Fast diffusion equations: matching large time asymptotics by relative entropy methods

Jean Dolbeault

dolbeaul@ceremade.dauphine.fr

CEREMADE

CNRS & Université Paris-Dauphine

http://www.ceremade.dauphine.fr/~dolbeaul

EXPLORATORY WORKSHOP (EUROPEAN SCIENCE FOUNDATION)

ON DISSIPATIVE SYSTEMS: ENTROPY METHODS, CLASSICAL AND QUANTUM PROBABILITY

NOVEMBER 01 - 03, 2010

AT VIENNA UNIVERSITY OF TECHNOLOGY, AUSTRIA

http://www.ceremade.dauphine.fr/~dolbeaul/Preprints/

Fast diffusion equations: outline

- Introduction
 - Fast diffusion equations: entropy methods and Gagliardo-Nirenberg inequalities [del Pino, J.D.]
 - Search Fast diffusion equations: the finite mass regime
 - Search Fast diffusion equations: the infinite mass regime
- Relative entropy methods and linearization
 - the linearization of the functionals approach: [Blanchet, Bonforte, J.D., Grillo, Vázquez]
 - sharp rates: [Bonforte, J.D., Grillo, Vázquez]
 - An improvement based on the center of mass: [Bonforte, J.D., Grillo, Vázquez]
- An improvement based on the variance: [J.D., Toscani]
- Quantum mechanics?

Some references

- J.D. and G. Toscani, Fast diffusion equations: matching large time asymptotics by relative entropy methods, Preprint
- M. Bonforte, J.D., G. Grillo, and J.-L. Vázquez. Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Nat. Acad. Sciences (2010)
- A. Blanchet, M. Bonforte, J.D., G. Grillo, and J.-L. Vázquez. Asymptotics of the fast diffusion equation via entropy estimates. Archive for Rational Mechanics and Analysis, 191 (2): 347-385, 02, 2009
- A. Blanchet, M. Bonforte, J.D., G. Grillo, and J.-L. Vázquez. Hardy-Poincaré inequalities and applications to nonlinear diffusions. C. R. Math. Acad. Sci. Paris, 344(7): 431-436, 2007
- M. Del Pino and J.D., Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. (9), 81 (9): 847-875, 2002

Fast diffusion equations: entropy methods

$$u_t = \Delta u^m \quad x \in \mathbb{R}^d \,, \ t > 0$$

Self-similar (Barenblatt) function: $U(t) = O(t^{-d/(2-d(1-m))})$ as $t \to +\infty$ [Friedmann, Kamin, 1980] $||u(t, \cdot) - U(t, \cdot)||_{L^{\infty}} = o(t^{-d/(2-d(1-m))})$

Existence theory, critical values of the parameter m

Some references

Generalized entropies and nonlinear diffusions (EDP, uncomplete):

[Toscani], [Arnold, Markowich, Toscani, Unterreiter], [Del Pino, J.D.], [Carrillo, Toscani], [Otto], [Juengel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Biler, J.D., Esteban], [Markowich, Lederman], [Carrillo, Vázquez], [Cordero-Erausquin, Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub],... [del Pino, Sáez], [Daskalopulos, Sesum]... (incomplete, to be continued)

Some methods

- 1) [J.D., del Pino] relate entropy and Gagliardo-Nirenberg inequalities
- 2) entropy entropy-production method: the Bakry-Emery point of view
- 3) mass transport techniques
- 4) hypercontractivity for appropriate semi-groups
- 5) the approach by linearization of the entropy

... Fast diffusion equations and Gagliardo-Nirenberg inequalities

Time-dependent rescaling, Free energy

Q Time-dependent rescaling: Take $u(\tau, y) = R^{-d}(t) v(t, y/R(\tau))$ where

$$\frac{\partial R}{\partial \tau} = R^{d(1-m)-1} , \quad R(0) = 1 , \quad t = \log R$$

The function v solves a Fokker-Planck type equation

$$\frac{\partial v}{\partial t} = \Delta v^m + \nabla \cdot (x v) , \quad v_{|\tau=0} = u_0$$

Q [Ralston, Newman, 1984] Lyapunov functional: **Generalized entropy Or Free energy**

$$\Sigma[v] := \int_{\mathbb{R}^d} \left(\frac{v^m}{m-1} + \frac{1}{2} |x|^2 v \right) \, dx - \Sigma_0$$

Entropy production is measured by the Generalized Fisher information

$$\frac{d}{dt}\Sigma[v] = -I[v] , \quad I[v] := \int_{\mathbb{R}^d} v \left| \frac{\nabla v^m}{v} + x \right|^2 dx$$

Relative entropy and entropy production

Q. Stationary solution: choose C such that $||v_{\infty}||_{L^1} = ||u||_{L^1} = M > 0$

$$v_{\infty}(x) := \left(C + \frac{1-m}{2m} |x|^2\right)_{+}^{-1/(1-m)}$$

Relative entropy: Fix Σ_0 so that $\Sigma[v_\infty] = 0$. The entropy can be put in an *m*-homogeneous form: for $m \neq 1$,

$$\Sigma[v] = \int_{\mathbb{R}^d} \psi\left(\frac{v}{v_{\infty}}\right) v_{\infty}^m dx \quad with \ \psi(t) = \frac{t^m - 1 - m(t-1)}{m-1}$$

L Entropy – entropy production inequality

Theorem 1. $d \geq 3, m \in [\frac{d-1}{d}, +\infty), m > \frac{1}{2}, m \neq 1$

 $I[v] \ge 2\,\Sigma[v]$

Corollary 2. A solution v with initial data $u_0 \in L^1_+(\mathbb{R}^d)$ such that $|x|^2 u_0 \in L^1(\mathbb{R}^d)$, $u_0^m \in L^1(\mathbb{R}^d)$ satisfies

$$\Sigma[v(t,\cdot)] \le \Sigma[u_0] e^{-2t} \quad \forall t \ge 0$$

An equivalent formulation: Gagliardo-Nirenberg inequalities

$$\Sigma[v] = \int_{\mathbb{R}^d} \left(\frac{v^m}{m-1} + \frac{1}{2} |x|^2 v \right) dx - \Sigma_0 \le \frac{1}{2} \int_{\mathbb{R}^d} v \left| \frac{\nabla v^m}{v} + x \right|^2 dx = \frac{1}{2} I[v]$$

Rewrite it with $p = \frac{1}{2m-1}$, $v = w^{2p}$, $v^m = w^{p+1}$ as

$$\frac{1}{2} \left(\frac{2m}{2m-1}\right)^2 \int_{\mathbb{R}^d} |\nabla w|^2 dx + \left(\frac{1}{1-m} - d\right) \int_{\mathbb{R}^d} |w|^{1+p} dx + K \ge 0$$

 $\begin{array}{l} \textcircledlength{4.5ex} \bullet \\ \blacksquare 1 1, K > 0 \\ \fboxlength{4.5ex} \bullet \\ \blacksquare \ for \ some \ \gamma, K = K_0 \ \left(\int_{\mathbb{R}^d} v \ dx = \int_{\mathbb{R}^d} w^{2p} \ dx \right)^{\gamma} \end{array}$

•
$$w = w_{\infty} = v_{\infty}^{1/2p}$$
 is optimal
• $m = m_1 := \frac{d-1}{d}$: Sobolev, $m \to 1$: logarithmic Sobolev

Theorem 3. [Del Pino, J.D.] Assume that $1 (fast diffusion case) and <math>d \geq 3$

$$\begin{split} \|w\|_{L^{2p}(\mathbb{R}^d)} &\leq A \,\|\nabla w\|_{L^2(\mathbb{R}^d)}^{\theta} \,\|w\|_{L^{p+1}(\mathbb{R}^d)}^{1-\theta} \\ A &= \left(\frac{y(p-1)^2}{2\pi d}\right)^{\frac{\theta}{2}} \left(\frac{2y-d}{2y}\right)^{\frac{1}{2p}} \left(\frac{\Gamma(y)}{\Gamma(y-\frac{d}{2})}\right)^{\frac{\theta}{d}} , \quad \theta = \frac{d(p-1)}{p(d+2-(d-2)p)} , \quad y = \frac{p+1}{p-1} \end{split}$$

Intermediate asymptotics

 $\Sigma[v] \leq \Sigma[u_0] e^{-2\tau}$ + Csiszár-Kullback inequalities Undo the change of variables, with

$$u_{\infty}(t,x) = R^{-d}(t) v_{\infty} \left(x/R(t) \right)$$

Theorem 4. [Del Pino, J.D.] Consider a solution of $u_t = \Delta u^m$ with initial data $u_0 \in L_+^1(\mathbb{R}^d)$ such that $|x|^2 u_0 \in L^1(\mathbb{R}^d)$, $u_0^m \in L^1(\mathbb{R}^d)$ **C** Fast diffusion case: $\frac{d-1}{d} < m < 1$ if $d \ge 3$

$$\limsup_{t \to +\infty} t^{\frac{1-d(1-m)}{2-d(1-m)}} \|u^m - u^m_{\infty}\|_{L^1} < +\infty$$

igsquare Porous medium case: 1 < m < 2

$$\limsup_{t \to +\infty} t^{\frac{1+d(m-1)}{2+d(m-1)}} \| [u - u_{\infty}] u_{\infty}^{m-1} \|_{L^{1}} < +\infty$$

Fast diffusion equations: the finite mass regime

Can we consider $m < m_1$?

- If $m \ge 1$: porous medium regime or $m_1 := \frac{d-1}{d} \le m < 1$, the decay of the entropy is governed by Gagliardo-Nirenberg inequalities, and to the limiting case m = 1 corresponds the logarithmic Sobolev inequality
- Displacement convexity holds in the same range of exponents, $m \in (m_1, 1)$, as for the Gagliardo-Nirenberg inequalities
- The fast diffusion equation can be seen as the gradient flow of the generalized entropy with respect to the Wasserstein distance if $m > \tilde{m}_1 := \frac{d}{d+2}$
- If $m_c := \frac{d-2}{d} \le m < m_1$, solutions globally exist in L^1 and the Barenblatt self-similar solution has finite mass

...the Bakry-Emery method

Consider the generalized Fisher information

$$I[v] := \int_{\mathbb{R}^d} v \, |Z|^2 \, dx \quad \text{with} \quad Z := \frac{\nabla v^m}{v} + x$$

and compute

$$\frac{d}{dt}I[v(t,\cdot)] + 2I[v(t,\cdot)] = -2(m-1)\int_{\mathbb{R}^d} u^m (\operatorname{div} Z)^2 dx - 2\sum_{i,\,j=1}^d \int_{\mathbb{R}^d} u^m (\partial_i Z^j)^2 dx$$

Let the Fisher information decays exponentially: $I[v(t, \cdot)] \leq I[u_0] e^{-2t}$

$$\lim_{t \to \infty} I[v(t, \cdot)] = 0 \text{ and } \lim_{t \to \infty} \Sigma[v(t, \cdot)] = 0$$

$$\underbrace{ \frac{d}{dt} \left(I[v(t, \cdot)] - 2\Sigma[v(t, \cdot)] \right) \leq 0 \text{ means } I[v] \geq 2\Sigma[v] }$$

[Carrillo, Toscani], [Juengel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Carrillo, Vázquez]

$$I[v] \ge 2\,\Sigma[v]$$

holds for any $m > m_c$

Fast diffusion: finite mass regime

Inequalities...

... existence of solutions of $u_t = \Delta u^m$

More references: Extensions and related results

- Mass transport methods: inequalities / rates [Cordero-Erausquin, Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub, Kang]
- General nonlinearities [Biler, J.D., Esteban], [Carrillo-DiFrancesco], [Carrillo-Juengel-Markowich-Toscani-Unterreiter] and gradient flows [Jordan-Kinderlehrer-Otto], [Ambrosio-Savaré-Gigli], [Otto-Westdickenberg] [J.D.-Nazaret-Savaré], etc
- Non-homogeneous nonlinear diffusion equations [Biler, J.D., Esteban], [Carrillo, DiFrancesco]
- Extension to systems and connection with Lieb-Thirring inequalities [J.D.-Felmer-Loss-Paturel, 2006], [J.D.-Felmer-Mayorga]
- Drift-diffusion problems with mean-field terms. An example: the Keller-Segel model [J.D-Perthame, 2004], [Blanchet-J.D-Perthame, 2006],
 [Biler-Karch-Laurençot-Nadzieja, 2006], [Blanchet-Carrillo-Masmoudi, 2007], etc
 - ... connection with linearized problems [Markowich-Lederman], [Carrillo-Vázquez],
 [Denzler-McCann], [McCann, Slepčev], [Kim, McCann], [Koch, McCann, Slepčev]

Fast diffusion equations: the infinite mass regime – Linearization of the entropy

• If $m > m_c := \frac{d-2}{d} \le m < m_1$, solutions globally exist in $L^1(\mathbb{R}^d)$ and the Barenblatt self-similar solution has finite mass.

Solution has infinite mass. For $m \leq m_c$, the Barenblatt self-similar solution has infinite mass.

Extension to $m \leq m_c$? Work in relative variables !

Fast diffusion equations: matching large time asymptotics by relative entropy methods – p. 14/33

Entropy methods and linearization: intermediate asymptotics, vanishing

[A. Blanchet, M. Bonforte, J.D., G. Grillo, J.L. Vázquez], [J.D., Toscani]

- work in relative variables
- Let use the properties of the flow
- write everything as relative quantities (to the Barenblatt profile)
- Compare the functionals (entropy, Fisher information) to their linearized counterparts

 \implies Extend the domain of validity of the method to the price of a restriction of the set of admissible solutions

Two parameter ranges: $m_c < m < 1$ and $0 < m < m_c$, where $m_c := \frac{d-2}{d}$

- \square $m_c < m < 1, T = +\infty$: intermediate asymptotics, $\tau \to +\infty$
- $0 < m < m_c$, $T < +\infty$: vanishing in finite time $\lim_{\tau \nearrow T} u(\tau, y) = 0$

Alternative approach by comparison techniques: [Daskalopoulos, Sesum] (without rates)

Fast diffusion equation and Barenblatt solutions

$$\frac{\partial u}{\partial \tau} = -\nabla \cdot (u \,\nabla u^{m-1}) = \frac{1-m}{m} \,\Delta u^m \tag{1}$$

with m < 1. We look for positive solutions $u(\tau, y)$ for $\tau \ge 0$ and $y \in \mathbb{R}^d$, $d \ge 1$, corresponding to nonnegative initial-value data $u_0 \in L^1_{loc}(dx)$ In the limit case m = 0, u^m/m has to be replaced by $\log u$

Barenblatt type solutions are given by

$$U_{D,T}(\tau, y) := \frac{1}{R(\tau)^d} \left(D + \frac{1-m}{2 d |m-m_c|} \left| \frac{y}{R(\tau)} \right|^2 \right)_+^{-\frac{1}{1-m}}$$

• If $m > m_c := (d-2)/d$, $U_{D,T}$ with $R(\tau) := (T+\tau)^{\frac{1}{d(m-m_c)}}$ describes the large time asymptotics of the solutions of equation (1) as $\tau \to \infty$ (mass is conserved) • If $m < m_c$ the parameter T now denotes the *extinction time* and $R(\tau) := (T-\tau)^{-\frac{1}{d(m_c-m)}}$ • If $m = m_c$ take $R(\tau) = e^{\tau}$, $U_{D,T}(\tau, y) = e^{-d\tau} (D + e^{-2\tau} |y|^2/2)^{-d/2}$

Two crucial values of m: $m_* := rac{d-4}{d-2} < m_c := rac{d-2}{d} < 1$

Rescaling

A time-dependent change of variables

$$t := \frac{1-m}{2} \log \left(\frac{R(\tau)}{R(0)} \right) \quad \text{and} \quad x := \sqrt{\frac{1}{2 d \left| m - m_c \right|}} \frac{y}{R(\tau)}$$

If $m = m_c$, we take $t = \tau/d$ and $x = e^{-\tau} y/\sqrt{2}$

The generalized Barenblatt functions $U_{D,T}(\tau, y)$ are transformed into stationary generalized Barenblatt profiles $V_D(x)$

$$V_D(x) := \left(D + |x|^2\right)^{\frac{1}{m-1}} \quad x \in \mathbb{R}^d$$

If u is a solution to (1), the function $v(t, x) := R(\tau)^d u(\tau, y)$ solves

$$\frac{\partial v}{\partial t} = -\nabla \cdot \left[v \,\nabla \left(v^{m-1} - V_D^{m-1} \right) \right] \quad t > 0 \,, \quad x \in \mathbb{R}^d \tag{2}$$

with initial condition $v(t = 0, x) = v_0(x) := R(0)^{-d} u_0(y)$

Goal

We are concerned with the *sharp rate* of convergence of a solution v of the rescaled equation to the *generalized Barenblatt profile* V_D in the whole range m < 1. Convergence is measured in terms of the relative entropy

$$\mathcal{E}[v] := \frac{1}{m-1} \int_{\mathbb{R}^d} \left[v^m - V_D^m - m \, V_D^{m-1} (v - V_D) \right] \, dx$$

for all $m \neq 0, m < 1$

Assumptions on the initial datum v_0

(H1) $V_{D_0} \leq v_0 \leq V_{D_1}$ for some $D_0 > D_1 > 0$ (H2) if $d \geq 3$ and $m \leq m_*$, $(v_0 - V_D)$ is integrable for a suitable $D \in [D_1, D_0]$ \bigcirc The case $m = m_* = \frac{d-4}{d-2}$ will be discussed later \bigcirc If $m > m_*$, we define D as the unique value in $[D_1, D_0]$ such that $\int_{\mathbb{R}^d} (v_0 - V_D) dx = 0$

Our goal is to find the best possible rate of decay of $\mathcal{E}[v]$ if v solves (2)

Theorem 5. [Bonforte, J.D., Grillo, Vázquez] Under Assumptions (H1)-(H2), if m < 1 and $m \neq m_*$, the entropy decays according to

$$\mathcal{E}[v(t,\cdot)] \le C e^{-2(1-m)\Lambda t} \quad \forall t \ge 0$$

The sharp decay rate Λ is equal to the best constant $\Lambda_{\alpha,d} > 0$ in the Hardy–Poincaré inequality of Theorem 6 with $\alpha := 1/(m-1) < 0$ The constant C > 0 depends only on m, d, D_0, D_1, D and $\mathcal{E}[v_0]$

Notion of sharp rate has to be discussed

Q Rates of convergence in more standard norms: $L^q(dx)$ for

 $q \ge \max\{1, d(1-m)/[2(2-m)+d(1-m)]\}$, or C^k by interpolation

• By undoing the time-dependent change of variables, we deduce results on the *intermediate asymptotics* of (1), i.e. rates of decay of $u(\tau, y) - U_{D,T}(\tau, y)$ as $\tau \to +\infty$ if $m \in [m_c, 1)$, or as $\tau \to T$ if $m \in (-\infty, m_c)$

Strategy of proof

Assume that D = 1 and consider $d\mu_{\alpha} := h_{\alpha} dx$, $h_{\alpha}(x) := (1 + |x|^2)^{\alpha}$, with $\alpha = 1/(m-1) < 0$, and $\mathcal{L}_{\alpha,d} := -h_{1-\alpha} \operatorname{div} [h_{\alpha} \nabla \cdot]$ on $L^2(d\mu_{\alpha})$:

$$\int_{\mathbb{R}^d} f\left(\mathcal{L}_{\alpha,d} f\right) d\mu_{\alpha-1} = \int_{\mathbb{R}^d} |\nabla f|^2 d\mu_{\alpha}$$

A first order expansion of
$$v(t, x) = h_{\alpha}(x) \left[1 + \varepsilon f(t, x) h_{\alpha}^{1-m}(x) \right]$$
 solves
$$\frac{\partial f}{\partial t} + \mathcal{L}_{\alpha, d} f = 0$$

Theorem 6. Let $d \ge 3$. For any $\alpha \in (-\infty, 0) \setminus \{\alpha_*\}$, there is a positive constant $\Lambda_{\alpha, d}$ such that

$$\Lambda_{\alpha,d} \int_{\mathbb{R}^d} |f|^2 \, d\mu_{\alpha-1} \le \int_{\mathbb{R}^d} |\nabla f|^2 \, d\mu_\alpha \quad \forall \ f \in H^1(d\mu_\alpha)$$

under the additional condition $\int_{\mathbb{R}^d} f \, d\mu_{\alpha-1} = 0$ if $\alpha < \alpha_*$

$$\Lambda_{\alpha,d} = \begin{cases} \frac{1}{4} (d-2+2\alpha)^2 & \text{if } \alpha \in \left[-\frac{d+2}{2}, \alpha_*\right) \cup (\alpha_*, 0) \\ -4\alpha - 2d & \text{if } \alpha \in \left[-d, -\frac{d+2}{2}\right) \\ -2\alpha & \text{if } \alpha \in (-\infty, -d) \end{cases}$$

[Denzler, McCann], [Blanchet, Bonforte, J.D., Grillo, Vázquez]

Proof: Relative entropy and relative Fisher information and interpolation

For $m \neq 0, 1$, the relative entropy of J. Ralston and W.I. Newmann and the generalized relative Fisher information are given by

$$\mathcal{F}[w] := \frac{m}{1-m} \int_{\mathbb{R}^d} \left[w - 1 - \frac{1}{m} \left(w^m - 1 \right) \right] V_D^m dx$$
$$\mathcal{I}[w] := \int_{\mathbb{R}^d} \left| \frac{1}{m-1} \nabla \left[\left(w^{m-1} - 1 \right) V_D^{m-1} \right] \right|^2 v dx$$

where $w = \frac{v}{V_D} \to 1$. If v is a solution of (2), then $\frac{d}{dt} \mathcal{F}[w(t, \cdot)] = -\mathcal{I}[w(t, \cdot)]$ \blacksquare Linearization: $f := (w - 1) V_D^{m-1}$, $h_1(t) := \inf_{\mathbb{R}^d} w(t, \cdot)$, $h_2(t) := \sup_{\mathbb{R}^d} w(t, \cdot)$ and $h := \max\{h_2, 1/h_1\}$. We notice that $h(t) \to 1$ as $t \to +\infty$

$$h^{m-2} \int_{\mathbb{R}^d} |f|^2 V_D^{2-m} \, dx \le \frac{2}{m} \, \mathcal{F}[w] \le h^{2-m} \int_{\mathbb{R}^d} |f|^2 V_D^{2-m} \, dx$$
$$\int_{\mathbb{R}^d} |\nabla f|^2 V_D \, dx \le [1+X(h)] \, \mathcal{I}[w] + Y(h) \int_{\mathbb{R}^d} |f|^2 \, V_D^{2-m} \, dx$$

where X and Y are functions such that $\lim_{h\to 1} X(h) = \lim_{h\to 1} Y(h) = 0$

$$h_2^{2(2-m)}/h_1 \le h^{5-2m} =: 1 + X(h)$$

 $\left[(h_2/h_1)^{2(2-m)} - 1 \right] \le d(1-m) \left[h^{4(2-m)} - 1 \right] =: Y(h)$

Proof (continued)

Q A new interpolation inequality: for h > 0 small enough

$$\mathcal{F}[w] \le \frac{h^{2-m} \left[1 + X(h)\right]}{2 \left[\Lambda_{\alpha,d} - m Y(h)\right]} \, m \, \mathcal{I}[w]$$

Another interpolation allows to close the system of estimates: for some C, t large enough,

$$0 \le h - 1 \le \mathsf{C}\,\mathcal{F}^{\frac{1-m}{d+2-(d+1)m}}$$

Hence we have a nonlinear differential inequality

$$\frac{d}{dt}\mathcal{F}[w(t,\cdot)] \le -2 \frac{\Lambda_{\alpha,d} - m Y(h)}{\left[1 + X(h)\right] h^{2-m}} \mathcal{F}[w(t,\cdot)]$$

• A Gronwall lemma (take $h = 1 + C \mathcal{F}^{\frac{1-m}{d+2-(d+1)m}}$) then shows that

$$\limsup_{t \to \infty} e^{2\Lambda_{\alpha,d} t} \mathcal{F}[w(t,\cdot)] < +\infty$$

Plots (d = 5)

Remarks, improvements

- Optimal constants in interpolation inequalities does not mean optimal asymptotic rates
- The critical case $(m = m_*, d \ge 3)$: Slow asymptotics [Bonforte, Grillo, Vázquez] If $|v_0 V_D|$ is bounded a.e. by a radial $L^1(dx)$ function, then there exists a positive constant C^* such that $\mathcal{E}[v(t, \cdot)] \le C^* t^{-1/2}$ for any $t \ge 0$
- Can we improve the rates of convergence by imposing restrictions on the initial data ?
 - Carrillo, Lederman, Markowich, Toscani (2002)] Poincaré inequalities for linearizations of very fast diffusion equations (radially symmetric solutions)
 - Formal or partial results: [Denzler, McCann (2005)], [McCann, Slepčev (2006)], [Denzler, Koch, McCann (announcement)],
 - Faster convergence?
 - Improved Hardy-Poincaré inequality: under the conditions $\int_{\mathbb{R}^d} f \, d\mu_{\alpha-1} = 0$ and $\int_{\mathbb{R}^d} x f \, d\mu_{\alpha-1} = 0$ (center of mas),

 $\widetilde{\Lambda}_{\alpha,d} \int_{\mathbb{R}^d} |f|^2 d\mu_{\alpha-1} \leq \int_{\mathbb{R}^d} |\nabla f|^2 d\mu_{\alpha}$

Next ? Can we kill other linear modes ?

[Bonforte, J.D., Grillo, Vázquez] Assume that $m \in (m_1, 1)$, $d \ge 3$. Under Assumption (H1), if v is a solution of (2) with initial datum v_0 such that $\int_{\mathbb{R}^d} x v_0 dx = 0$ and if D is chosen so that $\int_{\mathbb{R}^d} (v_0 - V_D) dx = 0$, then

$$\mathcal{E}[v(t,\cdot)] \le \widetilde{C} e^{-\gamma(m) t} \quad \forall t \ge 0$$

with $\gamma(m)=(1-m)\,\widetilde{\Lambda}_{1/(m-1),d}$

Higher order matching asymptotics

For some $m \in (m_c, 1)$ with $m_c := (d-2)/d$, we consider on \mathbb{R}^d the fast diffusion equation

$$\frac{\partial u}{\partial \tau} + \nabla \cdot \left(u \, \nabla u^{m-1} \right) = 0$$

The strategy is easy to understand using a time-dependent rescaling and the relative entropy formalism. We do not use the scaling of self-similar solutions. Define the function v such that

$$u(\tau, y + x_0) = R^{-d} v(t, x) , \quad R = R(\tau) , \quad t = \frac{1}{2} \log R , \quad x = \frac{y}{R}$$

Then v has to be a solution of

$$\frac{\partial v}{\partial t} + \nabla \cdot \left[v \left(\sigma^{\frac{d}{2}(m-m_c)} \nabla v^{m-1} - 2x \right) \right] = 0 \quad t > 0 , \quad x \in \mathbb{R}^d$$

with (as long as we make no assumption on R)

$$2\,\sigma^{-\frac{d}{2}(m-m_c)} = R^{1-d\,(1-m)}\,\frac{dR}{d\tau}$$

Refined relative entropy

Consider the family of the Barenblatt profiles

$$B_{\sigma}(x) := \sigma^{-\frac{d}{2}} \left(C_M + \frac{1}{\sigma} |x|^2 \right)^{\frac{1}{m-1}} \quad \forall x \in \mathbb{R}^d$$
(3)

Note that σ is a function of t: as long as $\frac{d\sigma}{dt} \neq 0$, the Barenblatt profile B_{σ} is not a solution but we may still consider the relative entropy

$$\mathcal{F}_{\boldsymbol{\sigma}}[v] := \frac{1}{m-1} \int_{\mathbb{R}^d} \left[v^m - B_{\boldsymbol{\sigma}}^m - m B_{\boldsymbol{\sigma}}^{m-1} \left(v - B_{\boldsymbol{\sigma}} \right) \right] \, dx$$

Let us briefly sketch the strategy of our method before giving all details

The time derivative of this relative entropy is

$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = \underbrace{\frac{d\sigma}{dt}\left(\frac{d}{d\sigma}\mathcal{F}_{\sigma}[v]\right)_{|\sigma=\sigma(t)}}_{\text{choose it} = 0} + \frac{m}{m-1}\int_{\mathbb{R}^d}\left(v^{m-1} - B^{m-1}_{\sigma(t)}\right)\frac{\partial v}{\partial t} dx$$
choose it = 0
$$\iff \\
\text{Minimize } \mathcal{F}_{\sigma}[v] \text{ w.r.t. } \sigma \iff \int_{\mathbb{R}^d} |x|^2 B_{\sigma} dx = \int_{\mathbb{R}^d} |x|^2 v dx$$
(4)

Second step: the entropy / entropy production estimate

According to the definition of B_{σ} , we know that $2x = \sigma^{\frac{d}{2}(m-m_c)} \nabla B_{\sigma}^{m-1}$ Using the new change of variables, we know that

$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = -\frac{m\,\sigma(t)^{\frac{d}{2}(m-m_c)}}{1-m} \int_{\mathbb{R}^d} v \left| \nabla \left[v^{m-1} - B^{m-1}_{\sigma(t)} \right] \right|^2 dx$$

Let $w := v/B_{\sigma}$ and observe that the relative entropy can be written as

$$\mathcal{F}_{\sigma}[v] = \frac{m}{1-m} \int_{\mathbb{R}^d} \left[w - 1 - \frac{1}{m} \left(w^m - 1 \right) \right] B_{\sigma}^m \, dx$$

(Repeating) define the *relative Fisher information* by

$$\mathcal{I}_{\sigma}[v] := \int_{\mathbb{R}^d} \left| \frac{1}{m-1} \nabla \left[(w^{m-1} - 1) B_{\sigma}^{m-1} \right] \right|^2 B_{\sigma} w \, dx$$

so that
$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = -m(1-m)\sigma(t)^{\frac{d}{2}(m-m_c)}\mathcal{I}_{\sigma(t)}[v(t,\cdot)] \quad \forall t > 0$$

When linearizing, one more mode is killed and $\sigma(t)$ scales out

Improved rates of convergence

Theorem 7. Let $m \in (\widetilde{m}_1, 1)$, $d \ge 2$, $v_0 \in L^1_+(\mathbb{R}^d)$ such that v_0^m , $|y|^2 v_0 \in L^1(\mathbb{R}^d)$ $\mathcal{E}[v(t,\cdot)] \le C e^{-2\gamma(m)t} \quad \forall t \ge 0$ $\gamma(m) = \begin{cases} \frac{((d-2)m - (d-4))^2}{4(1-m)} & \text{if } m \in (\widetilde{m}_1, \widetilde{m}_2] \\\\ 4(d+2)m - 4d & \text{if } m \in [\widetilde{m}_2, m_2] \\\\ 4 & \text{if } m \in [m_2, 1) \end{cases}$ where

[Denzler, Koch, McCann], in progress

Fast diffusion equations: matching large time asymptotics by relative entropy methods - p. 29/33

Quantum mechanics ?

Let V be a smooth bounded nonpositive potential on \mathbb{R}^d ,

 $H_V = -\frac{\hbar^2}{2m}\Delta + V$ with eigenvalues $\lambda_1(V) < \lambda_2(V) \le \lambda_3(V) \le \dots \lambda_N(V) < 0$

$$C_{\mathrm{LT}}^{(1)}(\gamma) := \inf_{\substack{V \in \mathcal{D}(\mathbb{R}^d) \\ V \leq 0}} \frac{|\lambda_1(V)|^{\gamma}}{\int_{\mathbb{R}^d} |V|^{\gamma + \frac{d}{2}} dx}$$

Gagliardo-Nirenberg inequality:

$$C_{\rm GN}(\gamma) = \inf_{\substack{u \in H^1(\mathbb{R}^d) \\ u \neq 0 \text{ a.e.}}} \frac{\|\nabla u\|_{L^2(\mathbb{R}^d)}^{2\gamma+d} \|u\|_{L^2(\mathbb{R}^d)}^{2\gamma+d}}{\|u\|_{L^2\frac{2\gamma+d}{2\gamma+d-2}(\mathbb{R}^d)}}$$

Theorem 8. Let $d \in \mathbb{N}, d \geq 1$. For any $\gamma > 1 - \frac{d}{2}$,

$$C_{\rm LT}^{(1)}(\gamma) = \kappa_1(\gamma) \left[C_{\rm GN}(\gamma) \right]^{-\kappa_2(\gamma)}$$

where
$$\kappa_1(\gamma) = \frac{2}{d} \left(\frac{d}{2\gamma+d}\right)^{1+\frac{d}{2\gamma}}$$
 and $\kappa_2(\gamma) = 2 + \frac{d}{\gamma}$

 2γ

d

Lieb-Thirring inequality and interpolation inequalities

$$\sum_{i=1}^{N} |\lambda_i(V)|^{\gamma} \le C_{\mathrm{LT}}(\gamma) \int_{\mathbb{R}^d} |V|^{\gamma + \frac{d}{2}} dx$$

can be seen as an interpolation inequality: for any m > 1 (porous medium type), there exists a constant K > 0 such that

$$K \int_{\mathbb{R}^d} n_{\rho}^q \, dx \le Tr(-\Delta\rho) + Tr(\rho^m)$$

if ρ is a trace-class Hilbert-Schmidt operator: $m := \frac{\gamma}{\gamma - 1}$ and $q = \frac{2\gamma + d}{2\gamma + d - 2}$ and n_{ρ} is the spatial density associated to ρ : if $\rho = \sum_{i} \mu_{i} |\psi_{i}\rangle \langle \psi_{i}|$, then $n_{\rho}(x) = \sum_{i} \mu_{i} |\psi_{i}(x)|^{2}$

Other inequalities [J.D., Felmer, Loss, Paturel] (fast diffusion type): $m \in (d/(d+2), 1)$

$$K Tr(\rho^m) \le Tr(-\Delta\rho) + \int_{\mathbb{R}^d} n_{\rho}^q dx$$

• (logarithmic Sobolev type): m = 1

$$\int_{\mathbb{R}^d} n_\rho \, \log n_\rho \, dx + \frac{d}{2} \, \log(4\pi) \int_{\mathbb{R}^d} n_\rho \, dx \le Tr(-\Delta\rho) + Tr(\rho \, \log\rho)$$

Minimizers of free energy functionals and dynamical stability results

- [J.D., P. Felmer, J. Mayorga] Compactness properties for trace-class operators and applications to quantum mechanics
- [J.D., P. Felmer, M. Lewin] Orbitally stable states in generalized Hartree-Fock theory
- G.L. Aki, J.D., C. Sparber] Thermal effects in gravitational Hartree systems

but...

- which relaxation mechanisms ?
- what about gradient flows ? [Degond, Gallego, Méhats, Ringhofer] [Mayorga]

... Thank you for your attention !