
The sphere
Riemannian manifolds

The line

Interpolation inequalities: rigidity results,

nonlinear flows and applications

Jean Dolbeault

http://www.ceremade.dauphine.fr/∼dolbeaul

Ceremade, Université Paris-Dauphine
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Scope (1/3): rigidity results

Rigidity results for semilinear elliptic PDEs on manifolds...

Let (M, g) be a smooth compact connected Riemannian manifold
of dimension d ≥ 2, no boundary, ∆g is the Laplace-Beltrami operator
the Ricci tensor R has good properties (which ones ?)

Let p ∈ (2, 2∗), with 2∗ = 2 d
d−2 if d ≥ 3, 2∗ = ∞ if d = 2

For which values of λ > 0 the equation

−∆gv + λ v = vp−1

has a unique positive solution v ∈ C 2(M): v ≡ λ
1

p−2 ?

A typical rigidity result is: there exists λ0 > 0 such that

v ≡ λ
2

p−2 if λ ∈ (0, λ0]
Assumptions ?
Optimal λ0 ?

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Scope (2/3): interpolation inequalities

Still on a smooth compact connected Riemannian manifold (M, g)
we assume that volg (M) = 1

For any p ∈ (1, 2) ∪ (2, 2∗) or p = 2∗ if d ≥ 3, consider the
interpolation inequality

‖∇v‖2
L2(M) ≥

λ

p − 2

[

‖v‖2
Lp(M) − ‖v‖2

L2(M)

]

∀ v ∈ H1(M)

What is the largest possible value of λ ?

using u = 1 + ε ϕ as a test function proves that λ ≤ λ1

the minimum of v 7→ ‖∇v‖2
L2(M) − λ

p−2

[

‖v‖2
Lp(M) − ‖v‖2

L2(M)

]

under the constraint ‖v‖Lp(M) = 1 is negative if λ is above the rigidity
threshold

the threshold case p = 2 is the logarithmic Sobolev inequality

‖∇u‖2
L2(M) ≥ λ

∫

M

u2 log

(

u2

‖u‖2
L2(M)

)

dvg ∀ u ∈ H1(M)

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere
Riemannian manifolds

The line

Scope (3/3): flows

We shall consider a flow of porous media / fast diffusion type

ut = u2−2 β

(

∆gu + κ
|∇u|2

u

)

, κ = 1 + β (p − 2)

If v = uβ , then d
dt
‖v‖Lp(M) = 0 and the functional

F [u] :=

∫

M

|∇(uβ)|2 d vg +
λ

p − 2

[

∫

M

u2 β d vg −
(
∫

M

uβ p d vg

)2/p
]

is monotone decaying as long as λ is not too big. Hence, if the limit
as t → ∞ is 0 (convergence to the constants), we know that F [u] ≥ 0

Structure ? Link with computations in the rigidity approach

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Some references (1/2)

Some references (incomplete) and goals

1 rigidity results and elliptic PDEs: [Gidas-Spruck 1981],
[Bidaut-Véron & Véron 1991], [Licois & Véron 1995]
−→ systematize and clarify the strategy

2 semi-group approach and Γ2 or carré du champ method:
[Bakry-Emery 1985], [Bakry & Ledoux 1996], [Bentaleb et al.,
1993-2010], [Fontenas 1997], [Brouttelande 2003], [Demange, 2005
& 2008]
−→ emphasize the role of the flow, get various improvements
−→ get rid of pointwise constraints on the curvature, discuss
optimality

3 harmonic analysis, duality and spectral theory: [Lieb 1983],
[Beckner 1993]
−→ apply results to get new spectral estimates

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Outline

1 The case of the sphere

Inequalities on the sphere
Flows on the sphere
Spectral consequences
Improved inequalities

2 The case of Riemannian manifolds

Flows
Spectral consequences

3 Inequalities on the line

Variational approaches
Mass transportation
Flows

Joint work with:

Maria J. Esteban, Michal Kowalczyk, Ari Laptev and Michael Loss

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Conferences/
⊲ Lectures

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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The sphere

The case of the sphere as a simple example

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere
Riemannian manifolds

The line

Inequalities on the sphere

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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A family of interpolation inequalities on the sphere

The following interpolation inequality holds on the sphere:

p − 2

d

∫

Sd

|∇u|2 d vg+

∫

Sd

|u|2 d vg ≥
(
∫

Sd

|u|p d vg

)2/p

∀ u ∈ H1(Sd , dvg )

for any p ∈ (2, 2∗] with 2∗ = 2 d
d−2 if d ≥ 3

for any p ∈ (2,∞) if d = 2

Here dvg is the uniform probability measure: vg (Sd ) = 1

1 is the optimal constant, equality achieved by constants
p = 2∗ corresponds to Sobolev’s inequality...

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Stereographic projection
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Sobolev inequality

The stereographic projection of S
d ⊂ R

d × R ∋ (ρ φ, z) onto R
d :

to ρ2 + z2 = 1, z ∈ [−1, 1], ρ ≥ 0, φ ∈ S
d−1 we associate x ∈ R

d such
that r = |x |, φ = x

|x|

z =
r2 − 1

r2 + 1
= 1 − 2

r2 + 1
, ρ =

2 r

r2 + 1

and transform any function u on S
d into a function v on R

d using

u(y) =
(

r
ρ

)
d−2

2 v(x) =
(

r2+1
2

)
d−2

2 v(x) = (1 − z)−
d−2

2 v(x)

p = 2∗, Sd = 1
4 d (d − 2) |Sd |2/d : Euclidean Sobolev inequality

∫

Rd

|∇v |2 dx ≥ Sd

[
∫

Rd

|v | 2 d
d−2 dx

]

d−2
d

∀ v ∈ D1,2(Rd )

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Extended inequality

∫

Sd

|∇u|2 d vg ≥ d

p − 2

[

(
∫

Sd

|u|p d vg

)2/p

−
∫

Sd

|u|2 d vg

]

∀ u ∈ H1(Sd , dµ)

is valid
for any p ∈ (1, 2) ∪ (2,∞) if d = 1, 2
for any p ∈ (1, 2) ∪ (2, 2∗] if d ≥ 3

Logarithmic Sobolev inequality
∫

Sd

|∇u|2 d vg ≥ d

2

∫

Sd

|u|2 log

( |u|2
∫

Sd |u|2 d vg

)

d vg ∀ u ∈ H1(Sd , dµ)

case p = 2

Poincaré inequality
∫

Sd

|∇u|2 d vg ≥ d

∫

Sd

|u − ū|2 d vg with ū :=

∫

Sd

u d vg ∀ u ∈ H1(Sd , dµ)

case p = 1
J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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A spectral approach when p ∈ (1, 2) – 1st step

[Dolbeault-Esteban-Kowalczyk-Loss] adapted from [Beckner] (case of
Gaussian measures).

Nelson’s hypercontractivity result. Consider the heat equation

∂f

∂t
= ∆g f

with initial datum f (t = 0, ·) = u ∈ L2/p(Sd ), for some p ∈ (1, 2], and
let F (t) := ‖f (t, ·)‖Lp(t)(Sd ). The key computation goes as follows.

F ′

F
=

p′

p2 F p

[
∫

Sd

v2 log

(

v2

∫

Sd v2 d vg

)

d vg + 4
p − 1

p′

∫

Sd

|∇v |2 d vg

]

with v := |f |p(t)/2. With 4 p−1
p′

= 2
d

and t∗ > 0 e such that p(t∗) = 2,
we have

‖f (t∗, ·)‖L2(Sd ) ≤ ‖u‖L2/p(Sd ) if
1

p − 1
= e2 d t∗

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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A spectral approach when p ∈ (1, 2) – 2nd step

Spectral decomposition. Let u =
∑

k∈N
uk be a spherical harmonics

decomposition, λk = k (d + k − 1), ak = ‖uk‖2
L2(Sd ) so that

‖u‖2
L2(Sd ) =

∑

k∈N
ak and ‖∇u‖2

L2(Sd ) =
∑

k∈N
λk ak

‖f (t∗, ·)‖2
L2(Sd ) =

∑

k∈N

ak e−2 λk t∗

‖u‖2
L2(Sd ) − ‖u‖2

Lp(Sd )

2 − p
≤

‖u‖2
L2(Sd ) − ‖f (t∗, ·)‖2

L2(Sd )

2 − p

=
1

2 − p

∑

k∈N∗

λk ak

1 − e−2 λk t∗

λk

≤ 1 − e−2 λ1 t∗

(2 − p)λ1

∑

k∈N∗

λk ak =
1 − e−2 λ1 t∗

(2 − p)λ1
‖∇u‖2

L2(Sd )

The conclusion easily follows if we notice that λ1 = d , and

e−2 λ1 t∗ = p − 1 so that 1−e−2 λ1 t∗

(2−p) λ1
= 1

d

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Optimality: a perturbation argument

The optimality of the constant can be checked by a Taylor
expansion of u = 1 + ε v at order two in terms of ε > 0, small

For any p ∈ (1, 2∗] if d ≥ 3, any p > 1 if d = 1 or 2, it is
remarkable that

Q[u] :=
(p − 2) ‖∇u‖2

L2(Sd )

‖u‖2
Lp(Sd )

− ‖u‖2
L2(Sd )

≥ inf
u∈H1(Sd ,dµ)

Q[u] =
1

d

is achieved by Q[1 + ε v ] as ε → 0 and v is an eigenfunction associated
with the first nonzero eigenvalue of ∆g

p > 2 no simple proof based on spectral analysis: [Beckner], an
approach based on Lieb’s duality, the Funk-Hecke formula and some
(non-trivial) computations

elliptic methods / Γ2 formalism of Bakry-Emery / flow... they are
the same (main contribution) and can be simplified (!) As a side
result, you can go beyond these approaches and discuss optimality

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Schwarz foliated symmetry and the ultraspherical setting

(ξ0, ξ1, . . . ξd) ∈ S
d , ξd = z,

∑d
i=0 |ξi |2 = 1 [Smets-Willem]

Lemma

Up to a rotation, any minimizer of Q depends only on ξd

• Let dσ(θ) := (sin θ)d−1

Zd
dθ, Zd :=

√
π

Γ(
d
2 )

Γ(
d+1

2 )
: ∀ v ∈ H1([0, π], dσ)

p − 2

d

∫ π

0

|v ′(θ)|2 dσ +

∫ π

0

|v(θ)|2 dσ ≥
(
∫ π

0

|v(θ)|p dσ

)
2
p

• Change of variables z = cos θ, v(θ) = f (z)

p − 2

d

∫ 1

−1

|f ′|2 ν dνd +

∫ 1

−1

|f |2 dνd ≥
(
∫ 1

−1

|f |p dνd

)

2
p

where νd (z) dz = dνd(z) := Z−1
d ν

d
2 −1 dz, ν(z) := 1 − z2

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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The ultraspherical operator

With dνd = Z−1
d ν

d
2 −1 dz, ν(z) := 1 − z2, consider the space

L2((−1, 1), dνd) with scalar product

〈f1, f2〉 =

∫ 1

−1

f1 f2 dνd , ‖f ‖p =

(
∫ 1

−1

f p dνd

)

1
p

The self-adjoint ultraspherical operator is

L f := (1 − z2) f ′′ − d z f ′ = ν f ′′ +
d

2
ν′ f ′

which satisfies 〈f1,L f2〉 = −
∫ 1

−1
f ′1 f ′

2 ν dνd

Proposition

Let p ∈ [1, 2) ∪ (2, 2∗], d ≥ 1

−〈f ,L f 〉 =

∫ 1

−1

|f ′|2 ν dνd ≥ d
‖f ‖2

p − ‖f ‖2
2

p − 2
∀ f ∈ H1([−1, 1], dνd)

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Flows on the sphere

Heat flow and the Bakry-Emery method

Fast diffusion (porous media) flow and the choice of the exponents

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Heat flow and the Bakry-Emery method

With g = f p , i.e. f = gα with α = 1/p

(Ineq.) −〈f ,L f 〉 = −〈gα,L gα〉 =: I[g ] ≥ d
‖g‖2 α

1 − ‖g 2 α‖1

p − 2
=: F [g ]

Heat flow
∂g

∂t
= L g

d

dt
‖g‖1 = 0 ,

d

dt
‖g 2 α‖1 = − 2 (p−2) 〈f ,L f 〉 = 2 (p−2)

∫ 1

−1

|f ′|2 ν dνd

which finally gives

d

dt
F [g(t, ·)] = − d

p − 2

d

dt
‖g 2 α‖1 = − 2 d I[g(t, ·)]

Ineq. ⇐⇒ d

dt
F [g(t, ·)] ≤ − 2 d F [g(t, ·)] ⇐=

d

dt
I[g(t, ·)] ≤ − 2 d I[g(t, ·)]

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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The equation for g = f p can be rewritten in terms of f as

∂f

∂t
= L f + (p − 1)

|f ′|2
f

ν

−1

2

d

dt

∫ 1

−1

|f ′|2 ν dνd =
1

2

d

dt
〈f ,L f 〉 = 〈L f ,L f 〉+(p−1) 〈 |f

′|2
f

ν,L f 〉

d

dt
I[g(t, ·)] + 2 d I[g(t, ·)] =

d

dt

∫ 1

−1

|f ′|2 ν dνd + 2 d

∫ 1

−1

|f ′|2 ν dνd

= − 2

∫ 1

−1

(

|f ′′|2 + (p − 1)
d

d + 2

|f ′|4
f 2

− 2 (p − 1)
d − 1

d + 2

|f ′|2 f ′′

f

)

ν2 dνd

is nonpositive if

|f ′′|2 + (p − 1)
d

d + 2

|f ′|4
f 2

− 2 (p − 1)
d − 1

d + 2

|f ′|2 f ′′

f

is pointwise nonnegative, which is granted if
[

(p − 1)
d − 1

d + 2

]2

≤ (p − 1)
d

d + 2
⇐⇒ p ≤ 2 d2 + 1

(d − 1)2
<

2 d

d − 2
= 2∗

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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... up to the critical exponent: a proof on two slides

[

d

dz
,L
]

u = (L u)
′ − L u′ = −2 z u′′ − d u′

∫ 1

−1

(L u)2 dνp =

∫ 1

−1

|u′′|2 ν2 dνp + d

∫ 1

−1

|u′|2 ν dνp

∫ 1

−1

(L u)
|u′|2
u

ν dνp =
d

d + 2

∫ 1

−1

|u′|4
u2

ν2 dνp − 2
d − 1

d + 2

∫ 1

−1

|u′|2 u′′

u
ν2 dνp

On (−1, 1), let us consider the porous medium (fast diffusion) flow

ut = u2−2β

(

L u + κ
|u′|2
u

ν

)

If κ = β (p − 2) + 1, the Lp norm is conserved

d

dt

∫ 1

−1

uβp dνp = β p (κ − β (p − 2) − 1)

∫ 1

−1

uβ(p−2) |u′|2 ν dνp = 0

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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f = uβ , ‖f ′‖2
L2(Sd ) + d

p−2

(

‖f ‖2
L2(Sd ) − ‖f ‖2

Lp(Sd )

)

≥ 0 ?

A := − 1

2 β2

d

dt

∫ 1

−1

(

|(uβ)′|2 ν +
d

p − 2

(

u2β − u2β
)

)

dνp

=

∫ 1

−1

(

L u + (β − 1)
|u′|2
u

ν

)(

L u + κ
|u′|2
u

ν

)

dνp

+
d

p − 2

κ − 1

β

∫ 1

−1

|u′|2 ν dνp

=

∫ 1

−1

|u′′|2 ν2 dνp − 2
d − 1

d + 2
(κ + β − 1)

∫ 1

−1

u′′ |u′|2
u

ν2 dνp

+

[

κ (β − 1) +
d

d + 2
(κ + β − 1)

]
∫ 1

−1

|u′|4
u2

ν2 dνp

=

∫ 1

−1

∣

∣

∣

∣

u′′ − p + 2

6 − p

|u′|2
u

∣

∣

∣

∣

2

ν2 dνp ≥ 0 if p = 2∗ and β =
4

6 − p

A is nonnegative for some β if
8 d2

(d + 2)2
(p − 1) (2∗ − p) ≤ 0

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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the rigidity point of view

Which computation have we done ? ut = u2−2β
(

L u + κ |u′|2
u

ν
)

−L u − (β − 1)
|u′|2
u

ν +
λ

p − 2
u =

λ

p − 2
uκ

Multiply by L u and integrate

...

∫ 1

−1

L u uκ dνp = − κ

∫ 1

−1

uκ |u′|2
u

dνp

Multiply by κ |u′|2
u

and integrate

... = + κ

∫ 1

−1

uκ |u′|2
u

dνp

The two terms cancel and we are left only with the two-homogenous
terms.

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Spectral consequences

A quantitative deviation with respect to the semi-classical regime

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Some references (2/2)

Consider the Schrödinger operator H = −∆ − V on R
d and denote by

(λk )k≥1 its eigenvalues

Euclidean case [Keller, 1961]

|λ1|γ ≤ L1
γ,d

∫

Rd

V
γ+ d

2
+

[Lieb-Thirring, 1976]

∑

k≥1

|λk |γ ≤ Lγ,d

∫

Rd

V
γ+ d

2
+

γ ≥ 1/2 if d = 1, γ > 0 if d = 2 and γ ≥ 0 if d ≥ 3 [Weidl], [Cwikel],
[Rosenbljum], [Aizenman], [Laptev-Weidl], [Helffer], [Robert],
[Dolbeault-Felmer-Loss-Paturel]... [Dolbeault-Laptev-Loss 2008]

Compact manifolds: log Sobolev case: [Federbusch], [Rothaus];
case γ = 0 (Rozenbljum-Lieb-Cwikel inequality): [Levin-Solomyak];
[Lieb], [Levin], [Ouabaz-Poupaud]... [Ilyin]

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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An interpolation inequality (I)

Lemma (Dolbeault-Esteban-Laptev)

Let q ∈ (2, 2∗). Then there exists a concave increasing function
µ : R

+ → R
+ with the following properties

µ(α) = α ∀α ∈
[

0, d
q−2

]

and µ(α) < α ∀α ∈
(

d
q−2 , +∞

)

µ(α) = µasymp(α) (1+o(1)) as α → +∞ , µasymp(α) :=
Kq,d

κq,d
α1−ϑ

such that

‖∇u‖2
L2(Sd ) + α ‖u‖2

L2(Sd ) ≥ µ(α) ‖u‖2
Lq(Sd ) ∀ u ∈ H1(Sd )

If d ≥ 3 and q = 2∗, the inequality holds with µ(α) = min {α, α∗},
α∗ := 1

4 d (d − 2)

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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µasymp(α) :=
Kq,d

κq,d
α1−ϑ, ϑ := d q−2

2 q
corresponds to the

semi-classical regime and Kq,d is the optimal constant in the
Euclidean Gagliardo-Nirenberg-Sobolev inequality

Kq,d ‖v‖2
Lq(Rd ) ≤ ‖∇v‖2

L2(Rd ) + ‖v‖2
L2(Rd ) ∀ v ∈ H1(Rd )

Let ϕ be a non-trivial eigenfunction of the Laplace-Beltrami
operator corresponding the first nonzero eigenvalue

−∆ϕ = d ϕ

Consider u = 1 + ε ϕ as ε → 0 Taylor expand Qα around u = 1

µ(α) ≤ Qα[1 + ε ϕ] = α +
[

d + α (2 − q)
]

ε2

∫

Sd

|ϕ|2 d vg + o(ε2)

By taking ε small enough, we get µ(α) < α for all α > d/(q − 2)
Optimizing on the value of ε > 0 (not necessarily small) provides an
interesting test function...

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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! " # $ %& %! %"

!

"

#

$

%&

%!

%"

α

µ

µ = µ(α)

µ = α

µ = µ±(α)

µ = µasymp(α)

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Consider the Schrödinger operator −∆ − V and the energy

E[u] :=

∫

Sd

|∇u|2 −
∫

Sd

V |u|2

≥
∫

Sd

|∇u|2 − µ ‖u‖2
Lq(Sd ) ≥ −α(µ) ‖u‖2

L2(Sd ) if µ = ‖V+‖Lp(Sd )

Theorem (Dolbeault-Esteban-Laptev)

Let d ≥ 1, p ∈
(

max{1, d/2}, +∞
)

. Then there exists a convex

increasing function α s.t. α(µ) = µ if µ ∈
[

0, d
2 (p − 1)

]

and α(µ) > µ if

µ ∈
(

d
2 (p − 1), +∞

)

|λ1(−∆ − V )| ≤ α
(

‖V ‖Lp(Sd )

)

∀V ∈ Lp(Sd )

For large values of µ, we have α(µ)p−
d
2 = L1

p− d
2 ,d

(κq,d µ)p (1 + o(1))

and the above estimate is optimal
If p = d/2 and d ≥ 3, the inequality holds with α(µ) = µ iff µ ∈ [0, α∗]

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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A Keller-Lieb-Thirring inequality

Corollary (Dolbeault-Esteban-Laptev)

Let d ≥ 1,γ = p − d/2

|λ1(−∆ − V )|γ . L1
γ,d

∫

Sd

V γ+ d
2 as µ = ‖V ‖

L
γ+ d

2 (Sd )
→ ∞

if either γ > max{0, 1 − d/2} or γ = 1/2 and d = 1

However, if µ = ‖V ‖
L

γ+ d
2 (Sd )

≤ 1
4 d (2 γ + d − 2), then we have

|λ1(−∆ − V )|γ+ d
2 ≤

∫

Sd

V γ+ d
2

for any γ ≥ max{0, 1 − d/2} and this estimate is optimal

L1
γ,d is the optimal constant in the Euclidean one bound state ineq.

|λ1(−∆ − φ)|γ ≤ L1
γ,d

∫

Rd

φ
γ+ d

2
+ dx

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Another interpolation inequality (II)

Let d ≥ 1 and γ > d/2 and assume that L1
−γ,d is the optimal

constant in

λ1(−∆ + φ)−γ ≤ L1
−γ,d

∫

Rd

φ
d
2 −γ dx

q = 2
2 γ − d

2 γ − d + 2
and p =

q

2 − q
= γ − d

2

Theorem (Dolbeault-Esteban-Laptev)

(

λ1(−∆ + W )
)−γ

. L1
−γ,d

∫

Sd

W
d
2 −γ as β = ‖W−1‖−1

L
γ−

d
2 (Sd )

→ ∞

However, if γ ≥ d
2 + 1 and β = ‖W−1‖−1

L
γ−

d
2 (Sd )

≤ 1
4 d (2 γ − d + 2)

(

λ1(−∆ + W )
)

d
2 −γ ≤

∫

Sd

W
d
2 −γ

and this estimate is optimal
J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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K∗
q,d is the optimal constant in the Gagliardo-Nirenberg-Sobolev

inequality

K∗
q,d ‖v‖2

L2(Rd ) ≤ ‖∇v‖2
L2(Rd ) + ‖v‖2

Lq(Rd ) ∀ v ∈ H1(Rd )

and L 1
−γ,d :=

(

K∗
q,d

)−γ

with q = 2 2 γ−d
2 γ−d+2 , δ := 2 q

2 d−q (d−2)

Lemma (Dolbeault-Esteban-Laptev)

Let q ∈ (0, 2) and d ≥ 1. There exists a concave increasing function ν

ν(β) ≤ β ∀β > 0 and ν(β) < β ∀β ∈
(

d
2−q

, +∞
)

ν(β) = β ∀β ∈
[

0, d
2−q

]

if q ∈ [1, 2)

ν(β) = K∗
q,d (κq,d β)δ (1 + o(1)) as β → +∞

such that

‖∇u‖2
L2(Sd ) + β ‖u‖2

Lq(Sd ) ≥ ν(β) ‖u‖2
L2(Sd ) ∀ u ∈ H1(Sd )

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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The threshold case: q = 2

Lemma (Dolbeault-Esteban-Laptev)

Let p > max{1, d/2}. There exists a concave nondecreasing function ξ

ξ(α) = α ∀ α ∈ (0, α0) and ξ(α) < α ∀α > α0

for some α0 ∈
[

d
2 (p − 1), d

2 p
]

, and ξ(α) ∼ α1− d
2 p as α → +∞

such that, for any u ∈ H1(Sd ) with ‖u‖L2(Sd ) = 1

∫

Sd

|u|2 log |u|2 d vg + p log
( ξ(α)

α

)

≤ p log
(

1 + 1
α ‖∇u‖2

L2(Sd )

)

Corollary (Dolbeault-Esteban-Laptev)

e−λ1(−∆−W )/α ≤ α

ξ(α)

(
∫

Sd

e− p W/α d vg

)1/p

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Improvements of the inequalities
(subcritical range)

as long as the exponent is either in the range (1, 2) or in the range
(2, 2∗), on can establish improved inequalities

[Dolbeault-Esteban-Kowalczyk-Loss]

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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What does “improvement” mean ?

An improved inequality is

d ‖u‖2
L2(Sd ) Φ

(

e
‖u‖2

L2(Sd )

)

≤ i ∀ u ∈ H1(Sd)

for some function Φ such that Φ(0) = 0, Φ′(0) = 1, Φ′ > 0 and
Φ(s) > s for any s. With Ψ(s) := s − Φ−1(s)

i − d e ≥ d ‖u‖2
L2(Sd ) (Ψ ◦ Φ)

(

e

‖u‖2
L2(Sd )

)

∀ u ∈ H1(Sd )

Lemma (Generalized Csiszár-Kullback inequalities)

‖∇u‖2
L2(Sd ) −

d

p − 2

[

‖u‖2
Lp(Sd ) − ‖u‖2

L2(Sd )

]

≥ d ‖u‖2
L2(Sd ) (Ψ ◦ Φ)

(

C
‖u‖2 (1−r)

Ls (Sd )

‖u‖2

L2(Sd )

‖ur − ūr‖2
Lq(Sd )

)

∀ u ∈ H1(Sd )

s(p) := max{2, p} and p ∈ (1, 2): q(p) := 2/p, r(p) := p; p ∈ (2, 4):
q = p/2, r = 2; p ≥ 4: q = p/(p − 2), r = p − 2

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Linear flow: improved Bakry-Emery method

wt = Lw + κ
|w ′|2
w

With 2♯ := 2 d2+1
(d−1)2

γ1 :=

(

d − 1

d + 2

)2

(p−1) (2# −p) if d > 1 , γ1 :=
p − 1

3
if d = 1

If p ∈ [1, 2) ∪ (2, 2♯] and w is a solution to (2), then

d

dt
(i − d e) ≤ − γ1

∫ 1

−1

|w ′|4
w 2

dνd ≤ − γ1
|e′|2

1 − (p − 2) e

Recalling that e′ = − i, we get a differential inequality

e′′ + d e′ ≥ γ1
|e′|2

1 − (p − 2) e

which after integration implies an inequality of the form

d Φ(e(0)) ≤ i(0)
J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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wt = w 2−2β

(

Lw + κ
|w ′|2
w

)

For all p ∈ [1, 2∗], κ = β (p − 2) + 1, d
dt

∫ 1

−1
wβp dνd = 0

− 1
2β2

d
dt

∫ 1

−1

(

|(wβ)′|2 ν + d
p−2

(

w 2β − w 2β
)

)

dνd ≥ γ
∫ 1

−1
|w ′|4
w2 ν2 dνd

Lemma

For all w ∈ H1
(

(−1, 1), dνd

)

, such that
∫ 1

−1
wβp dνd = 1

∫ 1

−1

|w ′|4
w 2

ν2 dνd ≥ 1

β2

∫ 1

−1 |(wβ)′|2 ν dνd

∫ 1

−1 |w ′|2 ν dνd

(

∫ 1

−1 w 2β dνd

)δ

.... but there are conditions on β

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Admissible (p, β) for d = 1, 2

0 4 6 8 10

!2

!1

1

2

0 4 6 8 10

!3

!2

!1

1

2

3
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Admissible (p, β) for d = 3, 4

0 1 3 4 5 6

!6

!4

!2

2

4

6

1 2 3 4

2

4

6

8

10

12

14
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Admissible (p, β) for d = 5, 10

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

5

6

1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0

2.5

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere
Riemannian manifolds

The line

Riemannian manifolds

no sign is required on the Ricci tensor and an improved integral
criterion is established

the flow explores the energy landscape... and shows the
non-optimality of the improved criterion

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Riemannian manifolds with positive curvature

(M, g) is a smooth compact connected Riemannian manifold
dimension d , no boundary, ∆g is the Laplace-Beltrami operator
vol(M) = 1, R is the Ricci tensor, λ1 = λ1(−∆g )

ρ := inf
M

inf
ξ∈Sd−1

R(ξ , ξ)

Theorem (Licois-Véron, Bakry-Ledoux)

Assume d ≥ 2 and ρ > 0. If

λ ≤ (1 − θ)λ1 + θ
d ρ

d − 1
where θ =

(d − 1)2 (p − 1)

d (d + 2) + p − 1
> 0

then for any p ∈ (2, 2∗), the equation

−∆gv +
λ

p − 2

(

v − vp−1
)

= 0

has a unique positive solution v ∈ C 2(M): v ≡ 1

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Riemannian manifolds: first improvement

Theorem (Dolbeault-Esteban-Loss)

For any p ∈ (1, 2) ∪ (2, 2∗)

0 < λ < λ⋆ = inf
u∈H2 (M)

∫

M

[

(1 − θ) (∆g u)2 +
θ d

d − 1
R(∇u,∇u)

]

d vg

∫

M
|∇u|2 d vg

there is a unique positive solution in C 2(M): u ≡ 1

limp→1+ θ(p) = 0 =⇒ limp→1+ λ⋆(p) = λ1 if ρ is bounded
λ⋆ = λ1 = d ρ/(d − 1) = d if M = S

d since ρ = d − 1

(1 − θ)λ1 + θ
d ρ

d − 1
≤ λ⋆ ≤ λ1

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Riemannian manifolds: second improvement

Hgu denotes Hessian of u and θ =
(d − 1)2 (p − 1)

d (d + 2) + p − 1

Qgu := Hgu − g

d
∆gu − (d − 1) (p − 1)

θ (d + 3 − p)

[∇u ⊗∇u

u
− g

d

|∇u|2
u

]

Λ⋆ := inf
u∈H2(M)\{0}

(1 − θ)

∫

M

(∆gu)2 d vg +
θ d

d − 1

∫

M

[

‖Qgu‖2 + R(∇u,∇u)
]

∫

M

|∇u|2 d vg

Theorem (Dolbeault-Esteban-Loss)

Assume that Λ⋆ > 0. For any p ∈ (1, 2) ∪ (2, 2∗), the equation has a
unique positive solution in C 2(M) if λ ∈ (0, Λ⋆): u ≡ 1

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.



The sphere
Riemannian manifolds

The line

Optimal interpolation inequality

For any p ∈ (1, 2) ∪ (2, 2∗) or p = 2∗ if d ≥ 3

‖∇v‖2
L2(M) ≥

λ

p − 2

[

‖v‖2
Lp(M) − ‖v‖2

L2(M)

]

∀ v ∈ H1(M)

Theorem (Dolbeault-Esteban-Loss)

Assume Λ⋆ > 0. The above inequality holds for some λ = Λ ∈ [Λ⋆, λ1]
If Λ⋆ < λ1, then the optimal constant Λ is such that

Λ⋆ < Λ ≤ λ1

If p = 1, then Λ = λ1

Using u = 1 + ε ϕ as a test function where ϕ we get λ ≤ λ1

A minimum of

v 7→ ‖∇v‖2
L2(M) − λ

p−2

[

‖v‖2
Lp(M) − ‖v‖2

L2(M)

]

under the constraint ‖v‖Lp(M) = 1 is negative if λ > λ1

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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The flow

The key tools the flow

ut = u2−2 β

(

∆gu + κ
|∇u|2

u

)

, κ = 1 + β (p − 2)

If v = uβ , then d
dt
‖v‖Lp(M) = 0 and the functional

F [u] :=

∫

M

|∇(uβ)|2 d vg +
λ

p − 2

[

∫

M

u2 β d vg −
(
∫

M

uβ p d vg

)2/p
]

is monotone decaying

J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on
manifolds with positive curvature, J. Funct. Anal., 254 (2008),
pp. 593–611. Also see C. Villani, Optimal Transport, Old and New

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Elementary observations (1/2)

Let d ≥ 2, u ∈ C 2 (M), and consider the trace free Hessian

Lgu := Hgu − g

d
∆gu

Lemma
∫

M

(∆gu)2 d vg =
d

d − 1

∫

M

‖Lgu ‖2 d vg +
d

d − 1

∫

M

R(∇u,∇u) d vg

Based on the Bochner-Lichnerovicz-Weitzenböck formula

1

2
∆ |∇u|2 = ‖Hgu‖2 + ∇(∆gu) · ∇u + R(∇u,∇u)

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Elementary observations (2/2)

Lemma

∫

M

∆gu
|∇u|2

u
d vg

=
d

d + 2

∫

M

|∇u|4
u2

d vg − 2 d

d + 2

∫

M

[Lgu] ·
[∇u ⊗∇u

u

]

d vg

Lemma

∫

M

(∆gu)2 d vg ≥ λ1

∫

M

|∇u|2 d vg ∀ u ∈ H2(M)

and λ1 is the optimal constant in the above inequality

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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The key estimates

G[u] :=

∫

M

[

θ (∆gu)2 + (κ + β − 1)∆gu
|∇u|2

u
+ κ (β − 1)

|∇u|4
u2

]

d vg

Lemma

1

2 β2

d

dt
F [u] = − (1 − θ)

∫

M

(∆gu)2 d vg − G[u] + λ

∫

M

|∇u|2 d vg

Qθ
gu := Lgu − 1

θ

d − 1

d + 2
(κ + β − 1)

[∇u ⊗∇u

u
− g

d

|∇u|2
u

]

Lemma

G[u] =
θ d

d − 1

[
∫

M

‖Qθ
gu‖2 d vg +

∫

M

R(∇u,∇u) d vg

]

−µ

∫

M

|∇u|4
u2

d vg

with µ :=
1

θ

(d − 1

d + 2

)2
(κ + β − 1)2 − κ (β − 1) − (κ + β − 1)

d

d + 2
J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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The end of the proof

Assume that d ≥ 2. If θ = 1, then µ is nonpositive if

β−(p) ≤ β ≤ β+(p) ∀ p ∈ (1, 2∗)

where β± := b±
√

b2−a
2 a with a = 2 − p +

[

(d−1) (p−1)
d+2

]2

and b = d+3−p
d+2

Notice that β−(p) < β+(p) if p ∈ (1, 2∗) and β−(2∗) = β+(2∗)

θ =
(d − 1)2 (p − 1)

d (d + 2) + p − 1
and β =

d + 2

d + 3 − p

Proposition

Let d ≥ 2, p ∈ (1, 2) ∪ (2, 2∗) (p 6= 5 or d 6= 2)

1

2 β2

d

dt
F [u] ≤ (λ − Λ⋆)

∫

M

|∇u|2 d vg

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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One-dimensional Gagliardo-Nirenberg-Sobolev inequalities

‖f ‖Lp(R) ≤ CGN(p) ‖f ′‖θ
L2(R) ‖f ‖1−θ

L2(R) if p ∈ (2,∞)

‖f ‖L2(R) ≤ CGN(p) ‖f ′‖η
L2(R) ‖f ‖

1−η
Lp(R) if p ∈ (1, 2)

with θ = p−2
2 p

and η = 2−p
2+p

The threshold case corresponding to the limit as p → 2 is the
logarithmic Sobolev inequality

∫

R
u2 log

(

u2

‖u‖2
L2(R)

)

dx ≤ 1
2 ‖u‖2

L2(R) log

(

2
π e

‖u′‖2
L2(R)

‖u‖2
L2(R)

)

If p > 2, u⋆(x) = (cosh x)−
2

p−2 solves

− (p − 2)2 u′′ + 4 u − 2 p |u|p−2 u = 0

If p ∈ (1, 2) consider u∗(x) = (cos x)
2

2−p , x ∈ (−π/2, π/2)
J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Mass transportation

Theorem (Dolbeault-Esteban-Laptev-Loss)

If p ∈ (2,∞), we have

sup
G

∫

R
G

p+2
3 p−2 dy

(∫

R
G |y |2 dy

)

p−2
3 p−2

(∫

R
G dy

)
4

3 p−2

= cp inf
f

‖f ′‖
2 (p−2)
3 p−2

L2(R) ‖f ‖
2 (p+2)
3 p−2

L2(R)

‖f ‖
4 p

3 p−2

Lp(R)

and if p ∈ (1, 2), we obtain

sup
G

∫

R
G

2
4−p dy

(∫

R
G |y |2 dy

)

2−p
2 (4−p)

(∫

R
G dy

)

p+2
2 (4−p)

= cp inf
f

‖f ′‖
2−p
4−p

L2(R) ‖f ‖
2 p

4−p

Lp(R)

‖f ‖
p+2
4−p

L2(R)

for some explicit numerical constant cp

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Flow

Let us define on H1(R) the functional

F [v ] := ‖v ′‖2
L2(R) +

4

(p − 2)2
‖v‖2

L2(R) − C ‖v‖2
Lp(R) s.t. F [u⋆] = 0

With z(x) := tanh x , consider the flow

vt =
v1− p

2

√
1 − z2

[

v ′′ +
2 p

p − 2
z v ′ +

p

2

|v ′|2
v

+
2

p − 2
v

]

Theorem (Dolbeault-Esteban-Laptev-Loss)

Let p ∈ (2,∞). Then

d

dt
F [v(t)] ≤ 0 and lim

t→∞
F [v(t)] = 0

d
dt
F [v(t)] = 0 ⇐⇒ v0(x) = u⋆(x − x0)

Similar result for p ∈ (1, 2)
J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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The inequality (p > 2) and the ultraspherical operator

The problem on the line is equivalent to the critical problem for the
ultraspherical operator

∫

R

|v ′|2 dx +
4

(p − 2)2

∫

R

|v |2 dx ≥ C

(
∫

R

|v |p dx

)
2
p

With

z(x) = tanh x , v⋆ = (1 − z2)
1

p−2 and v(x) = v⋆(x) f (z(x))

equality is achieved for f = 1 and, if we let ν(z) := 1 − z2, then

∫ 1

−1

|f ′|2 ν dνp +
2 p

(p − 2)2

∫ 1

−1

|f |2 dνp ≥ 2 p

(p − 2)2

(
∫ 1

−1

|f |p dνp

)

2
p

where dνp denotes the probability measure dνp(z) := 1
ζp

ν
2

p−2 dz

d = 2 p
p−2 ⇐⇒ p = 2 d

d−2

The change of variables amounts to the stereographic projection
composed with the Emden-Fowler transformation

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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A summary
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the sphere: the flow tells us what to do, and provides a simple
proof (choice of the exponents) once the problem is reduced to the
ultraspherical setting

the spectral point of view on the inequality: how to measure the
deviation with respect to the semi-classical estimates, a nice example
of bifurcation (and symmetry breaking)

Riemannian manifolds: no sign is required on the Ricci tensor and
an improved integral criterion is established. We extend the theory
from pointwise criteria to a non-local Schrödinger type estimate
(Rayleigh quotient). The flow explores the energy landscape... and
generically shows the non-optimality of the improved criterion

the flow is a nice way of exploring an energy space. Rigidity result
tell you that a local result is actually global because otherwise the
flow would relate (far away) extremal points while keeping the energy
minimal

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.
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Thank you for your attention !
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