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Scope (1/3): rigidity results

Rigidity results for semilinear elliptic PDEs on manifolds...

Let (9, g) be a smooth compact connected Riemannian manifold
of dimension d > 2, no boundary, A, is the Laplace-Beltrami operator
the Ricci tensor R has good properties (which ones ?7)

Let p € (2,2%), with 2* = 2% if d > 3,2* = o0 if d =2
For which values of A > 0 the equation

—Agv—i—)\v:vp_l

has a unique positive solution v € C2(M): v = A72 ?

A typical rigidity result is: there exists A\g > 0 such that

v =A77 if A € (0, \] ,
Assumptions ?

Optimal Ao ?
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Scope (2/3): interpolation inequalities

Still on a smooth compact connected Riemannian manifold (90, g)
we assume that volg(907) =1
For any p € (1,2) U (2,2*) or p = 2* if d > 3, consider the
interpolation inequality
A
19V ey > 5= |IVEscm) ~ IvIEe| Vv € M)
What is the largest possible value of X ¢

Q using u =1+ €y as a test function proves that A < Ay
@ the minimum of v — ||Vv||Lz (om) piQ [||v||i,,(m) - ”VHiZ(zm)

under the constraint ||v||peon) = 1 is negative if X is above the rigidity
threshold
Q@ the threshold case p = 2 is the logarithmic Sobolev inequality

2
HVU”LQ )= )\/ log (T) dvy Vue HY(M)
u

L2(9)
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Scope (3/3): flows

We shall consider a flow of porous media / fast diffusion type

[Vul?
u

ut—u2_2ﬁ<Agu—|—l£ ), k=1+0(p-2)

If v = uP, then ||v|[1p(om) = 0 and the functional

Flu] = /gﬁlV(u'B)degjL ﬁ [/Em 2P dvg — (/Em ugpdvg>2/p]

is monotone decaying as long as A is not too big. Hence, if the limit
as t — oo is 0 (convergence to the constants), we know that F[u] > 0

Structure ? Link with computations in the rigidity approach
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Some references (1/2)

Some references (incomplete) and goals

Q rigidity results and elliptic PDEs: [Gidas-Spruck 1981],
[Bidaut-Véron & Véron 1991], [Licois & Véron 1995]
— systematize and clarify the strategy

@ semi-group approach and 'y or carré du champ method:
[Bakry-Emery 1985], [Bakry & Ledoux 1996], [Bentaleb et al.,
1993-2010], [Fontenas 1997], [Brouttelande 2003], [Demange, 2005
& 2008]

— emphasize the role of the flow, get various improvements
— get 1id of pointwise constraints on the curvature, discuss
optimality

© harmonic analysis, duality and spectral theory: [Lieb 1983],
[Beckner 1993]

— apply results to get new spectral estimates
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Outline

@ The case of the sphere
@ Inequalities on the sphere
@ Flows on the sphere
@ Spectral consequences
@ Improved inequalities
Q The case of Riemannian manifolds
@ Flows
Q@ Spectral consequences
@ Inequalities on the line
Q@ Variational approaches
@ Mass transportation
@ Flows

Joint work with:

Maria J. Esteban, Michal Kowalczyk, Ari Laptev and Michael Loss
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The sphere
Riemannian manifolds
The line

These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Conferences/
> Lectures
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The sphere
Riemannian manifolds

The line

The sphere

Q@ The case of the sphere as a simple example

J. Dolbeault
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The sphere
Riemannian manifolds

The line

Inequalities on the sphere
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The sphere

A family of interpolation inequalities on the sphere

The following interpolation inequality holds on the sphere:

_92 2/p
PT/ |V ul? dvg—i—/ lul> dv, > </ |ulP dvg> Y ue HY(SY, dvg)
s¢ sd sd

@ for any p € (2,2*] with 2* = 2% if d >3
@ for any p € (2,00) if d =2

Here dv, is the uniform probability measure: vgz(S9) = 1

Q@ 1 is the optimal constant, equality achieved by constants
Q@ p = 2* corresponds to Sobolev’s inequality...
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The sphere
Riemannian manifolds

The line

Stereographic projection

l o &

; rcb,z)
2N
—

S =T
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The sphere

Sobolev inequality

The stereographic projection of S C RY x R 3 (p ¢, z) onto R9:
top?+22=1,z 6 [~1,1], p > 0, ¢ € S~ we associate x € RY such
that r = |x|, ¢ =

- \XI

rr—1 1 2 2r
7z —— — — -, —_——
r’+1 2+1’ PT
and transform any function v on S¢ into a function v on RY using
d—2 d—2 d—2

uly)=(£) 7 v(x)=(52) 7 v(x) =(1-2)""7 v(x)

@ p=2*S4=1d(d—2)[S?*? Euclidean Sobolev inequality

d—2

2d T
/ |Vv[? dx >S4 [/ lv|7=2 dx} Vv € DM?(RY)
R4 R4
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The sphere

Extended inequality

2/p
/Sd|vu|2dvgzp;j2l(/gd|u|f’dvg) —/Sd|u|2dv4 Vue HY(SY, du)

is valid
@ for any p € (1,2) U (2,00) if
@ for any p € (1,2) U (2,2*]

@ Logarithmic Sobolev inequality
2 2 |uf? 1/qd
/ Vul* dvg > / |ul Iog( T luP dvg) dvg YueH (S dp)
Q case p=2

Q@ Poincaré inequality

Sd|Vu|2dvgZd/gd|u—f1|2dvg with D::/Sdudvg Y ue HY(SY, dp)

Q@ case p=1
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The sphere

A spectral approach when p € (1,2) — 1% step

[Dolbeault-Esteban-Kowalczyk-Loss] adapted from [Beckner] (case of
Gaussian measures).
Nelson’s hypercontractivity result. Consider the heat equation

of

— = A f

ot g

with initial datum f(t =0,-) = u € L?/P(S9), for some p € (1,2], and
let F(t) := [If(t,)llLso(se). The key computation goes as follows.

F’ o 5 v2 p—1 5

— = I —— | d 4 d

P s (i) v 5 L9 0w
2

with v := |f|P()/2, With 4 ";1 = 2 and t, > 0 e such that p(t.) =
we have

Hf(t*v ')||L2(Sd) < HUHLZ/p(Sd) if m
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The sphere

A spectral approach when p € (1,2) — 24 step

Spectral decomposition. Let u =), ux be a spherical harmonics
decomposition, Ay = k(d + k — 1), ax = ”“kHiZ(Sd) so that

||U||i2(§d) = ken 3 and ||VU||i2(Sd) = D ken Ak A
1ty YW aggry = > axe 2N

keN

||U||i2(gd) HUHLpgd) < ||U||L2gd) Hf(t*v')”iz(sd)

2—p - 2—p
1_ —2 Aty
R PR
P ien- A
1— e 2Nt 1— e 2Nt
S T N Nea = v
eoan 2 T e Ve

The conclusion easily follows if we notice that A; = d, and

“2A1t oy 1—e 2Pt 1
e = p — 1 so that o T d
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The sphere

Optimality: a perturbation argument

Q@ The optimality of the constant can be checked by a Taylor
expansion of u =1+ e v at order two in terms of £ > 0, small
@ Forany pe (1,2*]if d >3,any p>1ifd=1or 2, itis
remarkable that

(P - 2) HVU”%;(SL{)

” ||Lp(Sd HUHiZ(Sd) o uGHl(Sd du)

Qlu] == Qlu] =

is achieved by Q[1 +ev] as ¢ — 0 and v is an eigenfunction associated
with the first nonzero eigenvalue of A,

@ p > 2 no simple proof based on spectral analysis: [Beckner], an
approach based on Lieb’s duality, the Funk-Hecke formula and some
(non-trivial) computations

@ elliptic methods / I'; formalism of Bakry-Emery / flow... they are
the same (main contribution) and can be simplified (!) As a side
result, you can go beyond these approaches and discuss optimality
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The sphere

Schwarz foliated symmetry and the ultraspherical setting

(SOa gla . fd) € Sd7 gd =2, Z:’j:O |£i|2 =1 [SmetS—WiHem]

Up to a rotation, any minimizer of Q depends only on &4

d
o Let do(f) := En2 " dg, Z, _\/—r(rf,ﬁ
2

—2/077 IV (0)2 da—l—/; V(O)] do > </07T v(0)]? da)i

e Change of variables z = cos 6, v(#) = f(z)

2
p—< 2 /12 ' 2 ' ’
— |f| vdvg + If|* dvg > |f|P dvg

-1 -1

where v4(z) dz = dvy(z) = Z;! vildz, v(z) :=1— 22

): Vv € HY([0, 7], do)

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere

The ultraspherical operator

With dvy = Z;* vildz, v(z) := 1 — 22, consider the space
L2((—1,1), dvy) with scalar product

1 1 :
d)= [ hrdv = ([ 7o)
—1 -1

The self-adjoint wltraspherical operator is
d
Lf=1=2)"—dzf =vf'+ v f

which satisfies (f, L f) = f fifvdug

Proposition

Let pe[1,2)U(2,2"], d > 1

Vf e Y ([-1,1], dvg)

—<f ,Cf):/l |f/|2ydyd>d||f||;2)_”f”%
) . = 7p

=2
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The sphere
Riemannian manifolds
The line

Flows on the sphere

Q@ Heat flow and the Bakry-Emery method

@ Fast diffusion (porous media) flow and the choice of the exponents
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The sphere

Heat flow and the Bakry-Emery method

With g =P, ie. f =g*witha=1/p

2a0 2
(Ineq.)  —(f,Lf) =—(g" Lg") = T[g] > dnglp# =: Fleg]
Heat flow 9
g _
ot =L

d d . 5a !
S gl =0, Ellg2 ||1:—2(p—2)<f,£f>:2(/3—2)/ |f'? v dug

-1

which finally gives

Gl =~ L =~ 2dTle(r. )

eq. = SFle(t, )] < -2 Flg(t,)] = S70a(t,)] < ~2dT[g(t, )]
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The sphere

The equation for g = P can be rewritten in terms of f as

of |2
=Lf -1
T =Lf+(p ) v
Ld 1|f’|2 d —li<f£f>—<£f,cf>+( —1)<H Lf)
2 dt vavd =5 ge \ AT = AT P Fu

d
EI[g(t,)] +2d7Z[g(t,")] = i/ If'1? v dvg + 2d/ If'1? v duy

1 /14 12 £11
d |f| —1|f| f
_ 2 o v . _ fg—rrc 2
= 2/1<|f| +(p-1) 2 R 2(p—1) > f v° duy

is nonpositive if

d |f/|4 B ( ) —1|f’|2 f
d+2 Pmds2  f
is pointwise nonnegative, which is granted if

F"P+(p—1)

d—17? d 2d2+1  2d
— [ < — R < = 2%
{(” 1)d+2] =(p 1)d+2 ‘:’p*(d—1)2<d—2 2
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The sphere

. up to the critical exponent: a proof on two slides

[i,ﬁ] u=(Lu) —Lu =-2zu" —d

dz

1 1 1

/ (Lu)? dv, = / |u"? 12 dup—l—d/ |2 v du,

~1 —1 ~1

1 112 1 114 1 12 1
|| d LA d—l/ LA
L d = — dv, — 2 d
[1( u) v dv, ii2) ., v dup a2 ). & v dv,

On (—1,1), let us consider the porous medium (fast diffusion) flow
/12
up = u?>2P (Lu—i-/@ <] V)
u

If k = 8(p—2)+ 1, the LP norm is conserved

1 1
o[ v an=pp-5(-2-1) [ Py, -0
1 -1
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The sphere

F= 07 1 By + 5% (I3 — 1)) 2 07

1 d ! d
e BY2 268 =28
A= 232 dt/_l <|(“ VT + p—2 C 4 )> vy

[ (eor -0 ) (20ss )
-1

d k-1 "o
—_— ulcv dv
p_2 6 71|| 12
1 1 /12
d—1 ||
"2 .2 " 2
= dv, — 2 —— -1 —v°d
e dn, 2 =) [ w2

d 1 /14
+{n(ﬁ—l)+ d+2(n+6—1)}/1|712| v du,

1 /122
2 4
:/ u”—iﬂ ¥ du,>0 ifp=2"and = ——
1 6—p u 6—p
A is nonnegative for someﬁifsidQ( -1)(2*-p) <0
s sgative 127 p p) <

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere

the rigidity point of view

’
u
u

2
Which computation have we done ? v, = u?>~28 (C u+ Ll V)

|u'|2 A A
v+ u= u

—Lu—(B-1)

Multiply by £ u and integrate

1 1 |u/|2
/ Euu“dl/p:—/i/ u" —— dv,
-1 —1 u

lu'|?

Multiply by « =~ and integrate

u
1 /12
...:—i—/{/ u” ] dvp
1 U

The two terms cancel and we are left only with the two-homogenous
terms.
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The sphere
Riemannian manifolds
The line

Spectral consequences

@ A quantitative deviation with respect to the semi-classical regime
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The sphere

Some references (2/2)

Consider the Schrédinger operator H = —A — V on RY and denote by
(Ak)k>1 its eigenvalues

@ Euclidean case [Keller, 1961]

, +4
<Ll [ v
Rd

[Lieb-Thirring, 1976]

d
SN <Ly [ VI

k>1 R

y>1/2ifd=1,7>0if d =2 and y > 0if d > 3 [Weid]], [Cwikel],
[Rosenbljum], [Aizenman], [Laptev-Weidl], [Helffer], [Robert],
[Dolbeault-Felmer-Loss-Paturel]... [Dolbeault-Laptev-Loss 2008]

@ Compact manifolds: log Sobolev case: [Federbusch], [Rothaus];
case v = 0 (Rozenbljum-Lieb-Cwikel inequality): [Levin-Solomyak];
[Lieb], [Levin], [Ouabaz-Poupaud]... [Ilyin]
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The sphere

An interpolation inequality (I)

Lemma (Dolbeault-Esteban-Laptev)

Let g € (2,2*). Then there exists a concave increasing function
u: RY — RY with the following properties

ula) = a VaE[O,q;iQ] and p(a) < « Voze(q;ip—i—oo)

Kad 1-
M(O[) = /Jzasymp(Oé) (1+O(1)) as o — 4oo, /J'asymp(a) — K:qd Oél 9
q,

such that

IVullEage) + allullfags > wla) [ullfossy Vue H(ST)
If d > 3 and q = 2*, the inequality holds with p(c) = min {c, au. },
. = 1d(d-2)

1
v

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere

Q flasymp(@) = :, : 1= 9 .= di= corresponds to the

semi-classical regime and Kq,d is the optimal constant in the
Euclidean Gagliardo-Nirenberg-Sobolev inequality

Kad [VIIEogey < IV VIEage) + IVIEage Vv € HI(RY)

Q@ Let ¢ be a non-trivial eigenfunction of the Laplace-Beltrami
operator corresponding the first nonzero eigenvalue

—Ap=dyp

Consider u =1+ €@ as € — 0 Taylor expand Q, around u =1
H0) < Qull +eel = a+ [d+a2—a)) & [ o dv+o(e?)

By taking € small enough, we get pu(a) < o for all @ > d/(q — 2)
Optimizing on the value of € > 0 (not necessarily small) provides an
interesting test function...

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere

p= pla)

n= Nasymp(
p= px()
n=a«

J. Dolbeault
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The sphere

Consider the Schrédinger operator —A — V and the energy

Elu] ::/ |Vu|2—/ V |ul?
sd s

> /Sd IVul? = pulfoey = = alp) llullfagey i o= VillLogse)

Theorem (Dolbeault-Esteban-Laptev)

Let d > 1, p € (max{1,d/2},+00). Then there exists a convex
increasing function o s.t. a(p) = p if p € [0, % (p—1)] and ap) > p if
he (2(p—1, +00)

M(=A = V)| < a(||V]leee) ¥V eLP(S)

For large values of 11, we have o(pu)P~% = Lilj_g 4 (Fg,a )P (1 +0(1))
29
and the above estimate is optimal

If p=d/2 and d > 3, the inequality holds with a(p) = p iff pu € [0, au]
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The sphere

A Keller-Lieb-Thirring inequality

Corollary (Dolbeault-Esteban-Laptev)

Letd >1~y=p—d/2

Ma(-A- VP St [Vt e e —
S

IVl et e
if either v > max{O 1—d/2} ory=1/2andd =1

However, if = ||V|| Ld(2y+d—2), then we have

L‘V*d Sd) =2
Pa(-a- vyt < [ v

Sd
for any v > max{0,1 — d/2} and this estimate is optimal

L} ; is the optimal constant in the Euclidean one bound state ineq.
(-4 - ¢)|" <L / $717% ax
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The sphere

Another interpolation inequality (I1)

Let d > 1 and v > d/2 and assume that Llimd is the optimal
constant in

M(A+9)TT < Llfmd/ ¢%—'y dx
Rd

= 727_6! and =_9 _,_
I a2 P=o—q 77

N

Theorem (Dolbeault-Esteban-Laptev)

- d_ —1—
(M(-a+wW) TSI, /Ssz T oas =W 1||Lj7%(8d)—>oo

However, if v > % +1and g =| w-1t <

Lg(2qy—
g S92 IH2)

(M(-A+ W)z g/ Wi
Sd

and this estimate is optimal

A
J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere

K54 is the optimal constant in the Gagliardo-Nirenberg-Sobolev
inequality

Ko 1VIIE2ay S IVVIT2 ey + VI aqsy Vv € H'(RY)

« \ 7 2y—d ,_ 2
andﬁ Y E —(Kq’d) Wlthq_22’y’yd+2’5'7ﬁzd—2)

Lemma (Dolbeault-Esteban-Laptev)

Let g € (0,2) and d > 1. There exists a concave increasing function v
v(B)<B VB>0 and v(B)<B VBEe (3%, +)
v(B)=p VBe[0,5%] if qell,2)

v(B) = K 4 (kqa B)° (L+0(1)) as B — +oo
such that

||VU||iz(Sd) +6 ||U||iq(sd) > v(B) ||U||i2(sd) Vue HY(SY)

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere

The threshold case: g = 2

Lemma (Dolbeault-Esteban-Laptev)

Let p > max{1,d/2}. There exists a concave nondecreasing function &
fla)=a YVae(0,a) and &(a)<a Ya>ap

for some ag € [ (p— 1), 4 p|, and &(a) ~ al"% a5 a— 400

such that, for any u € H'(S) with ||ul|p2se) = 1

/d |ul? log [u[? dvg + p log (£22) < p log (1 +3 ||V“||i2(sd))
s

Corollary (Dolbeault-Esteban-Laptev)

e A(-A-W)/a ~

1/
<gy (L)

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.




The sphere
Riemannian manifolds
The line

Improvements of the inequalities
(subcritical range)

@ as long as the exponent is either in the range (1,2) or in the range
(2,2*), on can establish improved inequalities

[Dolbeault-Esteban-Kowalczyk-Loss]

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere

What does “improvement” mean ?

An improved inequality is

d ([0l 50, ¢<W> <i VueHY(SY)

for some function ® such that ®(0) =0, ¢’(0) =1, ¢’ > 0 and
®(s) > s for any s. With W(s) :=s— d71(s)

i—de>dulfa (Vo o) o —

Lemma (Generalized Csiszdr-Kullback inequalities)

d
Vel = 5= [Nl Il o)

el C o) _
=>d ||“||i2(Sd) (Woo) (C o ||15 — ||“r - “r”iq(Sd)> Vue HY(SY)

s(p) := max{2, p} and p € (1,2): q(p) :=2/p, r(p) := p; p € (2,4):
g=p/2,r=2p>4 q=p/(p—2),r=p—2

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere

Linear flow: improved Bakry-Emery method

/712
Wt:£W+/€|W|
With 2¢ = 241
d—1\2 p—1
= ~1)(2*-p) if 1 == if d=1
wi=(953) G-D@E* -p) it a1 =P it
If p € [1,2) U (2,2%] and w is a solution to (2), then
d 1|WI4 |e/|2
—(i— de) < — drg < —yq —————
dt(I €)= Pyl/_l w2 V4= 711—(p—2)e
Recalling that ¢’ = — i, we get a differential inequality
e/l+ del>’y |el|2
=M1 (p-2)e

which after integration implies an inequality of the form

d (e(0)) < i(0)

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere

712
Wt_W2—2ﬂ(£ +K|W| )
w

Forall pe[1,2*], k=8(p—2)+1, & 1W’3P dvg =0
1
b e [ (0Pt 5 (w2 =) ) g 25 1 B2

For all w € H!((~1,1), dvg), such that f_ll wo dug =1

/1 w'[* 1 [ 1(wWPY P dvg [2) WP dug
— v dyyg > 3
1 w2 ﬁQ 1 283

(f_l w dl/d)

.. but there are conditions on

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere

Admissible (p, §) for d =1, 2

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere

Admissible (p, 3) for d = 3, 4
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The sphere
Riemannian manifolds

The line

Admissible (p, 3) for d =5, 10

J. Dolbeault
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The sphere
Riemannian manifolds
The line

Riemannian manifolds

Q@ no sign is required on the Ricci tensor and an improved integral
criterion is established

Q@ the flow explores the energy landscape... and shows the
non-optimality of the improved criterion

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



Riemannian manifolds

Riemannian manifolds with positive curvature

(9, g) is a smooth compact connected Riemannian manifold
dimension d, no boundary, A, is the Laplace-Beltrami operator

vol(9M) = 1, R is the Ricci tensor, Ay = A\1(—Ay)

pi= |9r}tfgelgj_liﬁ(f7f)

Theorem (Licois-Véron, Bakry-Ledoux)

Assume d > 2 and p > 0. If

_1)2 _
A<A-0On+0-20 where g 4= (P=1)

>0

d—1 dd+2)+p—1

then for any p € (2,2*), the equation
A _
—Agv—i—ﬁ (v—vP 1) =0

has a unique positive solution v € C2(IM): v =1

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



Riemannian manifolds

Riemannian manifolds: first improvement

Theorem (Dolbeault-Esteban-Loss)

For any p € (1,2) U (2,2*)

0d
[(1 —0) (Agu)? + —— R(Vu, vu)] dvg
. m d—1
O0<A< A= inf
uEH? (9) Jom IV ul? d v,

there is a unique positive solution in C2(9M): u =1

limp—1, 8(p) = 0= limp_,1, A(p) = A1 if p is bounded
M=A=dp/(d—1)=dif M =S since p=d — 1

dp
— — < <
(=M +0 = <A<\
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Riemannian manifolds

Riemannian manifolds: second improvement

(d=12(p—1)
dd+2)+p-1

Hgu denotes Hessian of u and 6 =

g (d-=1)(p—1) [VuedVu g |Vu]?
= Hyu— & Agu— ~E
Qeui=Heu = Bev = 370 u d u
6d
(1=0) [ dgupdv+ 35 [ [1Quul? + (7. V)
A= in 2
uEH(IM)\ {0} / VP dv,

Theorem (Dolbeault-Esteban-Loss)

Assume that A, > 0. For any p € (1,2) U (2,2*), the equation has a
unique positive solution in C?(IMN) if X € (0,A,): u=1
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Riemannian manifolds

Optimal interpolation inequality

For any p € (1,2) U(2,2*) or p=2*if d > 3

A
19V ey > 52 |IVEscm) vl | Vv € M)

Theorem (Dolbeault-Esteban-Loss)

Assume N, > 0. The above inequality holds for some X\ = N € [A, M]
If Ay < A1, then the optimal constant A\ is such that

AN <A< )\

Ifp=1, then N = )\;

Using v =1+ e as a test function where ¢ we get A < \;
A minimum of

v IV = 525 | IVIeom) = IVIE2om

under the constraint ||v||ppony = 1 is negative if A > Ay
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Riemannian manifolds

The flow

The key tools the flow

2
ut—uHﬁ(Agumﬂ) , k=1+8(p-2)
u

If v = v, then £||v| o) = 0 and the functional

o= [ SR | [ ([ ran)

is monotone decaying
Q@ J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on

manifolds with positive curvature, J. Funct. Anal., 254 (2008),
pp- 593-611. Also see C. Villani, Optimal Transport, Old and New
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Riemannian manifolds

Elementary observations (1/2)

Let d > 2, u € C?(9M), and consider the trace free Hessian

Leu:=Hgzu— %Agu

d d
/ (Agu)2dvg:—/ ||Lgu||2dvg—|——/ R(Vu,Vu)dv,
o d—1 Jou d—1 Jou

Based on the Bochner-Lichnerovicz-Weitzenbock formula

1
54 |Vul? = |Hpul|? + V(Agu) - Vu+R(Vu, Vu)
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Riemannian manifolds

Elementary observations (2/2)

2
/Agu 7 dvg
m

u

_d |Vul* 2d Vu® Vu
*d—u/MTdVg‘d—u/m[Lg“]' [7]"

Lemma

/ (Agu)?dv, > Al/ |VulPdv, YueH?*(9M)
m m

and \1 is the optimal constant in the above inequality

\
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Riemannian manifolds

The key estimates

[Vul® [Vul*
T—H@(ﬁ—l) 2 dvg

Glu] = /m [9 (Agu)® + (k + 6 — 1) Agu

—(1—9)/m (Agu)2dvg—g[u]+)\/m|Vu|2dvg

_ 2
Qzu::Lgu—lu(n—i—ﬁ—l) {VU@Vu_g |V5| }

gl = %5 [ [ 10 ave + [ %(vu.v0)av]-u [ Tia
1,d-1 d
With“’::5(d—+2)2(1@'+ﬂ—1)2—/€(6—1) (“+5—1)d+2
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Riemannian manifolds

The end of the proof

Assume that d > 2. If 6 = 1, then p is nonpositive if

B-(p) <B < B+(p) Ype(l,27)

2
where 3y 1= 2EVP'=2 witha =2 — p+ M} and b = &3P

2a d+2 d+2
Notice that 8_(p) < B+(p) if p € (1,2*) and F_(2%) = B+(2*)
0 (d-1)2(p-1) and B d+2

d(d+2)+p—1 T d+3-p

Proposition

Letd>2, pe(1,2)U(2,2%) (p#5ord+#2)
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The line

One-dimensional Gagliardo-Nirenberg-Sobolev inequalities

1FllLogz) < Can(p) [ F/ 12y 1FllTaE) i P € (2,00)
12y < Can(p) I oy 1flTahy i P € (1,2)

p

w1th0——pandn*2+p

The threshold case corresponding to the limit as p — 2 is the
logarithmic Sobolev inequality

v
) 2 p 12

Ji v log { e ) dx < 5 [[ultzqe) log ( 7% e
L2(R) L2(R)

If p> 2, u(x) = (cosh x)fﬁ solves

—(p=2u" +4u—2p[uffPu=0

If p € (1,2) consider u.(x) = (cosx)ﬁ7 x € (—7m/2,7/2)
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The line

Mass transportation

Theorem (Dolbeault-Esteban-Laptev-Loss)

If p € (2,00), we have

2(p=2) 2(p+2)
f G3p”7+—22 dy ||f/||L32?R2) ”fHIjz(i;)
sup — =Cpin f
S (Ju G lyl2 dy) = (fy G dy) ™= Iz
and if p € (1,2), we obtain
Gﬁ dy ||f'|| ||f||
sup ) fR s = Cp f +2
¢ (JeGlyl dy) (f]R G dy) i ||f||L2(]R)

for some explicit numerical constant c,
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The line

Flow

Let us define on H'(R) the functional
4
Flv] = IV [If2my + -2r IVIE2) — ClIvIEsm) st Flud =0

With z(x) := tanh x, consider the flow

1—2 /12
_ v " 2[3 ! B|V| 2
Vt_if—l_zz {v +—p_2zv+2 y —|——p_2v

Theorem (Dolbeault-Esteban-Laptev-Loss)

Let p € (2,00). Then
d :
E}-[V(t)] <0 and tllm Flv(t)] =0

%]:[V(t)] =0 <= w(x)=u(x—x)

Similar result for p € (1, 2)
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The line

The inequality (p > 2) and the ultraspherical operator

@ The problem on the line is equivalent to the critical problem for the
ultraspherical operator

/|v|2 dX—|— /|v|2 dx>C</|v|pdx)
With

z(x) =tanhx, v,=(1- zz)ﬁ and  v(x) = v (x) f(z(x))
equality is achieved for f = 1 and, if we let v(z) := 1 — 22, then

1 2p 1 2p 1 5
/1|f'|21/d1/p+7(p_2)2 /1|f|2 dv, > b_2p (/1|f|” du,,)

where dv, denotes the probability measure dv,(z) := Cl Vi dz
P

d= Tpg — P= ﬂ
The change of variables amounts to the stereographic projection
composed with the Emden-Fowler transformation

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere
Riemannian manifolds

The line

A summary
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The line

Q@ the sphere: the flow tells us what to do, and provides a simple
proof (choice of the exponents) once the problem is reduced to the
ultraspherical setting

Q@ the spectral point of view on the inequality: how to measure the
deviation with respect to the semi-classical estimates, a nice example
of bifurcation (and symmetry breaking)

Q@ Riemannian manifolds: no sign is required on the Ricci tensor and
an improved integral criterion is established. We extend the theory
from pointwise criteria to a non-local Schrédinger type estimate
(Rayleigh quotient). The flow explores the energy landscape... and
generically shows the non-optimality of the improved criterion

Q@ the flow is a nice way of exploring an energy space. Rigidity result
tell you that a local result is actually global because otherwise the
flow would relate (far away) extremal points while keeping the energy
minimal
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Thank you for your attention !

J. Dolbeault
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