Characterization of the critical magnetic field in the
Dirac-Coulomb equation

Jean Dolbeault
(Joint work with Maria J. Esteban and Michael Loss)

dolbeaullceremade.dauphine. fr

CEREMADE
CNRS & Université Paris-Dauphine

Internet: http://www.ceremade.dauphine.fr/~dolbeaul

VIENNA, DECEMBER 17, 2007

Characterization of the critical magnetic field in the Dirac-Coulomb equation — p.1/3!



Outline of the talk

Relativistic hydrogenic atoms in strong magnetic fields: min-max and
critical magnetic fields

Characterization of the critical magnetic field
Proof of the main result
A Landau level ansatz

eppPp P

Numerical results

Characterization of the critical magnetic field in the Dirac-Coulomb equation — p.2/3'



Relativistic hydrogenic atoms in
strong magnetic fields

The Dirac operator for a hydrogenic atom in the presence of a constant
magnetic field B in the x3-direction is given by

. 1 1
HB—ﬁ with Hp Z:(X'[;V+§B(—$2,$1,0)]+ﬁ
I

v = Za < 1, Z is the nuclear charge number
The Sommerfeld fine-structure constant is o =~ 1/137.037

The magnetic field strength unit is T?;ﬁ_f ~ 4.4 x 10° Tesla

1 Gauss = 10~ % Tesla
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To put this in perspective, here is a table of magnetic field strengths
The Earths magnetic field, which

sk ooias ndlos measured at the N magnetic pole 0.6 Gauss
A common, hand-held magnet like those used to stick papers on a refrigerator éﬂ; "
The magnetic ficld in strong (within dark, magnetized areas on the solar surface)

sunspots Gauss
The strongest, sustained (i.c., 45X 10°

steady) magnetic fields achieved so ||generated by hulking huge elecromagnets

far in the laboratory RIS
The strongest man-made fields ever ||made using focussed explosive charges; lasted only 4 - 8 107
achieved, if only briefly microseconds. Gauss

found on a handful of strongly-magnetized, compact white 10°

dwarf stars. (Such stars are rare. Only 3% of white dwarfs have
Mega-gauss or stronger fields.)

Typical surface, polar magnetic the most familiar kind of neutron star; more than a thousand |[10'2-10%°
fields of radio pulsars are known to astronomers Gauss

The strongest fields ever detected

on non-neutron stars Gauss

soft gamma repeaters and anomalous X-ray pulsars
(These are surface, polar fields. Magnetar interior fields may range up 10'4-10'%
to 10'® Gauss, with field lines probably wrapped in a toroidal, or donut ||(Gauss

geometry inside the star.)

Magnetars

[R.C. Duncan, Magnetars, soft gamma repeaters and very strong
magneticfields]
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The ground state energy A\ (v, B) is the smallest eigenvalue in the gap

As B /, A\ (v, B) — —1: we define the critical magnetic field as the field
strength B(v) such that “A\; (v, B(v)) = —1”

[J.D., Esteban, Loss, Annales Henri Poincare 2007]

@_ Non perturbative estimates based on min-max formulations
Theorem 1. Forallv € (0, 1), there exists a constant C' > (0 such that

4 18 2
—— < B(v) < min Y 5 ,ec/’/2

Q_ Relativistic lowest Landau level

lim vlog(B(v)) = 7

v—0
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Magnetic Dirac Hamiltonian

Hpy — I%I Y = A\ is an equation for complex spinors i = (;’2) where
¢, x € L*(R?;C?) are the upper and lower components

v

PBX+¢—E¢:)\¢
v
Ppp—x— —Xx=AX
]
with Pg := —io0 - (V —iAp(x))
B — X2 0
Ap(z) = b 1 , B(x):= 0
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Min—max characterization of the ground state energy

If ) = (;’i) IS an eigenfunction with eigenvalue ), eliminate the lower
component y and observe

_ ._ |Ppg|” 2 VYV 2\ 3

The function \ — J[¢, A\, v, B] is decreasing: define A = \[¢, v, B] to be the
unique solution to
either J[p, \,v,B] =0 or —1

Theorem 2. Let B € RT andv € (0,1). if =1 < infyeceers,c2) Alg, v, B] < 1,

A (v, B) = igf Ao, v, B]

v

is the lowest eigenvalue of Hg — 777 in the gap of its continuous spectrum, (—1,1)
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Characterization of the critical
magnetic field

Using the scaling properties, we find an eigenvalue problem which
characterizes the critical magnetic field




Notations

Magnetic Dirac operator with Coulomb potential v /||

- [—v/|z| —i0-(V—14A)
5 ( —10-(V—14A) —1—v/|x| )

where A is a magnetic potential corresponding to B, and I and o, are
respectively the identity and the Pauli matrices

1 0 0 1 0 —2 1 0
[ = y 01 = , 02 =— . , 03 =
0 1 1 0 0 0 -1

Let B=(0,0,B), A= Apg. Forany x = (z1, 22, 23) € R?, define

PB ::—ia-(V—iAB(x)), AB(x) =
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Consider the functional

o ‘PB¢‘2 2 4 2 3
J(#, A\, v, B] '_/R3 (1+A+%+(1A)¢I —H\cbl ) d’x

on the set of admissible functions
A(v,B) :={¢p € C;° : ||¢||lr2 =1, A — J|¢p, A\, v, B| changes signin (—1,400)}
A = Ao, v, B] is either the unique solutionto J|¢, \,v, B| =0if ¢ € A(v, B)

A (v, B) = ¢ei&£ 5 Ao, v, B

The critical magnetic field is defined by

B(v) := inf {B >0 : liminf A1 (v, b) = —1}
b,/ B
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Auxiliary functional

]

Elo) = [ D PsoP e~ [ LioPd

R ||

= Epp[d] + 218l 72(msy = J[6, —1,v, B]
Scaling invariance

Enulon] = VBELIY o5 = B¢ (B a)

We define
u(v) = inf 51’21/ 7]
0ZpeCye (R3) HngLQ(R?,)
Formally : —1 = M\ (v, B(v)), inf J¢p,—1,v,B] =0

0ZpeCge(R3)

— /B) u(v) +2 =0
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Main result

Theorem 3. Forallv € (0,1),

IUJ(V) . f 51,21/ [¢]
0ZpeCe (R3) H¢||L2(R3)

Is negative, finite,

and B(v) is a continuous, monotone decreasing function of v on (0, 1)
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Proof of the main result

@_ Preliminary results
Q@ Proof
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Preliminary results

V2

v6) > vEfdl = [ el PioP s~ [ LoPds

R3 R3 95\

is a concave, bounded function of v € (0, 1), for any ¢ € C§°(R?), and so
s its infimum with respect to ¢

gb(x) =XV % 6_%(|w1|2+|x2|2) (f(g3)) Vo — ($1,$2,$3) c R3

f e Cg°(R,R) such that f =1 for |z| <, > 0, and || f|| =1

L2(RT)

Epv|o] < =) + Cyv—Csvlog B

v

¢1/8(T) = B3/ ¢ (3_1/2 33), E1vld1/B) = B~1/2 Epwlo] <0
Lemma 4. On the interval (0, 1), the function v — (V) is continuous, monotone
decreasing and takes only negative real values
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Proofs

4
pu(v)

~

B(v) = sup {B >0 ¢ inf (£p,00] + 2016l es)) > o} _

2

gB,V[¢] + 2 H¢||%Q(R3) Z J[¢7 )‘1(V7 B)7V7 B] Z J[q5,)\[¢, v, B],V, B] =0

— B(v) < B(v)
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Proofs

Let B = B(v) and consider (v, ),en Such that v, € (0,v), lim,, .o v, = v,
A" = A (v, B) > —1and lim, o, A" = —1
Let ¢,, be the optimal function associated to A\™: J[¢,,, A", vy, B] =0

Let x > 0onR* suchthat y=10n0,1],0< y <1andyx=0o0n[2,0),
and x,(z) := x(|z|/Rn), lim, .o Ry = 00, ¢pn := ¢pn Xn

Pqun:(PBén)XTE_F[_(POXn)gbn]

\ (g _J/

~

=a —b
Using |a|? > % — @ we get
|PB¢ |2 > ‘(PB an)XnP . |(P0Xn) ¢n‘2

1+ e, En
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1) The function ¢,, is supported in the ball B(0,2 R,,): with
= (1+e,) 21+ A") Ry, + 1],

1 Pg ¢, |2 1 ~
/ Foonl 0> [ 10 1Ps 6P o
14+ep Jrs 1+ A"+ 22 L s

|z]

2) Supp(Fo xn) C B(0,2R,) \ B(0, R,), | P Xn|2 < RR;2

2

|z

K
en Ry, [(1 + )\n) R, + Vn] R3

|¢n|2 d’x
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With n, = x/(e, R, (1 + \") R, + vy)) + v/ R,,, We can write

_ n i T2 93, |$n|2
0 = J[pn, \", vy, B] > 2| |Pg éu|? &Pz — v,

d>x
Hn JR3 R3 |£L’|

(L= A" =) | |éa)? dx
R?)

Let 0,, = \/lin, Un

1 - 5|2 N
— x| | Pp gbn|2d3x—ﬁn/ 0] x4+ 2 [ |? d>x
Vn JR3 R3 ‘37‘ R3
<f2- B -] [ jhpds—o
Un R3

B(WY<B=B{) Vv >v
By continuity, B(v) < B(v) O
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A Landau level ansatz

@ Definition
@_ Characterization of the critical field (Landau level ansatz)

@ Asymptotic behaviour as v — 0.
@_ Comparison of the critical magnetic fields
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Landau Levels

First Landau level for a constant magnetic field of strength B: the space of
all functions ¢ which are linear combinations of the functions

. B - ¢ —Bs?/4 1 2 2 2
gbg.—\/m(x2+zx1)e 0)° teN, s°=uz]+ x5

where the coefficients depend only on z3, ie.

p(x) = Zf€(373) Qe(w1, T2)
¢
IT is the projection of ¢ onto the first Landau level. Critical field in the

Landau level ansatz

Be(v) :=inf {B >0 : liminf, -5 \f(v,b) = —1}
)\1£(V7 B) = inf¢eA(u,B) T =0 Ao, v, B
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Characterization of the critical field (Landau level ansatz)

The counterpart of our main result holds in the Landau level ansatz. For
any v e (0,1), if

= inf E1L
o) = o mf Gl

then

BL(I/) =

Goal: compare o (v) with p(v)
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Cylindrical coordinates: s = \/x% + x5 and z = x3

If ¢ is in the first Landau level, then

1 oo oo
1o = Z ;A be 22 dz — V/O ag f7 dz
14

1 1 +o0 82€—|—1 6—82/2
ag(z) == , — = —— ds
£ (ﬁbe r Qbe) reecy 24 Jo 52 4 22

1 [T iy
bﬁ(z) ‘= (¢£7¢¢£)L2(R2,@2) = 2£—€' /0 82“_1 e /2\/ s2 4+ 22 ds

1 oo oo
— &1 ,[0] > ;/ bo |f'|* dz — 1// ao f* dz
0

0

Consider ¢(z) = f(z) =2 /¢ (o)
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1 L[ ”
551,u[¢]:_/ bOf’QdZ_V/ ap f?dz = L,|f]
V Jo 0
b w\/ﬁ 2/2d d o 86_82/2 d
2) = s4 4 z4se”” s and ap(z) = 5
o(2) /O o) = | e

The minimization problem in the Landau level ansatz is now reduced to

.. L[]
v) = inf
HeW) = e

By definition of u(v) and u.(v), we have

p(v) < pc(v)

It is a non trivial problem to estimate how close these two numbers are
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Asymptotic behaviour (Landau level ansatz)

Observe that b(2) > ;5 and let

L [f] ::1‘/Oooéf’2dz—u/oooaf2dz

v

and

+ __l > 12 _ OO} 2
LT f] = /0 bf"dz /0 bf dz

%
with corresponding infima p - (v) and u} (v)
Lemma5. Foranyv € (0,1),
pz () < pe(v) < pf(v)
Lemma 6. With the above notations, lin(f)l v log |pe(v)| = —g
v—uy

— log B(v) ~ T asv — 04
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Comparison of the critical magnetic fields

log B(v)
Theorem 7. With the above notations, 1im

=1
v—04 log Br(v)

Known: pi(v) < pue(v)
B(v) > 1forany v € (0,7) forsome v > 0: v € (0,7), then A1 (v, 1) > —1
and therefore, for all ¢,

T |U' C1q5|2 3 2 13,
51, kb] = kb] /R3 )\1(V7 1) + 1 |Z| ! /]12{3 |:E| |¢|

() - (1) () scmnnins

9, (5)

H§b|| L2(R3) T HXHL2(R3)

1+ F,|¢] _SUP
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G, (%) G, (%)
sup > sup
x  ollre@ws) + x|l czme)y — niy—=o [|@llL2rs) + x|l L2 (rs)

(estimate of the interaction term and Cauchy-Schwartz)

11 e
> sup gy+V3/2 (Hi)+gy+ﬁ( O¢)
7 x 9l2es) + [T @l| L2 ra) + [[Hx| £2(rs)

(being perpendicular to the lowest Landau level raises the energy)

. Gyivor (12) + d(v) T2 gy
T Il ey + T L rs) + TIx 2 o)

. G, 32 (n%)
with d(0) = v/2 > sup, e

- 3/2
L2(R3)+||HX||L2(R3) = U, (V TV ) < M(V)
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Numerical results

@ Computations in the Landau level ansatz
@_ General case (without Landau level ansatz)
@ Conclusion
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Computations in the Landau level ansatz

We minimize L, [f]/||f[|72 &+, on the set of the solutions £ of

fo+ b(z) f'+@(k+va(2))f=0, f(O)=1, f(0)=0

We notice that ¥’ (z) = z a(z), and, for any z > 0,

a(z):eé\/gerfc<%) and b(z):eé\/gerfc<%)+z

Shooting method: minimize g(\, zmax) := | fA(Zmax)|* + | /4 (Zmax) |2
AS zZpnax — 00, the first minimum p, (v, zmax) Of A — g(A, zmax) CONVerges

to 0 and thus determines A = . (v)
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Landau level ansatz (2)

Alog[l -+ g()\a ZmaX)]

A
'

0.2 0.4

Plot of A — log[1 + g(\, zmax)] With 2z, = 100, for v = 0.9
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Landau level ansatz (3)

m°c ~, 4.414-10° is the numerical factor to get the critical field in Tesla

eh

v Z FL Be(v) | logyg(bBe(v))
0.409 56. -0.0461591 | 1877.35 12.9184
0.5 68.52 | -0.0887408 | 507.941 12.3506
0.598 82. -0.14525 | 189.596 11.9227
0.671 92. -0.192837 | 107.567 11.6765
0.9 123.33 | -0.3637/7/3 | 30.2274 11.1252
1 137.037 | -0.445997 | 20.1093 10.9482
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Landau level ansatz (4)

log,,(b B) A

18}
17¢
le}
15¢
[ ] 14}

13}

\\:2
1%
. . )

Left: values of the critical magnetic field in Tesla (log,, scale)
Right: values in dimensionless units

Ground state levels in the Landau level ansatz: upper curve

Levels obtained by a direct computation: lower curve

Dots correspond to the values computed by [SchlUter, Wietschorke,
Greiner] in the Landau level ansatz
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Computations without the Landau level ansatz

We numerically compute B(v) in the general case, without ansatz

Discretization: B-spline functions of degree 1 on a logarithmic, variable

step-size grid, in cylindrical symmetry give large but sparse matrices

2 Z A1 B(v) | logyo(bB(v))
0.50 | 68.5185 | -0.0874214 | 523.389 12.3637
0.60 | 82.2222 | -0.153882 | 168.922 11.8725
0.70 | 95.9259 | -0.231198 | 74.833 11.5189
0.80 | 109.63 | -0.321875 | 38.6087 11.2315
0.90 | 123.333 | -0.430854 | 21.5476 10.9782
1.00 | 137.037 | -0.573221 | 12.1735 10.7302
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General case (2)

Y <

Ratio of the ground state levels computed in the Landau level ansatz vs.
ground state levels obtained by a direct computation

@_ Orders of magnitude of the critical magnetic field, shape of the curve:
ok in the Landau level ansatz

@ Except maybe in the limit v — 0, no justification of the Landau level
ansatz: computed critical fields, shapes of the corresponding ground
state differ
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General case (3)

20

15

10

Landau
ansatz

lo

Landau ansatz

A
14
=09 12 =09
Landau 10 Ground state
ansatz
8
6
4
2 \
s ol 3
I T T I I TS E T >
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Conclusion

The Landau level ansatz, which is commonly accepted in non relativistic
quantum mechanics as a good approximation for large magnetic fields, is
a quite crude approximation for the computation of the critical magnetic
field (that is the strength of the field at which the lowest eigenvalue in the
gap reaches its lower end) in the Dirac-Coulomb model

Even for small values of v, which were out of reach in our numerical study,
it is not clear that the Landau level ansatz gives the correct approximation
at first order in terms of v

Accurate numerical computations involving the Dirac equation cannot
simply rely on the Landau level ansatz.
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