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Q@ spectral methods and fractional operators
@ bifurcations and flow methods
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@ Linearization and spectrum

@ Diffusions without weights: Gagliardo-Nirenberg inequalities and
fast diffusion flows: Rényi entropy powers, self-similar variables and
relative entropies, the role of the spectral gap

> Diffusions with weights: Caffarelli-Kohn-Nirenberg inequalities
and weighted nonlinear flows

@ Towards a parabolic proof

@ Large time asymptotics and spectral gaps

@ A discussion of optimality cases
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Interpolation inequalities on the
sphere and eigenvalues of the

(fractional) Laplace operator

> A spectral point of view on the inequalities
> The bifurcation point of view

> Flows on the sphere
Q@ Carré du champ

@ Can one prove Sobolev’s inequalities with a heat flow ?

@ Some open problems: constraints and improved inequalities

[Beckner, 1993], [J.D., Zhang, 2016]

[Bakry, Emery, 1984]

[Bidault-Véron, Véron, 1991], [Bakry, Ledoux, 1996]
[Demange, 2008][J.D., Esteban, Loss, 2014 & 2015]
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Non-fractional interpolation inequalities

On the d-dimensional sphere, let us consider the interpolation
inequality

d d
IVullFa ey + b2 lullf2sey = b2 lullfpgey VueHY(S, dp)

where the measure dy is the uniform probability measure on
S9 ¢ Rt induced by the Lebesgue measure on R9+1

2d

1<p<?2 2<p< 2= —n
<p or p< 77

if d > 3. We adopt the convention that 2* = co if d =1 or d = 2.
The case p = 2 corresponds to the logarithmic Sobolev inequality

|ul?

d u
2 2
Vol > § [ luf tog <|u

L2(89)
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Optimal interpolation inequalities for fractional operators

@ The sharp Hardy-Littlewood-Sobolev inequality on S™ [Lieb, 1983]

_ r(n)T (n )\)
/ /S o FOOVIC 1™ FO) (<) ) < 53T 1T

A€ (0,n), p= 521 € (1, 2))\——*”Where%+q%:1

@ sharp GNS inequalities on S?: [Backner 1993], [Bidaut-Véron,
Véron, 1991]

QA subcritical interpolation inequality

dp is the uniform probability measure on S”

L is the fractional Laplace operator of order s € (0, n)

qc [1’ 2) U (27 q*]) ax = ,,2_"5

| F1ageny — 1 FI2gon
qg—2

<Cqs | FLFdu YFeH/S"
Sn
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The sharp constants

[J.D., Zhang] Let n > 1. If either s € (0,n], g € [1,2) U (2, q4],

ors=nandq € [1,2) U(2,00), then

_ _ (g—2) |, FLF du
Cor=M\(Ls) = inf Q[F], Q[F]:= 5 ) Js =
FEHs/2(S")\R | HLq s~ | IILz(Sn

Q  Sharp subcritical fractional logarithmic Sobolev inequalities

[J.D., Zhang] Let s € (0, n]

F
|F|? log <|> du < cz)s/ FLFdu YFeH/?S
Sn ||F||L2(s") Sn
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From HLS to Sobolev and subcritica

inequalities

@ Lieb’s approach: F =Y. F(x) (spherical harmonics), HLS and
Funk-Hecke formula

//S"XS" F(C)IC = ul= F(n) du(¢) dps(n)
M) ST +A) 2
S22 T(5)T(2) kz: F(Z)T(2 + k) /@)an(k)l dp

Q@ Duality: the fractional Sobolev inequality

1F 1 o f/ FKLF dy _Z% /‘F 2y

is dual of HLS, where g, = 20 s the critical exponent and

n—s
g k(2) is convex, with yx(x) := F(X) n_xtk)

(n—x) T(x+k)
the result in the subcritical range

is enough to establish
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Fractional flows and related functional inequalities

> Sphere: generalized fractional heat flow

Z: qV - (1_% (—A)*lﬁsu%):o

The entropy decays exponentially because of

1 ; ,
qzjtl(/ udu) —/ugd,u]——Z/ u%/lsu?du
- sn n n

> Euclidean space: any smooth nonnegative solution u of

bt (v )

is such that

i/ u™ dx = 422(41:;{1)/ v=s)ym—: ’ dx
dt Jpd m R

V(-A)~5?w. Rates ?

Nonlinear flows, optimality

where VA9 =
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The Bakry-Emery method on the sphere (non-fractional
case)

Entropy functional
Elpl = 55 [Juwp? di— (frup di)?] if p#2

Elpl = [sap log (W) dp

Fisher information functional

1
Zolpl := fsd [Vpe|? du
Bakry-Emery (carré du champ) method: use the heat flow

dp
N
ot
and compute $E[p] = — Ip[p] and £T,[p] < — d Z,[p] to get

(@l - gl <0 = Tl > d&l)

with p = |ufP, ifp < 2# =284
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The evolution under the fast diffusion flow

To overcome the limitation p < 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

dp m
5 = B (1)

[Demange], [J.D., Esteban, Kowalczyk, Loss|: for any p € [1,2*]

Kolel = 5 (Tl -~ d&50al) <0

L L
25 30

(p, m) admissible region, d =5
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Can one prove Sobolev's inequalities with a heat flow ?

(p, B) representation, d = 5. In the dark grey area, the functional is
not monotone under the action of the heat flow [J.D., Esteban, Loss]
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The bifurcation point of view

1(A) is the optimal constant in the functional inequality

IVullEagey + Mlulfagey = 0N lullfge Vo€ H(S?, du)

Here d =3 and p=14
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IVulaay + Allull?
@ A critical point of u— Q,\[u] := i) EED golves
[0l e

—Au+Au=|ulP?u (EL)
up to a multiplication by a constant (and a conformal transformation
if p=12%)

@ The best constant p(\) = inf O, [u] is such that

ueH(S9,d )\{0}
w(A) < Aif A > and p(A) = Aif A < %5 so that

p2’

d .
Py =min{A >0 : p(A) < A}

@ Rigidity : the unique positive solution of (EL) is u = A\Y/(P=2) if
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Constraints and improvements

@ Taylor expansion:

(P - 2) HVU”%;(Sd)

2

d= in >
ueH (S9,dp)\{0} ||u||Lp(Sd) - ||u||L2(Sd)

is achieved in the limit as ¢ — 0 with v =1 4+ € 1 such that
—Dp; =dp;

> This suggest that improved inequalities can be obtained under
appropriate orthogonality constraints...
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Integral constraints

With the heat flow...

For any p € (2,2%), the inequality

1
A A
72 25 2

1
Ve Y((-1,1),dvy) st / z|f|P dvg =0
=1l
holds with (d— 1y
> AT T ) (o# * _
A>d+ TCES) (27 —p) (A —d)

V.

.. and with a nonlinear diffusion flow ?
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Antipodal symmetry

With the additional restriction of antipodal symmetry, that is

u(—x) = u(x) Vxes?

Theorem

Ifpe(1,2)U(2,2*), we have

d (2 —4) (2" — p)
2 2 2
/Sd|vu| a2 [1+ 112 o) (el — )

for any u € HY(SY, du) with antipodal symmetry. The limit case p = 2
corresponds to the improved logarithmic Sobolev inequality

_ d(d+3) e
Vu du> S [ 1uf tog
/ SFICES): TelP ey
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The larger picture: branches of antipodal solutions

Case d =5, p = 3: wvalues of the shooting parameter a as a
function of A
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The optimal constant in the antipodal framework

Interpolation inequalities on the sphere

12e. .

1l ’ \

10f ~

15 20 25 30

Numerical computation of the optimal constant when d =5 and
1 < p <10/3 = 3.33. The limiting value of the constant is numerically
found to be equal to A\, = 2'72/P d ~ 6.59754 with d =5 and p = 10/3

J. Dolbeault Nonlinear flows, optimality
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Symmetry breaking results and tools
for proving symmetry

> The critical Caffarelli-Kohn-Nirenberg inequality

> A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities

> Linearization and spectrum

> Rényi entropy powers and fast diffusion: [Savaré, Toscani]

> Faster rates of convergence: [Carrillo, Toscani], [JD, Toscani]
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Collaborations

Collaboration with...

M.J. Esteban and M. Loss (symmetry, critical case)
M.J. Esteban, M. Loss and M. Muratori (symmetry, subcritical case)
M. Bonforte, M. Muratori and B. Nazaret (linearization and large

time asymptotics for the evolution problem)

M. del Pino, G. Toscani (nonlinear flows and entropy methods)
A. Blanchet, G. Grillo, J.L. Vézquez (large time asymptotics and
linearization for the evolution equations)

...and also

S. Filippas, A. Tertikas, G. Tarantello, M. Kowalczyk ...

J. Dolbeault Nonlinear flows, optimality



Interpolation inequalities on the sphere Critical and subcritical Caffarelli-Kohn-Nirenberg inequality
Symmetry breaking, linearization, flows Linearization and spectrum
Weighted nonlinear flows and CKN inequalities Entropy methods without weights

Background references (partial)

o Rigidity methods, uniqueness in nonlinear elliptic PDE’s:
[B. Gidas, J. Spruck, 1981], [M.-F. Bidaut-Véron, L. Véron, 1991]

@ Probabilistic methods (Markov processes), semi-group theory and
carré du champ methods (' theory): [D. Bakry, M. Emery,
1984], [Bakry, Ledoux, 1996], [Demange, 2008], [JD, Esteban,
Loss, 2014 & 2015] — D. Bakry, I. Gentil, and M. Ledouz.
Analysis and geometry of Markov diffusion operators (2014)

e Entropy methods in PDEs
> Entropy-entropy production inequalities: Arnold, Carrillo,
Desvillettes, JD, Jiingel, Lederman, Markowich, Toscani,
Uunterreiter, Villani..., [del Pino, JD, 2001], [Blanchet, Bonforte,
JD, Grillo, Vézquez]| — A. Jingel, Entropy Methods for Diffusive
Partial Differential Equations (2016)
> Mass transportation: [Otto] — C. Villani, Optimal transport.
Old and new (2009)
> Rényi entropy powers (information theory) [Savaré, Toscani,
2014], [Dolbeault, Toscani]
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Critical Caffarelli-Kohn-Nirenberg inequality

Let D, p = { veLP(RY, [x|Pdx) : |x|7?|Vv| € L? (RY, dx) }

VP O\ [vv[?
<Ad |X‘bp dx < Ca,b |X‘2 dx VYve Da,b

holds under conditions on a and b

2d
d—2+2(b—a)

p= (critical case)

> An optimal function among radial functions:

[xI2 v I3

2
_ (p—2) (2c—2)) 72 -
Vi (x) (1 + |x] ) and Cj, v 2

Question: Cyp = Cj ) (symmetry) or C;p > Cj , (symmetry breaking) ¢
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Critical CKN: range of the parameters

Figure: d =3 b b—at
v NP %
5 dx < Cap 52 dx
e |X| re |X| 1 )
g T
/ 0 o
b=a

a<b<a+lifd>3
a<b<a+lifd=2a+1/2<b<a+lifd=1
and a < ac := (d — 2)/2
B 2d [Glaser, Martin, Grosse, Thirring (1976)]
P= d—2+2(b—a) [Caffarelli, Kohn, Nirenberg (1984)]
[F. Catrina, Z.-Q. Wang (2001)]
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Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve b
d(a. — a)

brs(a) = +a—a
rs(2) 2/(ac—aR +d—1 ‘

/ 0

[Smets|, [Smets, Willem], [Catrina, Wang], [Felli, Schneider]

The functional
2 p 2/p
;_b/ \V\;| dx — / |VL dx
" Jra |x]22 Rra |x[PP

is linearly instable at v = v,

J. Dolbeault Nonlinear flows, optimality
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Symmetry versus symmetry breaking:
the sharp result in the critical case

[JD, Esteban, Loss (Inventiones 2016)]

Let d > 2 and p < 2*. If either a € [0,a.) and b > 0, or a < 0 and
b > bgs(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

J. Dolbeault Nonlinear flows, optimality
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The Emden-Fowler transformation and the cylinder

> With an Emden-Fowler transformation, critical the
Caffarelli-Kohn-Nirenberg inequality on the Fuclidean space are
equivalent to Gagliardo-Nirenberg inequalities on a cylinder

v(r,w)=r""*¢(s,w) with r=|x|, s=—logr and w= X

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as the subcritical interpolation inequality

10:211E2(cy + IVwllaiey + Alleliaey = M) Iliirey Ve € HY(C)

where A := (a — a)?, C = R x S?~! and the optimal constant u(A) is

d
uN) = c— with a=a.+ VA and b:Ei\/K

J. Dolbeault Nonlinear flows, optimality
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Linearization around symmetric critical points

Up to a normalization and a scaling

1

©«(s,w) = (coshs)™ 72
is a critical point of
HY(C) 5 ¢ = [10:0lI2(c) + I VutllEoe) + AllelEae
under a constraint on ||<p\|ip(c)

4 is not optimal for (CKN) if the Péschl-Teller operator
1

—02 DA N— PP = 02— N+ N ———
(cosh s)

has a negative eigenvalue
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Subcritical Caffarelli-Kohn-Nirenberg inequalities

_ 1
Norms: [|wl|Len (ge) = (fpo [W|7|X[77 dx) /e, [wllparay = [Iw(lLaoe)
(some) Caffarelli-Kohn-Nirenberg interpolation inequalities (1984)

1Wllzne ety < Coimop VWl Py WIS e (CKN)

Here Cg,,, denotes the optimal constant, the parameters satisfy

d>2, 7=2<fB< 92y, ye(—o0,d), pe(lp] withp, =357
and the exponent ¢ is determined by the scaling invariance, i.e.,

9 = (d=) (p—1)
p (d+ﬁ+2—2’Y—P(d—5—2))

@ Is the equality case achieved by the Barenblatt / Aubin-Talenti
type function

wi(x) = (1+ \x|2+ﬂ_7)_1/(p_1) VxeRY 7

@ Do we know (symmetry) that the equality case is achieved among
radial functions?

J. Dolbeault Nonlinear flows, optimality
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Range of the parameters

Here p is given A
p

J. Dolbeault Nonlinear flows, optimality
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a Symmetry and symmetry breaking

[JD, Esteban, Loss, Muratori, 2016]

Let us define fps(y) :=d —2 —\/(d —7)2 —4(d — 1)

Symmetry breaking holds in (CKN) if

d—2
~v<0 and ﬁps(7)<ﬁ<77

In the range Brs(v) < B < 92 v
wi(x) = (1+ 2277 D

s mot optimal

J. Dolbeault Nonlinear flows, optimality
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The green area is the region of symmetry, while the red area is the
region of symmetry breaking. The threshold is determined by the
hyperbola

(d—7)?—(B—d+2)°—4(d-1)=0
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A useful change of variables

With
d—~

B+2—7’
(CKN) can be rewritten for a function v(|x|*~ x) = w(x) as

and n=2

B—"
=1
« + — 5

1VllL2na-nrey < Kaynp [DavFas-ngea VITae-nge

with the notations s = |x|, Dov = (« 0;, 1V, v). Parameters are in
the range
n

d>2, a>0, n>d and pe(l,p, px:= 5
n_

By our change of variables, w, is changed into
ve(x) == (14 |x?) 7" V¥YxeR?
The symmetry breaking condition (Felli-Schneider) now reads

. d—1
a>aps with apg =/ ——
n—1

J. Dolbeault Nonlinear flows, optimality
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The second variation

j[v] =9 |Og (||©av||L2,d—n(Rd)) =+ (1 — 19) |Og (||V||Lp+1,d—n(Rd))
+ log Ka’,,’P — log (||V||L2p,d—n(Rd))

Let us define dyus := ps(x) dx, where us(x) := (1 + |x|?)~°. Since v, is
a critical point of 7, a Taylor expansion at order 2 shows that

||®O¢V*Hi2,d—n(Rd) j[V* + € Hs/2 f] = % 62 Y Q[f] + 0(52)

. 2
with 6 = p—_”l and

' 4pa?® [
Q[f] :/ D f 2 |x|"~ dpg — P / 712 %79 dpgsa
R4 pP— 1 RY

We assume that [5, f [x|"" dpusi1 = 0 (mass conservation)

J. Dolbeault Nonlinear flows, optimality
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a Symmetry breaking: the proof

Proposition (Hardy-Poincaré inequality)

Letd >2, a € (0,+00), n>d and § > n. If f has O average, then
a4 dis 2 A [ 1R X" dasa
Rd Rd

with optimal constant A = min{2a? (26 — n),2a?&n} where 1 is the
unique positive solution ton (n+n—2) = (d —1)/a?. The corresponding
(d—1)6°

eigenfunction is not radially symmetric if o2 >

Q > 0 iff 42 012 < A and symmetry breaking occurs in (CKN) if

P
4 2

2020 < P n<l1
p—1
= 04_2 =n(n+n-2)<n—-1 < «a>aps

J. Dolbeault Nonlinear flows, optimality



Interpolation inequalities on the sphere Critical and subcritical Caffarelli-Kohn-Nirenberg inequality
Symmetry breaking, linearization, flows Linearization and spectrum
Weighted nonlinear flows and CKN inequalities Entropy methods without weights

Symmetry in one slide: 3 steps

@ A change of variables: v(|x|[*1x) = w(x), Dv = (o 2%, LV, v)

HV||L2F’d n(R9) < Ka ,n,p ”3D VHLZ d—n(R9) HV||LP+1d n(Rd) Vve Hgfn,dfn(Rd)

@ Concavity of the Rényi entropy power with
Lo=-D:D, :aQ(u”—l— =1 )—|— A, uand ¢ 6” = L,um

< Glu(t, )] (fga u™ du)
Z(l—m)(a—l)fRdum‘gp Jua 0 DaPP dp |2

Jpa um dp
#2 fpe (a* 1=

+2 [o ((n—z) (a%g — a?) |V,P2 + c(n, m, d) \v Pl ) ™ dp

du

nm_ P AyP
P" — s a?(n—1)s?

(9P )

@ Elliptic regularity and the Emden-Fowler transformation: justifying
the integrations by parts

J. Dolbeault Nonlinear flows, optimality
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Inequalities without weights and fast
diffusion equations

Q@ Rényi entropy powers, the entropy approach without rescaling:
[Savaré, Toscani]: scalings, nonlinearity and a concavity property
inspired by information theory

> Faster rates of convergence: [Carrillo, Toscani], [JD, Toscani]

@ Self-similar variables and relative entropies: the issue of the
boundary terms [Carrillo, Toscani], [Carrillo, Vézquez], [Carrillo,
Jiingel, Markowich, Toscani, Unterreiter]

@ Equivalence of the methods ?

@ The role of the spectral gap

J. Dolbeault Nonlinear flows, optimality
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Rényi entropy powers: FDE in original variables

Consider the nonlinear diffusion equation in RY. d>1

v

— =AvT"

ot
with initial datum v(x, t = 0) = vp(x) > 0 such that [, vo dx =1 and
Jge X[ vo dx < +00. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

1 X
Uslt,%) = (s tl/u)d B*(n tl/u)
where
| 2pm Yk

=2 -1 = —
i +d(m-1), & —

and B, is the Barenblatt profile
(Co— xRV itm>1
B.(x) = n1/(m=1) .
(G + |x?) ifm<1

J. Dolbeault Nonlinear flows, optimality
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The Rényi entropy power F

The entropy is defined by

E::/ v dx
Rd

and the Fisher information by
|::/ V|VP[2 dx with P=—"_,m1
R4

If v solves the fast diffusion equation, then
E=(1-m)l

> Bakry-Emery method: Compute I’

J. Dolbeault Nonlinear flows, optimality
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The Rényi entropy power

o . _ 1 _ 2 1 2 1
F:=E° with U_d(l—m)_1+l—m<d+m 1) i1 —m 1

has a linear growth asymptotically as t — +oo
The pressure variable is P = 7 vm1

? =(m—1)PAP +|VP|?

Then F” is proportional to
Jgo vIVPJ? dx 2

(c—1)(1—m) ot /Rd v fRd o

+ 2E"*1/ v™ | D?P — 3 APTd || dx
Rd

AP — dx

J. Dolbeault Nonlinear flows, optimality
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The concavity property

[Toscani-Savaré| Assume that m>1— 2 ifd >1and m>0ifd =1.
Then F(t) is increasing, (1 — m)F"(t) <0 and

) 1 o 2 o—1] __ o—1
lim EF(t)_(l_m)Ut—llTooE I=(1-m)oE{ "I,

t—+4o00

[Dolbeault-Toscani] The inequality
EO- I > ETI,
is equivalent to the Gagliardo-Nirenberg inequality
IV W12y WIS ey = Coon W g

if1-1<m<1 Hint: v?1/2=_—*  g=_1_

= w20 m1
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Self-similar variables and relative entropies

A time-dependent rescaling: self-similar variables
1 X dR _
aRd U(T, H—R) where P R, 1(t):= 1% log R(t)
Then the function u solves a Fokker-Planck type equation
ou

E#—V- [U(Vum_1—2x)} =0

Q Elu] = [po (B™ — u™ — mB™1 (B — u)) dx/m is such that

v(t,x) =

i(‘,’[u] =—T[u], Z[u] ::/ u|Vum 2x|2 dx
dt RY

[del Pino, J.D.], [Carrillo, Toscani] d >3, m € [<52, +00), m > ]

29
m#1
Zu] > 4 &[u]
If up € L1 (RY) is such that |[x|? up € LY(RY), uf" € L}(R?), then
Elu(t,”)] < E[ugl e **
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Entropy methods without weights

A computation on a large ball, with boundary terms

ou

E+V'[U(Vum*1—2x)}:0 >0, x€Bg

where Bg is a centered ball in RY with radius R > 0, and assume that
u satisfies zero-flux boundary conditions

(Vumfl - 2X) S

|x|

With z(7, x) := VQ(7, x) := Vu™ ! — 2x, the relative Fisher
information is such that

d
— u|z\2dx+4/ ulz|? dx
dT Br Br

=0 7>0, xecdBg.

vaize [ um (D) - (- m) (A0)7) ox
Br
= / u™ (w- V|z|?) do < 0 (by Grisvard’s lemma)
9B
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Reintroducing Rényi entropy powers

Q@ the relative entropy
1
Elu] = _7/ (u™ — B™ — mB™ " (u— B.)) dx
m Jrd

Q relative Fisher information

Z[u] ::/ u\z|2 dx :/ u ’Vum_l — 2x|2 dx
Rd Rd

R.[u] :21—Tm/ ™ D2t = 3 Aum 1 Id|| dx
Rd

+2(m—m) = [ um | Aumt — 2d]7 dx

Proposition

If1—1/d <m<1andd?>2, then

T[uo] — 4 E[uo] > /0 T Ru(r, )] dr
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Sharp asymptotic rates of convergence

Assumptions on the initial datum vy
(H1) Vp, < v < Vp, for some Dy > Dy >0

(H2) if d > 3 and m < m,, (vy — V) is integrable for a suitable
D € [D1, Dy

Theorem

[Blanchet, Bonforte, J.D., Grillo, Vézquez] Under Assumptions
(H1)-(H2), if m < 1 and m # m, := 9=%, the entropy decays according
to

Elv(t,))] < Ce2=mAadt >0

where Ny ,g > 0 is the best constant in the Hardy—Poincaré inequality

/\a,d/ 1F1? dpta—1 S/ |VFf2du, Y feH(dus)
R4 Rd

with a := 1/(m — 1) < 0, dpg 1= hy dx, ho(x) := (1 + |x|?)®
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Spectral gaps, asymptotic rates

y(m)
4
my = %
ded
a+6
2
e Caise 1
Case 2
Case 3
0 m
1

[Bonforte, J.D., Grillo, Vazquez], [Bonforte, J.D., Grillo, Vézquez],
[J.D., Toscani|, [Denzler, Koch, McCann]
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Weighted nonlinear flows:
Caffarelli-Kohn-Nirenberg
inequalities
> Entropy and Caffarelli-Kohn-Nirenberg inequalities
> Large time asymptotics and spectral gaps

> Optimality cases
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CKN and entropy — entropy production inequalities

When symmetry holds, (CKN) can be written as an entropy — entropy
production inequality

Lm (24 B —9)?E[v] < I[v]

and equality is achieved by B . Here the free energy and the
relative Fisher information are defined by

. 1 m m m—1 o dx
Elv] == — y (v - BE, — mBE (v %g,ﬁ) 7|X\7
2 dx
. m—1 m—1
I[V] = /RdV’VV *v%ﬁ,,‘/ ‘ W

If v solves the Fokker-Planck type equation
Vet [ V- [|x\*/3 vV (vt - |x|2+/3*7)] =0  (WFDE-FP)
then

d m
LW )] = - T Tlv(z, )]
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Proposition

Let m= ’;—J;l and consider a solution to (WFDE-FP) with nonnegative

initial datum ug € L7(RY) such that ||uf'|[11.~re) and
Jge to [x|*TP727 dx are finite. Then

E[v(t, )] < Elug] e Gt v >0
if one of the following two conditions is satisfied:

(i) either ug is a.e. radially symmetric
(ii) or symmetry holds in (CKN)
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Towards a parabolic proof

Let v(|x|*71x) = w(x), Dav = (a 2%, 1 V,v) and define the diffusion
operator L, by

~1 A
La:—DZDa:a2<63+n r>+2“’
r r

where A,, denotes the Laplace-Beltrami operator on S~1 and
consider the equation

ou .
87 - Da(uz)

where
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If the weight does not introduce any singularity at x = 0...

_m_d

1—mdr Br

/ u™ (w-Dalz?) Ix|""?do (< 0 by Grisvard’s lemma)
R

u |z|2 din

—25r (m—1+47) / u™ [Lagl* duy
Br

m 4 " ! A 2 o2 ! Veq|?
*/u ot myfq" — & - bt + 28 |Vad - %) dug
Br

2
~(n-2)(aps - a?) [ Fetdg,
Bg T

A formal computation that still needs to be justified (x =0 ?)
@ Other potential application: the computation of Bakry, Gentil and
Ledoux (chapter 6) for non-integer dimensions; weights on manifolds

[...]
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Fast diffusion equations with
weights: large time asymptotics

@ Relative uniform convergence
e Asymptotic rates of convergence

e From asymptotic to global estimates

Here v solves the Fokker-Planck type equation

Ve + X[ V- [|x\—ﬂ vV (vt - |x|2+ﬁ—7)} =0  (WFDE-FP)

Joint work with M. Bonforte, M. Muratori and B. Nazaret
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Relative uniform convergence

For “good” initial data, there exist positive constants IC, ( and ty such
that, for all q € [3=2,00], the function w = v/B satisfies

1-m?

(1=m)?
[w(t) = 1| ooy < K2 SEAC(0) > g

in the case v € (0, d), and

@=m? A (e _t0)
Z=i OVt >t

[w(t) = 1lpenrey < Ke™?

in the case v <0

A is a spectral gap
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Essential spectrum

Essential spectrum

The spectrum of £ as a function of § = ﬁ, with n =5. The
essential spectrum corresponds to the grey area, and its bottom is
determined by the parabola ¢ — Aess(6). The two eigenvalues Ag 1 and
A1,0 are given by the plain, half-lines, away from the essential
spectrum. The spectral gap determines the asymptotic rate of
convergence to the Barenblatt functions

J. Dolbeault Nonlinear flows, optimality



Interpolation inequalities on the sphere A parabolic proof ?
Symmetry breaking, linearization, flo Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

Main steps of the proof:

@ Existence of weak solutions, L7 contraction, Comparison
Principle, conservation of relative mass

Q@ Self-similar variables and the Ornstein-Uhlenbeck equation in
relative variables: the ratio w(t,x) := v(t, x)/B(x) solves

X we = — LV (|x\*/3 BwV (w1l - 1)Bm1) ) in R+ x RY
w(0,-) = wp 1= vo/B in R?

Q@ Regularity: [Chiarenza, Serapioni], Harnack inequalities; relative
uniform convergence (without rates) and asymptotic rates
(linearization)

Q@ The relative free energy and the relative Fisher information:
linearized free energy and linearized Fisher information

@ A Duhamel formula and a bootstrap
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Asymptotic rates of convergence

n—4

Assume that m € (0,1), with m # m, := ——>. Under the relative mass
condition, for any ‘good solution” v there exists a positive constant C
such that

Elv(t)] <Ce 20-mAt y¢ >0,

@ With Csiszar-Kullback-Pinsker inequalities, these estimates provide
a rate of convergence in L17(RY)

Q@ Improved estimates can be obtained using “best matching
techniques”
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From asymptotic to global estimates

@ When symmetry holds (CKN) can be written as an entropy —
entropy production inequality

m

2+8 -7 eV < I[v]

1—-m
so that

(2+8-7)°

Elv(t)] < E[v(0)] e 2A-mAt vt >0 with A, = 20—

Q@ Let us consider again the entropy — entropy production inequality
K(M)E[v] < I[v] Vv e LY (R?) such that [VIlLisrey =M,

where K(M) is the best constant: with A(M) := 2 (1 — m)=2K(M)

<

E[v(t)] < E[v(0)] e 2A=mAMt vt >
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a Symmetry breaking and global entropy — entropy
production inequalities

e In the symmetry breaking range of (CKN), for any M > 0, we have
0<K(M) < 2(1—m)?Nos

o If symmetry holds in (CKN) then
K(M) > 122 (24 8 —7)?

Corollary

| A

Assume that m € [my,1)
(i) For any M > 0, if A(M) = A, then 8 = Brs(7)
(i) If B > Brs(y) then N1 < A and A(M) € (0, Ao 1] for any M > 0

(iii) For any M > 0, if B < Brs(7y) and if symmetry holds in (CKN), then
A(M) > A,

v
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Linearization and optimality

Joint work with M.J. Esteban and M. Loss
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Linearization and scalar products

With u. such that

u. = B, (1 +e fBi_m) and u. dx = M,
Rd
at first order in ¢ — 0 we obtain that f solves
f
% =Lf where Lf:=(1-m)BI?|x|"D*(|x|"" B,Df)

<f1,f2>:/ fifh B2 |x|77" dx and <<f1,f2>>:/ Df; - D B, |x|7* dx
R4 R4

| o

(f,f) =(f,Lf) :/ fF(LF)B2™™|x|™7 dx

Rd

N
Q

t
=" / IDFI> B, |x| 77 dx = — ((f, f))
RY

for any f smooth enough, and

| o

(f, F) = /Rd Df -D(LF)ulx|™? dx = — (f, L)

N~
Q.

t
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Linearization of the flow, eigenvalues and spectral gap

Now let us consider an eigenfunction associated with the smallest
positive eigenvalue \; of L

—LA=Mh
so that fi realizes the equality case in the Hardy-Poincaré inequality
(g.8) =~ (g.Lg) = Mllg—2l*, &:=(g1)/(1,1)

—(g.Lg) > (g 8)

Proof: expansion of the square :
~((e-2).L(e-8N=(L(e—58)L(g-&)=L(g-8)
@ Key observation:

d—1
n—1
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Symmetry breaking in CKN inequalities

@ Symmetry holds in (CKN) if J[w] > J[w,] with
T(w] = 9 10g (D Wil sz +(1—9) Tog (Wl sey) —1og (1]l pans sy
with 0 ;== d — n and
Jws +eg] = Qlg] + o(£?)
where
2 1D W 25y ]
= [|Da glf2snze) + EEEF [d =y —p(d —2 - / gl 'ﬁimz

_ (2+ﬁ w 2 _Ix"?
(2P ]- / |g| (1+|x|? )2

is a nonnegative quadratic form if and only if a < apg

@ Symmetry breaking holds if a > apg
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Information — production of information inequality

Let K[u] be such that
d
d—I[u(T7 )] = — Klu(r, )] = — (sum of squares)
-

If o« < apg, then A1 > 4 and

Kld]

g

ur—

is a nonnegative functional
With u. = B, (1+¢fB:~™), we observe that

Kl Klel . (F.LF) _ (6.LA)
t=G=niy) A R T R )

@ if Ay =4, that is, if « = apg, then inf £/Z = 4 is achieved in the

asymptotic regime as u — B, and determined by the spectral gap of £
@ if A\; > 4, that is, if @ < aFg, then K/Z > 4

J. Dolbeault Nonlinear flows, optimality
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Symmetry in Caffarelli-Kohn-Nirenberg inequalities

If & < apg, the fact that X/Z > 4 has an important consequence.
Indeed we know that
d
o7 Elu(r )] = 4&lu(r,)]) <0
so that
Tlu] — 4&[u] > Z[B,] — 4€[B,] =0

This inequality is equivalent to J[w] > J[ws], which establishes that
optimality in (CKN) is achieved among symmetric functions. In other
words, the linearized problem shows that for a < agg, the function

7= Z[u(r, )] — 4&[u(r, )]

is monotone decreasing
@ This explains why the method based on nonlinear flows provides
the optimal range for symmetry
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Entropy — production of entropy inequality

Using < (Z[u(r,-)] = C2&[u(r,-)]) < 0, we know that
Tlul — C2E[u] = Z[Bs] — CE[BL] =0
As a consequence, we have that

. I[u] ’C[U]
=it == 7

With u. = B, (1+¢fB:™™), we observe that

o Tu] L (FLLF) (A LA)
< = = = =
R P R AR R A S ]

@ If lim._ginff I[”E] = (p, then C; = Cr = \;

This happens if @ = apg and in particular in the case without weights
(Gagliardo-Nirenberg inequalities)
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These slides can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Conferences/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list /
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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