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Relativistic hydrogenic atoms in
strong magnetic fields

The Dirac operator for a hydrogenic atom in the presence of a constant
magnetic field B in the x3-direction is given by

HB − ν

|x| with HB := α ·
[
1

i
∇ +

1

2
B(−x2, x1, 0)

]

+ β

ν = Zα < 1, Z is the nuclear charge number
The Sommerfeld fine-structure constant is α ≈ 1/137.037

The magnetic field strength unit is m2c2

|q|~ ≈ 4.4 × 109 Tesla

1 Gauss = 10−4 Tesla
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[R.C. Duncan, Magnetars, soft gamma repeaters and very strong
magneticfields]
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The ground state energy λ1(ν,B) is the smallest eigenvalue in the gap

As B ↗, λ1(ν,B) → −1: we define the critical magnetic field as the field
strength B(ν) such that “λ1(ν,B(ν)) = −1”

[J.D., Esteban, Loss, Annales Henri Poincaré 2007]

Non perturbative estimates based on min-max formulations

Theorem 1. For all ν ∈ (0, 1), there exists a constant C > 0 such that

4

5 ν2
≤ B(ν) ≤ min

(
18π ν2

[3 ν2 − 2]2+
, eC/ν2

)

Relativistic lowest Landau level

lim
ν→0

ν log(B(ν)) = π
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Magnetic Dirac Hamiltonian

HB ψ − ν
|x| ψ = λψ is an equation for complex spinors ψ =

(
φ
χ

)
where

φ, χ ∈ L2(R3; C2) are the upper and lower components

PBχ+ φ− ν

|x| φ = λφ

PBφ− χ− ν

|x| χ = λχ

with PB := − i σ · (∇− iAB(x))

AB(x) :=
B

2






−x2

x1

0




 , B(x) :=






0

0

B
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Min–max characterization of the ground state energy

If ψ =
(

φ
χ

)
is an eigenfunction with eigenvalue λ, eliminate the lower

component χ and observe

0 = J [φ, λ, ν, B] :=

∫

R3

(

|PBφ|2
1 + λ+ ν

|x|
+ (1 − λ) |φ|2 − ν

|x| |φ|
2

)

d3x

The function λ 7→ J [φ, λ, ν, B] is decreasing: define λ = λ[φ, ν,B] to be the
unique solution to

either J [φ, λ, ν, B] = 0 or − 1

Theorem 2. Let B ∈ R
+ and ν ∈ (0, 1). If −1 < infφ∈C∞

0 (R3,C2) λ[φ, ν,B] < 1,

λ1(ν,B) := inf
φ
λ[φ, ν,B]

is the lowest eigenvalue of HB − ν
|x| in the gap of its continuous spectrum, (−1, 1)
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Characterization of the critical
magnetic field

Using the scaling properties, we find an eigenvalue problem which
characterizes the critical magnetic field
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Notations

Magnetic Dirac operator with Coulomb potential ν/|x|

HB :=

(

I − ν/|x| − i σ · (∇− iA)

− i σ · (∇− iA) −I − ν/|x|

)

where A is a magnetic potential corresponding to B, and I and σk are
respectively the identity and the Pauli matrices

I =

(

1 0

0 1

)

, σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

Let B = (0, 0, B), A = AB . For any x = (x1, x2, x3) ∈ R3, define

PB := − i σ · (∇− iAB(x)) , AB(x) :=
B

2






−x2

x1

0
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Consider the functional

J [φ, λ, ν, B] :=

∫

R3

(

|PBφ|2
1 + λ+ ν

|x|
+ (1 − λ) |φ|2 − ν

|x| |φ|
2

)

d3x

on the set of admissible functions

A(ν,B) := {φ ∈ C∞
0 : ‖φ‖L2 = 1, λ 7→ J [φ, λ, ν, B] changes sign in (−1,+∞)}

λ = λ[φ, ν,B] is either the unique solution to J [φ, λ, ν, B] = 0 if φ ∈ A(ν,B)

λ1(ν,B) := inf
φ∈A(ν,B)

λ[φ, ν,B]

The critical magnetic field is defined by

B(ν) := inf

{

B > 0 : lim inf
b↗B

λ1(ν, b) = −1

}
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Auxiliary functional

EB,ν [φ] :=

∫

R3

|x|
ν

|PB φ|2 d3x−
∫

R3

ν

|x| |φ|
2 d3x

⇐⇒ EB,ν [φ] + 2 ‖φ‖2
L2(R3) = J [φ,−1, ν, B]

Scaling invariance

EB,ν [φB] =
√
B E1,ν [φ] φB := B3/4 φ

(

B1/2 x
)

We define

µ(ν) := inf
06≡φ∈C∞

0 (R3)

E1,ν [φ]

‖φ‖2
L2(R3)

Formally : −1 = λ1(ν,B(ν)), inf
06≡φ∈C∞

0 (R3)
J [φ,−1, ν, B] = 0

=⇒
√

B(ν)µ(ν) + 2 = 0
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Main result

Theorem 3. For all ν ∈ (0, 1),

µ(ν) := inf
06≡φ∈C∞

0 (R3)

E1,ν [φ]

‖φ‖2
L2(R3)

is negative, finite,

B(ν) =
4

µ(ν)2

and B(ν) is a continuous, monotone decreasing function of ν on (0, 1)
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Proof of the main result

Preliminary results

Proof
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Preliminary results

(ν, φ) 7→ ν E1,ν [φ] =

∫

R3

|x| |P1 φ|2 d3x−
∫

R3

ν2

|x| |φ|
2 d3x

is a concave, bounded function of ν ∈ (0, 1), for any φ ∈ C∞
0 (R3), and so

is its infimum with respect to φ

φ(x) :=

√

B

2π
e−

B
4 (|x1|2+|x2|2)

(
f(x3)

0

)

∀ x = (x1, x2, x3) ∈ R
3

f ∈ C∞
0 (R,R) such that f ≡ 1 for |x| ≤ δ, δ > 0, and ‖f‖

L2(R+)
= 1

EB,ν [φ] ≤ C1

ν
+ C2 ν − C3 ν logB

φ1/B(x) = B−3/4 φ
(
B−1/2 x

)
, E1,ν [φ1/B] = B−1/2 EB,ν [φ] < 0

Lemma 4. On the interval (0, 1), the function ν 7→ µ(ν) is continuous, monotone
decreasing and takes only negative real values
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Proofs

B̃(ν) = sup

{

B > 0 : inf
φ

(

EB,ν [φ] + 2 ‖φ‖2
L2(R3)

)

≥ 0

}

=
4

µ(ν)2

EB,ν [φ] + 2 ‖φ‖2
L2(R3) ≥ J [φ, λ1(ν,B), ν, B] ≥ J [φ, λ[φ, ν,B], ν, B] = 0

=⇒ B(ν) ≤ B̃(ν)

Characterization of the critical magnetic field in the Dirac-Coulomb equation – p.15/35



Proofs

Let B = B(ν) and consider (νn)n∈N such that νn ∈ (0, ν), limn→∞ νn = ν,
λn := λ1(νn, B) > −1 and limn→∞ λn = −1
Let φn be the optimal function associated to λn: J [φn, λ

n, νn, B] = 0

Let χ ≥ 0 on R+ such that χ ≡ 1 on [0, 1], 0 ≤ χ ≤ 1 and χ ≡ 0 on [2,∞),
and χn(x) := χ(|x|/Rn), limn→∞Rn = ∞, φ̃n := φn χn

PB φn = (PB φ̃n)χn
︸ ︷︷ ︸

=a

+
[
− (P0 χn)φn

]

︸ ︷︷ ︸

=b

Using |a|2 ≥ |a+b|2
1+ε − |b|2

ε , we get

|PB φn|2 ≥ |(PB φ̃n)χn|2
1 + εn

− |(P0 χn)φn|2
εn
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1) The function φ̃n is supported in the ball B(0, 2Rn): with
µn := (1 + εn)

[
2(1 + λn)Rn + νn

]
,

1

1 + εn

∫

R3

|PB φ̃n|2
1 + λn + νn

|x|
d3x ≥ 1

µn

∫

R3

|x| |PB φ̃n|2 d3x

2) Supp(P0 χn) ⊂ B(0, 2Rn) \B(0, Rn), |P0 χn|2 ≤ κR−2
n

1

εn

∫

R3

|(P0 χn)φn|2
1 + λn + νn

|x|
d3x ≤ κ

εn Rn

[
(1 + λn)Rn + νn

]

∫

R3

|φn|2 d3x
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With ηn = κ/(εnRn ((1 + λn)Rn + νn)) + νn/Rn, we can write

0 = J [φn, λ
n, νn, B] ≥ 1

µn

∫

R3

|x| |PB φ̃n|2 d3x− νn

∫

R3

|φ̃n|2
|x| d3x

+(1 − λn − ηn)

∫

R3

|φ̃n|2 d3x

Let ν̃n =
√
µn νn

1

ν̃n

∫

R3

|x| |PB φ̃n|2 d3x− ν̃n

∫

R3

|φ̃n|2
|x| d3x+ 2

∫

R3

|φ̃n|2 d3x

≤
[

2 −
√
µn

νn
(1 − λn − ηn)

] ∫

R3

|φ̃n|2 d3x→ 0

B̃(ν′) ≤ B = B(ν) ∀ ν′ > ν

By continuity, B̃(ν) ≤ B(ν) �
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A Landau level ansatz

Definition

Characterization of the critical field (Landau level ansatz)

Asymptotic behaviour as ν → 0+

Comparison of the critical magnetic fields
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Landau Levels

First Landau level for a constant magnetic field of strength B: the space of
all functions φ which are linear combinations of the functions

φ` :=
B√

2π 2` `!
(x2 + i x1)

` e−B s2/4

(
1

0

)

, ` ∈ N , s2 = x2
1 + x2

2

where the coefficients depend only on x3, i.e.

φ(x) =
∑

`

f`(x3)φ`(x1, x2)

Π is the projection of φ onto the first Landau level. Critical field in the
Landau level ansatz

BL(ν) := inf
{
B > 0 : lim infb↗B λ

L
1 (ν, b) = −1

}

λL1 (ν,B) := infφ∈A(ν,B) , Π⊥φ=0 λ[φ, ν,B]
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Characterization of the critical field (Landau level ansatz)

The counterpart of our main result holds in the Landau level ansatz. For
any ν ∈ (0, 1), if

µL(ν) := inf
φ∈A(ν,B) , Π⊥φ=0

E1,ν [φ]

then

BL(ν) =
4

µL(ν)2

Goal: compare µL(ν) with µ(ν)
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Cylindrical coordinates: s =
√

x2
1 + x2

2 and z = x3

If φ is in the first Landau level, then

E1,ν [φ] =
∑

`

1

ν

∫ ∞

0

b` f
′
`
2
dz − ν

∫ ∞

0

a` f
2
` dz

a`(z) :=

(

φ`,
1

r
φ`

)

L2(R2,C2)

=
1

2` `!

∫ +∞

0

s2`+1 e−s2/2

√
s2 + z2

ds

b`(z) := (φ`, r φ`)L2(R2,C2) =
1

2` `!

∫ +∞

0

s2`+1 e−s2/2
√

s2 + z2 ds

=⇒ E1,ν [φ] ≥ 1

ν

∫ ∞

0

b0 |f ′|2 dz − ν

∫ ∞

0

a0 f
2 dz

Consider φ(x) = f(z) e−s2/4
√

2 π

(
1
0

)
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1

2
E1,ν [φ] =

1

ν

∫ ∞

0

b0 f
′2 dz − ν

∫ ∞

0

a0 f
2 dz := Lν [f ]

b0(z) =

∫ ∞

0

√

s2 + z2 s e−s2/2 ds and a0(z) =

∫ ∞

0

s e−s2/2

√
s2 + z2

ds

The minimization problem in the Landau level ansatz is now reduced to

µL(ν) = inf
f

Lν [f ]

‖f‖2
L2(R+)

By definition of µ(ν) and µL(ν), we have

µ(ν) ≤ µL(ν)

It is a non trivial problem to estimate how close these two numbers are
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Asymptotic behaviour (Landau level ansatz)

Observe that b(z) ≥ 1
a(z) and let

L−
ν [f ] :=

1

ν

∫ ∞

0

1

a
f ′

2
dz − ν

∫ ∞

0

a f2 dz

and

L+
ν [f ] :=

1

ν

∫ ∞

0

b f ′
2
dz − ν

∫ ∞

0

1

b
f2 dz

with corresponding infima µ−
L (ν) and µ+

L(ν)

Lemma 5. For any ν ∈ (0, 1),

µ−
L (ν) ≤ µL(ν) ≤ µ+

L(ν)

Lemma 6. With the above notations, lim
ν→0+

ν log |µL(ν)| = −π
2

=⇒ logBL(ν) ∼ π
ν as ν → 0+
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Comparison of the critical magnetic fields

Theorem 7. With the above notations, lim
ν→0+

logB(ν)

logBL(ν)
= 1

Known: µ(ν) ≤ µL(ν)
B(ν) > 1 for any ν ∈ (0, ν̄) for some ν̄ > 0: ν ∈ (0, ν̄), then λ1(ν, 1) > −1
and therefore, for all φ,

E1,ν [φ] ≥ Fν [φ] :=

∫

R3

|σ · ∇1φ|2
λ1(ν, 1) + 1 + ν

|x|
d3x−

∫

R3

ν

|x| |φ|
2 d3x

Gν

(
φ

χ

)

:=

(

HB

(
φ

χ

)

,

(
φ

χ

))

is concave in χ:

1 + Fν [φ] = sup
χ

Gν

(
φ
χ

)

‖φ‖2
L2(R3) + ‖χ‖2

L2(R3)
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sup
χ

Gν

(
φ
χ

)

‖φ‖L2(R3) + ‖χ‖L2(R3)
≥ sup

Π⊥χ=0

Gν

(
φ
χ

)

‖φ‖L2(R3) + ‖χ‖L2(R3)
. . .

(estimate of the interaction term and Cauchy-Schwartz)

. . . ≥ sup
χ

Gν+ν3/2

(
Πφ
Πχ

)
+ Gν+

√
ν

(
Π⊥φ

0

)

‖Πφ‖L2(R3) + ‖Π⊥φ‖L2(R3) + ‖Πχ‖L2(R3)

(being perpendicular to the lowest Landau level raises the energy)

. . . ≥ sup
χ

Gν+ν3/2

(
Πφ
Πχ

)
+ d(ν) ‖Π⊥φ‖2

L2(R3)

‖Πφ‖L2(R3) + ‖Π⊥φ‖L2(R3) + ‖Πχ‖L2(R3)

with d(0) =
√

2 > supχ

G
ν+ν3/2 (Πφ

Πχ )
‖Πφ‖L2(R3)+‖Πχ‖L2(R3)

=⇒ µ−
L (ν + ν3/2) ≤ µ(ν)
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Numerical results

Computations in the Landau level ansatz

General case (without Landau level ansatz)

Conclusion
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Computations in the Landau level ansatz

We minimize Lν [f ]/‖f‖2
L2(R+) on the set of the solutions fλ of

f ′′ +
z a(z)

b(z)
f ′ +

ν

b(z)
(λ+ ν a(z)) f = 0 , f(0) = 1 , f ′(0) = 0

We notice that b′(z) = z a(z), and, for any z > 0,

a(z) = e
z2

2

√
π

2
erfc

(
z√
2

)

and b(z) = e
z2

2

√
π

2
erfc

(
z√
2

)

+ z

Shooting method: minimize g(λ, zmax) := |fλ(zmax)|2 + |f ′λ(zmax)|2

As zmax → ∞, the first minimum µL(ν, zmax) of λ 7→ g(λ, zmax) converges

to 0 and thus determines λ = µL(ν)

Characterization of the critical magnetic field in the Dirac-Coulomb equation – p.28/35



Landau level ansatz (2)

-0.4 -0.2 0.2 0.4

2.5

5

7.5

10

12.5

15

λ

log[1 + g( zmax)]λ,

Plot of λ 7→ log[1 + g(λ, zmax)] with zmax = 100, for ν = 0.9
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Landau level ansatz (3)

b = m2c2

e ~
≈ 4.414 · 109 is the numerical factor to get the critical field in Tesla

ν Z µL BL(ν) log10(bBL(ν))

0.409 56. -0.0461591 1877.35 12.9184

0.5 68.52 -0.0887408 507.941 12.3506

0.598 82. -0.14525 189.596 11.9227

0.671 92. -0.192837 107.567 11.6765

0.9 123.33 -0.363773 30.2274 11.1252

1 137.037 -0.445997 20.1093 10.9482
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Landau level ansatz (4)

0.2 0.4 0.6 0.8

12

13

14

15

16

17

18

ν

log
10

(bB)

0.5 0.6 0.7 0.8 0.9

50

100

150

200

250

300

ν

B

B(ν)
BL(ν)

Left: values of the critical magnetic field in Tesla (log10 scale)
Right: values in dimensionless units
Ground state levels in the Landau level ansatz: upper curve
Levels obtained by a direct computation: lower curve
Dots correspond to the values computed by [Schlüter, Wietschorke,
Greiner] in the Landau level ansatz
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Computations without the Landau level ansatz

We numerically compute B(ν) in the general case, without ansatz
Discretization: B-spline functions of degree 1 on a logarithmic, variable
step-size grid, in cylindrical symmetry give large but sparse matrices

ν Z λ1 B(ν) log10(bB(ν))

0.50 68.5185 -0.0874214 523.389 12.3637

0.60 82.2222 -0.153882 168.922 11.8725

0.70 95.9259 -0.231198 74.833 11.5189

0.80 109.63 -0.321875 38.6087 11.2315

0.90 123.333 -0.430854 21.5476 10.9782

1.00 137.037 -0.573221 12.1735 10.7302
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General case (2)

0.7 0.75 0.8 0.85 0.9 0.95

0.6

0.8

1.2

1.4

1.6

1.8

2

ν

BL(ν)
B(ν)

Ratio of the ground state levels computed in the Landau level ansatz vs.
ground state levels obtained by a direct computation

Orders of magnitude of the critical magnetic field, shape of the curve:
ok in the Landau level ansatz

Except maybe in the limit ν → 0, no justification of the Landau level
ansatz: computed critical fields, shapes of the corresponding ground
state differ
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General case (3)
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Conclusion

The Landau level ansatz, which is commonly accepted in non relativistic
quantum mechanics as a good approximation for large magnetic fields, is
a quite crude approximation for the computation of the critical magnetic
field (that is the strength of the field at which the lowest eigenvalue in the
gap reaches its lower end) in the Dirac-Coulomb model

Even for small values of ν, which were out of reach in our numerical study,
it is not clear that the Landau level ansatz gives the correct approximation
at first order in terms of ν

Accurate numerical computations involving the Dirac equation cannot
simply rely on the Landau level ansatz.
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