)

Let q ∈ (0, 2) and d ≥ 1. There exists a concave increasing function ν

ν(β) ≤ β ∀β > 0 and ν(β) < β ∀β ∈
(

d
2−q

, +∞
)

ν(β) = β ∀β ∈
[

0, d
2−q

]

if q ∈ [1, 2)

ν(β) = K∗
q,d (κq,d β)

δ
(1 + o(1)) as β → +∞

such that

‖∇u‖2
L2(Sd ) + β ‖u‖2

Lq(Sd ) ≥ ν(β) ‖u‖2
L2(Sd ) ∀ u ∈ H1(Sd )

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities



The sphere
Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

The threshold case: q = 2

Lemma (Dolbeault-Esteban-Laptev)

Let p > max{1, d/2}. There exists a concave nondecreasing function ξ

ξ(α) = α ∀ α ∈ (0, α0) and ξ(α) < α ∀α > α0

for some α0 ∈
[

d
2 (p − 1), d

2 p
]

, and ξ(α) ∼ α1− d
2 p as α → +∞

such that, for any u ∈ H1(Sd ) with ‖u‖L2(Sd ) = 1

∫

Sd

|u|2 log |u|2 d vg + p log
( ξ(α)

α

)

≤ p log
(

1 + 1
α ‖∇u‖2

L2(Sd )

)

Corollary (Dolbeault-Esteban-Laptev)

e−λ1(−∆−W )/α ≤ α

ξ(α)

(
∫

Sd

e− p W/α d vg

)1/p
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Improvements of the inequalities
(subcritical range)

as long as the exponent is either in the range (1, 2) or in the range
(2, 2∗), on can establish improved inequalities

[Dolbeault-Esteban-Kowalczyk-Loss]
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What does “improvement” mean ?

An improved inequality is

d ‖u‖2
L2(Sd ) Φ

(

e
‖u‖2

L2(Sd )

)

≤ i ∀ u ∈ H1(Sd)

for some function Φ such that Φ(0) = 0, Φ′(0) = 1, Φ′ > 0 and
Φ(s) > s for any s. With Ψ(s) := s − Φ−1(s)

i − d e ≥ d ‖u‖2
L2(Sd ) (Ψ ◦ Φ)

(

e

‖u‖2
L2(Sd )

)

∀ u ∈ H1(Sd )

Lemma (Generalized Csiszár-Kullback inequalities)

‖∇u‖2
L2(Sd ) −

d

p − 2

[

‖u‖2
Lp(Sd ) − ‖u‖2

L2(Sd )

]

≥ d ‖u‖2
L2(Sd ) (Ψ ◦ Φ)

(

C
‖u‖2 (1−r)

Ls (Sd )

‖u‖2

L2 (Sd )

‖ur − ūr‖2
Lq(Sd )

)

∀ u ∈ H1(Sd )

s(p) := max{2, p} and p ∈ (1, 2): q(p) := 2/p, r(p) := p; p ∈ (2, 4):
q = p/2, r = 2; p ≥ 4: q = p/(p − 2), r = p − 2
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Linear flow: improved Bakry-Emery method

Cf. [Arnold, JD]

wt = Lw + κ
|w ′|2
w

ν

With 2♯ := 2 d2+1
(d−1)2

γ1 :=

(

d − 1

d + 2

)2

(p−1) (2# −p) if d > 1 , γ1 :=
p − 1

3
if d = 1

If p ∈ [1, 2) ∪ (2, 2♯] and w is a solution, then

d

dt
(i − d e) ≤ − γ1

∫ 1

−1

|w ′|4
w 2

dνd ≤ − γ1
|e′|2

1 − (p − 2) e

Recalling that e′ = − i, we get a differential inequality

e′′ + d e′ ≥ γ1
|e′|2

1 − (p − 2) e

After integration: d Φ(e(0)) ≤ i(0)
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Nonlinear flow: the Hölder estimate

wt = w 2−2β

(

Lw + κ
|w ′|2
w

)

For all p ∈ [1, 2∗], κ = β (p − 2) + 1, d
dt

∫ 1

−1
wβp dνd = 0

− 1
2β2

d
dt

∫ 1

−1

(

|(wβ)′|2 ν + d
p−2

(

w 2β − w 2β
)

)

dνd ≥ γ
∫ 1

−1
|w ′|4
w2 ν2 dνd

Lemma

For all w ∈ H1
(

(−1, 1), dνd

)

, such that
∫ 1

−1 wβp dνd = 1

∫ 1

−1

|w ′|4
w 2

ν2 dνd ≥ 1

β2

∫ 1

−1 |(wβ)′|2 ν dνd

∫ 1

−1 |w ′|2 ν dνd

(

∫ 1

−1 w 2β dνd

)δ

.... but there are conditions on β
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Admissible (p, β) for d = 1, 2
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Admissible (p, β) for d = 3, 4
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Admissible (p, β) for d = 5, 10
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Riemannian manifolds

no sign is required on the Ricci tensor and an improved integral
criterion is established

the flow explores the energy landscape... and shows the
non-optimality of the improved criterion
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Riemannian manifolds with positive curvature

(M, g) is a smooth compact connected Riemannian manifold
dimension d , no boundary, ∆g is the Laplace-Beltrami operator
vol(M) = 1, R is the Ricci tensor, λ1 = λ1(−∆g )

ρ := inf
M

inf
ξ∈Sd−1

R(ξ , ξ)

Theorem (Licois-Véron, Bakry-Ledoux)

Assume d ≥ 2 and ρ > 0. If

λ ≤ (1 − θ)λ1 + θ
d ρ

d − 1
where θ =

(d − 1)2 (p − 1)

d (d + 2) + p − 1
> 0

then for any p ∈ (2, 2∗), the equation

−∆gv +
λ

p − 2

(

v − vp−1
)

= 0

has a unique positive solution v ∈ C 2(M): v ≡ 1
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Riemannian manifolds: first improvement

Theorem (Dolbeault-Esteban-Loss)

For any p ∈ (1, 2) ∪ (2, 2∗)

0 < λ < λ⋆ = inf
u∈H2 (M)

∫

M

[

(1 − θ) (∆g u)2 +
θ d

d − 1
R(∇u,∇u)

]

d vg

∫

M
|∇u|2 d vg

there is a unique positive solution in C 2(M): u ≡ 1

limp→1+ θ(p) = 0 =⇒ limp→1+ λ⋆(p) = λ1 if ρ is bounded
λ⋆ = λ1 = d ρ/(d − 1) = d if M = Sd since ρ = d − 1

(1 − θ)λ1 + θ
d ρ

d − 1
≤ λ⋆ ≤ λ1
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Riemannian manifolds: second improvement

Hgu denotes Hessian of u and θ =
(d − 1)2 (p − 1)

d (d + 2) + p − 1

Qgu := Hgu − g

d
∆gu − (d − 1) (p − 1)

θ (d + 3 − p)

[∇u ⊗∇u

u
− g

d

|∇u|2
u

]

Λ⋆ := inf
u∈H2(M)\{0}

(1 − θ)

∫

M

(∆gu)2 d vg +
θ d

d − 1

∫

M

[

‖Qgu‖2 + R(∇u,∇u)
]

∫

M

|∇u|2 d vg

Theorem (Dolbeault-Esteban-Loss)

Assume that Λ⋆ > 0. For any p ∈ (1, 2) ∪ (2, 2∗), the equation has a
unique positive solution in C 2(M) if λ ∈ (0, Λ⋆): u ≡ 1
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Optimal interpolation inequality

For any p ∈ (1, 2) ∪ (2, 2∗) or p = 2∗ if d ≥ 3

‖∇v‖2
L2(M) ≥

λ

p − 2

[

‖v‖2
Lp(M) − ‖v‖2

L2(M)

]

∀ v ∈ H1(M)

Theorem (Dolbeault-Esteban-Loss)

Assume Λ⋆ > 0. The above inequality holds for some λ = Λ ∈ [Λ⋆, λ1]
If Λ⋆ < λ1, then the optimal constant Λ is such that

Λ⋆ < Λ ≤ λ1

If p = 1, then Λ = λ1

Using u = 1 + ε ϕ as a test function where ϕ we get λ ≤ λ1

A minimum of

v 7→ ‖∇v‖2
L2(M) − λ

p−2

[

‖v‖2
Lp(M) − ‖v‖2

L2(M)

]

under the constraint ‖v‖Lp(M) = 1 is negative if λ > λ1
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The flow

The key tools the flow

ut = u2−2 β

(

∆gu + κ
|∇u|2

u

)

, κ = 1 + β (p − 2)

If v = uβ , then d
dt
‖v‖Lp(M) = 0 and the functional

F [u] :=

∫

M

|∇(uβ)|2 d vg +
λ

p − 2

[

∫

M

u2 β d vg −
(
∫

M

uβ p d vg

)2/p
]

is monotone decaying

J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on
manifolds with positive curvature, J. Funct. Anal., 254 (2008),
pp. 593–611. Also see C. Villani, Optimal Transport, Old and New
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Elementary observations (1/2)

Let d ≥ 2, u ∈ C 2 (M), and consider the trace free Hessian

Lgu := Hgu − g

d
∆gu

Lemma
∫

M

(∆gu)2 d vg =
d

d − 1

∫

M

‖Lgu ‖2 d vg +
d

d − 1

∫

M

R(∇u,∇u) d vg

Based on the Bochner-Lichnerovicz-Weitzenböck formula

1

2
∆ |∇u|2 = ‖Hgu‖2 + ∇(∆gu) · ∇u + R(∇u,∇u)
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Elementary observations (2/2)

Lemma

∫

M

∆gu
|∇u|2

u
d vg

=
d

d + 2

∫

M

|∇u|4
u2

d vg − 2 d

d + 2

∫

M

[Lgu] :

[∇u ⊗∇u

u

]

d vg

Lemma

∫

M

(∆gu)2 d vg ≥ λ1

∫

M

|∇u|2 d vg ∀ u ∈ H2(M)

and λ1 is the optimal constant in the above inequality
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The key estimates

G[u] :=
∫

M

[

θ (∆gu)2 + (κ + β − 1)∆gu |∇u|2
u

+ κ (β − 1) |∇u|4
u2

]

d vg

Lemma

1

2 β2

d

dt
F [u] = − (1 − θ)

∫

M

(∆gu)2 d vg − G[u] + λ

∫

M

|∇u|2 d vg

Qθ
gu := Lgu − 1

θ
d−1
d+2 (κ + β − 1)

[

∇u⊗∇u
u

− g
d

|∇u|2
u

]

Lemma

G[u] =
θ d

d − 1

[
∫

M

‖Qθ
gu‖2 d vg +

∫

M

R(∇u,∇u) d vg

]

−µ

∫

M

|∇u|4
u2

d vg

with µ :=
1

θ

(d − 1

d + 2

)2
(κ + β − 1)2 − κ (β − 1) − (κ + β − 1)

d

d + 2
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The end of the proof

Assume that d ≥ 2. If θ = 1, then µ is nonpositive if

β−(p) ≤ β ≤ β+(p) ∀ p ∈ (1, 2∗)

where β± := b±
√

b2−a
2 a with a = 2 − p +

[

(d−1) (p−1)
d+2

]2

and b = d+3−p
d+2

Notice that β−(p) < β+(p) if p ∈ (1, 2∗) and β−(2∗) = β+(2∗)

θ =
(d − 1)2 (p − 1)

d (d + 2) + p − 1
and β =

d + 2

d + 3 − p

Proposition

Let d ≥ 2, p ∈ (1, 2) ∪ (2, 2∗) (p 6= 5 or d 6= 2)

1

2 β2

d

dt
F [u] ≤ (λ − Λ⋆)

∫

M

|∇u|2 d vg
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The line

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities



The sphere
Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

One-dimensional Gagliardo-Nirenberg-Sobolev inequalities

‖f ‖Lp(R) ≤ CGN(p) ‖f ′‖θ
L2(R) ‖f ‖1−θ

L2(R) if p ∈ (2,∞)

‖f ‖L2(R) ≤ CGN(p) ‖f ′‖η
L2(R) ‖f ‖

1−η
Lp(R) if p ∈ (1, 2)

with θ = p−2
2 p

and η = 2−p
2+p

The threshold case corresponding to the limit as p → 2 is the
logarithmic Sobolev inequality

∫

R
u2 log

(

u2

‖u‖2
L2(R)

)

dx ≤ 1
2 ‖u‖2

L2(R) log

(

2
π e

‖u′‖2
L2(R)

‖u‖2
L2(R)

)

If p > 2, u⋆(x) = (cosh x)−
2

p−2 solves

− (p − 2)2 u′′ + 4 u − 2 p |u|p−2 u = 0

If p ∈ (1, 2) consider u∗(x) = (cos x)
2

2−p , x ∈ (−π/2, π/2)
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Mass transportation

Theorem (Dolbeault-Esteban-Laptev-Loss)

If p ∈ (2,∞), we have

sup
G

∫

R
G

p+2
3 p−2 dy

(∫

R
G |y |2 dy

)

p−2
3 p−2

(∫

R
G dy

)
4

3 p−2

= cp inf
f

‖f ′‖
2 (p−2)
3 p−2

L2(R) ‖f ‖
2 (p+2)
3 p−2

L2(R)

‖f ‖
4 p

3 p−2

Lp(R)

and if p ∈ (1, 2), we obtain

sup
G

∫

R
G

2
4−p dy

(∫

R
G |y |2 dy

)

2−p
2 (4−p)

(∫

R
G dy

)

p+2
2 (4−p)

= cp inf
f

‖f ′‖
2−p
4−p

L2(R) ‖f ‖
2 p

4−p

Lp(R)

‖f ‖
p+2
4−p

L2(R)

for some explicit numerical constant cp
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Flow

Let us define on H1(R) the functional

F [v ] := ‖v ′‖2
L2(R) +

4

(p − 2)2
‖v‖2

L2(R) − C ‖v‖2
Lp(R) s.t. F [u⋆] = 0

With z(x) := tanh x , consider the flow

vt =
v1− p

2

√
1 − z2

[

v ′′ +
2 p

p − 2
z v ′ +

p

2

|v ′|2
v

+
2

p − 2
v

]

Theorem (Dolbeault-Esteban-Laptev-Loss)

Let p ∈ (2,∞). Then

d

dt
F [v(t)] ≤ 0 and lim

t→∞
F [v(t)] = 0

d
dt
F [v(t)] = 0 ⇐⇒ v0(x) = u⋆(x − x0)

Similar result for p ∈ (1, 2)
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The inequality (p > 2) and the ultraspherical operator

The problem on the line is equivalent to the critical problem for the
ultraspherical operator

∫

R

|v ′|2 dx +
4

(p − 2)2

∫

R

|v |2 dx ≥ C

(
∫

R

|v |p dx

)
2
p

With

z(x) = tanh x , v⋆ = (1 − z2)
1

p−2 and v(x) = v⋆(x) f (z(x))

equality is achieved for f = 1 and, if we let ν(z) := 1 − z2, then

∫ 1

−1

|f ′|2 ν dνd +
2 p

(p − 2)2

∫ 1

−1

|f |2 dνd ≥ 2 p

(p − 2)2

(
∫ 1

−1

|f |p dνd

)

2
p

where dνp denotes the probability measure dνp(z) := 1
ζp

ν
2

p−2 dz

d = 2 p
p−2 ⇐⇒ p = 2 d

d−2

Change of variables = stereographic projection + Emden-Fowler
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The Moser-Trudinger-Onofri
inequality

Joint work with Maria J. Esteban and G. Jankowiak
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Three equivalent forms

⊲ The Euclidean (Moser-Trudinger-)Onofri inequality:

1

16 π

∫

R2

|∇u|2 dx ≥ log

(
∫

R2

eu dµ

)

−
∫

R2

u dµ

dµ = µ(x) dx , µ(x) = 1
π (1 + |x |2)−2, x ∈ R2

⊲ The Onofri inequality on the two-dimensional sphere S2:

1

4

∫

S2

|∇v |2 dσ ≥ log

(
∫

S2

ev dσ

)

−
∫

S2

v dσ

dσ is the uniform probability measure
⊲ The Onofri inequality on the two-dimensional cylinder
C = S1 × R:

1

16 π

∫

C
|∇w |2 dy ≥ log

(
∫

C
ew ν dy

)

−
∫

C
w ν dy

y = (θ, s) ∈ C = S1 × R, ν(y) = 1
4π (cosh s)−2

[Moser (1971)], [Onofri (1982)]
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The inequality seen as a limit case of the

Gagliardo-Nirenberg inequalities

Proposition

[JD] Assume that u ∈ D(R2) is such that
∫

R2 u dµ = 0 and let

fp := Fp

(

1 +
u

2 p

)

, Fp(x) = (1 + |x |2)− 1
p−1 ∀ x ∈ R

2

Then we have

1 ≤ lim
p→∞

Cp,2

‖∇fp‖θ(p)
L2(R2) ‖fp‖

1−θ(p)
Lp+1(R2)

‖fp‖L2p(R2)
=

e
1

16 π

R

R2 |∇u|2 dx

∫

R2 e u dµ
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Rigidity method in the symmetric case

Under an appropriate normalization, a critical point of

Gλ[f ] :=
1

8

∫ 1

−1

|f ′|2 ν dz +
λ

2

∫ 1

−1

f dz ≥ log

(

1

2

∫ 1

−1

e f dz

)

solves the Euler-Lagrange equation

−1

2
Lf + λ = e f

Theorem

For any λ ∈ (0, 1), the EL equation has a unique smooth solution
f = log λ. If λ = 1, f has to satisfy the differential equation f ′′ = 1

2 |f ′|2
and is either a constant or

f (z) = C1 − 2 log(C2 − z)

1

8

∫ 1

−1

ν2
∣

∣f ′′ − 1
2 |f

′|2
∣

∣

2
e−f /2 ν dz +

1 − λ

4

∫ 1

−1

ν |f ′|2 e−f /2 ν dz = 0
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Rigidity method in the symmetric case: proof

Multiply by L
(

e−f /2
)

and integrate by parts

0 =

∫ 1

−1

(

− 1
2 Lf + λ − e f

)

L
(

e−f /2
)

ν dz

=
1

4

∫ 1

−1

ν2 |f ′′|2 e−f /2 ν dz − 1

8

∫ 1

−1

ν2 |f ′|2 f ′′ e−f /2 ν dz

+
1

2

∫ 1

−1

ν |f ′|2 e−f /2 ν dz − 1

2

∫ 1

−1

ν |f ′|2 e f /2 ν dz

Multiply by ν
2 |f ′|2 e−f /2 and integrate by parts

0 =

∫ 1

−1

(

− 1
2 Lf + λ − e f

)

(

ν
2 |f ′|2 e−f /2

)

ν dz

=
1

8

∫ 1

−1

ν2 |f ′|2 f ′′ e−f /2 ν dz − 1

16

∫ 1

−1

ν2 |f ′|4 e−f /2 ν dz

+
λ

2

∫ 1

−1

ν |f ′|2 e−f /2 ν dz − 1

2

∫ 1

−1

ν |f ′|2 e f /2 ν dz
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A nonlinear flow method in the general case

On S2 let us consider the nonlinear evolution equation

∂f

∂t
= ∆S2 (e−f /2) − 1

2 |∇f |2 e−f /2

where ∆S2 denotes the Laplace-Beltrami operator. Let us define

Rλ[f ] :=
1

2

∫

S2

‖LS2 f − 1

2
MS2 f ‖2 e−f /2 dσ+

1

2
(1−λ)

∫

S2

|∇f |2 e−f /2 dσ

where

LS2 f := HessS2 f − 1

2
∆S2 f Id and MS2 f := ∇f ⊗∇f − 1

2
|∇f |2 Id

Theorem

Assume that f is a solution to with initial datum v − log
(∫

S2 ev dσ
)

,
where v ∈ L1(S2) is such that ∇v ∈ L2(S2). Then for any λ ∈ (0, 1] we
have

Gλ[v ] ≥
∫ ∞

0

Rλ[f (t, ·)] dt
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The Moser-Trudinger-Onofri
inequality on Riemannian manifolds

Joint work with G. Jankowiak and M.J. Esteban
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We shall also denote by R the Ricci tensor, by Hgu the Hessian of u
and by

Lgu := Hgu − g

d
∆gu

the trace free Hessian. Let us denote by Mgu the trace free tensor

Mgu := ∇u ⊗∇u − g

d
|∇u|2

We define

λ⋆ := inf
u∈H2(M)\{0}

∫

M

[

‖Lgu − 1
2 Mgu ‖2 + R(∇u,∇u)

]

e−u/2 d vg

∫

M

|∇u|2 e−u/2 d vg
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Theorem

Assume that d = 2 and λ⋆ > 0. If u is a smooth solution to

− 1

2
∆gu + λ = eu

then u is a constant function if λ ∈ (0, λ⋆)

The Moser-Trudinger-Onofri inequality on M

1

4
‖∇u‖2

L2(M) + λ

∫

M

u d vg ≥ λ log

(
∫

M

eu d vg

)

∀ u ∈ H1(M)

for some constant λ > 0. Let us denote by λ1 the first positive
eigenvalue of −∆g

Corollary

If d = 2, then the MTO inequality holds with λ = Λ := min{4 π, λ⋆}.
Moreover, if Λ is strictly smaller than λ1/2, then the optimal constant
in the MTO inequality is strictly larger than Λ
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The flow

∂f

∂t
= ∆g (e−f /2) − 1

2 |∇f |2 e−f /2

Gλ[f ] :=

∫

M

‖Lg f − 1
2 Mg f ‖2 e−f /2 d vg +

∫

M

R(∇f ,∇f ) e−f /2 d vg

− λ

∫

M

|∇f |2 e−f /2 d vg

Then for any λ ≤ λ⋆ we have

d

dt
Fλ[f (t, ·)] =

∫

M

(

− 1
2 ∆g f + λ

)

(

∆g (e−f /2) − 1
2 |∇f |2 e−f /2

)

d vg

= −Gλ[f (t, ·)]
Since Fλ is nonnegative and limt→∞ Fλ[f (t, ·)] = 0, we obtain that

Fλ[u] ≥
∫ ∞

0

Gλ[f (t, ·)] dt
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Weighted Moser-Trudinger-Onofri inequalities on the

two-dimensional Euclidean space

On the Euclidean space R2, given a general probability measure µ
does the inequality

1

16 π

∫

R2

|∇u|2 dx ≥ λ

[

log

(
∫

R2

eu dµ

)

−
∫

R2

u dµ

]

hold for some λ > 0 ? Let

Λ⋆ := inf
x∈R2

−∆ logµ

8 π µ

Theorem

Assume that µ is a radially symmetric function. Then any radially
symmetric solution to the EL equation is a constant if λ < Λ⋆ and the
inequality holds with λ = Λ⋆ if equality is achieved among radial functions
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Sobolev and
Hardy-Littlewood-Sobolev
inequalities: duality, flows

Joint work with G. Jankowiak

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities



The sphere
Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Preliminary observations
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Legendre duality: Onofri and log HLS

Legendre’s duality: F ∗[v ] := sup
(∫

Rd u v dx − F [u]
)

F1[u] := log

(
∫

R2

eu dµ

)

, F2[u] :=
1

16 π

∫ ∞

0

|∇u|2 rd−1 dr+

∫ ∞

0

u µ rd−1 dr

Onofri’s inequality amounts to F1[u] ≤ F2[u] with dµ(x) := µ(x) dx ,
µ(x) := 1

π (1+|x|2)2

Proposition

For any v ∈ L1
+(R2) with

∫∞
0

v rd−1 dr = 1, such that v log v and
(1 + log |x |2) v ∈ L1(R2), we have
F ∗

1 [v ] − F ∗
2 [v ] =

∫∞
0

v log
(

v
µ

)

rd−1 dr − 4 π
∫∞
0

(v − µ) (−∆)−1(v − µ) rd−1 dr ≥ 0

[E. Carlen, M. Loss] [W. Beckner] [V. Calvez, L. Corrias]
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A puzzling result of E. Carlen, J.A. Carrillo and M. Loss

[E. Carlen, J.A. Carrillo and M. Loss] The fast diffusion equation

∂v

∂t
= ∆vm t > 0 , x ∈ R

d

with exponent m = d/(d + 2), when d ≥ 3, is such that

Hd [v ] :=

∫

Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Sd )

obeys to

1

2

d

dt
Hd [v(t, ·)] =

1

2

d

dt

[
∫

Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Sd )

]

= d (d−2)
(d−1)2 Sd ‖u‖4/(d−1)

Lq+1(Sd )
‖∇u‖2

L2(Sd ) − ‖u‖2q

L2q(Sd )

with u = v (d−1)/(d+2) and q = d+1
d−1 . If d (d−2)

(d−1)2 Sd = (Cq, d)2q, the r.h.s.

is nonnegative. Optimality is achieved simultaneously in both
functionals (Barenblatt regime): the Hardy-Littlewood-Sobolev
inequalities can be improved by an integral remainder term
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... and the two-dimensional case

Recall that (−∆)−1v = Gd ∗ v with

Gd (x) = 1
d−2 |Sd−1|−1 |x |2−d if d ≥ 3

G2(x) = 1
2 π log |x | if d = 2

Same computation in dimension d = 2 with m = 1/2 gives

‖v‖L1(R2)

8

d

dt

[

4 π

‖v‖L1(R2)

∫ ∞

0

v (−∆)−1v rd−1 dr −
∫ ∞

0

v log v rd−1 dr

]

= ‖u‖4
L4(R2) ‖∇u‖2

L2(R2) − π ‖v‖6
L6(R2)

The r.h.s. is one of the Gagliardo-Nirenberg inequalities (d = 2,
q = 3): π (C3, 2)6 = 1
The l.h.s. is bounded from below by the logarithmic
Hardy-Littlewood-Sobolev inequality and achieves its minimum if
v = µ with

µ(x) :=
1

π (1 + |x |2)2 ∀ x ∈ R
2
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Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev’s inequality in R
d , d ≥ 3,

‖u‖2
L2∗ (Sd ) ≤ Sd ‖∇u‖2

L2(Sd ) ∀ u ∈ D1,2(Rd) (1)

and the Hardy-Littlewood-Sobolev inequality

Sd ‖v‖2

L
2 d
d+2 (Sd )

≥
∫

Rd

v (−∆)−1v dx ∀ v ∈ L
2 d
d+2 (Rd ) (2)

are dual of each other. Here Sd is the Aubin-Talenti constant and
2∗ = 2 d

d−2 . Can we recover this using a nonlinear flow approach ? Can
we improve it ?

Keller-Segel model: another motivation [J.A. Carrillo, E. Carlen and
M. Loss] and [A. Blanchet, E. Carlen and J.A. Carrillo]
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Using the Yamabe / Ricci flow
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Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

∂v

∂t
= ∆vm t > 0 , x ∈ R

d (3)

If we define H(t) := Hd [v(t, ·)], with

Hd [v ] :=

∫

Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Sd )

then we observe that

1

2
H′ = −

∫

Rd

vm+1 dx + Sd

(
∫

Rd

v
2 d
d+2 dx

)
2
d
∫

Rd

∇vm · ∇v
d−2
d+2 dx

where v = v(t, ·) is a solution of (3). With the choice m = d−2
d+2 , we

find that m + 1 = 2 d
d+2
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A first statement

Proposition

[JD] Assume that d ≥ 3 and m = d−2
d+2 . If v is a solution of (3) with

nonnegative initial datum in L2d/(d+2)(Rd ), then

1

2

d

dt

[
∫

Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Sd )

]

=

(
∫

Rd

vm+1 dx

)
2
d [

Sd ‖∇u‖2
L2(Sd ) − ‖u‖2

L2∗ (Sd )

]

≥ 0

The HLS inequality amounts to H ≤ 0 and appears as a consequence
of Sobolev, that is H′ ≥ 0 if we show that lim supt>0 H(t) = 0
Notice that u = vm is an optimal function for (1) if v is optimal for (2)
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Improved Sobolev inequality

By integrating along the flow defined by (3), we can actually obtain
optimal integral remainder terms which improve on the usual Sobolev
inequality (1), but only when d ≥ 5 for integrability reasons

Theorem

[JD] Assume that d ≥ 5 and let q = d+2
d−2 . There exists a positive

constant C ≤
(

1 + 2
d

) (

1 − e−d/2
)

Sd such that

Sd ‖wq‖2

L
2 d
d+2 (Sd )

−
∫

Rd

wq (−∆)−1wq dx

≤ C ‖w‖
8

d−2

L2∗(Sd )

[

‖∇w‖2
L2(Sd ) − Sd ‖w‖2

L2∗ (Sd )

]

for any w ∈ D1,2(Rd )
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Solutions with separation of variables

Consider the solution of ∂v
∂t

= ∆vm vanishing at t = T :

vT (t, x) = c (T − t)α (F (x))
d+2
d−2

where F is the Aubin-Talenti solution of

−∆F = d (d − 2)F (d+2)/(d−2)

Let ‖v‖∗ := supx∈Rd (1 + |x |2)d+2 |v(x)|

Lemma

[M. del Pino, M. Saez], [J. L. Vázquez, J. R. Esteban, A. Rodriguez]
For any solution v with initial datum v0 ∈ L2d/(d+2)(Rd), v0 > 0, there
exists T > 0, λ > 0 and x0 ∈ Rd such that

lim
t→T−

(T − t)−
1

1−m ‖v(t, ·)/v(t, ·) − 1‖∗ = 0

with v (t, x) = λ(d+2)/2 vT (t, (x − x0)/λ)
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Improved inequality: proof (1/2)

The function J(t) :=
∫

Rd v(t, x)m+1 dx satisfies

J′ = −(m + 1) ‖∇vm‖2
L2(Sd ) ≤ −m + 1

Sd

J1− 2
d

If d ≥ 5, then we also have

J′′ = 2 m (m + 1)

∫

Rd

vm−1 (∆vm)2 dx ≥ 0

Notice that

J′

J
≤ −m + 1

Sd

J−
2
d ≤ −κ with κ T =

2 d

d + 2

T

Sd

(
∫

Rd

vm+1
0 dx

)− 2
d

≤ d

2
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Improved inequality: proof (2/2)

By the Cauchy-Schwarz inequality, we have

J′2

(m + 1)2
= ‖∇vm‖4

L2(Sd ) =

(
∫

Rd

v (m−1)/2 ∆vm · v (m+1)/2 dx

)2

≤
∫

Rd

vm−1 (∆vm)2 dx

∫

Rd

vm+1 dx = Cst J′′ J

so that Q(t) := ‖∇vm(t, ·)‖2
L2(Sd )

(∫

Rd vm+1(t, x) dx
)−(d−2)/d

is

monotone decreasing, and

H′ = 2 J (Sd Q − 1) , H′′ =
J′

J
H′ + 2 JSd Q′ ≤ J′

J
H′ ≤ 0

H′′ ≤ −κ H′ with κ =
2 d

d + 2

1

Sd

(
∫

Rd

vm+1
0 dx

)−2/d

By writing that −H(0) = H(T ) − H(0) ≤ H′(0) (1 − e−κ T )/κ and
using the estimate κ T ≤ d/2, the proof is completed �

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and improved inequalities



The sphere
Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

d = 2: Onofri’s and log HLS inequalities

H2[v ] :=

∫ ∞

0

(v − µ) (−∆)−1(v − µ) rd−1 dr− 1

4 π

∫ ∞

0

v log

(

v

µ

)

rd−1 dr

With µ(x) := 1
π (1 + |x |2)−2. Assume that v is a positive solution of

∂v

∂t
= ∆ log (v/µ) t > 0 , x ∈ R

2

Proposition

If v = µ eu/2 is a solution with nonnegative initial datum v0 in L1(R2)
such that

∫∞
0 v0 rd−1 dr = 1, v0 log v0 ∈ L1(R2) and v0 log µ ∈ L1(R2),

then

d

dt
H2[v(t, ·)] =

1

16 π

∫ ∞

0

|∇u|2 rd−1 dr −
∫

R2

(

e
u
2 − 1

)

u dµ

≥ 1
16 π

∫∞
0

|∇u|2 rd−1 dr +
∫

R2 u dµ − log
(∫

R2 eu dµ
)

≥ 0
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Improvements
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Improved Sobolev inequality by duality

Theorem

[JD, G. Jankowiak] Assume that d ≥ 3 and let q = d+2
d−2 . There exists a

positive constant C ≤ 1 such that

Sd ‖wq‖2

L
2 d
d+2 (Sd )

−
∫

Rd

wq (−∆)−1wq dx

≤ C Sd ‖w‖
8

d−2

L2∗(Sd )

[

‖∇w‖2
L2(Sd ) − Sd ‖w‖2

L2∗ (Sd )

]

for any w ∈ D1,2(Rd )
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Proof: the completion of a square

Integrations by parts show that
∫

Rd

|∇(−∆)−1 v |2 dx =

∫

Rd

v (−∆)−1 v dx

and, if v = uq with q = d+2
d−2 ,

∫

Rd

∇u · ∇(−∆)−1 v dx =

∫

Rd

u v dx =

∫

Rd

u2∗ dx

Hence the expansion of the square

0 ≤
∫

Rd

∣

∣

∣

∣

Sd ‖u‖
4

d−2

L2∗ (Sd )
∇u −∇(−∆)−1 v

∣

∣

∣

∣

2

dx

shows that

0 ≤ Sd ‖u‖
8

d−2

L2∗ (Sd )

[

Sd ‖∇u‖2
L2(Sd ) − ‖u‖2

L2∗ (Sd )

]

−
[

Sd ‖uq‖2

L
2 d
d+2 (Sd )

−
∫

Rd

uq (−∆)−1 uq dx
]
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The equality case

Equality is achieved if and only if

Sd ‖u‖
4

d−2

L2∗ (Sd )
u = (−∆)−1 v = (−∆)−1 uq

that is, if and only if u solves

−∆u =
1

Sd

‖u‖−
4

d−2

L2∗ (Sd )
uq

which means that u is an Aubin-Talenti extremal function

u⋆(x) := (1 + |x |2)− d−2
2 ∀ x ∈ R

d
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An identity

0 = Sd ‖u‖
8

d−2

L2∗ (Sd )

[

Sd ‖∇u‖2
L2(Sd ) − ‖u‖2

L2∗ (Sd )

]

−
[

Sd ‖uq‖2

L
2 d
d+2 (Sd )

−
∫

Rd

uq (−∆)−1 uq dx
]

−
∫

Rd

∣

∣

∣

∣

Sd ‖u‖
4

d−2

L2∗ (Sd )
∇u −∇(−∆)−1 uq

∣

∣

∣

∣

2

dx
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Another improvement

Jd [v ] :=

∫

Rd

v
2 d
d+2 dx and Hd [v ] :=

∫

Rd

v (−∆)−1v dx−Sd ‖v‖2

L
2 d
d+2 (Sd )

Theorem

Assume that d ≥ 3. Then we have

0 ≤ Hd [v ] + Sd Jd [v ]1+ 2
d ϕ
(

Jd [v ]
2
d
−1
[

Sd ‖∇u‖2
L2(Sd ) − ‖u‖2

L2∗ (Sd )

])

∀ u ∈ D1,2(Rd ) , v = u
d+2
d−2

where ϕ(x) :=
√
C2 + 2 C x − C for any x ≥ 0

Proof: H(t) = −Y(J(t)) ∀ t ∈ [0, T ), κ0 :=
H′

0

J0
and consider the

differential inequality

Y′
(

C Sd s1+ 2
d + Y

)

≤ d + 2

2 d
C κ0 S2

d s1+ 4
d , Y(0) = 0 , Y(J0) = −H0
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... but C = 1 is not optimal

Theorem

[JD, G. Jankowiak] In the inequality

Sd ‖wq‖2

L
2 d
d+2 (Sd )

−
∫

Rd

wq (−∆)−1wq dx

≤ C Sd ‖w‖
8

d−2

L2∗(Sd )

[

‖∇w‖2
L2(Sd ) − Sd ‖w‖2

L2∗ (Sd )

]

we have
d

d + 4
≤ Cd < 1

based on a (painful) linearization like the one used by Bianchi and
Egnell

Extensions: magnetic Laplacian [JD, Esteban, Laptev] or fractional
Laplacian operator [Jankowiak, Nguyen]
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Improved Onofri inequality

Theorem

Assume that d = 2. The inequality

∫

R2

g log
( g

M

)

dx − 4 π

M

∫

R2

g (−∆)−1 g dx + M (1 + log π)

≤ M

[

1

16 π
‖∇f ‖2

L2(Sd ) +

∫

R2

f dµ − log M

]

holds for any function f ∈ D(R2) such that M =
∫

R2 e f dµ and

g = π e f µ

Recall that

µ(x) :=
1

π (1 + |x |2)2 ∀ x ∈ R
2
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A summary
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the sphere: the flow tells us what to do, and provides a simple
proof (choice of the exponents / of the nonlinearity) once the problem
is reduced to the ultraspherical setting

the spectral point of view on the inequality: how to measure the
deviation with respect to the semi-classical estimates, a nice example
of bifurcation (and symmetry breaking)

Riemannian manifolds: no sign is required on the Ricci tensor and
an improved integral criterion is established. We extend the theory
from pointwise criteria to a non-local Schrödinger type estimate
(Rayleigh quotient). The flow explores the energy landscape... and
generically shows the non-optimality of the improved criterion

the flow is a nice way of exploring an energy space. Rigidity result
tell you that a local result is actually global because otherwise the
flow would relate (far away) extremal points while keeping the energy
minimal
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Conferences/
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Thank you for your attention !
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