Interpolation inequalities (Gagliardo-Nirenberg, Sobolev and Onofri inequalities): rigidity results, nonlinear flows and applications

Jean Dolbeault

 $http://www.ceremade.dauphine.fr/{\sim}dolbeaul$

Ceremade, Université Paris-Dauphine

March 19, 2014

くぼう くちゃ くちゃ

Scope (1/3): rigidity results

Rigidity results for semilinear elliptic PDEs on manifolds...

Let (\mathfrak{M}, g) be a smooth compact connected Riemannian manifold of dimension $d \geq 2$, no boundary, Δ_g is the Laplace-Beltrami operator the Ricci tensor \mathfrak{R} has good properties (which ones ?)

Let
$$p \in (2, 2^*)$$
, with $2^* = \frac{2d}{d-2}$ if $d \ge 3$, $2^* = \infty$ if $d = 2$

For which values of $\lambda > 0$ the equation

$$-\Delta_g v + \lambda v = v^{p-1}$$

has a unique positive solution $v \in C^2(\mathfrak{M})$: $v \equiv \lambda^{\frac{1}{p-2}}$?

A typical *rigidity result* is: there exists $\lambda_0 > 0$ such that $v \equiv \lambda^{\frac{2}{p-2}}$ if $\lambda \in (0, \lambda_0]$

Assumptions ? Optimal λ_0 ?

・ロト ・同ト ・ヨト ・ヨト

Scope (2/3): interpolation inequalities

Still on a smooth compact connected Riemannian manifold (\mathfrak{M},g) we assume that $\mathrm{vol}_g(\mathfrak{M})=1$

For any $p \in (1,2) \cup (2,2^*)$ or $p = 2^*$ if $d \ge 3$, consider the *interpolation inequality*

$$\|\nabla v\|_{\mathrm{L}^2(\mathfrak{M})}^2 \geq \frac{\lambda}{p-2} \left[\|v\|_{\mathrm{L}^p(\mathfrak{M})}^2 - \|v\|_{\mathrm{L}^2(\mathfrak{M})}^2 \right] \quad \forall \, v \in \mathrm{H}^1(\mathfrak{M})$$

What is the largest possible value of λ ?

• using $u = 1 + \varepsilon \varphi$ as a test function proves that $\lambda \leq \lambda_1$ • the minimum of $v \mapsto \|\nabla v\|_{L^2(\mathfrak{M})}^2 - \frac{\lambda}{\rho-2} \left[\|v\|_{L^p(\mathfrak{M})}^2 - \|v\|_{L^2(\mathfrak{M})}^2 \right]$ under the constraint $\|v\|_{L^p(\mathfrak{M})} = 1$ is negative if λ is above the rigidity threshold

Q the threshold case p = 2 is the *logarithmic Sobolev inequality*

$$\|\nabla u\|_{\mathrm{L}^{2}(\mathfrak{M})}^{2} \geq \lambda \int_{\mathfrak{M}} u^{2} \log\left(\frac{u^{2}}{\|u\|_{\mathrm{L}^{2}(\mathfrak{M})}^{2}}\right) dv_{g} \quad \forall \, u \in \mathrm{H}^{1}(\mathfrak{M})$$

Scope (3/3): flows

We shall consider a flow of porous media / fast diffusion type

$$u_t = u^{2-2\beta} \left(\Delta_g u + \kappa \frac{|\nabla u|^2}{u} \right), \quad \kappa = 1 + \beta \left(p - 2 \right)$$

If $v = u^{\beta}$, then $\frac{d}{dt} \|v\|_{L^{p}(\mathfrak{M})} = 0$ and the functional

$$\mathcal{F}[u] := \int_{\mathfrak{M}} |\nabla(u^{\beta})|^2 \, dv_g + \frac{\lambda}{p-2} \left[\int_{\mathfrak{M}} u^{2\beta} \, dv_g - \left(\int_{\mathfrak{M}} u^{\beta p} \, dv_g \right)^{2/p} \right]$$

is monotone decaying as long as λ is not too big. Hence, if the limit as $t \to \infty$ is 0 (convergence to the constants), we know that $\mathcal{F}[u] \ge 0$

Structure ? Link with computations in the rigidity approach

(人間) とうきょうきょう

Some references (1/2)

Some references (incomplete) and goals

- ♥ rigidity results and elliptic PDEs: [Gidas-Spruck 1981], [Bidaut-Véron & Véron 1991], [Licois & Véron 1995]
 → systematize and clarify the strategy
- semi-group approach and Γ₂ or carré du champ method: [Bakry-Emery 1985], [Bakry & Ledoux 1996], [Bentaleb et al., 1993-2010], [Fontenas 1997], [Brouttelande 2003], [Demange, 2005 & 2008]

 \longrightarrow emphasize the role of the flow, get various improvements \longrightarrow get rid of pointwise constraints on the curvature, discuss optimality

 harmonic analysis, duality and spectral theory: [Lieb 1983], [Beckner 1993]

 \longrightarrow apply results to get new spectral estimates

・ロト ・同ト ・ヨト ・ヨト

Outline

- The case of the sphere
 - Inequalities on the sphere
 - Flows on the sphere
 - \blacksquare Spectral consequences
 - Improved inequalities
- **②** The case of Riemannian manifolds
 - Q. Flows
 - $\textcircled{\label{eq:linear} }$ Spectral consequences
- **I**nequalities on the line
 - $\textcircled{\label{eq:last}}$. Variational approaches
 - $\textcircled{\label{eq:mass_linear} }$ Mass transportation
 - Flows
- Some the Moser-Trudinger-Onofri inequality

Joint work with:

M.J. Esteban, G. Jankowiak, M. Kowalczyk, A. Laptev and M. Loss

These slides can be found at

$\label{eq:http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/ $$ $$ $$ $$ $$ Lectures $$$

<ロ> <同> <同> < 回> < 回>

э

The sphere

• The case of the sphere as a simple example

(a)

Inequalities on the sphere

<ロ> <同> <同> < 回> < 回>

э

A family of interpolation inequalities on the sphere

The following interpolation inequality holds on the sphere:

$$\frac{p-2}{d} \int_{\mathbb{S}^d} |\nabla u|^2 \, d\, v_g + \int_{\mathbb{S}^d} |u|^2 \, d\, v_g \ge \left(\int_{\mathbb{S}^d} |u|^p \, d\, v_g \right)^{2/p} \quad \forall \ u \in \mathrm{H}^1(\mathbb{S}^d, dv_g)$$

$$\bullet \quad \text{for any } p \in (2, 2^*] \text{ with } 2^* = \frac{2d}{d-2} \text{ if } d \ge 3$$

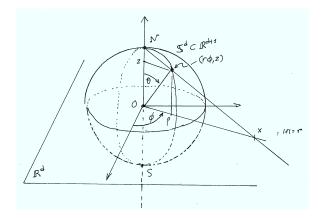
$$\bullet \quad \text{for any } p \in (2, \infty) \text{ if } d = 2$$

Here dv_g is the uniform probability measure: $v_g(\mathbb{S}^d)=1$

Q 1 is the optimal constant, equality achieved by constants **Q** $p = 2^*$ corresponds to Sobolev's inequality...

- 4 同 6 4 日 6 4 日 6

Stereographic projection



J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.

<ロ> (四) (四) (三) (三)

э

Sobolev inequality

The stereographic projection of $\mathbb{S}^d \subset \mathbb{R}^d \times \mathbb{R} \ni (\rho \phi, z)$ onto \mathbb{R}^d : to $\rho^2 + z^2 = 1, z \in [-1, 1], \rho \ge 0, \phi \in \mathbb{S}^{d-1}$ we associate $x \in \mathbb{R}^d$ such that $r = |x|, \phi = \frac{x}{|x|}$

$$z = \frac{r^2 - 1}{r^2 + 1} = 1 - \frac{2}{r^2 + 1}$$
, $\rho = \frac{2r}{r^2 + 1}$

and transform any function u on \mathbb{S}^d into a function v on \mathbb{R}^d using

$$u(y) = \left(\frac{r}{\rho}\right)^{\frac{d-2}{2}} v(x) = \left(\frac{r^2+1}{2}\right)^{\frac{d-2}{2}} v(x) = (1-z)^{-\frac{d-2}{2}} v(x)$$

 $\blacksquare \ p=2^*, \, \mathsf{S}_d=\frac{1}{4}\,d\,(d-2)\,|\mathbb{S}^d|^{2/d}\colon$ Euclidean Sobolev inequality

$$\int_{\mathbb{R}^d} |\nabla v|^2 \, dx \geq \mathsf{S}_d \left[\int_{\mathbb{R}^d} |v|^{\frac{2d}{d-2}} \, dx \right]^{\frac{d-2}{d}} \quad \forall v \in \mathcal{D}^{1,2}(\mathbb{R}^d)$$

(1日) (1日) (1日)

Extended inequality

$$\int_{\mathbb{S}^d} |\nabla u|^2 \ d \ \mathsf{v}_g \geq \frac{d}{p-2} \left[\left(\int_{\mathbb{S}^d} |u|^p \ d \ \mathsf{v}_g \right)^{2/p} - \int_{\mathbb{S}^d} |u|^2 \ d \ \mathsf{v}_g \right] \quad \forall \ u \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$$

is valid

- \blacksquare for any $p\in (1,2)\cup (2,\infty)$ if $d=1,\,2$
- \blacksquare for any $p\in(1,2)\cup(2,2^*]$ if $d\geq 3$

 $\textcircled{\sc logarithmic}$ Sobolev inequality

$$\int_{\mathbb{S}^d} |\nabla u|^2 \ d \ v_g \ge \frac{d}{2} \int_{\mathbb{S}^d} |u|^2 \ \log\left(\frac{|u|^2}{\int_{\mathbb{S}^d} |u|^2 \ d \ v_g}\right) \ d \ v_g \quad \forall \ u \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$$

• case $p = 2$

Q Poincaré inequality

A spectral approach when $p \in (1,2) - 1^{ ext{st}}$ step

[Dolbeault-Esteban-Kowalczyk-Loss] adapted from [Beckner] (case of Gaussian measures).

Nelson's hypercontractivity result. Consider the heat equation

$$\frac{\partial f}{\partial t} = \Delta_g f$$

with initial datum $f(t = 0, \cdot) = u \in L^{2/p}(\mathbb{S}^d)$, for some $p \in (1, 2]$, and let $F(t) := \|f(t, \cdot)\|_{L^{p(t)}(\mathbb{S}^d)}$. The key computation goes as follows.

$$\frac{F'}{F} = \frac{p'}{p^2 F^p} \left[\int_{\mathbb{S}^d} v^2 \log \left(\frac{v^2}{\int_{\mathbb{S}^d} v^2 \, d \, v_g} \right) \, d \, v_g + 4 \, \frac{p-1}{p'} \, \int_{\mathbb{S}^d} |\nabla v|^2 \, d \, v_g \right]$$

with $v := |f|^{p(t)/2}$. With $4 \frac{p-1}{p'} = \frac{2}{d}$ and $t_* > 0$ e such that $p(t_*) = 2$, we have

$$\|f(t_*,\cdot)\|_{{
m L}^2({\mathbb S}^d)} \le \|u\|_{{
m L}^{2/p}({\mathbb S}^d)} \quad {
m if} \quad rac{1}{p-1} = e^{2\,d\,t_*}$$

4 D K 4 B K 4 B K 4 B K

A spectral approach when $p \in (1,2)$ – $2^{ ext{nd}}$ step

Spectral decomposition. Let $u = \sum_{k \in \mathbb{N}} u_k$ be a spherical harmonics decomposition, $\lambda_k = k (d + k - 1)$, $a_k = \|u_k\|_{L^2(\mathbb{S}^d)}^2$ so that $\|u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} = \sum_{k \in \mathbb{N}} a_{k} \text{ and } \|\nabla u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} = \sum_{k \in \mathbb{N}} \lambda_{k} a_{k}$ $\|f(t_*,\cdot)\|^2_{L^2(\mathbb{S}^d)} = \sum a_k e^{-2\lambda_k t_*}$ $\frac{\|u\|_{L^{2}(\mathbb{S}^{d})}^{2}-\|u\|_{L^{p}(\mathbb{S}^{d})}^{2}}{2-p} \leq \frac{\|u\|_{L^{2}(\mathbb{S}^{d})}^{2}-\|f(t_{*},\cdot)\|_{L^{2}(\mathbb{S}^{d})}^{2}}{2-p}$ $=\frac{1}{2-p}\sum_{k\in\mathbb{N}^{*}}\lambda_{k}a_{k}\frac{1-e^{-2\lambda_{k}t_{*}}}{\lambda_{k}}$ $\leq \quad \frac{1 - e^{-2\lambda_1 t_*}}{(2 - p)\lambda_1} \sum_{t_* \in \mathbb{N}^*} \lambda_k \, a_k = \frac{1 - e^{-2\lambda_1 t_*}}{(2 - p)\lambda_1} \, \|\nabla u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2$

The conclusion easily follows if we notice that $\lambda_1 = d$, and $e^{-2\lambda_1 t_*} = p - 1$ so that $\frac{1 - e^{-2\lambda_1 t_*}}{(2-p)\lambda_1} = \frac{1}{d}$

J. Dolbeault

Interpolation inequalities: rigidity results, nonlinear flows and applications.

Optimality: a perturbation argument

• The optimality of the constant can be checked by a Taylor expansion of $u = 1 + \varepsilon v$ at order two in terms of $\varepsilon > 0$, small • For any $p \in (1, 2^*]$ if $d \ge 3$, any p > 1 if d = 1 or 2, it is remarkable that

$$\mathcal{Q}[u] := rac{(p-2) \, \|
abla u \|_{\mathrm{L}^2(\mathbb{S}^d)}^2}{\| u \|_{\mathrm{L}^p(\mathbb{S}^d)}^2 - \| u \|_{\mathrm{L}^2(\mathbb{S}^d)}^2} \geq \inf_{u \in \mathrm{H}^1(\mathbb{S}^d, d\mu)} \mathcal{Q}[u] = rac{1}{d}$$

is achieved by $\mathcal{Q}[1 + \varepsilon v]$ as $\varepsilon \to 0$ and v is an eigenfunction associated with the first nonzero eigenvalue of Δ_g

 $\bigcirc \ p>2$ no simple proof based on spectral analysis: [Beckner], an approach based on Lieb's duality, the Funk-Hecke formula and some (non-trivial) computations

 ${\bf Q}$ elliptic methods / Γ_2 formalism of Bakry-Emery / flow... they are the same (main contribution) and can be simplified (!) As a side result, you can go beyond these approaches and discuss optimality

・ロト ・同ト ・ヨト ・ヨト

Schwarz symmetry and the ultraspherical setting

$$(\xi_0, \, \xi_1, \dots \xi_d) \in \mathbb{S}^d, \, \xi_d = z, \, \sum_{i=0}^d |\xi_i|^2 = 1 \, [\text{Smets-Willem}]$$

Lemma

Up to a rotation, any minimizer of Q depends only on ξ_d

• Let
$$d\sigma(\theta) := \frac{(\sin \theta)^{d-1}}{Z_d} d\theta$$
, $Z_d := \sqrt{\pi} \frac{\Gamma(\frac{d}{2})}{\Gamma(\frac{d+1}{2})}$: $\forall v \in \mathrm{H}^1([0,\pi], d\sigma)$

$$\frac{p-2}{d}\int_0^\pi |v'(\theta)|^2 \ d\sigma + \int_0^\pi |v(\theta)|^2 \ d\sigma \ge \left(\int_0^\pi |v(\theta)|^p \ d\sigma\right)^{\frac{2}{p}}$$

• Change of variables $z = \cos \theta$, $v(\theta) = f(z)$

$$\frac{p-2}{d}\int_{-1}^{1}|f'|^2 \nu \ d\nu_d + \int_{-1}^{1}|f|^2 \ d\nu_d \ge \left(\int_{-1}^{1}|f|^p \ d\nu_d\right)^{\frac{2}{p}}$$

where $\nu_d(z) dz = d\nu_d(z) := Z_d^{-1} \nu^{\frac{d}{2}-1} dz, \ \nu(z) := 1 - z^2$

The ultraspherical operator

With $d\nu_d = Z_d^{-1} \nu^{\frac{d}{2}-1} dz$, $\nu(z) := 1 - z^2$, consider the space $L^2((-1, 1), d\nu_d)$ with scalar product

$$\langle f_1, f_2 \rangle = \int_{-1}^1 f_1 f_2 \, d\nu_d \,, \quad \|f\|_p = \left(\int_{-1}^1 f^p \, d\nu_d\right)^{\frac{1}{p}}$$

The self-adjoint *ultraspherical* operator is

$$\mathcal{L} f := (1 - z^2) f'' - d z f' = \nu f'' + \frac{d}{2} \nu' f'$$

which satisfies $\langle f_1, \mathcal{L} f_2 \rangle = - \int_{-1}^1 f'_1 f'_2 \nu d\nu_d$

Proposition

Let $p \in [1,2) \cup (2,2^*]$, $d \ge 1$

$$-\langle f, \mathcal{L} \, f
angle = \int_{-1}^{1} |f'|^2 \;
u \; d
u_d \geq d \; rac{\|f\|_{
ho}^2 - \|f\|_2^2}{p-2} \quad orall \, f \in \mathrm{H}^1([-1,1], d
u_d)$$

Flows on the sphere

• Heat flow and the Bakry-Emery method

• Fast diffusion (porous media) flow and the choice of the exponents

・ 同 ト ・ ヨ ト ・ ヨ ト

Heat flow and the Bakry-Emery method

With
$$g = f^p$$
, *i.e.* $f = g^{\alpha}$ with $\alpha = 1/p$

(Ineq.)
$$-\langle f, \mathcal{L} f \rangle = -\langle g^{\alpha}, \mathcal{L} g^{\alpha} \rangle =: \mathcal{I}[g] \ge d \frac{\|g\|_{1}^{2\alpha} - \|g^{2\alpha}\|_{1}}{p-2} =: \mathcal{F}[g]$$

Heat flow

$$\frac{\partial g}{\partial t} = \mathcal{L} g$$

$$\frac{d}{dt} \|g\|_{1} = 0, \quad \frac{d}{dt} \|g^{2\alpha}\|_{1} = -2(p-2) \langle f, \mathcal{L} f \rangle = 2(p-2) \int_{-1}^{1} |f'|^{2} \nu \, d\nu_{d}$$

which finally gives

$$\frac{d}{dt}\mathcal{F}[g(t,\cdot)] = -\frac{d}{p-2}\frac{d}{dt}\|g^{2\alpha}\|_1 = -2\,d\,\mathcal{I}[g(t,\cdot)]$$

Ineq. $\iff \frac{d}{dt} \mathcal{F}[g(t,\cdot)] \leq -2 d \mathcal{F}[g(t,\cdot)] \iff \frac{d}{dt} \mathcal{I}[g(t,\cdot)] \leq -2 d \mathcal{I}[g(t,\cdot)]$

マロト イラト イラト

The equation for $g = f^{\rho}$ can be rewritten in terms of f as

$$rac{\partial f}{\partial t} = \mathcal{L} \, f + (p-1) \, rac{|f'|^2}{f} \,
u$$

$$-\frac{1}{2}\frac{d}{dt}\int_{-1}^{1}|f'|^{2}\nu d\nu_{d} = \frac{1}{2}\frac{d}{dt}\langle f,\mathcal{L}f\rangle = \langle \mathcal{L}f,\mathcal{L}f\rangle + (p-1)\langle \frac{|f'|^{2}}{f}\nu,\mathcal{L}f\rangle$$

$$\frac{d}{dt}\mathcal{I}[g(t,\cdot)] + 2 d\mathcal{I}[g(t,\cdot)] = \frac{d}{dt} \int_{-1}^{1} |f'|^2 \nu \, d\nu_d + 2 d \int_{-1}^{1} |f'|^2 \nu \, d\nu_d$$
$$= -2 \int_{-1}^{1} \left(|f''|^2 + (p-1) \frac{d}{d+2} \frac{|f'|^4}{f^2} - 2(p-1) \frac{d-1}{d+2} \frac{|f'|^2 f''}{f} \right) \nu^2 \, d\nu_d$$

is nonpositive if

$$|f''|^2 + (p-1) \frac{d}{d+2} \frac{|f'|^4}{f^2} - 2(p-1) \frac{d-1}{d+2} \frac{|f'|^2 f''}{f}$$

is pointwise nonnegative, which is granted if

$$\left[(p-1)\frac{d-1}{d+2}\right]^2 \le (p-1)\frac{d}{d+2} \iff p \le \frac{2d^2+1}{(d-1)^2} < \frac{2d}{d-2} = 2^*$$

J. Dolbeault

Interpolation inequalities: rigidity results, nonlinear flows and applications

... up to the critical exponent: a proof on two slides

$$\left[\frac{d}{dz},\mathcal{L}\right] u = (\mathcal{L} u)' - \mathcal{L} u' = -2 z u'' - d u'$$

$$\int_{-1}^{1} (\mathcal{L} u)^{2} d\nu_{d} = \int_{-1}^{1} |u''|^{2} \nu^{2} d\nu_{d} + d \int_{-1}^{1} |u'|^{2} \nu d\nu_{d}$$
$$\int_{-1}^{1} (\mathcal{L} u) \frac{|u'|^{2}}{u} \nu d\nu_{d} = \frac{d}{d+2} \int_{-1}^{1} \frac{|u'|^{4}}{u^{2}} \nu^{2} d\nu_{d} - 2 \frac{d-1}{d+2} \int_{-1}^{1} \frac{|u'|^{2} u''}{u} \nu^{2} d\nu_{d}$$

On (-1, 1), let us consider the *porous medium (fast diffusion)* flow

$$u_t = u^{2-2\beta} \left(\mathcal{L} \, u + \kappa \, \frac{|u'|^2}{u} \, \nu \right)$$

If $\kappa = \beta (p-2) + 1$, the L^p norm is conserved

$$\frac{d}{dt} \int_{-1}^{1} u^{\beta p} \, d\nu_d = \beta \, p \, (\kappa - \beta \, (p - 2) - 1) \int_{-1}^{1} u^{\beta (p - 2)} \, |u'|^2 \, \nu \, d\nu_d = 0$$

A > < > > < >

~

$$\begin{split} f &= u^{\beta}, \, \|f'\|_{L^{2}(\mathbb{S}^{d})}^{2} + \frac{d}{p-2} \left(\|f\|_{L^{2}(\mathbb{S}^{d})}^{2} - \|f\|_{L^{p}(\mathbb{S}^{d})}^{2} \right) \geq 0 \; ? \\ \mathbf{A} &:= -\frac{1}{2\beta^{2}} \frac{d}{dt} \int_{-1}^{1} \left(|(u^{\beta})'|^{2} \nu + \frac{d}{p-2} (u^{2\beta} - \overline{u}^{2\beta}) \right) d\nu_{d} \\ &= \int_{-1}^{1} \left(\mathcal{L} \, u + (\beta - 1) \frac{|u'|^{2}}{u} \, \nu \right) \left(\mathcal{L} \, u + \kappa \frac{|u'|^{2}}{u} \, \nu \right) d\nu_{d} \\ &\quad + \frac{d}{p-2} \frac{\kappa - 1}{\beta} \int_{-1}^{1} |u'|^{2} \, \nu \, d\nu_{d} \\ &= \int_{-1}^{1} |u''|^{2} \, \nu^{2} \, d\nu_{d} - 2 \frac{d-1}{d+2} (\kappa + \beta - 1) \int_{-1}^{1} u'' \frac{|u'|^{2}}{u} \, \nu^{2} \, d\nu_{d} \\ &\quad + \left[\kappa (\beta - 1) + \frac{d}{d+2} (\kappa + \beta - 1) \right] \int_{-1}^{1} \frac{|u'|^{4}}{u^{2}} \, \nu^{2} \, d\nu_{d} \\ &= \int_{-1}^{1} \left| u'' - \frac{p+2}{6-p} \frac{|u'|^{2}}{u} \right|^{2} \nu^{2} \, d\nu_{d} \geq 0 \quad \text{if } p = 2^{*} \; \text{and} \; \beta = \frac{4}{6-p} \end{split}$$

 \mathcal{A} is nonnegative for some β if $\frac{8 d^2}{(d+2)^2} (p-1)(2^*-p) \ge 0$

Interpolation inequalities: rigidity results, nonlinear flows and applications.

э

the rigidity point of view

Which computation have we done ? $u_t = u^{2-2\beta} \left(\mathcal{L} u + \kappa \frac{|u'|^2}{u} \nu \right)$

$$-\mathcal{L} u - (\beta - 1) \frac{|u'|^2}{u} \nu + \frac{\lambda}{p-2} u = \frac{\lambda}{p-2} u^{\kappa}$$

Multiply by $\mathcal{L}\, u$ and integrate

$$\dots \int_{-1}^{1} \mathcal{L} \, u \, u^{\kappa} \, d\nu_{d} = -\kappa \int_{-1}^{1} u^{\kappa} \, \frac{|u'|^2}{u} \, d\nu_{d}$$

Multiply by $\kappa \frac{|u'|^2}{u}$ and integrate

$$\dots = +\kappa \int_{-1}^{1} u^{\kappa} \frac{|u'|^2}{u} d\nu_d$$

Spectral consequences

\blacksquare A quantitative deviation with respect to the semi-classical regime

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.

・ 同 ト ・ ヨ ト ・ ヨ ト

Some references (2/2)

Consider the Schrödinger operator $H = -\Delta - V$ on \mathbb{R}^d and denote by $(\lambda_k)_{k\geq 1}$ its eigenvalues

■ Euclidean case [Keller, 1961]

$$|\lambda_1|^{\gamma} \leq \mathrm{L}^1_{\gamma,d} \int_{\mathbb{R}^d} V_+^{\gamma+rac{\epsilon}{2}}$$

[Lieb-Thirring, 1976]

$$\sum_{k\geq 1} |\lambda_k|^{\gamma} \leq \mathcal{L}_{\gamma,d} \int_{\mathbb{R}^d} V_+^{\gamma+\frac{d}{2}}$$

 $\gamma \geq 1/2$ if d = 1, $\gamma > 0$ if d = 2 and $\gamma \geq 0$ if $d \geq 3$ [Weidl], [Cwikel], [Rosenbljum], [Aizenman], [Laptev-Weidl], [Helffer], [Robert], [Dolbeault-Felmer-Loss-Paturel]... [Dolbeault-Laptev-Loss 2008]

• Compact manifolds: log Sobolev case: [Federbusch], [Rothaus]; case $\gamma = 0$ (Rozenbljum-Lieb-Cwikel inequality): [Levin-Solomyak]; [Lieb], [Levin], [Ouabaz-Poupaud]... [Ilyin]

An interpolation inequality (I)

Lemma (Dolbeault-Esteban-Laptev)

Let $q \in (2, 2^*)$. Then there exists a concave increasing function $\mu : \mathbb{R}^+ \to \mathbb{R}^+$ with the following properties

$$\mu(\alpha) = \alpha \quad \forall \, \alpha \in \left[0, \frac{d}{q-2}\right] \quad \textit{and} \quad \mu(\alpha) < \alpha \quad \forall \, \alpha \in \left(\frac{d}{q-2}, +\infty\right)$$

$$\mu(\alpha) = \mu_{\mathrm{asymp}}(\alpha) \left(1 + o(1)\right) \quad \text{as} \quad \alpha \to +\infty \,, \quad \mu_{\mathrm{asymp}}(\alpha) := \frac{\mathsf{K}_{q,d}}{\kappa_{q,d}} \,\alpha^{1-\vartheta}$$

such that

$$\|\nabla u\|_{L^{2}(\mathbb{S}^{d})}^{2} + \alpha \|u\|_{L^{2}(\mathbb{S}^{d})}^{2} \ge \mu(\alpha) \|u\|_{L^{q}(\mathbb{S}^{d})}^{2} \quad \forall u \in \mathrm{H}^{1}(\mathbb{S}^{d})$$

$$\ge 3 \text{ and } a = 2^{*} \text{ the inequality holds with } \mu(\alpha) = \min\{\alpha, \alpha\}$$

If $d \ge 3$ and $q = 2^*$, the inequality holds with $\mu(\alpha) = \min \{\alpha, \alpha_*\}$, $\alpha_* := \frac{1}{4} d(d-2)$

• $\mu_{\text{asymp}}(\alpha) := \frac{\mathsf{K}_{q,d}}{\mathsf{K}_{q,d}} \alpha^{1-\vartheta}, \ \vartheta := d \frac{q-2}{2q} \text{ corresponds to the semi-classical regime and } \mathsf{K}_{q,d} \text{ is the optimal constant in the Euclidean Gagliardo-Nirenberg-Sobolev inequality}$

$$\mathsf{K}_{q,d} \, \|v\|^2_{\mathrm{L}^q(\mathbb{R}^d)} \leq \|\nabla v\|^2_{\mathrm{L}^2(\mathbb{R}^d)} + \|v\|^2_{\mathrm{L}^2(\mathbb{R}^d)} \quad \forall \, v \in \mathrm{H}^1(\mathbb{R}^d)$$

 \blacksquare Let φ be a non-trivial eigenfunction of the Laplace-Beltrami operator corresponding the first nonzero eigenvalue

$$-\Delta arphi = d \, arphi$$

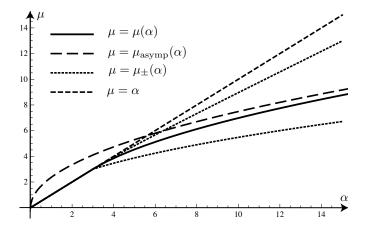
Consider $u = 1 + \varepsilon \varphi$ as $\varepsilon \to 0$ Taylor expand \mathcal{Q}_{α} around u = 1

$$\mu(\alpha) \leq \mathcal{Q}_{\alpha}[1 + \varepsilon \, \varphi] = \alpha + \left[d + \alpha \left(2 - q\right)\right] \varepsilon^2 \int_{\mathbb{S}^d} |\varphi|^2 \, d \, \mathsf{v}_g + \mathsf{o}(\varepsilon^2)$$

By taking ε small enough, we get $\mu(\alpha) < \alpha$ for all $\alpha > d/(q-2)$ Optimizing on the value of $\varepsilon > 0$ (not necessarily small) provides an interesting test function...

A D N A D N A D N A D N

The sphere Riemannian manifolds The line The Moser-Trudinger-Onofri inequality



イロン イ団 とくほと くほとう

∃ 900

Consider the Schrödinger operator $-\Delta - V$ and the energy

$$\begin{split} \mathcal{E}[u] &:= \int_{\mathbb{S}^d} |\nabla u|^2 - \int_{\mathbb{S}^d} V \, |u|^2 \\ &\geq \int_{\mathbb{S}^d} |\nabla u|^2 - \mu \, \|u\|_{\mathrm{L}^q(\mathbb{S}^d)}^2 \geq - \alpha(\mu) \, \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \quad \text{if } \mu = \|V_+\|_{\mathrm{L}^p(\mathbb{S}^d)} \end{split}$$

Theorem (Dolbeault-Esteban-Laptev)

Let $d \ge 1$, $p \in (\max\{1, d/2\}, +\infty)$. Then there exists a convex increasing function α s.t. $\alpha(\mu) = \mu$ if $\mu \in [0, \frac{d}{2}(p-1)]$ and $\alpha(\mu) > \mu$ if $\mu \in (\frac{d}{2}(p-1), +\infty)$

$$|\lambda_1(-\Delta - V)| \le lpha (\|V\|_{\mathrm{L}^p(\mathbb{S}^d)}) \quad \forall V \in \mathrm{L}^p(\mathbb{S}^d)$$

For large values of μ , we have $\alpha(\mu)^{p-\frac{d}{2}} = L^1_{p-\frac{d}{2},d} (\kappa_{q,d} \mu)^p (1+o(1))$ and the above estimate is optimal If p = d/2 and $d \ge 3$, the inequality holds with $\alpha(\mu) = \mu$ iff $\mu \in [0, \alpha_*]$

A Keller-Lieb-Thirring inequality

Corollary (Dolbeault-Esteban-Laptev)

Let
$$d \ge 1, \gamma = p - d/2$$

 $|\lambda_1(-\Delta - V)|^{\gamma} \lesssim L^1_{\gamma,d} \int_{\mathbb{S}^d} V^{\gamma + \frac{d}{2}} \text{ as } \mu = ||V||_{L^{\gamma + \frac{d}{2}}(\mathbb{S}^d)} \to \infty$
if either $\gamma > \max\{0, 1 - d/2\} \text{ or } \gamma = 1/2 \text{ and } d = 1$
However, if $\mu = ||V||_{L^{\gamma + \frac{d}{2}}(\mathbb{S}^d)} \le \frac{1}{4} d(2\gamma + d - 2)$, then we have
 $|\lambda_1(-\Delta - V)|^{\gamma + \frac{d}{2}} \le \int_{\mathbb{S}^d} V^{\gamma + \frac{d}{2}}$

for any $\gamma \geq \max\{0, 1-d/2\}$ and this estimate is optimal

 $L^1_{\gamma,d}$ is the optimal constant in the Euclidean one bound state ineq.

$$|\lambda_1(-\Delta-\phi)|^\gamma \leq \mathrm{L}^1_{\gamma,d}\int_{\mathbb{R}^d} \phi_+^{\gamma+rac{d}{2}} \, dx$$

< 回 > < 三 > < 三 >

Another interpolation inequality (II)

Let $d \ge 1$ and $\gamma > d/2$ and assume that $L^1_{-\gamma,d}$ is the optimal constant in

$$\lambda_1(-\Delta + \phi)^{-\gamma} \leq \mathrm{L}^1_{-\gamma,d} \int_{\mathbb{R}^d} \phi^{rac{d}{2}-\gamma} dx$$
 $q = 2rac{2\gamma - d}{2\gamma - d + 2} \quad \mathrm{and} \quad p = rac{q}{2-q} = \gamma - rac{d}{2}$

Theorem (Dolbeault-Esteban-Laptev)

$$\left(\lambda_1(-\Delta+W)
ight)^{-\gamma}\lesssim \mathrm{L}^1_{-\gamma,d}\,\int_{\mathbb{S}^d}W^{rac{d}{2}-\gamma}\quad \textit{as}\quad eta=\|W^{-1}\|^{-1}_{\mathrm{L}^{\gamma-rac{d}{2}}(\mathbb{S}^d)}
ightarrow\infty$$

However, if
$$\gamma \geq \frac{d}{2} + 1$$
 and $\beta = \|W^{-1}\|_{L^{\gamma-\frac{d}{2}}(\mathbb{S}^d)}^{-1} \leq \frac{1}{4} d(2\gamma - d + 2)$

$$\left(\lambda_1(-\Delta+W)\right)^{rac{d}{2}-\gamma}\leq\int_{\mathbb{S}^d}W^{rac{d}{2}-\gamma}$$

and this estimate is optimal

 $\mathsf{K}^*_{q,d}$ is the optimal constant in the Gagliardo-Nirenberg-Sobolev inequality

$$\mathsf{K}^*_{q,d} \| \mathsf{v} \|^2_{\mathrm{L}^2(\mathbb{R}^d)} \leq \| \nabla \mathsf{v} \|^2_{\mathrm{L}^2(\mathbb{R}^d)} + \| \mathsf{v} \|^2_{\mathrm{L}^q(\mathbb{R}^d)} \quad \forall \, \mathsf{v} \in \mathrm{H}^1(\mathbb{R}^d)$$

and $\mathcal{L}_{-\gamma,d}^1 := \left(\mathsf{K}_{q,d}^*\right)^{-\gamma}$ with $q = 2\frac{2\gamma-d}{2\gamma-d+2}, \, \delta := \frac{2q}{2d-q(d-2)}$

Lemma (Dolbeault-Esteban-Laptev)

Let $q \in (0,2)$ and $d \ge 1$. There exists a concave increasing function ν $\nu(\beta) \le \beta \quad \forall \beta > 0 \quad \text{and} \quad \nu(\beta) < \beta \quad \forall \beta \in \left(\frac{d}{2-q}, +\infty\right)$ $\nu(\beta) = \beta \quad \forall \beta \in \left[0, \frac{d}{2-q}\right] \quad \text{if} \quad q \in [1,2)$ $\nu(\beta) = \mathsf{K}^*_{q,d} \; (\kappa_{q,d} \; \beta)^{\delta} \; (1+o(1)) \quad \text{as} \quad \beta \to +\infty$

such that

$$\|\nabla u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 + \beta \, \|u\|_{\mathrm{L}^q(\mathbb{S}^d)}^2 \ge \nu(\beta) \, \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \quad \forall \, u \in \mathrm{H}^1(\mathbb{S}^d)$$

The threshold case: q = 2

Lemma (Dolbeault-Esteban-Laptev)

Let $p > \max\{1, d/2\}$. There exists a concave nondecreasing function ξ $\xi(\alpha) = \alpha \quad \forall \ \alpha \in (0, \alpha_0) \quad \text{and} \quad \xi(\alpha) < \alpha \quad \forall \ \alpha > \alpha_0$ for some $\alpha_0 \in \left[\frac{d}{2} (p-1), \frac{d}{2} p\right]$, and $\xi(\alpha) \sim \alpha^{1-\frac{d}{2p}}$ as $\alpha \to +\infty$ such that, for any $u \in H^1(\mathbb{S}^d)$ with $||u||_{L^2(\mathbb{S}^d)} = 1$ $\int_{\alpha d} |u|^2 \log |u|^2 \ dv_g + p \log \left(\frac{\xi(\alpha)}{\alpha}\right) \le p \log \left(1 + \frac{1}{\alpha} ||\nabla u||_{L^2(\mathbb{S}^d)}^2\right)$

Corollary (Dolbeault-Esteban-Laptev)

$$e^{-\lambda_1(-\Delta-W)/lpha} \leq rac{lpha}{\xi(lpha)} \left(\int_{\mathbb{S}^d} e^{-p W/lpha} dv_g\right)^{1/p}$$

J. Dolbeault

Interpolation inequalities: rigidity results, nonlinear flows and applications.

Improvements of the inequalities (subcritical range)

[Dolbeault-Esteban-Kowalczyk-Loss]

- 4 回 ト 4 三 ト

What does "improvement" mean ?

An *improved* inequality is

$$d \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \Phi\left(\frac{\mathrm{e}}{\|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2}
ight) \leq \mathrm{i} \quad \forall \, u \in \mathrm{H}^1(\mathbb{S}^d)$$

for some function Φ such that $\Phi(0) = 0$, $\Phi'(0) = 1$, $\Phi' > 0$ and $\Phi(s) > s$ for any s. With $\Psi(s) := s - \Phi^{-1}(s)$

$$\mathsf{i} - d \, \mathsf{e} \geq d \, \|u\|^2_{\mathrm{L}^2(\mathbb{S}^d)} \, (\Psi \circ \Phi) igg(rac{\mathsf{e}}{\|u\|^2_{\mathrm{L}^2(\mathbb{S}^d)}} igg) \quad orall \, u \in \mathrm{H}^1(\mathbb{S}^d)$$

Lemma (Generalized Csiszár-Kullback inequalities)

$$\begin{split} \|\nabla u\|_{L^{2}(\mathbb{S}^{d})}^{2} &- \frac{d}{p-2} \left[\|u\|_{L^{p}(\mathbb{S}^{d})}^{2} - \|u\|_{L^{2}(\mathbb{S}^{d})}^{2} \right] \\ &\geq d \|u\|_{L^{2}(\mathbb{S}^{d})}^{2} \left(\Psi \circ \Phi\right) \left(C \frac{\|u\|_{L^{s}(\mathbb{S}^{d})}^{2(1-r)}}{\|u\|_{L^{2}(\mathbb{S}^{d})}^{2}} \|u^{r} - \bar{u}^{r}\|_{L^{q}(\mathbb{S}^{d})}^{2} \right) \quad \forall u \in \mathrm{H}^{1}(\mathbb{S}^{d}) \end{split}$$

 $s(p) := \max\{2, p\} \text{ and } p \in (1, 2): q(p) := 2/p, r(p) := p; p \in (2, 4):$ $q = p/2, r = 2; p \ge 4: q = p/(p-2), r = p - 2$

Linear flow: improved Bakry-Emery method

Cf. [Arnold, JD]

$$w_t = \mathcal{L} w + \kappa \, \frac{|w'|^2}{w} \, \nu$$

With $2^{\sharp} := \frac{2d^2+1}{(d-1)^2}$ $\gamma_1 := \left(\frac{d-1}{d+2}\right)^2 (p-1)(2^{\#}-p)$ if d > 1, $\gamma_1 := \frac{p-1}{3}$ if d = 1

If $p \in [1,2) \cup (2,2^{\sharp}]$ and w is a solution, then

$$\frac{d}{dt} (\mathsf{i} - d \, \mathsf{e}) \leq -\gamma_1 \int_{-1}^1 \frac{|w'|^4}{w^2} \, d\nu_d \leq -\gamma_1 \, \frac{|\mathsf{e}'|^2}{1 - (p-2) \, \mathsf{e}}$$

Recalling that e' = -i, we get a differential inequality

$$e'' + de' \ge \gamma_1 \frac{|e'|^2}{1 - (p-2)e}$$

which after integration implies an inequality of the form

$$d \Phi(e(0)) \le i(0)$$

Interpolation inequalities: rigidity results, nonlinear flows and applications.

$$w_t = w^{2-2\beta} \left(\mathcal{L} w + \kappa \, \frac{|w'|^2}{w} \right)$$

For all
$$p \in [1, 2^*]$$
, $\kappa = \beta (p - 2) + 1$, $\frac{d}{dt} \int_{-1}^{1} w^{\beta p} d\nu_d = 0$
 $-\frac{1}{2\beta^2} \frac{d}{dt} \int_{-1}^{1} \left(|(w^{\beta})'|^2 \nu + \frac{d}{p-2} (w^{2\beta} - \overline{w}^{2\beta}) \right) d\nu_d \ge \gamma \int_{-1}^{1} \frac{|w'|^4}{w^2} \nu^2 d\nu_d$

Lemma

For all
$$w \in \mathrm{H}^1ig((-1,1),d
u_dig)$$
, such that $\int_{-1}^1 w^{eta p} \ d
u_d = 1$

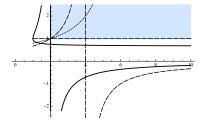
$$\int_{-1}^{1} \frac{|w'|^4}{w^2} \, \nu^2 \, d\nu_d \ge \frac{1}{\beta^2} \frac{\int_{-1}^{1} |(w^\beta)'|^2 \, \nu \, d\nu_d \int_{-1}^{1} |w'|^2 \, \nu \, d\nu_d}{\left(\int_{-1}^{1} w^{2\beta} \, d\nu_d\right)^{\delta}}$$

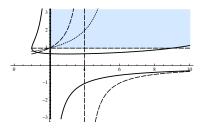
.... but there are conditions on β

・ロト ・回ト ・ヨト ・ヨト

э

Admissible (p, β) for d = 1, 2

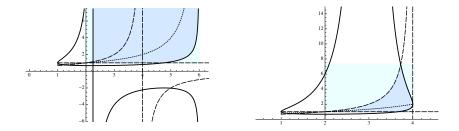




<ロ> <同> <同> < 回> < 回>

э

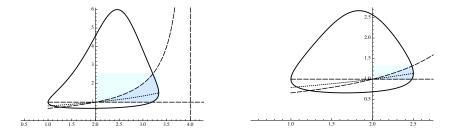
Admissible (p, β) for d = 3, 4



<ロ> <同> <同> < 回> < 回>

3

Admissible (p, β) for d = 5, 10



J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.

イロン イロン イヨン イヨン

3

Riemannian manifolds

 \blacksquare no sign is required on the Ricci tensor and an improved integral criterion is established

 \blacksquare the flow explores the energy landscape... and shows the non-optimality of the improved criterion

< 回 > < 三 > < 三 >

Riemannian manifolds with positive curvature

 (\mathfrak{M}, g) is a smooth compact connected Riemannian manifold dimension d, no boundary, Δ_g is the Laplace-Beltrami operator $\operatorname{vol}(\mathfrak{M}) = 1, \mathfrak{R}$ is the Ricci tensor, $\lambda_1 = \lambda_1(-\Delta_g)$

$$\rho := \inf_{\mathfrak{M}} \inf_{\xi \in \mathbb{S}^{d-1}} \mathfrak{R}(\xi, \xi)$$

Theorem (Licois-Véron, Bakry-Ledoux)

Assume d \geq 2 and ρ > 0. If

$$\lambda \leq (1- heta)\,\lambda_1 + heta\,rac{d\,
ho}{d-1} \quad ext{where} \quad heta = rac{(d-1)^2\,(p-1)}{d\,(d+2)+p-1} > 0$$

then for any $p \in (2, 2^*)$, the equation

$$-\Delta_g v + \frac{\lambda}{p-2} \left(v - v^{p-1} \right) = 0$$

has a unique positive solution $v \in C^2(\mathfrak{M})$: $v \equiv 1$

Riemannian manifolds: first improvement

Theorem (Dolbeault-Esteban-Loss)

For any $p \in (1,2) \cup (2,2^*)$

$$0 < \lambda < \lambda_{\star} = \inf_{u \in \mathrm{H}^{2}(\mathfrak{M})} \frac{\int_{\mathfrak{M}} \left[(1-\theta) \left(\Delta_{g} u \right)^{2} + \frac{\theta \, d}{d-1} \, \mathfrak{R}(\nabla u, \nabla u) \right] d \, \mathsf{v}_{g}}{\int_{\mathfrak{M}} |\nabla u|^{2} \, d \, \mathsf{v}_{g}}$$

there is a unique positive solution in $C^2(\mathfrak{M})$: $u \equiv 1$

 $\lim_{p \to 1_+} \theta(p) = 0 \Longrightarrow \lim_{p \to 1_+} \lambda_{\star}(p) = \lambda_1 \text{ if } \rho \text{ is bounded} \\ \lambda_{\star} = \lambda_1 = d \rho / (d-1) = d \text{ if } \mathfrak{M} = \mathbb{S}^d \text{ since } \rho = d-1$

$$(1- heta)\lambda_1+ heta \, rac{d \,
ho}{d-1} \leq \lambda_\star \leq \lambda_1$$

< 回 > < 三 > < 三 >

Riemannian manifolds: second improvement

$$H_g u$$
 denotes Hessian of u and $\theta = \frac{(d-1)^2 (p-1)}{d (d+2) + p - 1}$

$$\mathbf{Q}_{g} u := \mathbf{H}_{g} u - \frac{g}{d} \Delta_{g} u - \frac{(d-1)(p-1)}{\theta(d+3-p)} \left[\frac{\nabla u \otimes \nabla u}{u} - \frac{g}{d} \frac{|\nabla u|^{2}}{u} \right]$$

$$\Lambda_{\star} := \inf_{u \in \mathrm{H}^{2}(\mathfrak{M}) \setminus \{0\}} \frac{(1-\theta) \int_{\mathfrak{M}} (\Delta_{g} u)^{2} dv_{g} + \frac{\theta d}{d-1} \int_{\mathfrak{M}} \left[\|\mathrm{Q}_{g} u\|^{2} + \mathfrak{R}(\nabla u, \nabla u) \right]}{\int_{\mathfrak{M}} |\nabla u|^{2} dv_{g}}$$

Theorem (Dolbeault-Esteban-Loss)

Assume that $\Lambda_* > 0$. For any $p \in (1,2) \cup (2,2^*)$, the equation has a unique positive solution in $C^2(\mathfrak{M})$ if $\lambda \in (0,\Lambda_*)$: $u \equiv 1$

< 🗇 > < 🖃 > <

Optimal interpolation inequality

For any
$$p \in (1,2) \cup (2,2^*)$$
 or $p = 2^*$ if $d \ge 3$

$$\|
abla v\|_{\mathrm{L}^2(\mathfrak{M})}^2 \geq rac{\lambda}{
ho-2} \left[\|v\|_{\mathrm{L}^p(\mathfrak{M})}^2 - \|v\|_{\mathrm{L}^2(\mathfrak{M})}^2
ight] \quad orall v \in \mathrm{H}^1(\mathfrak{M})$$

Theorem (Dolbeault-Esteban-Loss)

Assume $\Lambda_* > 0$. The above inequality holds for some $\lambda = \Lambda \in [\Lambda_*, \lambda_1]$ If $\Lambda_* < \lambda_1$, then the optimal constant Λ is such that

 $\Lambda_{\star} < \Lambda \leq \lambda_1$

If p = 1, then $\Lambda = \lambda_1$

Using $u = 1 + \varepsilon \varphi$ as a test function where φ we get $\lambda \le \lambda_1$ A minimum of

$$\mathbf{v} \mapsto \| \nabla \mathbf{v} \|_{\mathrm{L}^{2}(\mathfrak{M})}^{2} - rac{\lambda}{
ho - 2} \left[\| \mathbf{v} \|_{\mathrm{L}^{\rho}(\mathfrak{M})}^{2} - \| \mathbf{v} \|_{\mathrm{L}^{2}(\mathfrak{M})}^{2}
ight]$$

under the constraint $\|v\|_{L^{p}(\mathfrak{M})} = 1$ is negative if $\lambda > \lambda_{1}$,

The flow

The key tools the flow

$$u_t = u^{2-2\beta} \left(\Delta_g u + \kappa \frac{|\nabla u|^2}{u} \right), \quad \kappa = 1 + \beta \left(p - 2 \right)$$

If $v = u^{\beta}$, then $\frac{d}{dt} \|v\|_{L^{p}(\mathfrak{M})} = 0$ and the functional

$$\mathcal{F}[u] := \int_{\mathfrak{M}} |\nabla(u^{\beta})|^2 \, d\, v_g + \frac{\lambda}{p-2} \left[\int_{\mathfrak{M}} u^{2\,\beta} \, d\, v_g - \left(\int_{\mathfrak{M}} u^{\beta\,p} \, d\, v_g \right)^{2/p} \right]$$

is monotone decaying

 ❑ J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature, J. Funct. Anal., 254 (2008),
 pp. 593–611. Also see C. Villani, Optimal Transport, Old and New

- 不同 とうき とうきょ

Elementary observations (1/2)

Let $d \geq 2$, $u \in C^2(\mathfrak{M})$, and consider the trace free Hessian

$$\mathbf{L}_{g} u := \mathbf{H}_{g} u - \frac{g}{d} \Delta_{g} u$$

Lemma

$$\int_{\mathfrak{M}} (\Delta_g u)^2 \, d \, \mathsf{v}_g = \frac{d}{d-1} \int_{\mathfrak{M}} \|\operatorname{L}_g u\|^2 \, d \, \mathsf{v}_g + \frac{d}{d-1} \int_{\mathfrak{M}} \mathfrak{R}(\nabla u, \nabla u) \, d \, \mathsf{v}_g$$

Based on the Bochner-Lichnerovicz-Weitzenböck formula

$$\frac{1}{2}\Delta |\nabla u|^2 = ||\mathbf{H}_g u||^2 + \nabla(\Delta_g u) \cdot \nabla u + \Re(\nabla u, \nabla u)$$

イロト イポト イヨト イヨト

-

Elementary observations (2/2)

Lemma

$$\int_{\mathfrak{M}} \Delta_g u \, \frac{|\nabla u|^2}{u} \, dv_g$$
$$= \frac{d}{d+2} \int_{\mathfrak{M}} \frac{|\nabla u|^4}{u^2} \, dv_g - \frac{2d}{d+2} \int_{\mathfrak{M}} [\mathrm{L}_g u] : \left[\frac{\nabla u \otimes \nabla u}{u} \right] \, dv_g$$

Lemma

$$\int_{\mathfrak{M}} (\Delta_{g} u)^{2} dv_{g} \geq \lambda_{1} \int_{\mathfrak{M}} |\nabla u|^{2} dv_{g} \quad \forall u \in \mathrm{H}^{2}(\mathfrak{M})$$

and λ_1 is the optimal constant in the above inequality

(人間) とうき くうう

The key estimates

$$\mathcal{G}[u] := \int_{\mathfrak{M}} \left[\theta \left(\Delta_g u \right)^2 + (\kappa + \beta - 1) \Delta_g u \, \frac{|\nabla u|^2}{u} + \kappa \left(\beta - 1 \right) \frac{|\nabla u|^4}{u^2} \right] dv_g$$

Lemma

$$\frac{1}{2\beta^2}\frac{d}{dt}\mathcal{F}[u] = -(1-\theta)\int_{\mathfrak{M}} (\Delta_g u)^2 \, d\, v_g - \mathcal{G}[u] + \lambda \int_{\mathfrak{M}} |\nabla u|^2 \, d\, v_g$$

$$\mathbf{Q}_{g}^{\theta} u := \mathbf{L}_{g} u - \frac{1}{\theta} \frac{d-1}{d+2} \left(\kappa + \beta - 1 \right) \left[\frac{\nabla u \otimes \nabla u}{u} - \frac{g}{d} \frac{|\nabla u|^{2}}{u} \right]$$

Lemma

$$\mathcal{G}[u] = \frac{\theta \, d}{d-1} \left[\int_{\mathfrak{M}} \|\mathbf{Q}_{g}^{\theta} u\|^{2} \, d\, \mathbf{v}_{g} + \int_{\mathfrak{M}} \mathfrak{R}(\nabla u, \nabla u) \, d\, \mathbf{v}_{g} \right] - \mu \int_{\mathfrak{M}} \frac{|\nabla u|^{4}}{u^{2}} \, d\, \mathbf{v}_{g}$$
with $\mu := \frac{1}{\theta} \left(\frac{d-1}{d+2}\right)^{2} (\kappa + \beta - 1)^{2} - \kappa \left(\beta - 1\right) - (\kappa + \beta - 1) \frac{d}{d+2}$
Interpolation inequalities: rigidity results, nonlinear flows and applications

Interpolation inequalities: rigidity results, nonlinear flows and applications.

The end of the proof

Assume that $d \geq 2$. If $\theta = 1$, then μ is nonpositive if

$$eta_-(p) \leq eta \leq eta_+(p) \quad orall \, p \in (1,2^*)$$

where $\beta_{\pm} := \frac{b \pm \sqrt{b^2 - a}}{2a}$ with $a = 2 - p + \left[\frac{(d-1)(p-1)}{d+2}\right]^2$ and $b = \frac{d+3-p}{d+2}$ Notice that $\beta_-(p) < \beta_+(p)$ if $p \in (1, 2^*)$ and $\beta_-(2^*) = \beta_+(2^*)$

$$\theta = \frac{(d-1)^2 (p-1)}{d (d+2) + p - 1}$$
 and $\beta = \frac{d+2}{d+3-p}$

Proposition

Let $d\geq 2$, $p\in(1,2)\cup(2,2^*)$ (p
eq 5 or d
eq 2)

$$\frac{1}{2\beta^2}\frac{d}{dt}\mathcal{F}[u] \leq (\lambda - \Lambda_{\star})\int_{\mathfrak{M}} |\nabla u|^2 \, d\, v_g$$

The line

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.

・ロト ・回ト ・ヨト ・ヨト

ъ.

One-dimensional Gagliardo-Nirenberg-Sobolev inequalities

$$\begin{split} \|f\|_{\mathrm{L}^{p}(\mathbb{R})} &\leq \mathsf{C}_{\mathrm{GN}}(p) \, \|f'\|_{\mathrm{L}^{2}(\mathbb{R})}^{\theta} \, \|f\|_{\mathrm{L}^{2}(\mathbb{R})}^{1-\theta} & \text{if} \quad p \in (2,\infty) \\ \|f\|_{\mathrm{L}^{2}(\mathbb{R})} &\leq \mathsf{C}_{\mathrm{GN}}(p) \, \|f'\|_{\mathrm{L}^{2}(\mathbb{R})}^{\eta} \, \|f\|_{\mathrm{L}^{p}(\mathbb{R})}^{1-\eta} & \text{if} \quad p \in (1,2) \end{split}$$

with
$$\theta = \frac{p-2}{2p}$$
 and $\eta = \frac{2-p}{2+p}$

The threshold case corresponding to the limit as $p \to 2$ is the logarithmic Sobolev inequality

$$\int_{\mathbb{R}} u^2 \log \left(\frac{u^2}{\|u\|_{L^2(\mathbb{R})}^2} \right) \, dx \leq \frac{1}{2} \, \|u\|_{L^2(\mathbb{R})}^2 \, \log \left(\frac{2}{\pi \, e} \, \frac{\|u'\|_{L^2(\mathbb{R})}^2}{\|u\|_{L^2(\mathbb{R})}^2} \right)$$

If p > 2, $u_{\star}(x) = (\cosh x)^{-\frac{2}{p-2}}$ solves

$$-(p-2)^2 u'' + 4 u - 2 p |u|^{p-2} u = 0$$

If $p \in (1,2)$ consider $u_*(x) = (\cos x)^{\frac{2}{2-p}}, x \in (-\pi/2, \pi/2)$

Mass transportation

Theorem (Dolbeault-Esteban-Laptev-Loss)

If $p \in (2,\infty)$, we have

$$\sup_{G} \frac{\int_{\mathbb{R}} G^{\frac{p+2}{3p-2}} dy}{\left(\int_{\mathbb{R}} G |y|^2 dy\right)^{\frac{p-2}{3p-2}} \left(\int_{\mathbb{R}} G dy\right)^{\frac{4}{3p-2}}} = c_{p} \inf_{f} \frac{\|f'\|_{L^{2}(\mathbb{R})}^{\frac{2(p-2)}{3p-2}} \|f\|_{L^{2}(\mathbb{R})}^{\frac{2(p-2)}{3p-2}}}{\|f\|_{L^{p}(\mathbb{R})}^{\frac{4p}{3p-2}}}$$

and if $p \in (1,2)$, we obtain

$$\sup_{G} \frac{\int_{\mathbb{R}} G^{\frac{2}{4-p}} \, dy}{\left(\int_{\mathbb{R}} G \, |y|^2 \, dy\right)^{\frac{2-p}{2(4-p)}} \left(\int_{\mathbb{R}} G \, dy\right)^{\frac{p+2}{2(4-p)}}} = c_{p} \inf_{f} \frac{\|f'\|_{L^{2}(\mathbb{R})}^{\frac{2-p}{2-p}} \|f\|_{L^{p}(\mathbb{R})}^{\frac{4-p}{4-p}}}{\|f\|_{L^{2}(\mathbb{R})}^{\frac{p+2}{2-p}}}$$

for some explicit numerical constant cp

< 回 > < 回 > < 回

Flow

Let us define on $H^1(\mathbb{R})$ the functional

$$\mathcal{F}[v] := \|v'\|_{\mathrm{L}^{2}(\mathbb{R})}^{2} + \frac{4}{(p-2)^{2}} \|v\|_{\mathrm{L}^{2}(\mathbb{R})}^{2} - C \|v\|_{\mathrm{L}^{p}(\mathbb{R})}^{2} \quad \text{s.t. } \mathcal{F}[u_{\star}] = 0$$

With $z(x) := \tanh x$, consider the flow

$$v_t = \frac{v^{1-\frac{p}{2}}}{\sqrt{1-z^2}} \left[v'' + \frac{2p}{p-2} z v' + \frac{p}{2} \frac{|v'|^2}{v} + \frac{2}{p-2} v \right]$$

Theorem (Dolbeault-Esteban-Laptev-Loss)

Let $p \in (2, \infty)$. Then

$$rac{d}{dt}\mathcal{F}[v(t)] \leq 0$$
 and $\lim_{t \to \infty} \mathcal{F}[v(t)] = 0$

 $\frac{d}{dt}\mathcal{F}[v(t)] = 0 \quad \Longleftrightarrow \quad v_0(x) = u_{\star}(x - x_0)$

Similar result for $p \in (1,2)$

・ 同 ト ・ ヨ ト ・ ヨ ト

The inequality (p > 2) and the ultraspherical operator

 \blacksquare The problem on the line is equivalent to the critical problem for the ultraspherical operator

$$\int_{\mathbb{R}} |v'|^2 \, dx + \frac{4}{(p-2)^2} \int_{\mathbb{R}} |v|^2 \, dx \ge C \left(\int_{\mathbb{R}} |v|^p \, dx \right)^{\frac{2}{p}}$$

With

$$z(x) = \tanh x$$
, $v_{\star} = (1 - z^2)^{\frac{1}{p-2}}$ and $v(x) = v_{\star}(x) f(z(x))$

equality is achieved for f = 1 and, if we let $\nu(z) := 1 - z^2$, then

$$\int_{-1}^{1} |f'|^2 \nu \ d\nu_p + \frac{2p}{(p-2)^2} \int_{-1}^{1} |f|^2 \ d\nu_p \ge \frac{2p}{(p-2)^2} \left(\int_{-1}^{1} |f|^p \ d\nu_p \right)^{\frac{2}{p}}$$

where $d\nu_p$ denotes the probability measure $d\nu_p(z) := \frac{1}{\zeta_p} \nu^{\frac{2}{p-2}} dz$

$$d = \frac{2p}{p-2} \iff p = \frac{2d}{d-2}$$

The Moser-Trudinger-Onofri inequality

Joint work with Maria J. Esteban and G. Jankowiak

A > < > < >

Three equivalent forms

 $\triangleright~$ The Euclidean (Moser-Trudinger-) Onofri inequality:

$$\frac{1}{16\pi} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx \ge \log\left(\int_{\mathbb{R}^2} e^u \, d\mu\right) - \int_{\mathbb{R}^2} u \, d\mu$$
$$d\mu = \mu(x) \, dx, \, \mu(x) = \frac{1}{\pi} \left(1 + |x|^2\right)^{-2}, \, x \in \mathbb{R}^2$$
$$\triangleright \text{ The Onofri inequality on the two-dimensional sphere } \mathbb{S}^2:$$

$$\frac{1}{4}\int_{\mathbb{S}^2} |\nabla v|^2 \, d\sigma \geq \log\left(\int_{\mathbb{S}^2} e^v \, d\sigma\right) - \int_{\mathbb{S}^2} v \, d\sigma$$

 $d\sigma$ is the uniform probability measure

 $\label{eq:constraint} \begin{array}{l} \triangleright \ \ \text{The Onofri inequality on the two-dimensional cylinder} \\ \mathcal{C} = \mathbb{S}^1 \times \mathbb{R} \text{:} \end{array}$

$$\frac{1}{16\pi} \int_{\mathcal{C}} |\nabla w|^2 \, dy \ge \log\left(\int_{\mathcal{C}} e^w \nu \, dy\right) - \int_{\mathcal{C}} w \, \nu \, dy$$
$$y = (\theta, s) \in \mathcal{C} = \mathbb{S}^1 \times \mathbb{R}, \, \nu(y) = \frac{1}{4\pi} \, (\cosh s)^{-2}$$
[Moser (1971)], [Onofri (1982)]

The inequality seen as a limit case of the Gagliardo-Nirenberg inequalities

Proposition

 $[\mathrm{JD}]$ Assume that $u\in\mathcal{D}(\mathbb{R}^2)$ is such that $\int_{\mathbb{R}^2}u\,d\mu=0$ and let

$$f_{p} := F_{p} \left(1 + \frac{u}{2p} \right) \;, \quad F_{p}(x) = (1 + |x|^{2})^{-\frac{1}{p-1}} \quad \forall \; x \in \mathbb{R}^{2}$$

Then we have

$$1 \leq \lim_{p \to \infty} \mathsf{C}_{p,2} \, \frac{\|\nabla f_p\|_{\mathrm{L}^2(\mathbb{R}^2)}^{\theta(p)} \, \|f_p\|_{\mathrm{L}^{p+1}(\mathbb{R}^2)}^{1-\theta(p)}}{\|f_p\|_{\mathrm{L}^{2p}(\mathbb{R}^2)}} = \frac{e^{\frac{1}{16\pi} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx}}{\int_{\mathbb{R}^2} e^{\, u} \, d\mu}$$

<□> < 三> < 三>

Rigidity method in the symmetric case

Under an appropriate normalization, a critical point of

$$\mathsf{G}_{\lambda}[f] := \frac{1}{8} \int_{-1}^{1} |f'|^2 \, \nu \, dz + \frac{\lambda}{2} \int_{-1}^{1} f \, dz \ge \log\left(\frac{1}{2} \int_{-1}^{1} e^f \, dz\right)$$

solves the Euler-Lagrange equation

$$-\frac{1}{2}\mathcal{L}f+\lambda=e^{f}$$

Theorem

For any $\lambda \in (0,1)$, the EL equation has a unique smooth solution $f = \log \lambda$. If $\lambda = 1$, f has to satisfy the differential equation $f'' = \frac{1}{2} |f'|^2$ and is either a constant or

$$f(z) = C_1 - 2 \log(C_2 - z)$$

$$\frac{1}{8} \int_{-1}^{1} \nu^2 \left| f'' - \frac{1}{2} \left| f' \right|^2 \right|^2 e^{-f/2} d\nu_p + \frac{1-\lambda}{4} \int_{-1}^{1} \nu \left| f' \right|^2 e^{-f/2} d\nu_p = 0$$

Rigidity method in the symmetric case: proof

Multiply by
$$\mathcal{L}(e^{-f/2})$$
 and integrate by parts

$$0 = \int_{-1}^{1} \left(-\frac{1}{2}\mathcal{L}f + \lambda - e^{f}\right) \mathcal{L}(e^{-f/2}) d\nu_{p}$$

$$= \frac{1}{4} \int_{-1}^{1} \nu^{2} |f''|^{2} e^{-f/2} d\nu_{p} - \frac{1}{8} \int_{-1}^{1} \nu^{2} |f'|^{2} f'' e^{-f/2} d\nu_{p}$$

$$+ \frac{1}{2} \int_{-1}^{1} \nu |f'|^{2} e^{-f/2} d\nu_{p} - \frac{1}{2} \int_{-1}^{1} \nu |f'|^{2} e^{f/2} d\nu_{p}$$

Multiply by $\frac{\nu}{2} |f'|^2 e^{-f/2}$ and integrate by parts

$$0 = \int_{-1}^{1} \left(-\frac{1}{2} \mathcal{L}f + \lambda - e^{f} \right) \left(\frac{\nu}{2} |f'|^{2} e^{-f/2} \right) d\nu_{p}$$

= $\frac{1}{8} \int_{-1}^{1} \nu^{2} |f'|^{2} f'' e^{-f/2} d\nu_{p} - \frac{1}{16} \int_{-1}^{1} \nu^{2} |f'|^{4} e^{-f/2} d\nu_{p}$
+ $\frac{\lambda}{2} \int_{-1}^{1} \nu |f'|^{2} e^{-f/2} d\nu_{p} - \frac{1}{2} \int_{-1}^{1} \nu |f'|^{2} e^{f/2} d\nu_{p}$

J. Dolbeault

Interpolation inequalities: rigidity results, nonlinear flows and applications.

A nonlinear flow method in the general case

On \mathbb{S}^2 let us consider the nonlinear evolution equation

$$\frac{\partial f}{\partial t} = \Delta_{\mathbb{S}^2} \left(e^{-f/2} \right) - \frac{1}{2} \left| \nabla f \right|^2 e^{-f/2}$$

where $\Delta_{\mathbb{S}^2}$ denotes the Laplace-Beltrami operator. Let us define

$$\mathcal{R}_{\lambda}[f] := \frac{1}{2} \int_{\mathbb{S}^2} \|\mathbf{L}_{\mathbb{S}^2} f - \frac{1}{2} \mathbf{M}_{\mathbb{S}^2} f \|^2 e^{-f/2} \, d\sigma + \frac{1}{2} \left(1 - \lambda\right) \int_{\mathbb{S}^2} |\nabla f|^2 \, e^{-f/2} \, d\sigma$$

where

$$\mathrm{L}_{\mathbb{S}^2} f := \mathrm{Hess}_{\mathbb{S}^2} f - \frac{1}{2} \Delta_{\mathbb{S}^2} f \operatorname{Id} \quad \text{and} \quad \mathrm{M}_{\mathbb{S}^2} f := \nabla f \otimes \nabla f - \frac{1}{2} |\nabla f|^2 \operatorname{Id}$$

Theorem

Assume that f is a solution to with initial datum $v - \log \left(\int_{\mathbb{S}^2} e^v \, d\sigma \right)$, where $v \in \mathcal{L}^1(\mathbb{S}^2)$ is such that $\nabla v \in \mathcal{L}^2(\mathbb{S}^2)$. Then for any $\lambda \in (0, 1]$ we have

$$\mathcal{G}_{\lambda}[\mathbf{v}] \geq \int_{0}^{\infty} \mathcal{R}_{\lambda}[f(t,\cdot)] \, dt$$

Interpolation inequalities: rigidity results, nonlinear flows and applications.

A summary

J. Dolbeault Interpolation inequalities: rigidity results, nonlinear flows and applications.

<ロ> <同> <同> < 回> < 回>

Ξ.

 \bigcirc the sphere: the flow tells us what to do, and provides a simple proof (*choice of the exponents / of the nonlinearity*) once the problem is reduced to the ultraspherical setting

 \bigcirc the spectral point of view on the inequality: how to measure the deviation with respect to the *semi-classical* estimates, a nice example of bifurcation (and *symmetry breaking*)

• *Riemannian manifolds:* no sign is required on the Ricci tensor and an improved integral criterion is established. We extend the theory from pointwise criteria to a non-local Schrödinger type estimate (Rayleigh quotient). The flow explores the energy landscape... and generically shows the non-optimality of the improved criterion

• the flow is a nice way of exploring an energy space. *Rigidity* result tell you that a local result is actually global because otherwise the flow would relate (far away) extremal points while keeping the energy minimal

イロト イポト イヨト イヨト

http://www.ceremade.dauphine.fr/~dolbeaul > Preprints (or arxiv, or HAL)

Q. J.D., Maria J. Esteban, Ari Laptev, and Michael Loss. Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates, C.R. Math., 351 (11-12): 437−440, 2013.

ℚ J.D., Maria J. Esteban, and Michael Loss. Nonlinear flows and rigidity results on compact manifolds, Preprint, 2013.

Q J.D., Maria J. Esteban and Ari Laptev. Spectral estimates on the sphere, to appear in Analysis & PDE.

Q. J.D., Maria J. Esteban, Michal Kowalczyk, and Michael Loss. Sharp interpolation inequalities on the sphere: New methods and consequences. Chinese Annals of Mathematics, Series B, 34 (1): 99-112, 2013.

Q. J.D., Maria J. Esteban, Ari Laptev, and Michael Loss. One-dimensional Gagliardo-Nirenberg-Sobolev inequalities: Remarks on duality and flows, Preprint, 2013.

イロト イポト イヨト イヨト

http://www.ceremade.dauphine.fr/~dolbeaul > Preprints (or arxiv, or HAL)

 \blacksquare J.D., Maria J. Esteban, Michal Kowalczyk, and Michael Loss. Improved interpolation inequalities on the sphere, Preprint, 2013, to appear in DCDS Series S

Q J.D., Maria J. Esteban, Gaspard Jankowiak. The Moser-Trudinger-Onofri inequality, Preprint, 2014

(人間) とうきょうきょう

Thank you for your attention !

<ロ> <四> <四> <日> <日> <日</p>

э