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Fast diffusion equations: outline

Introduction

Fast diffusion equations: entropy methods and Gagliardo-Nirenberg inequalities

[del Pino, J.D.]

Fast diffusion equations: the finite mass regime

Fast diffusion equations: the infinite mass regime

Relative entropy methods and linearization

the linearization of the functionals approach: [Blanchet, Bonforte, J.D., Grillo,

Vázquez]

sharp rates: [Bonforte, J.D., Grillo,Vázquez]

An improvement based on the center of mass: [Bonforte, J.D., Grillo, Vázquez]

An improvement based on the variance: [J.D., Toscani]

Quantum mechanics ?
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Fast diffusion equations: entropy methods

ut = ∆um x ∈ R
d , t > 0

Self-similar (Barenblatt) function: U(t) = O(t−d/(2−d(1−m))) as t→ +∞
[Friedmann, Kamin, 1980] ‖u(t, ·) − U(t, ·)‖L∞ = o(t−d/(2−d(1−m)))

d−1

d

m

fast diffusion equation
porous media equation

heat equation

1d−2

d

global existence in L
1extinction in finite time

Existence theory, critical values of the parameter m
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Intermediate asymptotics for fast diffusion & porous media

Some references

Generalized entropies and nonlinear diffusions (EDP, uncomplete):

[Toscani], [Arnold, Markowich,Toscani, Unterreiter], [Del Pino, J.D.], [Carrillo, Toscani], [Otto],

[Juengel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Biler,

J.D., Esteban], [Markowich, Lederman], [Carrillo, Vázquez], [Cordero-Erausquin, Gangbo,

Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub],... [del Pino, Sáez],

[Daskalopulos, Sesum]... (incomplete, to be continued)

Some methods

1) [J.D., del Pino] relate entropy and Gagliardo-Nirenberg inequalities

2) entropy – entropy-production method: the Bakry-Emery point of view

3) mass transport techniques

4) hypercontractivity for appropriate semi-groups

5) the approach by linearization of the entropy

... Fast diffusion equations and
Gagliardo-Nirenberg inequalities
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Time-dependent rescaling, Free energy

Time-dependent rescaling : Take u(τ, y) = R−d(t) v(t, y/R(τ)) where

∂R

∂τ
= Rd(1−m)−1 , R(0) = 1 , t = logR

The function v solves a Fokker-Planck type equation

∂v

∂t
= ∆vm + ∇ · (x v) , v|τ=0 = u0

[Ralston, Newman, 1984] Lyapunov functional: Generalized entropy or Free energy

Σ[v] :=

Z

Rd

„

vm

m− 1
+

1

2
|x|2v

«

dx− Σ0

Entropy production is measured by the Generalized Fisher information

d

dt
Σ[v] = −I[v] , I[v] :=

Z

Rd
v

˛

˛

˛

˛

∇vm

v
+ x

˛

˛

˛

˛

2

dx
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Relative entropy and entropy production
Stationary solution: choose C such that ‖v∞‖L1 = ‖u‖L1 = M > 0

v∞(x) :=

„

C +
1 −m

2m
|x|2

«−1/(1−m)

+

Relative entropy: Fix Σ0 so that Σ[v∞] = 0. The entropy can be put in an m-homogeneous

form: for m 6= 1,

Σ[v] =

Z

Rd
ψ

„

v

v∞

«

vm
∞ dx with ψ(t) =

tm − 1 −m (t− 1)

m− 1

Entropy – entropy production inequality

Theorem 1. d ≥ 3,m ∈ [ d−1
d
,+∞),m > 1

2
,m 6= 1

I[v] ≥ 2 Σ[v]

Corollary 2. A solution v with initial data u0 ∈ L1
+(Rd) such that |x|2 u0 ∈ L1(Rd), um

0 ∈ L1(Rd)

satisfies

Σ[v(t, ·)] ≤ Σ[u0] e
− 2 t ∀ t ≥ 0
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An equivalent formulation: Gagliardo-Nirenberg inequali ties

Σ[v] =

Z

Rd

„

vm

m− 1
+

1

2
|x|2v

«

dx− Σ0 ≤ 1

2

Z

Rd
v

˛

˛

˛

˛

∇vm

v
+ x

˛

˛

˛

˛

2

dx =
1

2
I[v]

Rewrite it with p = 1
2m−1

, v = w2p, vm = wp+1 as

1

2

„

2m

2m− 1

«2 Z

Rd
|∇w|2dx+

„

1

1 −m
− d

«

Z

Rd
|w|1+pdx+K ≥ 0

1 < p = 1
2m−1

≤ d
d−2

⇐⇒ Fast diffusion case: d−1
d

≤ m < 1 ; K < 0

0 < p < 1 ⇐⇒ Porous medium case: m > 1, K > 0

for some γ, K = K0

`R

Rd v dx =
R

Rd w
2p dx

´γ

w = w∞ = v
1/2p
∞ is optimal

m = m1 := d−1
d

: Sobolev, m→ 1: logarithmic Sobolev

Theorem 3. [Del Pino, J.D.] Assume that 1 < p ≤ d
d−2

(fast diffusion case) and d ≥ 3

‖w‖L2p(Rd) ≤ A ‖∇w‖θ
L2(Rd)

‖w‖1−θ
Lp+1(Rd)

A =
“

y(p−1)2

2πd

”

θ
2

“

2y−d
2y

”

1
2p

„

Γ(y)

Γ(y− d
2
)

«
θ
d

, θ =
d(p−1)

p(d+2−(d−2)p)
, y = p+1

p−1
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Intermediate asymptotics

Σ[v] ≤ Σ[u0] e−2τ + Csiszár-Kullback inequalities

Undo the change of variables, with

u∞(t, x) = R−d(t) v∞ (x/R(t))

Theorem 4. [Del Pino, J.D.] Consider a solution of ut = ∆um with initial data u0 ∈ L1
+(Rd) such that

|x|2 u0 ∈ L1(Rd), um
0 ∈ L1(Rd)

Fast diffusion case: d−1
d

< m < 1 if d ≥ 3

lim sup
t→+∞

t
1−d(1−m)
2−d(1−m) ‖um − um

∞‖L1 < +∞

Porous medium case: 1 < m < 2

lim sup
t→+∞

t
1+d(m−1)
2+d(m−1) ‖ [u− u∞]um−1

∞ ‖L1 < +∞
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Fast diffusion equations: the finite mass
regime

Can we consider m < m1 ?

If m ≥ 1: porous medium regime or m1 := d−1
d

≤ m < 1, the decay of the entropy is

governed by Gagliardo-Nirenberg inequalities, and to the limiting case m = 1

corresponds the logarithmic Sobolev inequality

Displacement convexity holds in the same range of exponents, m ∈ (m1, 1), as for the

Gagliardo-Nirenberg inequalities

The fast diffusion equation can be seen as the gradient flow of the generalized entropy

with respect to the Wasserstein distance if m > em1 := d
d+2

If mc := d−2
d

≤ m < m1, solutions globally exist in L1 and the Barenblatt self-similar

solution has finite mass
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...the Bakry-Emery method
Consider the generalized Fisher information

I[v] :=

Z

Rd
v |Z|2 dx with Z :=

∇vm

v
+ x

and compute

d

dt
I[v(t, ·)] + 2 I[v(t, ·)] = −2 (m− 1)

Z

Rd
um (divZ)2 dx− 2

d
X

i, j=1

Z

Rd
um (∂iZ

j)2 dx

the Fisher information decays exponentially: I[v(t, ·)] ≤ I[u0] e− 2 t

limt→∞ I[v(t, ·)] = 0 and limt→∞ Σ[v(t, ·)] = 0

d
dt

“

I[v(t, ·)] − 2 Σ[v(t, ·)]
”

≤ 0 means I[v] ≥ 2Σ[v]

[Carrillo, Toscani], [Juengel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani,

Unterreiter], [Carrillo, Vázquez]

I[v] ≥ 2 Σ[v]

holds for any m > mc
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Fast diffusion: finite mass regime
Inequalities...

d−1

d

m

1d−2

d

global existence in L
1

Bakry-Emery method (relative entropy)

v
m ∈ L

1, x
2

∈ L
1

Sobolev

Gagliardo-Nirenberg

logarithmic Sobolev

d

d+2

v

... existence of solutions of ut = ∆um
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More references: Extensions and related results

Mass transport methods: inequalities / rates [Cordero-Erausquin, Gangbo, Houdré],

[Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub, Kang]

General nonlinearities [Biler, J.D., Esteban], [Carrillo-DiFrancesco],

[Carrillo-Juengel-Markowich-Toscani-Unterreiter] and gradient flows

[Jordan-Kinderlehrer-Otto], [Ambrosio-Savaré-Gigli], [Otto-Westdickenberg]

[J.D.-Nazaret-Savaré], etc

Non-homogeneous nonlinear diffusion equations [Biler, J.D., Esteban], [Carrillo,

DiFrancesco]

Extension to systems and connection with Lieb-Thirring inequalities

[J.D.-Felmer-Loss-Paturel, 2006], [J.D.-Felmer-Mayorga]

Drift-diffusion problems with mean-field terms. An example: the Keller-Segel model

[J.D-Perthame, 2004], [Blanchet-J.D-Perthame, 2006],

[Biler-Karch-Laurençot-Nadzieja, 2006], [Blanchet-Carrillo-Masmoudi, 2007], etc

... connection with linearized problems [Markowich-Lederman], [Carrillo-Vázquez],

[Denzler-McCann], [McCann, Slepčev], [Kim, McCann], [Koch, McCann, Slepčev]
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Fast diffusion equations: the infinite mass
regime – Linearization of the entropy

If m > mc := d−2
d

≤ m < m1, solutions globally exist in L1(Rd) and the Barenblatt
self-similar solution has finite mass.

For m ≤ mc, the Barenblatt self-similar solution has infinite mass

Extension to m ≤ mc ? Work in relative variables !

d−1

d

m

1d−2

d

global existence in L
1

Bakry-Emery method (relative entropy)

v
m ∈ L

1, x
2

∈ L
1

d

d+2

v

v0, VD ∈ L
1

v0 − VD∗
∈ L

1

VD1
− VD0

∈ L
1

Σ[VD1
VD0

] < ∞

Σ[VD1
VD0

] = ∞

m1

d−4

d−2

VD1
− VD0

6∈ L
1

mcm∗

Gagliardo-Nirenberg
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Entropy methods and linearization: intermediate asymptot ics, vanishing

[A. Blanchet, M. Bonforte, J.D., G. Grillo, J.L. Vázquez], [J.D., Toscani]

work in relative variables

use the properties of the flow

write everything as relative quantities (to the Barenblatt profile)

compare the functionals (entropy, Fisher information) to their linearized counterparts

=⇒ Extend the domain of validity of the method to the price of a restriction of the set of

admissible solutions

Two parameter ranges: mc < m < 1 and 0 < m < mc, where mc := d−2
d

mc < m < 1, T = +∞: intermediate asymptotics, τ → +∞

0 < m < mc, T < +∞: vanishing in finite time limτրT u(τ, y) = 0

Alternative approach by comparison techniques: [Daskalopoulos, Sesum] (without rates)
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Fast diffusion equation and Barenblatt solutions

∂u

∂τ
= −∇ · (u∇um−1) =

1 −m

m
∆um (1)

with m < 1. We look for positive solutions u(τ, y) for τ ≥ 0 and y ∈ Rd, d ≥ 1,

corresponding to nonnegative initial-value data u0 ∈ L1
loc(dx)

In the limit case m = 0, um/m has to be replaced by log u

Barenblatt type solutions are given by

UD,T (τ, y) :=
1

R(τ)d

“

D + 1−m
2 d |m−mc|

˛

˛

y
R(τ)

˛

˛

2
”− 1

1−m

+

If m > mc := (d− 2)/d, UD,T with R(τ) := (T + τ)
1

d (m−mc) describes the large time

asymptotics of the solutions of equation (1) as τ → ∞ (mass is conserved)

If m < mc the parameter T now denotes the extinction time and

R(τ) := (T − τ)
− 1

d (mc−m)

If m = mc take R(τ) = eτ , UD,T (τ, y) = e−d τ
`

D + e−2τ |y|2/2
´−d/2

Two crucial values of m: m∗ := d−4
d−2

< mc := d−2
d

< 1
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Rescaling

A time-dependent change of variables

t := 1−m
2

log
“

R(τ)
R(0)

”

and x :=
q

1
2 d |m−mc|

y

R(τ)

If m = mc, we take t = τ/d and x = e−τ y/
√

2

The generalized Barenblatt functions UD,T (τ, y) are transformed into stationary generalized

Barenblatt profiles VD(x)

VD(x) :=
`

D + |x|2
´

1
m−1 x ∈ R

d

If u is a solution to (1), the function v(t, x) := R(τ)d u(τ, y) solves

∂v

∂t
= −∇ ·

h

v∇
“

vm−1 − V m−1
D

”i

t > 0 , x ∈ R
d (2)

with initial condition v(t = 0, x) = v0(x) := R(0)−d u0(y)
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Goal

We are concerned with the sharp rate of convergence of a solution v of the rescaled

equation to the generalized Barenblatt profile VD in the whole range m < 1. Convergence is

measured in terms of the relative entropy

E[v] :=
1

m− 1

Z

Rd

h

vm − V m
D −mV m−1

D (v − VD)
i

dx

for all m 6= 0, m < 1

Assumptions on the initial datum v0

(H1) VD0 ≤ v0 ≤ VD1 for some D0 > D1 > 0

(H2) if d ≥ 3 and m ≤ m∗, (v0 − VD) is integrable for a suitable D ∈ [D1, D0]

The case m = m∗ = d−4
d−2

will be discussed later

If m > m∗, we define D as the unique value in [D1, D0] such that
R

Rd (v0 − VD) dx = 0

Our goal is to find the best possible rate of decay of E[v] if v solves (2)
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Sharp rates of convergence

Theorem 5. [Bonforte, J.D., Grillo, Vázquez] Under Assumptions (H1)-(H2), ifm < 1 andm 6= m∗, the

entropy decays according to

E[v(t, ·)] ≤ C e−2 (1−m) Λ t ∀ t ≥ 0

The sharp decay rate Λ is equal to the best constant Λα,d > 0 in the Hardy–Poincaré inequality of Theorem 6

with α := 1/(m− 1) < 0

The constant C > 0 depends only onm, d,D0, D1, D and E[v0]

Notion of sharp rate has to be discussed

Rates of convergence in more standard norms: Lq(dx) for

q ≥ max{1, d (1 −m)/ [2 (2 −m) + d (1 −m)]}, or Ck by interpolation

By undoing the time-dependent change of variables, we deduce results on the

intermediate asymptotics of (1), i.e. rates of decay of u(τ, y) − UD,T (τ, y) as τ → +∞ if

m ∈ [mc, 1), or as τ → T if m ∈ (−∞,mc)
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Strategy of proof

Assume that D = 1 and consider dµα := hα dx, hα(x) := (1 + |x|2)α, with

α = 1/(m− 1) < 0, and Lα,d := −h1−α div [hα ∇· ] on L2(dµα):

Z

Rd
f (Lα,d f) dµα−1 =

Z

Rd
|∇f |2 dµα

A first order expansion of v(t, x) = hα(x)
h

1 + ε f(t, x)h1−m
α (x)

i

solves

∂f

∂t
+ Lα,d f = 0

Theorem 6. Let d ≥ 3. For any α ∈ (−∞, 0) \ {α∗}, there is a positive constant Λα,d such that

Λα,d

Z

Rd
|f |2 dµα−1 ≤

Z

Rd
|∇f |2 dµα ∀ f ∈ H1(dµα)

under the additional condition
R

Rd f dµα−1 = 0 if α < α∗

Λα,d =

8

>

>

>

>

>

<

>

>

>

>

>

:

1
4

(d− 2 + 2α)2 if α ∈
h

− d+2
2
, α∗

”

∪ (α∗, 0)

− 4α− 2 d if α ∈
h

−d,− d+2
2

”

− 2α if α ∈ (−∞,−d)

[Denzler, McCann], [Blanchet, Bonforte, J.D., Grillo, Vázquez]
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Proof: Relative entropy and relative Fisher information an d interpolation

For m 6= 0, 1, the relative entropy of J. Ralston and W.I. Newmann and the generalized

relative Fisher information are given by

F [w] := m
1−m

R

Rd

ˆ

w − 1 − 1
m

`

wm − 1
´˜

V m
D dx

I[w] :=
R

Rd

˛

˛

˛

1
m−1

∇
h

(wm−1 − 1)V m−1
D

i

˛

˛

˛

2
v dx

where w = v
VD

→ 1. If v is a solution of (2), then d
dt
F [w(t, ·)] = −I[w(t, ·)]

Linearization: f := (w − 1)Vm−1
D , h1(t) := inf

Rdw(t, ·), h2(t) := sup
Rdw(t, ·) and

h := max{h2, 1/h1}. We notice that h(t) → 1 as t→ +∞

hm−2

Z

Rd
|f |2 V 2−m

D dx ≤ 2

m
F [w] ≤ h2−m

Z

Rd
|f |2 V 2−m

D dx

Z

Rd
|∇f |2 VD dx ≤ [1 +X(h)] I[w] + Y (h)

Z

Rd
|f |2 V 2−m

D dx

where X and Y are functions such that limh→1X(h) = limh→1 Y (h) = 0

h
2(2−m)
2 /h1 ≤ h5−2m =: 1 +X(h)

ˆ

(h2/h1)2(2−m) − 1
˜

≤ d (1 −m)
ˆ

h4(2−m) − 1
˜

=: Y (h)
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Proof (continued)
A new interpolation inequality: for h > 0 small enough

F [w] ≤ h2−m [1 +X(h)]

2
ˆ

Λα,d −mY (h)
˜ m I[w]

Another interpolation allows to close the system of estimates: for some C, t large enough,

0 ≤ h− 1 ≤ CF
1−m

d+2−(d+1)m

Hence we have a nonlinear differential inequality

d

dt
F [w(t, ·)] ≤ −2

Λα,d −mY (h)
ˆ

1 +X(h)
˜

h2−m
F [w(t, ·)]

A Gronwall lemma (take h = 1 + CF
1−m

d+2−(d+1)m ) then shows that

lim sup
t→∞

e 2 Λα,d tF [w(t, ·)] < +∞
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Plots (d = 5)

λ01 = −4α− 2 d

λ10 = −2α

λ11 = −6α− 2 (d + 2)

λ02 = −8α− 4 (d + 2)

λ20 = −4α

λ30

λ21 λ12

λ03

λcont
α,d

:= 1
4(d + 2α− 2)2

α = −d

α = −(d + 2)

α = −d+2
2

α = −d−2
2

α = −d+6
2

α

0

Essential spectrum of Lα,d

α = −
√
d− 1 − d

2

α = −
√
d− 1 − d+4

2

α = − − d+2
2

√
2 d

(d = 5)

Spectrum of Lα,d

mc = d−2
d

m1 = d−1
d

m2 = d+1
d+2

m̃1 = d

d+2

m̃2 = d+4
d+6

m

Spectrum of 
(1 −m)L1/(m−1),d

(d = 5)

Essential spectrum

of (1

1

−m)L1/(m−1),d

2

4

6
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Remarks, improvements

Optimal constants in interpolation inequalities does not mean optimal asymptotic rates

The critical case (m = m∗, d ≥ 3): Slow asymptotics [Bonforte, Grillo, Vázquez] If

|v0 − VD| is bounded a.e. by a radial L1(dx) function, then there exists a positive

constant C∗ such that E[v(t, ·)] ≤ C∗ t−1/2 for any t ≥ 0

Can we improve the rates of convergence by imposing restrictions on the initial data ?

[Carrillo, Lederman, Markowich, Toscani (2002)] Poincaré inequalities for

linearizations of very fast diffusion equations (radially symmetric solutions)

Formal or partial results: [Denzler, McCann (2005)], [McCann, Slepčev (2006)],

[Denzler, Koch, McCann (announcement)],

Faster convergence ?

Improved Hardy-Poincaré inequality: under the conditions
R

Rd f dµα−1 = 0 and
R

Rd x f dµα−1 = 0 (center of mas),
eΛα,d

R

Rd |f |2 dµα−1 ≤
R

Rd |∇f |2 dµα

Next ? Can we kill other linear modes ?
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[Bonforte, J.D., Grillo, Vázquez] Assume that m ∈ (m1, 1), d ≥ 3. Under Assumption (H1), if

v is a solution of (2) with initial datum v0 such that
R

Rd x v0 dx = 0 and if D is chosen so that
R

Rd (v0 − VD) dx = 0, then

E[v(t, ·)] ≤ eC e−γ(m) t ∀ t ≥ 0

with γ(m) = (1 −m) eΛ1/(m−1),d

�m1 =
d

d+2

m1 =
d− 1

d

�m2 =
d+4

d+6

m2 =
d+1

d+2

4

2

m

1

mc =
d− 2

d

(d = 5)

γ (m)

0
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Higher order matching asymptotics
For some m ∈ (mc, 1) with mc := (d− 2)/d, we consider on Rd the fast diffusion equation

∂u

∂τ
+ ∇ ·

`

u∇um−1
´

= 0

The strategy is easy to understand using a time-dependent rescaling and the relative entropy

formalism. We do not use the scaling of self-similar solutions. Define the function v such that

u(τ, y + x0) = R−d v(t, x) , R = R(τ) , t = 1
2

logR , x =
y

R

Then v has to be a solution of

∂v

∂t
+ ∇ ·

h

v
“

σ
d
2
(m−mc) ∇vm−1 − 2 x

”i

= 0 t > 0 , x ∈ R
d

with (as long as we make no assumption on R)

2σ− d
2
(m−mc) = R 1−d (1−m) dR

dτ
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Refined relative entropy
Consider the family of the Barenblatt profiles

Bσ(x) := σ− d
2

`

CM + 1
σ
|x|2

´

1
m−1 ∀ x ∈ R

d (3)

Note that σ is a function of t: as long as dσ
dt

6= 0, the Barenblatt profile Bσ is not a solution

but we may still consider the relative entropy

Fσ[v] :=
1

m− 1

Z

Rd

ˆ

vm −Bm
σ −mBm−1

σ (v −Bσ)
˜

dx

Let us briefly sketch the strategy of our method before giving all details

The time derivative of this relative entropy is

d

dt
Fσ(t)[v(t, ·)] =

dσ

dt

„

d

dσ
Fσ [v]

«

|σ=σ(t)
| {z }

choose it = 0

⇐⇒
Minimize Fσ [v] w.r.t. σ ⇐⇒

R

Rd |x|2Bσ dx =
R

Rd |x|2 v dx

+
m

m− 1

Z

Rd

“

vm−1 −Bm−1
σ(t)

” ∂v

∂t
dx

(4)
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Second step: the entropy / entropy production estimate

According to the definition of Bσ , we know that 2x = σ
d
2
(m−mc) ∇Bm−1

σ

Using the new change of variables, we know that

d

dt
Fσ(t)[v(t, ·)] = −mσ(t)

d
2
(m−mc)

1 −m

Z

Rd
v

˛

˛

˛

∇
h

vm−1 −Bm−1
σ(t)

i

˛

˛

˛

2
dx

Let w := v/Bσ and observe that the relative entropy can be written as

Fσ [v] =
m

1 −m

Z

Rd

h

w − 1 − 1

m

`

wm − 1
´

i

Bm
σ dx

(Repeating) define the relative Fisher information by

Iσ[v] :=

Z

Rd

˛

˛

˛

1

m− 1
∇

ˆ

(wm−1 − 1)Bm−1
σ

˜

˛

˛

˛

2
Bσ w dx

so that
d

dt
Fσ(t)[v(t, ·)] = −m (1 −m) σ(t)

d
2
(m−mc) Iσ(t)[v(t, ·)] ∀ t > 0

When linearizing, one more mode is killed and σ(t) scales out
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Improved rates of convergence

Theorem 7. Letm ∈ ( em1, 1), d ≥ 2, v0 ∈ L1
+(Rd) such that vm

0 , |y|2 v0 ∈ L1(Rd)

E[v(t, ·)] ≤ C e−2 γ(m) t ∀ t ≥ 0

where

γ(m) =

8

>

>

>

>

>

<

>

>

>

>

>

:

((d−2) m−(d−4))2

4 (1−m)
if m ∈ ( em1, em2]

4 (d+ 2)m− 4 d if m ∈ [ em2,m2]

4 if m ∈ [m2, 1)

m̃1 = d

d+2

m1 = d−1
d

m̃2 = d+4
d+6

m2 = d+1
d+2

4

2

m

1

mc = d−2
d

(d = 5)

γ(m)

0

Case 1

Case 2

Case 3

[Denzler, Koch, McCann], in progress
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Quantum mechanics ?
Let V be a smooth bounded nonpositive potential on Rd,

HV = − ~
2

2m
∆ + V with eigenvalues λ1(V ) < λ2(V ) ≤ λ3(V ) ≤ . . . λN (V ) < 0

C
(1)
LT (γ) := inf

V ∈ D(Rd)

V ≤ 0

|λ1(V )|γ
R

Rd |V |γ+ d
2 dx

Gagliardo-Nirenberg inequality:

CGN(γ) = inf

u ∈ H1(Rd)

u 6≡ 0 a.e.

‖∇u‖
d

2γ+d

L2(Rd)
‖u‖

2γ
2γ+d

L2(Rd)

‖u‖
L

2
2γ+d

2γ+d−2 (Rd)

Theorem 8. Let d ∈ N, d ≥ 1. For any γ > 1 − d
2

,

C
(1)
LT (γ) = κ1(γ)

h

CGN(γ)
i−κ2(γ)

where κ1(γ) = 2
d

“

d
2γ+d

”1+ d
2γ

and κ2(γ) = 2 + d
γ
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Lieb-Thirring inequality and interpolation inequalities

N
X

i=1

|λi(V )|γ ≤ CLT(γ)

Z

Rd
|V |γ+ d

2 dx

can be seen as an interpolation inequality: for any m > 1 (porous medium type), there

exists a constant K > 0 such that

K

Z

Rd
nq

ρ dx ≤ Tr(−∆ρ) + Tr(ρm)

if ρ is a trace-class Hilbert-Schmidt operator: m := γ
γ−1

and q = 2 γ+d
2 γ+d−2

and nρ is the

spatial density associated to ρ: if ρ =
P

i µi |ψi〉 〈ψi|, then nρ(x) =
P

i µi |ψi(x)|2

Other inequalities [J.D., Felmer, Loss, Paturel]

(fast diffusion type): m ∈ (d/(d+ 2), 1)

K Tr(ρm) ≤ Tr(−∆ρ) +

Z

Rd
nq

ρ dx

(logarithmic Sobolev type): m = 1

Z

Rd
nρ log nρ dx+

d

2
log(4π)

Z

Rd
nρ dx ≤ Tr(−∆ρ) + Tr(ρ log ρ)
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Minimizers of free energy functionals and dynamical stabil ity results

[J.D., P. Felmer, J. Mayorga] Compactness properties for trace-class operators and

applications to quantum mechanics

[J.D., P. Felmer, M. Lewin] Orbitally stable states in generalized Hartree-Fock theory

[G.L. Aki, J.D., C. Sparber] Thermal effects in gravitational Hartree systems

but...

which relaxation mechanisms ?

what about gradient flows ? [Degond, Gallego, Méhats, Ringhofer] [Mayorga]
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... Thank you for your attention !
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