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Introduction to entropy methods:
a brief review of some results — |

@ Generalized entropy methods for fast diffusion and porous media
equations: intermediate asymptotics

@_ Entropy methods and functional inequalities
@_ Related topics (mass transport)
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Porous media / fast diffusion equations

Generalized entropies and nonlinear diffusions (EDP, uncomplete):

[Del Pino, J.D.], [Carrillo, Toscani], [Otto], [Juengel, Markowich, Toscani],
[Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Biler, J.D., Esteban],
[Markowich, Lederman], [Carrillo, Vazquez], [Cordero-Erausquin, Gangbo,
Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub],...
[del Pino, Saez], [Daskalopulos, Sesum]...

Various approaches:

1) “entropy — entropy-production method”

2) mass transport techniques

3) hypercontractivity for appropriate semi-groups

4) [J.D., del Pino] relate entropy and entropy-production by
Gagliardo-Nirenberg inequalities
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Intermediate asymptotics

uy = Au™ in RY

Ujg=0 = Up > 0

uo(l + |z|*) € LY, i € L'

Intermediate asymptotics: ug € L™, [ug dx =1

Self-similar (Barenblatt) function: U(t) = O(t=%/ (2=d1=m)))
As t — +oo, [Friedmann, Kamin, 1980]

Ju(t,) = U(t, )| = ot~/ EmdEmm)

—> What about ||u(t, ) —U(t,-)||Lr ?
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Time-dependent rescaling

Take u(t,z) = R=4(t)v (v(t),x/R(t)) where
R=RM=™=1 " RO)=1, 7=IogR

vy = Av" + V- (zv), V=0 = Ug

[Ralston, Newman, 1984] Lyapunov functional: Entropy or Free energy

v 1, 5
Z[v]—/(m_1+§|x| v) dr — g
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Entropy and entropy production

Stationary solution: choose C' such that ||veo || = ||u||pr = M > 0

1 —1/(1—m)
voo(z) = ( C + —2 |2
2m n

Fix 3y so that ¥[v..| = 0. The entropy can be put in an m-homogeneous
form

Sl = [ () vide with (t) = U=l

Theorem1 d >3, m e [£L +o0),m > 2, m # 1

I[v] > 23]
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An equivalent formulation

Slo] = [ (5 + 3lal?v) do = 2o < 3 [ | %7 4o do =

m—1

I{v]

1
2

v = w?, ™ = P!

1/ 2 : 1

K<0ifm<1, K> 0ifm > 1and, for some ~, K can be written as

¥
K = K, (/vdx:/wZde>
1/2p .

W= Wso = Vs 1S Optimal

m = 2=1: Sobolev, m — 1: logarithmic Sobolev
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Gagliardo-Nirenberg inequalities

Theorem 2 [Del Pino, J.D.] Assume that1 < p < -4 andd > 3

|wll2p < Al[Vwlly [lwl,3

A= (M) (0) i (r(l;(y)gl)) |

g_ dip—1) y:p+1
p(d+2—(d—2)p) p—1

|

Similar results for0 < p < 1

Uses [Serrin Pucci], [Serrin-Tang]

1 <p= 1= < -% < Fast diffusion case: <1 <m < 1
D<p<l<—= Porous medium case: m > 1
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Intermediate asymptotics

Y[v] < X[ug] e 27+ Csiszar-Kullback inequalities

Theorem 3 [Del Pino, J.D.]
() = <m<1ifd>3

1—d(1—m)
lim sup ¢2=20=m) ||u™ — ult||p1 < 00
t——+o00
(n1<m<2
14+d(m—1) 4
lim sup t2Fdm=D || [u — Uso] Uy~ |11 < 00
t——+o00

Uoo (1, 2) = R™Ut) voo (z/R(t))
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Optimal LP-Euclidean logarithmic Sobolev inequality

[Del Pino, J.D., 2001], [Gentil 2002], [Cordero-Erausquin, Gangbo,
Houdré, 2002]

Theorem 4 [f||u||.» = 1, then

/\u|Plog\u| dx < Z%log [Ep/\VuP? dx]

p (p—1\""" o | T(2+1)
oot ()t [

n €

p* D(Z+1)

_ . —1/p L
Equality: u(x) = (7?5 (%) NEEs) ) o o

p = 2: Gross’ logaritmic Sobolev inequality [Gross, 75], [Weissler, 78]
p = 1: [Ledoux 96], [Beckner, 99]

Application to u; = A, ur-1
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Extensions and related results

@ Mass transport methods: inequalities / rates [Cordero-Erausquin,
Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Aguenh,
Ghoussoub, Kang]

@ General nonlinearities [Biler, J.D., Esteban], [Carrillo-DiFrancesco],
[Carrillo-duengel-Markowich-Toscani-Unterreiter] and gradient flows
[Jordan-Kinderlehrer-Otto], [Ambrosio-Savareé-Gigli],
[Otto-Westdickenberg], etc + [J.D.-Nazaret-Savaré, in progress]

@ Non-homogeneous nonlinear diffusion equations [Biler, J.D.,
Esteban], [Carrillo, DiFrancesco]

Extension to systems and connection with Lieb-Thirring inequalities
[J.D.-Felmer-Loss-Paturel, 2006], [J.D.-Felmer-Mayorga]

@ Drift-diffusion problems with mean-field terms. An example: the
Keller-Segel model [J.D-Perthame, 2004], [Blanchet-J.D-Perthame,
2006], [Biler-Karch-Laurencot-Nadzieja, 2006],
[Blanchet-Carrillo-Masmoudi, 2007], etc

@_ ... connection with linearized problems [Markowich-Lederman],
[Carrillo-Vazquez], [Denzler-McCann], [McCann, Slepcev]

©
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... Mass transport

@ The fast diffusion equation can be seen as the gradient flow of the
generalized entropy with respect to the Wasserstein distance

@ Displacement convexity holds in the same range of exponents,
m € ((d—1)/d, 1), as the Gagliardo-Nirenberg inequalities

Introduction to entropy methods: a brief review of some results — | —p.11/1



Entropy methods and
linearization: intermediate
asymptotics, vanishing

A. Blanchet, M. Bonforte, J.D., G. Girillo, J.L. Vazquez

@_ use the properties of the flow
@_ write everything as relative quantities (to the Barenblatt profile)

@_ compare the functionals (entropy, Fisher information) to their
linearized counterparts

—> Extend the domain of validity of the method to the price of a restriction

of the set of admissible solutions
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Setting of the problem

We consider the solutions u(7,y) of
O-u = Au™
u(0,-) = ug

where m € (0,1) (fast diffusion) and (7,y) € Q7 = (0,T) x R?
Two parameter ranges: m. < m < 1 and 0 < m < m., where

Q@ m.<m<1, T = +oco: intermediate asymptotics, 7 — +oo
Q@ 0<m<meT < +oc: vanishing in finite time

I =
lim u(7,y) =0
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Barenblatt solutions

with
@ R(r) = [d(m —me) (r+T)] 7779 if my <m < 1

@_ (vanishing in finite time) if 0 < m < m.

R(r) i= [d(me —m) (T — 7)] 7=

R(0) R(7)
function v(¢, z) := R(7)?u(r,y) solves a nonlinear Fokker-Planck type equation

Time-dependent rescaling: ¢ := log (R(T)> and z:= =.<. The

Ov(t,x) = Av™(t,x) + V - (zv(t, x)) (t,z) € (0,+00) x R4

v(0,2) = vo(x) = R(0)% ug(R(0) z) r € R¢
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Assumptions

(H1) ug is a non-negative function in L] (R?) and that there exist positive
constants 7" and Dy > D; such that

Upo7(0,y) <uo(y) <Up, 7(0,y) YyeR

(H2) If m € (0, m.], there exist D, € [D1, Do) and f € L'(R?) such that

w(y) =Up. r(0,y)+ f(y) VyeR?

(H1’) vy is @ non-negative function in L}, .(R%) and there exist positive
constants Dy > D; such that

Vo, (x) <vo(z) < Vp,(x) VaeR?
(H2) If m € (0,m.], there exist D, € [Dy, D] and f € L'(R?) such that

vo(x) =Vp, (z)+ f(x) Vace RY
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Convergence to the asymptotic profile (without rate)

o A dm2 L d(—m)
T g ST Ty PO e T

Theorem 1 Letd > 3, m € (0,1). Consider a solution v with initial data
satisfying (H1’)-(H2’)

(i) For anym > m., there exists a unique D, such that
Jpa(v(t) = Vp,) doz =0 for any t > 0. Moreover, for any p € (p(m), o],
hmt_>OO Ja |v t) —Vp,|Pder =0

(i) Form < m,, v(t) — Vp, is integrable, [,.(v(t) — Vp,) dx = [, [ dx
and v(t) converges to Vp_ in LP(RY) ast — oo, for any p € (1, oc]
(iif) (Convergence in Relative Error) For any p € (d/2, o],

lim [[v(t)/ VD, = 1], =

t— o0

[Daskalopoulos-Sesum, 06], [Blanchet-Bonforte-Grillo-Vazquez, 06-07]
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Convergence with rate

2d(1—m)
22—m)+d(1—m)

qsx - —
Theorem 2 [fm # m,, there existt, > 0 and A\, 4 > 0 such that

() Forany q € (q., 00|, there exists a positive constant C, such that

[v(t) — Vp,|lq < Cq e mdt Vi >t

(iy Foranyd € [0,(2—m)/(1 —m)), there exists a positive constant Cy
such that

[ 1z]”(v(t) = Vp,)||, < Cy et Vi >t

(i) Forany j € N, there exists a positive constant H; such that

>‘m,d

lo(t) = Vb, |lciray < Hje” #2600 " V¢ > ¢
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Intermediate asymptotics

Corollary 3 Letd > 3, m € (0,1), m # m,. Consider a solution v with
initial data satisfying (H1)-(H2). For T large enough, for any q € (q., o],
there exists a positive constant C' such that

lu(m) = Up,(7)llq < CR(T)™"

where o = \,,, 4 +d(q—1)/q and large means T — t > 0, small, if m < m.,
andr — oo Ifm > m,

For any p € (d/2, x|, there exists a positive constant C and~ > 0 such that

|v(t)/ Vo, = 1| gay SCe7" V>0
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Preliminaries

L*-contraction, Maximum Principle, conservation of relative mass...

Passing to the quotient: the function w(t, ) := -7 solves

1
( Wy = 7 \Y [w VD*V<L(wm_1 —1) VDm_l)] in (0, +00) x R4
D,

m — 1 -
\
Yo :
O <) = = — Rd
\ w(0, ) = wo 7 in
with
V V
0< inf =2 < w(t,z) < sup —2 < 00
x€ER4 VD* xERA VD*

... Harnack Principle

Jwt)lor@ay < Hy <400 Vit >t
319 > 0s.t. (H1) holds if 3 R > 0, sup,~ g uo(y) \y\ﬁ < oo, and m > m,
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Relative entropy

Relative entropy

Flu] = —— | [(w-1)— ~@™ 1)V da

I —m Jpa m

Relative Fisher information

Jw] := RS /Rdyv[(wm— — )V | wVp, da

Proposition 4 Under assumptions (H1)-(H2),

d

()] =—Jw()

Proposition 5 Under assumptions (H1)-(H2), there exists a constant
A > 0 such that

Flw®)] < A7 Tw(?)]
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Heuristics: linearization

Take w(t,z) =1+¢ Vg,q,ff—’f()x) and formally consider the limit e — 0 in

( 1 m ,
Wy = V—D* v . [w VD*v<m(wm_1 _ 1) Vl’gfi—1>] in (0’ —I—OO) X Rd

N — g o 20 - TRd
\w(O,) w 7 in R

*

Then g solves
ge =mVp 2(x) V- [Vp.(z) Vg(t, z)]

and the entropy and Fisher information functionals

1 —m
Flg] := 5 g2 Vg* dr and llg] :=m Vgl? Vb, dx
Rd Rd

consistently verify % Flg(t)] = — 1]g(t)]
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Comparison of the functionals

Lemma 6 Letm € (0,1) and assume that u, satisfies (H1)-(H2)
[Relative entropy]

C1 lw— 17 VA dz < Flw] < Cq lw—1° VS da
Rd Rd

[Fisher information]
lg) < B Tlw] + B2 Flg] with g:=(w—1) V5™

Theorem 7 (Hardy-Poincare) There exists a positive constant A, 4 such
that for any m # m, = (d — 4)/(d — 2), m € (0,1), for any g € D(RY),

g —g)° VA de < Crma | V|’ Vb, do
Rd Rd

withg = Ja 9 Vg:m dx if m > m,, g = 0 otherwise
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Hardy-Poincareé inequalities

With a = L, a, = L =14

m—1 My —1

Theorem 8 Assume thatd > 3, « € R\ {a*}, duo(z) := ho(x) dx,
ho(x) := (1 + |z]?)*. Then

|U‘2 2
/Rd 1+ ‘ZC‘Q Ha = 4 Rd | U‘ H

holds for some positive constant C,, 4, for any v € D(R?), under the
additional condition |, vdpa—1 =0 ifa € (—oo, a*)
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Limit cases

Poincaré inequality: take o = —1/€? to v () := e~ %/2v(x/e) and let e — 0
2 1 2 : ||
[v]% drse < Vul“drse  With  drg(z) :=e dx
Rd 2 R4

... under the additional condition [, v e~1*I"dz = 0

Hardy’s inequality: take vy (z) := €¥/2v(ex) and let e — 0

2 1 .
/ Gl dvg o < / Vul?dvg.e With  dyg o(z) = |z|** dz
R R4

@ |z]? (@ = o)

.. under the additional condition v, := [, vdvy o =0if a < o
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Some estimates of C, 4

Q —o<a< —d| d<a<a® | a<a<l
1 4 4
Cad 2]al Caa2 (d+2a—2)2 | (d4+2a—2)2
Optimality ? ? YES
Q I<a<ald |ald <a<d d a>d
C 4 1 1 1
o,d d(d+20—2) a(d+a—2) 2d(d—1) | d(d+a—2)
Optimality ? ? yeS ?
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Hardy’s inequality: the “completing the square method”

Let v € D(R?) with supp(v) € R4\ {0} if o < o*

o<
Rd

2
:/ IVol? |2]?* dx + [)\Z—A(d—f—QOé—Q)}/ Jvl*
R4

R4 |5'7|2

2

Vo + Ao z|* da

]2

|z |* d

An optimization of the right hand side with respect to A\ gives A = a — a*,
that is (d + 2a — 2)?/4 = A2. Such an inequality is optimal, with optimal
constant \?, as follows by considering the test functions:
1) if a > a*: ve(x) = min{e ?, (Jz|= — €)1}
2) if o < a*:v.(x) = ||l 72~ 4/2 < for |2] < 1
ve(x) = (2 — |a]) for |z] > 1
and letting ¢ — 0 in both cases
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The optimality case: Davies’ method

Proposition 9 Letd > 3, a € (a*,0). Then the Hardy-Poincare
inequality holds for any v € D(RY) withCp g :=4/(d — 2+ 2a)? if

a € (a*,1]andCyq:=4/ld(d —2+2a)] ifa > 1. The constantC,, 4 Is
optimal for any o € (a*, 1].

Proof: Vh, = 2axha_1, Ahg = 2ahg_o[d + 2(a — a*) |z|?] > 0.
By Cauchy-Schwarz

2
[v]? Ahy, dz

Rd

2
< 4( IvHWHVhaldw>
R4

< 4/ |fu|2|Aha|dx/ IVV|? [Vhe|? |[ARy| ™! da
Rd Rd

[Ahg| > 2|a| min{d, (d — 2 + 2a)} Lolz)

1+|z|?
[Vha|? 2 |of
Aha] S do21%a ha ()
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... Mass transport ???
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Generalized Poincare _
inequalities, application to linear

diffusion equations
(Fokker-Planck)

Coll. A. Arnold, J.-P. Bartier, J.D.




Gaussian measures

[W. Beckner, 1989]: a family of generalized Poincaré inequalities (GPI)

1 2/p
S [ 2du — ( | £|P du> ] < | |VfIPdp YfeH'(du) 1)
— P | JRrd Rd R4

1 2
-5 |zl

where pu(z) := € denotes the normal centered Gaussian distribution

- (2m)d/2
on R<. For p = 1: the Poincaré inequality

2
f2du—(/ fdu) < | IVfPdp YfeH'(dp)
Rd Rd Rd

In the limit p — 2: the logarithmic Sobolev inequality (LSI) [L. Gross 1975]

f210g( r )du VfZdp ¥ e H(dp)

R4 fRd f2dp R4
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Sufficient conditions for generalized Poincaré inequalities ?

[AMTU]: for strictly log-concave distribution functions v(x)

1 2 2/p 1 2 1
| Pa- 1P dv <= | VfPdv YfeH ()
2—]9 Rd Rd K JRd

where x is the uniform convexity bound of — log v(x)...

...the Bakry-Emery criterion
[Latata and Oleszkiewicz]: under the weaker assumption that v(x)
satisfies a LS| with constant 0 < € < oo

/f2log( f )du<2€/ IVfIPdv Y fe H (dv) 2)
Rd fRdfzdl/ B Rd

for 1 < p < 2, L-O proved that

1 , 2/p (2 1 ,
S f“dv — | f|P dv < Cming —, —— 'V f|* dv
2—=p |Jrd Rd p 2—p) Jra
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Proof of the result of Latata and Oleszkiewicz (1/2)

The function ¢ — a(q) := qlog ([pa | f|*/9 dv) is convex since

) 1 (Jea LFP79 Q0 11)? d) (Ja | FP/9 ) = (Jpa 1112/ 08| £ )
o' (q) =
; (fa 1712/ dv)?

a(l) _ o a(q)

is nonnegative: ¢ — ¢*\9) is also convex, ¢(q) = “—=F— is \,

2
p(q) < lim p(q1) = y i 10g< / ) dv

—1 Hf”p(du)

1

q
[ ([ pa) | <2e [ vira
q—1 |Jpa R R

21 [Jra £y = (P77 )" = 325 | foa 12 = (fa 51 0) ™
fp=2/q:C, <2C/p
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Proof of the result of Latata and Oleszkiewicz (2/2)

Linearization f = 1+ e g with [, gdv =0, limite — 0

2
f2du—</ fdy) <@ [ |Vf]Fdv
R4 R4 R4

Holder's inequality, ( [po fdv)” < (feu |2/7dr)°

q 2
f2du—< |f|2/qdu> < fzdu—(/ fdl/> <C IV fI? dv
Rd R4 Rd Rd Rd
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Generalized Poincareé inequalities for the Gaussian measure

The spectrum of the Ornstein-Uhlenbeck operator N := —A + = -V is

made of all nonnegative integers k£ € N, the corresponding eigenfunctions
are the Hermite polynomials. Observe that

[ 9sPau= [ fonpau ¥ f e ')

Strategy of Beckner (improved): consider the L?(du)-orthogonal
decomposition of f on the eigenspaces of N, i.e.

f:kaa

where N f, = k f.. If we denote by 7, the orthogonal projection on the
eigenspace of N associated to the eigenvalue k£ € N, then f, = m[f].
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ar = | filli2 @y W72 =D ar and VP du=> ka

kEN R4 kEN

The solution of the evolution equation associated to N

ur = —Nu=Au—x-Vu, ut=0)=Ff

is given by u(z, ) = (e—tN f) (@) = e e Ft ful@)

e™*" inQ(dy,) ~ Ze_%tak

keN

Lemma 1 Let fe H'(dp). If fi = fo=...= fr,—1 = 0 for some kq > 1,
then
1 . G—Qkot

_ 2
\f|2du—/ e T dp < — / V£ du
Rd R4 0 Rd
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Proof

We use the decomposition on the eigenspaces of N

_ 2 _
/Rd|fk\2dﬂ—/Rd\€ N fe|” dp = (1—6 th)ak

—2kt

For any fixed ¢ > 0, the function k£ — 1=— is monotone decreasing: if
k > ko, then

__—2kot
1 —e 2kt < l-e i k
< ko

Thus we get

1 _ 6_2k0t

_ 2
/ Ifk\Qdu—/ e fr]” dp < . / IV f|? dya
R4 R4 0 R4

which proves the result by summation []
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Nelson’s hypercontractive estimates

Lemma2 Forany f € LP(du), p € (1,2), it holds
—tN 1
He fHL2(du) < HfHLp(du) Vi> _5 log(p - 1)

Proof. We set F(t) := ( [o. [u(t)]2® du)" " with ¢(t) to be chosen later
and u(z,t) := (e"™f) (z). A direct computation gives

- L S () e

We set v := |u]?/2, use the logarithmic Sobolev inequality with v = ;. and
C =1, and choose ¢ such that 4 (¢ — 1) = 2¢’, ¢(0) = p and ¢(t) = 2. This
implies F’(t) < 0 and ends the proof with 2 = ¢(¢t) =1+ (p — 1) e []

© o)
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A generalization of Beckner’s estimates

[Arnold, Bartier, J.D.] First result, for the Gaussian distribution p(x)

Theorem 3 Let f € HY(dp). If f1 = fo = ... = fi,_1 = 0 forsome kq > 1,
then

1 2 2/ 1—(p—1) 2
- diy — P
Z_p[Rdv = ([ 1 an) ]< o [ viPa

holds for1 < p < 2

@ In the special case ky = 1 this is exactly the generalized Poincaré
inequality due to Beckner, and for ky > 1 it is a strict improvement for
any p € [1,2)

@ Easy to generalize to other measures
v(x) = e~ V(@)

using the spectrum of N:= —-A + VV -V
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... Mass transport

@ The Fokker-Planck equation can be seen as the gradient flow of the
entropy (the free energy) with respect to the Wasserstein distance
[Jordan, Kinderlehrer, Otto]

@ [J.D., Nazaret, Savaré], in progress: There is a family of distances for
which the gradient flow of the p-entropies gives... the Fokker-Planck
equation. Entropy - entropy production estimates appear as a
consequence of the contraction properties of the flow

Generalized Poincaré inequalities — Ill —p.11/1



Equations de Poincare
generaliséees

Coll. J. Carrillo, J.D. , I. Gentil, A. Jingel
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Higher order diffusion equations

The one dimensional porous medium/fast diffusion equation

%:(um)m, reSt, t>0

The thin film equation
U = — (W Upaz)w, TESH, t>0
The Derrida-Lebowitz-Speer-Spohn (DLSS) equation
ur = —(u(logw) e )es , T € St t>0

... with initial condition w(-,0) = ug > 0in St =(0,1)
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Entropies and energies

Averages:

p
tplv] = (/ pl/P da:) and v ::/ v dx
St St

Entropies: p € (0,4+00), ¢ € R, v € H}(S'), v Z Oa.e.

1
P q gy _ q i
ZP,Q[U] : pq(pq—l) [le dx (,up[v]) ] prg#landQ#Oa
v4 :
X1/q,qlV] = /S1 v? log (f51 v d:z:) de ifpg=1landq#0,

1 v
Soolvl i= —= lo de ifg=0
poleli= = [ g(upm) '
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Convexity

>p.qv] IS non-negative by convexity of

w1 —1-pg(u—1)
U +— =: 0p 4(u)
pq(pg—1)

By Jensen’s inequality,

ot = it o )

letton( [ s de) = il (1) =0

pn o)) /7

Vv
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Limit cases

pg=1
pErlr}q Yipqlv] = X1/q4lv] forg>0
q=0:
;i_r% Yp.qlv] = Xpolv] forp >0
p=q=0

20,0[?)] = —/ log Y dx
S HUHOO

Some references (>2005):

M. J. Caceres, J. A. Carrillo, and G. Toscani]
| M. Gualdani, A. Jingel, and G. Toscani]

[ A. Jungel and D. Matthes]

' R. Laugesen]
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Global functional inequalities

Theorem 1 Forallp € (0,+00) and q € (0,2), there exists a positive
constant k,, , such that, for any v € Hy (S),

1 1
S, ] < — Ji[v] == — | dx
e Rp,q Rp,q Jst

Corollary 1 Letp € (0,+c0) and g € (0,2). Then, forany v € HL(S'),

1 1
5 ]2/ < Tolv] /S P da

= 5 —~ 1.2
A Kp.q A7t Kp.q
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A minimizing sequence (v, )nen is bounded in H1(S?)
v, = v inHY(SY) and X, ,v,] — Z,4v] as n— o

If £, ,[v] = 0, lim, o Ji[v,] = 0. Let e, := Ji[v,], wy, := ”“—\/8;73 and make a
Taylor expansion

(1+\/Eg;)1/p_1—£x < —r(eg,p)e V(w,s)é(—%,\%)x(o,so)

1
D p

En = J1 [Un] 3 Zp,q[vn] < 0(507]97 Q) En
Hence, since ¢ < 2,

J1|Un] en J1|wp] —2/q 1-2
— > [6(807297 q)] /4 €n /4 — C
Ep,q[vn]Z/q Zp,q[vn]Q/q

gives a contradiction
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Asymptotic functional inequalities

The regime of small entropies:

xP1:={ve H (SY) : B, 4v] <eand p,v] =1}

Theorem 2 Foranyp > 0,q € R andey > 0, there exists a positive
constant C' such that, for any € € (0, e¢],

1+ Cy/e
Yipqlv] < 322 Jilv] Yove xP1

Without the condition p,[v] = 1:

Yp,qlv] < 187;207;§E (Mp[v])q_Q J1|v]
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If Ji[v] < 8p* 72, define w := (v —1)/(k5° /e): Ji[w] < 1.

S qv] = pq(p;— D [/Sl(l—kkcgo\@w)qu— (/91(1+R;Oﬁw)1/de)pq]
— 5(2322)2 [/Sle dr — (/Slwdx>2 + O(3/?)
_ - (;;;2)2 /51(w — )2 dz + O(e?2)
<e (;;;2)2 ‘(]21751;2] +0(e*?) = % +0(e%/?)

using Poincaré’s inequality
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15 application: Porous media

%Z(um)m recSHt>0

A one parameter family of entropies :

( 1 S | :
- dr if keR\{-1,0
k(k+1)/51(u ) do VL0
Slu] = ¢ /ulog(%) dz if k=0
Sl
u

— [ log (= if k=1

\ /S1 og(l_) dx |

i N .__ m+k o k+1 _ o k+1
Wlthv.—up,p.— mT’q'_T_Qm——l—k’
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Lemma1 Letk € R. Ifu is a smooth positive solution

%ZW“””+541

with X :== 4m/(m + k)? whenever k +m # 0, and

(U<k+m)/2)x)2 dx =0

d
—zwm¢ﬂ+5/|mgmﬂﬂmzo
di g1

with \ :=m fork +m = 0.
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Decay rates

Proposition1 Letm € (0,+00), k € R\ {—-m},q=2(k+1)/(m+ k),
p=(m+ k)/2 and u be a smooth positive solution

i) Short-time Algebraic Decay: If m > 1 and k > —1, then

2 _ q —q/(2—q)
Sefule 0] < [Salua 1+ 2D

ii) Asymptotically Exponential Decay: If m > 0 andm + k > 0, there
exists C' > 0 andt, > 0 such that fort > t4,

22 NP2 (¢t — ¢4
mmuM<zwm@nwp(@p Aw ) (1 tv

1+ Cy/Zku(-, t1)]
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2nd Application: fourth order equations

Up = —(um (ufcm +au "t uy ug, + bu_2u§)> . oxeSt t>0
Example 1. The thin film equation: a = b =0

U = — (U™ Ugga )z

Example 2. The DLSS equation: m =0,a = —2,and b =1

Up = —(u (logu)m) :

rr

Ly:=%0Ba+5)*+2/(a—1)2—-8b

A=((k+m+1)?*-9k+m—-12%+12a(k+m—2)—36b
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Theorem 3 Assume (a —1)* > 8b

i) Entropy production: IfL_ < k+m < L,

d
— St) < t

ii) Entropy production: Ifk+m+1#0andL_ < k+m < L,

o)+ [

Sl

2
(ukm+D/2 1 de <0 Vi>0

Ifk+m+1=0anda+b+2—u<0forsomel < u <1, then

d
- Sefu( )] + [(log t)pe|* dz <0 V>0
Sl
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Decay rates

Theorem 4 Letk, meRbesuchthatL_ <k+m < Ly
i) Short-time Algebraic Decay: If k > —1 and m > 0, then

2 _Q/(Q_Q)
Yilu(t)] < Ek[uo]_(Q_Q)/q + 47? U Ep.q (— — 1) t]

q

ii) Asymptotically Exponential Decay: If m + k + 1 > 0, then there exists
C > 0 andt; > 0 such that

204 aP(C—9) (¢ — ¢4
Splu(-, )] < Splul-, t1)] exp (3219 H (t—t ))

1+ Cy/Zk[u(-, t1)]
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Thin film equation: range of the parameters

k k

N g2

~1 ~ 1

~ 5 3 ‘ ~ 5 3 ‘
\ 4 5o m i) 4 5o m

Left: algebraic decay
Right: asymptotic exponential decay
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... Mass transport

@ [J.D., Nazaret, Savaré], preliminary (formal): what has been done in
terms of gradient flows for the linear case (Fokker-Planck equation)
seems generalizable to the porous medium case

@_ Forth higher order equations: not much is understood from the
entropy (PDE) point of view, [Jungel, Matthes], [Laugesen], or from
the gradient flow point of view. Gradient flow of the Fisher
information: [Gianazza-Savaré-Toscani]
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L7 Poincare inequalities for
general measures and
consequences for the porous
medium equation

J.D., Ivan Gentil, Arnaud Guillin and Feng-Yu Wang




Goal

Li-Poincaré inequalities, ¢ € (1/2, 1]
2 1/q
[Var, (£9)]"" = [/fQQd” (ffw) ] ) CP/|Vf|2du
Application to the weighted porous media equation, m > 1

du

5 =A™ -V -Vu™, t>0, zeR?

(Ornstein-Uhlenbeck form). With dy = dv = duy = e ¥V dz/ [ eV dx

d m+l o
G Var, () =~ [ 1V Py
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Outline

Equivalence between the following properties:

@ L9-Poincaré inequality

@ Capacity-measure criterion

@ Weak Poincaré inequality

@ BCR (Barthe-Cattiaux-Roberto) criterion

In dimension d = 1, there are necessary and sufficient conditions to
satisfy the BCR criterion

Motivation: large time asymptotics in connection with functional
iInequalities
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L?-Poincare inequality

M Riemanian manifold
Let 1 a probability measure, v a positive measure on M

We shall say that (i, v) satisfies a L4-Poincaré inequality with constant Cyp if
for all non-negative functions f € C!'(M) one has

Var, (1)) < Cp [ (91 v

€ (0,1] (false for ¢ > 1 unless p is a Dirac measure)
2
Var,, (g2) = fgz dp — (fg d,u) = 1u(g?) — n(g)?

g — |Var,(f9)] He increasing wrt ¢ € (0, 1]: L?-Poincaré inequalities form
a hierarchy
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Capacity-measure criterion

Capacity Cap, (A4, 2) of two measurable sets A and (2 such that
ACQCM

Cap, (4.9) i=int { 191 dv s 1€ C(). La < f <o}

1/(1—q) (1-9)/q
Bp = Sup{ Z [M(Qk)] }

1—
iz [Cap, (O, Qpy0)] 7

over all Q@ C M with (2) < 1/2 and all sequences (£2) ., such that for
all k € Z, Q C Qi1 C O

21/4 Cp

Kkp Op

Theorem 1 (i) Ifqe[1/2,1), then Gp

<
(iy Ifqe (0,1) and Bp < 400, then Cp <
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Weak Poincare inequalities

Definition 2 [Réckner and Wang] (u, ) satisfies a weak Poincaré inequality
if there exists a non-negative non increasing function Gwp(s) on (0,1/4)
such that, for any bounded function f € C* (M),

Vs>0, Var.(f) < Awe(s) / VF2dv + s [Oscu(f)]]

Var, (f) < pu((f —a)?) Va € R
For a = (supess,, f + infess,, f)/2, Var,(f) < [Oscu(f)f/él: s < 1/4.

Proposition 3 Letq € [1/2,1). If (u,v) satisfies the L?-Poincaré
inequality, then it also satisfies a weak Poincarée inequality with

Bwp(s) = (11+5v5) Bp s'~V1/2, K := (11 + 5/5)/2.

L4-Poincaré — BCR criterion = weak Poincaré
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Theorem 4 [Mazja] Letq € [1/2,1). For all bounded open set ) C M, if
(%) ez s @ sequence of open sets such that Q;, C Q1 C €, then

Z N(Qk)l/(l_q) . 1 M(Q)( ¢ >q/(1q) .
vez [Cap, (2, Qk+1)]Q/(1_Q) T 1-qJ ®(1)

where ®(t) := inf {Cap,(A,Q) : ACQ, u(A) >t}
As a consequence: 3p < (1 — )99t /D(t)| Lasa-o (0. u(e2))

Corollary 5 Letq € [1/2,1). If (u,v) satisfies a weak Poincare inequality
with function Gwp, then it satisfies a L?-Poincaré inequality with

1—gqg

g < S ()T /)

LT74(0,1/2)

Weak Poincaré L9 -Poincaré

Li-Poincarée — _ a1 — ,
with ﬁwp(s) =(Cs a Vq € (07Q)
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BCR criterion (1/2)

A variant of two results of [Barthe, Cattiaux, Roberto, 2005] (no absolute
continuity of the measure . with respect to the volume measure)

Theorem 6 [BCR] Let i1 be a probability measure and v a positive
measure on M such that (i, v) satisfies a weak Poincaré inequality with

function Gwe(s). Then for every measurable subsets A, B of M such that
AC Bandu(B) <1/2,

1(A) - . )
Cap, (A, B) > (A with  ~(s) := 4 Bwp(s/4)

Proof <1 Take f suchthatls < f <Ig: Osc,(f)
By Cauchy-Schwarz, ( [ fd,u) < u(B) [ f2du <

iA)

Be(s) [V dv s > Van,(f) = 5 [ £ duz "

W) = Thwe(a/m S SWPse(0,1/4) 5@2 Funts With a/2 = p(A4)/2<1/4 >
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BCR criterion (2/2)

Lemma 7 Take ;. and v as before, 6 € (0,1), v a positive non increasing
function on (0,0). IfVY A, B C M such that A C B are measurable and
u(B) <0,

p(A)
7(1(A))

then for every function f € C*(M) such that u(24) <0, Qy :={f > 0}

Cap, (A, B) >

/fi < H +25\/57(8)/Q IVfI?dv + s {supessujf}2 Vse(0,1)

Theorem 8 Same assumptions, 6 = 1/2. ThenVf € Ct(M)

. 11 +25\/5

Var,(f) 7(8)/\Vf\2du+s [Osc,(f)] Vse(0,1/4)

0 = 1/2: use the median m,,(f), u(f = m,(f)) = 1/2, u(f < m,(f)) = 1/2
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Using the BCR criterion: a “Hardy condition”

[Muckenhoupt, 1972] [Bobkov-Gotze, 1999] [Barthe-Roberto, 2003]
[Barthe-Cattiaux-Roberto, 2005]

M =R, du = p, dx with median m,,, dv = p, dz

R(z) := p([z, +00)) ,  L(z) := p((—oc, z])
r(x) ::/w 1 dx and /{(z) ::‘/mui dx

m,, Pv Pv

Proposition 9 Letq € [1/2,1]. (u,v) satisfies a L4-Poincaré inequality if

/ |7 R|V1=9 dp < o0 and/ 0LV =D dy < oo

my
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Proof

Proof <« Method: Var,(f) < u(|F-|?) + p(|F|?)) with g = (f — f(m,))+
and prove that

11+ 55
2

ullgl?) < 1(5) [1Val* o+ s [swpess,g] - ¥ € (0,1/2)
Let AC BC M = (my,o0)suchthat A C Band u(B) <1/2
CapV(A, B) = Capy (A, (mu, OO)) — Capy((a7 QQ)7 (mM7 OO)) —

where a = inf A. Change variables: t = R(a) and choose
v(t) ==t (roR)"1(t)foranyt c (0,1/2) >
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Porous media equation

With ¢ € C2(RY), dpy = —;_; define £ on C2(R%) by

VfeC*RY Lf:=Af—-Vi-Vf

Such a generator £ is symmetric in L2, (R?),
Vf,geCRY) [fLgduy=—[Vf-Vgduy
Consider for m > 1 the weighted porous media equation

([ Ou __ m
5 =Lu™ in Q

u(+,0) =ug in €
n-Vu=0 on X

_/\

\
QCRY, Q=0Qx]0,+00), X =00 x [0, +00)

w € C?, L'-contraction, existence and uniqueness
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Asymptotic behavior

Theorem 10 Letm > 1 and assume that (i, 1) Satisfies a L2-Poincare
inequality, ¢ = 2/(m + 1)

o —2/(m—1)
Var,, (u(-,t)) < ([Varw (UO)}_(m_l)/2 ™ 4(m(+ 1)21) Cp t)

Reciprocally, if the above inequality is satisfied for any wg, then (p, tt.y)
satisfies a L?-Poincare inequality with constant Cp

Proof <

d m-+1

Apply the L2-Poincaré inequality with v = f2/(m+1) ¢ =2/(m + 1)

Reciprocally, a derivation at ¢t = 0 gives the L%-Poincaré inequality >
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A conclusion on L‘-Poincareé inequalities

@ Observe that we have only algebraic rates

@ Weak logarithmic Sobolev inequalities [Cattiaux-Gentil-Guillin, 2006],
Li-logarithmic Sobolev inequalities [D.-Gentil-Guillin-Wang, 2006]

2q
(/ f2q }Ofngdu d,u) = Entu(f2q>1/q < CLS/‘V]C‘Q d,u

@_ Orlicz spaces, duality, connections with mass transport theory
[Bobkov-Gotze, 1999] [Cattiaux-Gentil-Guillin, 2006] [Wang, 2006]
[Roberto-Zegarlinski, 2003] [Barthe-Cattiaux-Roberto, 2005]
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... Mass transport

@_ The Hardy criterion makes the link with mass transport in

dimension 1. As already quoted this has been at least partially
investigated

@ By changing the distance, could one get more generalized entropy
functionals ?
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