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(a joint work with A. Blanchet and M. Kowalczyk)

http://www.ceremade.dauphine.fr/∼dolbeaul

July 9, 2009
Workshop on Asymptotic analysis in the calculus of variations

and PDEs, PIMS, Vancouver



Travelling fronts in stochastic Stokes’ drifts and Brownian ratchets: homogenized

functional inequalities and large time behaviour of the solutions

Outline

◮ Introduction to ratchets models

◮ Homogenized functional inequalities

◮ Traveling and tilted ratchets: speed of the center of mass

◮ Rescaling and formal asymptotic expansion: effective diffusion

◮ Results

◮ Physical interpretation

◮ Concluding remarks



Introduction to ratchets models
◮ Molecular motors: how to produce motion at 1µm scale ? “life at

low Rayleigh numbers” [Purcell], modelling in biology [Vale-Milligan]

◮ Physics of brownian ratchets [Reimann]: ft = ∆f +∇ ·
(

f ∇ψ(t, x)
)



Brownian ratchet and flashing ratchet

Ratchet models: ψ is t-periodic

ft = ∆f + ∇ ·
(

f ∇ψ(t, x)
)

Flashing ratchet: a model case

ft = ε(t)∆f + (1 − ε(t) )∇ ·
(

f ∇ψ()
)
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Figure: Potential and Gibbs state: e−ψ when ε(t) ≡ 1/2



Flashing ratchet: mass transport

Assume now that t 7→ ε(t) is 1-periodic
ε ≡ 1 if t ∈ [0, 1/2) and ε ≡ 0 if t ∈ [1/2, 1)

ft = ε(t)∆f + (1 − ε(t) )∇ ·
(

f ∇ψ(x)
)

Figure: The mechanism of transport

[Chipot-Hastings-Kinderlehrer, Kinderlehrer-Kowlczyk,
JD-Kinderlehrer-Kowlczyk]



Ratchets: periodic solutions

1d case, no flux boundary conditions: ε(t) fx + f ψ(t, x)x = 0 on the
boundary

ft = ε(t)∆f + ∇ ·
(

f ∇ψ(t, x)
)

The solution converges to a unique time-periodic solution

Figure: The periodic solution at t = 1/2 and t = 1

Mass has been transported (to the left) of the interval



The doubly periodic case: entropy methods

Consider a solution of

gt = ∆g + ∇ ·
(

g ∇ψ(t, x)
)

x ∈ T
d , t > 0

with initial datum g0 ∈ L1
+(Td ), ‖g0‖L1(Td ) = 1 and assume that ψ is

doubly periodic: ψ(t + T , x) = ψ(t, x)

◮ Conservation of mass

◮ Contraction in relative entropy [Bartier-JD-Illner-Kowalczyk]

d

dt

∫

Td

ϕ

(

g1

g2

)

g2 dx = −
∫

Td

ϕ′′
(

g1

g2

) ∣

∣

∣

∣

∇
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g1

g2

)∣

∣

∣

∣

2

g2 dx

◮ Existence of a (unique) doubly periodic solution:
g2 = e−ψ/

∫

Td e−ψ dx , ϕ(s) = s log s

d

dt

∫

Td

g1 log

(

g1

g2

)

dx ≤ −CLS

∫

Td

g1 log

(

g1
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)
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∥
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∥

(g2)t
g2

∥

∥

∥

∥

L∞



The doubly periodic case and entropy methods: results

◮ Existence of a (unique) doubly periodic solution: entropy estimate
+ fixed-point methods: existence of a doubly periodic solution

◮ Contraction: the doubly periodic solution attracts all other solutions

◮ If there is a logarithmic Sobolev inequality, then there is an
exponential convergence in L1 (Csiszár-Kullback inequality)

[JD-Kinderlehrer-Kowlczyk]
[Bartier-JD-Illner-Kowalczyk]



Why entropy methods ?

Good reasons to use entropy methods

◮ Easy estimates (compared to L∞ or L2 / Fourier estimates)

◮ Go well with mass conservation; gradient flow structure
(Wasserstein distance [Jordan-Kinderlehrer-Otto])

◮ Robust (1): allows for not too smooth potentials

◮ Robust (2): easy to generalize to nonlinear models

◮ Robust (3): ok even if the asymptotic state is not known

◮ Give nice results in messy problems (with various time and length
scales): “strong” two-scale convergence

But require a detailed knowledge of tricky functional inequalities



Stochastic Stoke’s drift / traveling ratchet

Stochastic Stokes’ drift model

ft = fxx +
(

ψ′(x − ω t) f
)

x
(1)

ψ′(x − ω t) is a traveling potential moving at constant speed ω, ψ is
1−periodic: ψ(x + 1) = ψ(x)
conservation of mass:

∫

R
f (t, x) dx = 1 for any t ≥ 0

◮ Position of the center of mass: x̄(t) :=
∫

R
x f (t, x) dx

There exists a drift velocity or ballistic velocity cω such that

∣

∣

d

dt
x̄(t) − cω

∣

∣ = O
(

e−t/γ
)

as t → ∞

◮ A diffusive traveling front appears: effective diffusion coefficient ?
asymptotic profile ?
Ansatz: equation in self-similar variables

f (t, x) =
1

R(t)
u

(

log R(t),
x − cω t

R(t)

)

with R(t) :=
√

1 + 2t



Travelling fronts in stochastic Stokes’ drifts

... unlimited motion of brownian ratchets

◮ position of the center of mass ?

◮ profile of the solutions for large times ?

◮ rate of convergence towards the asymptotic profile ?

Tools:

◮ homogenized functional inequalities (logarithmic Sobolev
inequalities)

◮ cell problem

◮ time-dependent asymptotic expansions (time-dependent
homogenization): effective diffusion

◮ logarithmic Sobolev inequalities control the convergence

Physics: efficiency



Homogenized functional
inequalities



Homogenization of a Fokker-Planck equation

Consider the Fokker-Planck equation with a drift corresponding to a
harmonic potential modified by a periodic perturbation in the limit
ε→ 0+

uεt = ∆uε + ∇ ·
[

x uε +
1

ε
∇φ

(x

ε

)

uε
]

x ∈ R
d t > 0 (2)

It has a unique stationary solution with mass 1

uε∞(x) := Z−1
ε e−

1
2 |x|

2−φ(x/ε)

Homogenization and turbulence, weak 2-scale convergence:
[Goudon-Poupaud]
How to study the convergence of u(t, ·) to u∞ ? Poincaré inequality /
logarithmic Sobolev inequalities / entropy methods

[Bakry-Emery, Arnold-Markowich-Toscani-Unterreiter]

dµ0 := Z−1
0 e−|x|2/2 dx , dµε := Z−1

ε e−φ(x/ε) dµ0(x) = uε∞(x) dx



Generalized entropies, generalized Fisher information

For any p ∈ (1, 2], consider for v = u/uε∞

E(p)
ε [u] :=

1

p − 1

∫

Rd

[vp − 1 − p (v − 1)] dµε

E(1)
ε [u] :=

∫

Rd

v log v dµε

If u is a solution of (2), v solves the Ornstein-Uhlenbeck equation

vεt = ∆vε −
[

x +
1

ε
∇φ

(x

ε

)

]

· ∇v

Generalized Fisher information: I(p)
ε [u] := p

∫

Rd

vp−2 |∇v |2 dµε

d

dt
E(p)
ε [uε(t, ·)] = − I(p)

ε [uε(t, ·)]



The strategy of entropy methods

◮
d
dt

E(p)
ε [uε(t, ·)] = − I(p)

ε [uε(t, ·)]

◮ Functional inequality: for some C(p)
ε > 0

4

p
C(p)
ε E(p)

ε [u] ≤ I(p)
ε [u]

◮ decay of the entropy

E(p)
ε [uε(t, ·)] ≤ E(p)

ε [uε(0, ·)] e− 4
p
C(p)
ε t t ≥ 0

◮ Generalized Csiszár-Kullback inequalities

‖uε(t, ·) − uε∞‖Lp(Rd ,uε∞dx) ≤ C e−
2
p
C(p)
ε t

One step further: Bakry-Emery method



Optimal constants

up 7→ u2, u 7→ u2/p

Logarithmic Sobolev inequality

C(1)
ε := inf

∇u 6= 0 dµε a.e.
u ∈ H1(dµε)

∫

Rd |∇u|2 dµε
∫

Rd |u|2 log
(

|u|2
R

Rd |u|2 dµε

)

dµε

Generalized Poincaré (Beckner) inequalities

C(p)
ε := inf

∇u 6= 0 dµε a.e.
u ∈ H1(dµε)

(p − 1)
∫

Rd |∇u|2 dµε
∫

Rd |u|2 dµε −
(∫

Rd |u|2/p dµε
)p



A (rough) upper estimate

Assume:
∫

Td e−φ(y) dy = 1 and use ue(x) = x · e as a test function

lim
ε→0

∫

Rd

|ue |2 dµε = lim
ε→0

∫

Rd

|∇ue |2 dµε = 1

lim
ε→0

∫

Rd

|ue |2/p dµε =
21/p

√
π

Γ

(

1

2
+

1

p

)

lim
ε→0

∫

Rd

|ue |2 log |ue |2 dµε = log 2 − 2 + γ ≈ −0.729637

where γ ≈ 0.577216 is Euler’s constant

Lemma

lim
ε→0

C(p)
ε ≤ κ(p) :=

p − 1

1 − 21/p√
π

Γ
(

1
2 + 1

p

)



An extension of Holley-Stroock’s perturbation lemma

Convex Sobolev inequality [Arnold et al.] or ϕ-entropy [Chafäı]

∫

[

ϕ(u) − ϕ(ū) − ϕ′(ū)(u − ū)
]

dµ ≤ Cϕ
∫

ϕ′′(u)|∇u|2 dµ

ū is the average of u with respect to dµ : ū :=
∫

u dµ and let d µ̃ be a
measure which is absolutely continuous with respect to dµ

e−b dµ ≤ d µ̃ ≤ e−a dµ µ a.e.

Lemma
If ϕ ∈ C 3 is a convex positive function, then

∫

[

ϕ(u) − ϕ(ũ) − ϕ′(ũ)(u − ũ)
]

d µ̃ ≤ eb−a Cϕ
∫

ϕ′′(u) |∇u|2 d µ̃

Consequence : C(p)
ε ≥ p

2
e−Osc(φ)



Formal asymptotic expansion in terms of ε→ 0+

uεt = ∆uε + ∇ ·
[

x uε +
1

ε
∇φ

(x

ε

)

uε
]

x ∈ R
d t > 0

Normalization:
∫

Td e−φ dy = 1 and
∫

Td y · ∇y

(

e−φ
)

dy = 0
Assume that the solution can be written as

uε(t, x) = u(0)
(

t, x , x−x0

ε

)

+ ε u(1)
(

t, x , x−x0

ε

)

+ ε2 u(2)
(

t, x , x−x0

ε

)

+ O(ε3)

where y 7→ u(i)(t, x , y) =: v (i)(t, x , y) e−φ(y) is periodic...

At order ε−2 :

∆yu
(0) + ∇y ·

(

u(0) ∇yφ(y)
)

= 0

v (0) does not depend on y



At order ε−1 :

∆yu
(1) + ∇y ·

(

u(1) ∇yφ(y)
)

= −∇x ·
(

2∇yu
(0) + ∇yφ(y) u(0)

)

= ∇yφ(y) · ∇xu
(0)

that is
∇y ·

(

e−φ(y)
(

∇yv
(1) + ∇xv

(0)
))

= 0

With v (1)(t, x , y) = ∇xv
(0)(t, x) · w(t, y), w(t, y) = (wj(t, y))dj=1 solves

cell equation

∇y ·
(

e−φ(y) (∇ywj + ej)
)

= 0

Thus we have obtained that

∇ywj =

[

eφ
∫

Td eφ(y) dy
− 1

]

ej , u(1)(t, x , y) = ∇xv
(0)(x) · w(t, y) e−φ(y)



At order ε0 = 1 :

u
(0)
t = ∇y ·

(

e−φ(y) ∇yv
(2)

)

+ ∇x ·
(

∇xv
(0) + x v (0)

)

e−φ(y)

+ ∇x ·
(

2∇yu
(1) + ∇yφ(y) u(1)

)

+ y v (0) · ∇y

(

e−φ(y)
)

.

Solvability condition: formally integrate with respect to y ∈ T
d ...

v
(0)
t = K ∆v (0) + ∇ ·

(

x v (0)
)

K :=
1

∫

Td eφ(y) dy
∫

Td e−φ(y) dy



The solution uε(t, x) of uεt = ∆uε + ∇ ·
[

x uε + 1
ε ∇φ

(

x
ε

)

uε
]

has been
written as

uε(t, x) =
(

v (0)(t, x) + ε∇xv
(0)(t, x) · w

(

t,
x

ε

)

+ O(ε2)
)

e−φ( x
ε )

where w is a solution of the cell problem and v (0) is a solution of a
Fokker-Planck equation with diffusion coefficient K. As t → ∞

u(t, x , y) = v (0)(x , t) e−φ(y)(1 + O(ε))

v (0)(t, x) → v (0)
∞ (x) =

M

(2 πK)d/2
e−

|x|2

2 K



A summary

uε(t, x)
L1∩L2

−→
t→∞

uε∞(x) = M e
− 1

2
|x|2−φ(x/ε)

R

Rd e
− 1

2
|z|2−φ(z/ε)

dz

two-scale−→
ε→0

M
(2π)d/2 e−

|x|2

2 e−φ(y)

‖ 6 ‖

uε(t, x)
two-scale−→

ε→0
v (0)(t, x) e−φ(y) L1∩L2

−→
t→∞

M
(2π K)d/2 e−

|x|2

2 K e−φ(y)



First result: homogenized inequalities

Theorem
Assume that φ is a C 2 function on T

d

∀ p ∈ (1, 2] lim
ε→0+

C(p)
ε = K C(p)

0

Moreover, limε→0+ C(1)
ε ∈ [k C(1)

0 ,K C(1)
0 ] with k = e−Osc(φ)

K−1 =

∫

Td

eφ(y)

∫

Td

e−φ(y) dy

C(p)
0 = p/2 ; it is an open question to determine whether

limε→0+ C(1)
ε = K C(1)

0 or not

Corollary
Assume that φ is a C 2(Td ) . If u is a smooth solution of (2), ∃A[u0]

‖uε − uε∞‖2
Lp(Rd ,(uε∞)1−pdx) ≤ A e−4 C(p)

ε t/p ∀ t > 0

limε→0+ 4 C(p)
ε /p = 2 K < 2 if p ∈ (1, 2] , limε→0+ 4 C(1)

ε ≤ 2 K < 2



Two-scale convergence

Proposition ([Allaire] – definition of “two-scale convergence”)
Let Ω be an open set in R

d . If (uε)ε>0 is a bounded sequence in L2(Ω) ,

then there exists u0 ∈ L2(Ω × T
d ) such that, up to subsequences,

lim
ε→0

∫

Ω

uε(x)ϕ
(

x ,
x

ε

)

dx =

∫ ∫

Ω×Td

u0(x , y)ϕ(x , y) dx dy (3)

for all smooth y−periodic function ϕ. Moreover, (uε)ε>0 weakly

converges in L2(Ω) to u∗(x) :=
∫

Td u0(x , y) dy and

lim
ε→0

‖uε‖L2(Ω) ≥ ‖u0‖L2(Ω×Td ) ≥ ‖u∗‖L2(Ω) .

Proposition ([Allaire])
Assume that uε ⇀ u∗ in H1(Ω) . Then there exist a subsequence of

(uε)ε>0 , still denoted (uε)ε>0 , which two-scale converges to u∗ = u∗(x)
Moreover, there exists a function u1 ∈ L2

(

Ω,H1(Td )
)

such that

∇uε
two-scale−→

ε→0
∇xu∗(x) + ∇yu1(x , y)



A compactness property

Lemma
The embedding H1(Rd , dµ0) →֒ L2(Rd , dµ0) is compact

Proof. ‖un‖2
H1(Rd ,dµ0)

≤ 1, un := vn/
√
µ0

∫

Rd

|∇un|2 dµ0 =

∫

Rd

|∇vn|2 dx +
1

4

∫

Rd

|x |2 |vn|2 dx − d

2
‖vn‖2

L2

∫

Rd

|un|2 log |un|2 dµ0 =

∫

Rd

|vn|2 log |vn|2 dx+log Z0‖vn‖2
L2+

1

2

∫

Rd

|x |2 |vn|2 dx

... logarithmic Sobolev inequality, with C(1)
0 = 1/2

∫

Rd

|∇u|2 dµ0 ≥ C(1)
0

∫

Rd

|u|2 log

( |u|2
∫

Rd |u|2 dµ0

)

dµ0 ∀ u ∈ H1(Rd , dµ0)

Conclusion by Dunford-Pettis’ theorem �

Also valid for dµε... uniformly with respect to ε



Interpolation between the Poincaré and the logarithmic Sobolev inequality

Lemma
For any p ∈ [1, 2] , C(p)

ε ≤ p
2 C

(2)
ε

Theorem ([Beckner, Arnold-Bartier-JD])

∀ p ∈ (1, 2] C(2)
ε ≤ 1

p − 1

[

1 −
(

2 − p

p

)α ]

C(p)
ε with α :=

C(2)
ε

2 C(1)
ε

Corollary
If C(1)

ε = 1
2 C

(2)
ε , then C(p)

ε = p
2 C

(2)
ε for any p ∈ [1, 2]



The case p = 2 (1/3)

There is a non-trivial minimizer uε to C(2)
ε such that

∫

Rd uε dµε = 0 ,
∫

Rd |uε|2 dµε = 1 and

−∇ ·
(

e−
1
2 |x|

2−φ(x/ε) ∇uε(x)
)

= C(2)
ε uε(x) e−

1
2 |x|

2−φ(x/ε) .

Let ϕ ∈ D(Rd ) and ϕ1 ∈ D(Rd ,C∞(Td ))
∫

Rd

∇xuε

[

∇xϕ(x) + ε∇xϕ1

(

x ,
x

ε

)

+ ∇yϕ1

(

x ,
x

ε

)]

dµε

= C(2)
ε

∫

Rd

uε

[

ϕ(x) + ε ϕ1

(

x ,
x

ε

)]

dµε

∇uε
two-scale−→

ε→0
∇xu∗(x) + ∇yu1(x , y) , K(2)

0 := limε→0+ C(2)
ε

a two-scale homogenized equation:
∫ ∫

Rd×Td

[

∇xu∗(x)+∇yu1(x , y)
][

∇xϕ(x)+∇yϕ1 (x , y)
]

e−
1
2 |x|

2−φ(y) dx dy

= K(2)
0

∫ ∫

Rd×Td

u∗(x)ϕ(x) e−
1
2 |x|

2−φ(y) dx dy



The case p = 2 (2/3)

An evaluation with ϕ = 0 shows that u1 is given as a solution of

∇y ·
[

e−φ(y) (∇yu1(x , y) + ∇xu∗(x))
]

= 0 ,

u1(x , y) = ∇xu∗(x) · w(y)

where w = (wj)
d
j=1 is the solution of the cell equation

∇yu1(x , y) =

[

eφ
∫

Td eφ(y) dy
− 1

]

∇xu∗(x)

Test with ϕ = u∗ (up to an appropriate regularization) and ϕ1 = 0

∫

Rd

|∇xu∗|2
∫

Td eφ(y) dy
dµ0 = K(2)

0

∫

Rd

|u∗|2 dµ0

We can also observe that
∫

Rd

u∗ dµ0 = lim
ε→0+

∫

Rd

uε dµε = 0



The case p = 2 (3/3)

Altogether this proves that

K(2)
0 ≥ C(2)

0
∫

Td eφ(y) dy
= K C(2)

0

To prove the reverse inequality, K(2)
0 ≤ K C(2)

0 , consider

ũε(x) := ue(x) + ε∇xue(x)w
(x

ε

)

where ue(x) = x · e and w is the solution to the cell problem

K(2)
0 ≤ lim

ε→0+

∫

Rd |∇ũε|2 dµε
∫

Rd |ũε|2 dµε −
(∫

Rd ũε dµε
)2 = K C(2)

0

This completes the proof in case p = 2 �



The case p ∈ (1, 2)

A result inspired by [Rothaus]

Proposition
Let φ be a continuous function on T

d and take p ∈ (1, 2) , ε > 0 . Either

C(p)
ε ≤ p

2
C(2)
ε

is achieved by some non trivial function, or

C(p)
ε =

p

2
C(2)
ε

is not achieved by any non trivial function

No minimizer: result follows from the case p = 2
Otherwise, consider sequences of minimizers and apply the two-scale
convergence approach



Traveling and tilted ratchets:
speed of the center of mass



Stochastic Stoke’s drift / traveling ratchet and tilted ratchet models

If f is a solution of (1)

ft = fxx +
(

ψ′(x − ω t) f
)

x

we observe that f̃ (t, x) = f (t, x − ω t) is a solution of

f̃t = f̃xx +
(

(ω + ψ′) f̃
)

x

a problem which is known as the tilted Smoluchowski-Feynman ratchet

Tilted Brownian ratchets are actually much more general, since in the
equation for f̃ , ψ may still depend on t (flow reversals)



Tilted potential
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Figure: x 7→ ω x + ψ(x), ψ(x) = cos x , and left: ω = 0.5, right ω = 1.25
The critical tilt: corresponds to ω = 1



The doubly periodic case

Instead of considering (1) ft = fxx +
(

ψ′(x − ω t) f
)

x
, consider















gt = gxx +
(

g ψ′(x − ω t)
)

x
x ∈ S1 , t > 0 ,

g(t = 0, x) = g0(x) =
∑

k∈Z

f0(x + k) x ∈ S1 ,
(4)

for which, by linearity of the equations, we get

g(t, x) =
∑

k∈Zd

f (t, x + k) ∀ (t, x) ∈ R
+ × S1

With
∫

Rd f0 dx = 1 =
∫

Rd f (t, ·) dx = 1 for any t ≥ 0, we can define the
position of the center of mass by

x̄(t) :=

∫

Rd

x f (t, x) dx



Speed of the center of mass

dx̄

dt
=

∫

Rd

x ft dx = −d

∫

Rd

ψ′(x − ω t) f (t, x) dx

= −d
∑

k∈Z

∫

S1

ψ′(x − ω t) f (t, x + k) dx

= −d

∫

S1

ψ′(x − ω t) g(t, x) dx

∼
t→∞

−d

∫

S1

ψ′(x − ω t) g∞(t, x) dx =: cω

The time-periodic solution g∞(t, x) = gω(x − ω t) solves the equation

(gω)xx +
(

(ω + ψ′) gω
)

x
= 0

with periodic boundary conditions



Speed of the center of mass

Take a primitive: x 7→ (gω)x + (ω + ψ′) gω =: A(ω) is constant and

ω − cω = ω

∫ 1

0

gω dx +

∫ 1

0

ψ′ gω dx = A(ω)

Some elementary but tedious computations show that cω < ω ,
limω→0+ cω/ω > 0 , cω is positive for large values of ω , and
limω→∞ cω = 0



Two potentials
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Figure: Plots of the potential ψ(x) = sin x (left) and ψ: asymmetric smooth sawtooth potential (right)



Velocity of the center of mass
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Figure: Plots of cω and c0
ω (no diffusion) as functions of ω in the sinusoidal case (left) and in the case of the

asymmetric smooth sawtooth potential (right, in logarithmic coordinates). In the sinusoidal case, the symmetry is
reflected by the fact that c−ω = −cω (values corresponding to ω < 0 are not represented). This is not true in
the sawtooth case.
A characteristic property of the curve ω 7→ c0

ω is the critical tilt, which is still present when diffusion is added



Rescaling and formal
asymptotic expansion:

effective diffusion



Heuristics

If f is a solution of (1) ft = fxx +
(

ψ′(x − ω t) f
)

x
and

f (t, x) =
1

R(t)
u

(

log R(t),
x − cω t

R(t)

)

with R(t) :=
√

1 + 2t

In the new variables: R = et and z = R x − 1
2 (R2 − 1) (ω − cω),

ut = uxx + (x u)x + R
(

(ψ′(z) + cω) u
)

x

We will prove that

u(t, x) = gω(z) h − 1

R
g (1)
ω (z) hx + O

(

R−2
)

gω depends only on the fast oscillating variable z, κω is an effective
diffusion constant

ht = κω hxx + (x h)x



Formal asymptotic expansion (1/2)

ut = uxx + (x u)x + R
[(

ψ′(R x − 1
2 (R2 − 1)A(ω)

)

+ cω
)

u
]

x
,

R(t) = et A(ω) 6= 0... two-scale function U

u(t, x) = U(t, x ; z) with z := R x − 1
2 (R2 − 1)A(ω) ,

Ut − Uxx − (x U)x = R2
(

Uzz +
(

(ω + ψ′(z)) U
)

z

)

+ R
(

2 Uz +
(

ψ′(z) + cω
)

U
)

We will formally solve the equation order by order.

(i) To cancel the terms of order R2 in the equation, U has to be
proportional to gω

U(t, x ; z) = gω(z) h(t, x) + R−1U(1)(t, x ; z) + O
(

R−2
)

(ii) At order R , we find that

U(1)(t, x ; z) = g (1)
ω (z) hx(t, x)

where g
(1)
ω is given as a solution of the equation

(g (1)
ω )zz +

(

(

ω + ψ′(z)
)

g (1)
ω

)

z
= −2 (gω)z −

(

ψ′(z) + cω
)

gω



Formal asymptotic expansion (2/2)

There is a solvability condition at order R : the average on (0, 1) of the
right hand side of the equation is 0 . Since all functions are periodic and
∫ 1

0
gω(z) dz = 1 , we recover the condition

∫ 1

0

ψ′(z) gω(z) dz + cω = 0

Uniqueness under proper normalization
∫ 1

0 g
(1)
ω (z) dz = 0

(iii) At order R0 = 1 , the solvability condition is:

ht − hxx − (x h)x = hxx

∫ 1

0

(

ψ′(z) + cω
)

g (1)
ω (z) dz

Hence we obtain a modified Fokker-Planck equation

ht = κω hxx + (x h)x

where the effective diffusion coefficient is given by

κω := 1 +

∫ 1

0

ψ′(z) g (1)
ω (z) dz



The effective diffusion coefficient is positive

Lemma
Let χ be the unique periodic solution of

χ′′ − (ψ′ + ω) χ′ = ψ′ + cω

such that
∫ 1

0 χ dz = 0. Then

κω =

∫ 1

0

|1 + χ′|2 gω dz > 0

κω |ω=0
=

(

∫ 1

0
eψ dz

∫ 1

0
e−ψ dz

)−1

= K−1 < 1 and limω→∞ κω = 1

A proof by duality [Goudon-Poupaud]



Fokker-Planck equation: convergence to the modified gaussian

U(t, x ; z) = gω(z) h(t, x) + g (1)
ω (z) hx (t, x) + O

(

R−2
)

,

The solution of ht = κω hxx + (x h)x converges to h∞(x) := e
−

|x|2

2κω

(2π κω)1/2

Lemma
If

∫

R
h0 dx = 1 and

∫

R
h0 log(h0/h∞) dx <∞, then

‖h(t, ·) − h∞‖L1(R) = O
(

e−t
)

as t → ∞

Proof. The proof is based on the logarithmic Sobolev inequality

∫

Rd

h log

(

h

h∞

)

dx ≤ κω
2

∫

Rd

h

∣

∣

∣

∣

(

log

(

h

h∞

))

x

∣

∣

∣

∣

2

dx

and on the Csiszár-Kullback inequality

‖h − h∞‖2
L1(Rd ) ≤

1

4

∫

Rd

h log

(

h

h∞

)

dx

and d
dt

∫

Rd h log
(

h
h∞

)

dx = −κω
∫

Rd h
∣

∣ log
(

h
h∞

)

x

∣

∣

2
dx �



Heuristics (completed)

Summarizing

u(t, x) = U(t, x ; z) =

(

gω(z) − x

κω R
g (1)
ω (z)

)

h∞(x)
(

1 + o(1)
)

with R = et and z = R x − 1
2 (R2 − 1)A(ω)

f (t, x) =

[

gω(x − ω t) − x − c(ω) t

κω
√

1 + 2 t
g (1)
ω (x − ω t)

] h∞
(

x−c(ω) t√
1+2 t

)

√
1 + 2 t

(

1+o(1)
)



Results



Statement of the main result

ut = uxx + (x u)x + et
[(

ψ′(et x − 1
2 (e2t − 1)A(ω)

)

+ cω(ω)
)

u
]

x

Theorem
Let d = 1 , ω > 0 , and assume that ψ is C 2, periodic + a technical

condition. For any δ > 0,

lim sup
t→∞

e(min(1,1/k)−δ)) t ‖u(t) − u∞(t)‖L1(R) <∞

k to be specified... In the original variables

ft = fxx +
(

ψ′(x − ω t) f
)

x

Corollary
For any δ > 0,

lim sup
t→∞

t(min(1,1/k)−δ))/2 ‖f (t) − f∞(t)‖L1(R) <∞



Expanding a solution: remainder terms

First step: u(t, x) = U(t, x ; z) is a solution if and only if L U = 0

L0 U := Uzz +
(

(ω + ψ′(z)) U
)

z

L1 U :=
(

2 Uzz + (ψ′(z) + cω) U
)

x

L2 U := Uxx +
(

x U
)

x
− Ut

L U := −
(

R2 L0 U + R L1 U + L2 U
)

and U := U0 + R−1 U1 + R−2 U2

U0(t, x ; z) := gω(z) h(t, x)

U1(t, x ; z) := g (1)
ω (z) hx (t, x)

U2(t, x ; z) := g (2)
ω (z) hxx (t, x)

0 = L U = 1
R

(

L1 U2 + L2 U1

)

+ 1
R2 L2 U2



Approximate solution: remainder terms

Second step: Consider U∞ := 1
Z (t)

(

U∞,0 + R−1 U∞,1 + R−2 U∞,2

)

U∞,0(t, x ; z) := gω(z) h∞(x) , U∞,1(t, x ; z) := g
(1)
ω (z) h∞,x (x)χ(e−tx) ,

U∞,2(t, x ; z) := g
(2)
ω (z) h∞,xx (x)χ(e−tx)

U∞ is only an approximate solution, we have

L U∞ =
Ż

Z
U∞ +

1

R
F

F/U∞ is a polynomial of order four in x

u∞(t, x) := U∞
(

t, x ; et x − 1
2 (e2t − 1)A(ω)

)

f(t, x) := F
(

t, x ; et x − 1
2 (e2t − 1)A(ω)

)



Relative entropy production term

ut = uxx + (ϕ′(t, x) u)x

and

(u∞)t = (u∞)xx + (ϕ′(t, x) u∞)x −
Ż

Z
u∞ + e−t f

with ϕ′(t, x) = ψ(x − ω t)

d

dt

∫

R

u log

(

u

u∞

)

dx =

∫

R

[

1 + log

(

u

u∞

)]

ut dx −
∫

R

u

u∞
(u∞)t dx

= −
∫

R

∣

∣

∣

∣

(

log
( u

u∞

)

)

x

∣

∣

∣

∣

2

u dx +
Ż

Z
+ e−t

∫

R

f

u∞
u dx



LogSobolev inequality

Corollary (homogenized logarithmic Sobolev inequality)
Let uε∞(x) := cε e−φ(x/ε)−|x|2/(2κω) dx such that

∫

R
uε∞ dx = 1. For any

ε > 0 , there exists a positive constant Kε such that, for any nonnegative

u ∈ L1(R) satisfying
∫

R
u dx = 1,

∫

R

u log

(

u

uε∞

)

dx ≤ Kε
∫

R

∣

∣

∣

∣

(

log
( u

uε∞

)

)

x

∣

∣

∣

∣

2

u dx

Moreover, lim supε→0 Kε =: k/2 satisfies

κω/K ≤ k ≤ κω max
[0,1]

gω ·
(

min
[0,1]

gω

)−1

K−1 =

∫ 1

0

gω dz

∫ 1

0

g−1
ω dz and lim

ω→0
K/κω = 1

Choice: φ(z) = log gω(z), which is itself computed in terms of ψ



A technical issue: controlling the moments

To control the error terms, we need to control fourth order moments in
the rescaled variables

Proposition ([Dalibard])
If there exists m > d + 8 such that

∫

Rd

(1 + |x |2)m/2 u0 dx <∞

then

lim sup
t→+∞

∫

Rd

|x |4 u(t, x) dx <∞



Physical interpretation



At first order, u(t, x) behaves for large values of t like

u∞(t, x) = gω(z) h∞(x) , h∞(x) :=
e−

|x|2

2κω

√
2πκω

where z = et x − 1
2 (e2t − 1) (ω − cω)
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Figure: In the sinusoidal case, the limiting function u∞ is shown on the left, in self-similar-variables, while on
the right, the diffuse, traveling front F∞ is plotted in the original variables for t = 0, 1, . . . 20. Here we take
ω = 5 and (left) u∞(t, x) is shown as a function of x for t = 2.



Effective diffusion coefficient
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Figure: Plot of the diffusion coefficient κω as a function of ω in the sinusoidal case (left) and in the smooth
sawtooth potential case (right).



Measuring the efficiency of coherent transport: doubly periodic / cell problem

The Péclet number Pe describes the competition between the directional
drift and the stochastic diffusion of the particle

Pe :=
cω ℓ

κω

where ℓ is a typical length scale. Larger Pe number means that the drift
predominates over diffusion
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Figure: Plot of the Péclet number Pe as a function of ω in the sinusoidal case (left) and in the smooth
sawtooth potential case (right).



Measuring the efficiency of coherent transport: efficiency

The characteristic length scale

L :=
ℓ

Pe

can be compared with the diffusion scale at characteristic time T such
that

√
κω T = cω T = L: at that time, the percentage of the initial

distribution which is still in the x < 0 region is given by
∫ 0

−∞ exp
[

− |x − L|2/(2κωT)
]

dx = 1
2Erf(1/

√
2) ≈ 16%.

Figure: Definition of L and T can be understood as follow. If one starts with a Gaussian distribution centered
at x = 0 and evolve it according to the effective Fokker-Planck eqaution, T is the time for which the solution
(centered at L in the above plot) has a variance equal to L. The grey area represents 16% of the area below the
solution at time t = T.



Definition of efficiency

The characteristic time scale T = κω/c
2
ω is related with the Péclet

number

T =
ℓ

cω Pe
.

and can be compared to the time period of the potential T0 := ℓ/ω.
Hence it is meaningful to consider

N :=
T

T0
=
ω κω
ℓ c2
ω

=
ω

cω Pe

which measures the “time” in takes to achieve the equality√
κω T = cω T in natural units, and to define the efficiency of the

transport by

E :=
1

N
=

ℓ c2
ω

ω κω
= Pe

cω

ω



Efficiency: plots
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Figure: Plot of the efficiency E as a function of ω in the sinusoidal case (left) and in the smooth sawtooth
potential case (right). We observe that in both cases, the maximum is extremely well defined. Dots (left)
correspond (ω, E(ω)) taking the values (1, 0.210), (3, 0.385), (25, 0.021)
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Figure: The effective profile F∞ is represented for ω taking the values 1, 3 and 25, which correspond to the
dots in the above plots. Curves are plotted for ω = 1 (left), 3 (center), 25 (right) for t = 0, 5, 10, etc, as long as
cω t ≤ 70. The curve corresponding to ω = 3 (center) is the most efficient, in the sense that cω t ≈ 70 is
reached for a smaller value of t than for the other curves and the solution is kept more peaked. Computations are
done in the case of the sinusoidal potential.



Concluding remarks



Open questions

◮ Even for the simplest model, get sharp results: optimal constant in
the homogenized Logarithmic Sobolev inequality, higher order
expansions in the regime κω < 1

◮ Qualitative issues: prove κω > K, characterize flux reversal

◮ Numerical challenges (1): proof of the convergence of Monte-Carlo
schemes

◮ Numerical challenges (2): beyond Monte-Carlo schemes: track
intermediate regimes and measure the convergence at micro /macro
levels

Main idea: by entropy methods, reduce the study of large time
behaviours to functional inequalities in a singular limit, that can be
studied using variational tools



Further perspectives

Extend the methods to carefully selected models

◮ Nonlinear diffusion

◮ Tilted periodic channel subject to gravitation

◮ ...
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