Free energies, nonlinear flows and functional inequalities

Jean Dolbeault

http://www.ceremade.dauphine.fr/~dolbeaul

Ceremade, Université Paris-Dauphine

November 23, 2011

Vienna

Colloquium & Transport equations in the life sciences (2011, Nov 21–23)

A – Sobolev and
Hardy-Littlewood-Sobolev
inequalities:
duality, flows

Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev's inequality in \mathbb{R}^d , $d \geq 3$,

$$||u||_{L^{2^*}(\mathbb{R}^d)}^2 \le S_d ||\nabla u||_{L^2(\mathbb{R}^d)}^2 \quad \forall \ u \in \mathcal{D}^{1,2}(\mathbb{R}^d)$$
 (1)

and the Hardy-Littlewood-Sobolev inequality

$$\mathsf{S}_d \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 \ge \int_{\mathbb{R}^d} v(-\Delta)^{-1} v \, dx \quad \forall \, v \in \mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)$$
 (2)

are dual of each other. Here S_d is the Aubin-Talenti constant and $2^* = \frac{2\,d}{d-2}$

An additional motivation comes from [Carrillo, Carlen and Loss] and [Blanchet, Carlen and Carrillo]

Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

$$\frac{\partial v}{\partial t} = \Delta v^m \quad t > 0 \;, \quad x \in \mathbb{R}^d$$
 (3)

If we define $H(t) := H_d[v(t, \cdot)]$, with

$$\mathsf{H}_d[v] := \int_{\mathbb{R}^d} v (-\Delta)^{-1} v \ dx - \mathsf{S}_d \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2$$

then we observe that

$$\frac{1}{2} \mathsf{H}' = - \int_{\mathbb{R}^d} \mathsf{v}^{m+1} \; d\mathsf{x} + \mathsf{S}_d \left(\int_{\mathbb{R}^d} \mathsf{v}^{\frac{2d}{d+2}} \; d\mathsf{x} \right)^{\frac{2}{d}} \int_{\mathbb{R}^d} \nabla \mathsf{v}^m \cdot \nabla \mathsf{v}^{\frac{d-2}{d+2}} \; d\mathsf{x}$$

where $v = v(t, \cdot)$ is a solution of (3). With the choice $m = \frac{d-2}{d+2}$, we find that $m+1 = \frac{2d}{d+2}$

A first statement

Proposition

[J.D.] Assume that $d \ge 3$ and $\frac{m}{d+2} = \frac{d-2}{d+2}$. If v is a solution of (3) with nonnegative initial datum in $L^{2d/(d+2)}(\mathbb{R}^d)$, then

$$\frac{1}{2} \frac{d}{dt} \left[\int_{\mathbb{R}^d} v (-\Delta)^{-1} v \, dx - \mathsf{S}_d \|v\|_{\mathbf{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 \right] \\
= \left(\int_{\mathbb{R}^d} v^{m+1} \, dx \right)^{\frac{2}{d}} \left[\mathsf{S}_d \|\nabla u\|_{\mathbf{L}^2(\mathbb{R}^d)}^2 - \|u\|_{\mathbf{L}^{2^*}(\mathbb{R}^d)}^2 \right] \ge 0$$

The HLS inequality amounts to $H \le 0$ and appears as a consequence of Sobolev, that is $H' \ge 0$ if we show that $\limsup_{t>0} H(t) = 0$ Notice that $u = v^m$ is an optimal function for (1) if v is optimal for (2) By integrating along the flow defined by (3), we can actually obtain optimal integral remainder terms which improve on the usual Sobolev inequality (1), but only when $d \geq 5$ for integrability reasons

Theorem

[J.D.] Assume that $d \geq 5$ and let $q = \frac{d+2}{d-2}$. There exists a positive constant $\mathcal{C} \leq \left(1 + \frac{2}{d}\right)\left(1 - e^{-d/2}\right)\mathsf{S}_d$ such that

$$||S_{d}||w^{q}||_{L^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} - \int_{\mathbb{R}^{d}} w^{q} (-\Delta)^{-1} w^{q} dx$$

$$\leq C ||w||_{L^{2^{*}}(\mathbb{R}^{d})}^{\frac{8}{d-2}} \left[||\nabla w||_{L^{2}(\mathbb{R}^{d})}^{2} - |S_{d}||w||_{L^{2^{*}}(\mathbb{R}^{d})}^{2} \right]$$

for any $w \in \mathcal{D}^{1,2}(\mathbb{R}^d)$

Solutions with separation of variables

Consider the solution of $\frac{\partial v}{\partial t} = \Delta v^m$ vanishing at t = T:

$$\overline{v}_T(t,x) = c (T-t)^{\alpha} (F(x))^{\frac{d+2}{d-2}}$$

where F is the Aubin-Talenti solution of

$$-\Delta F = d(d-2) F^{(d+2)/(d-2)}$$

Let
$$||v||_* := \sup_{x \in \mathbb{R}^d} (1 + |x|^2)^{d+2} |v(x)|$$

Lemma

[M. delPino, M. Saez], [J. L. Vázquez, J. R. Esteban, A. Rodríguez] For any solution v with initial datum $v_0 \in L^{2d/(d+2)}(\mathbb{R}^d)$, $v_0 > 0$, there exists T > 0, $\lambda > 0$ and $x_0 \in \mathbb{R}^d$ such that

$$\lim_{t \to T_{-}} (T-t)^{-\frac{1}{1-m}} \|v(t,\cdot)/\overline{v}(t,\cdot) - 1\|_{*} = 0$$

with
$$\overline{v}(t,x) = \lambda^{(d+2)/2} \overline{v}_T(t,(x-x_0)/\lambda)$$

Improved inequality: proof (1/2)

$$\mathsf{J}(t) := \int_{\mathbb{R}^d} v(t,x)^{m+1} \; dx$$
 satisfies

$$\mathsf{J}' = -(m+1) \| \nabla \mathsf{v}^m \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \le -\frac{m+1}{\mathsf{S}_d} \, \mathsf{J}^{1-\frac{2}{d}}$$

If $d \geq 5$, then we also have

$$J'' = 2 m(m+1) \int_{\mathbb{R}^d} v^{m-1} (\Delta v^m)^2 dx \ge 0$$

Notice that

$$\frac{\mathsf{J}'}{\mathsf{J}} \leq -\frac{m+1}{\mathsf{S}_d} \, \mathsf{J}^{-\frac{2}{d}} \leq -\kappa \quad \text{with} \quad \kappa \, \mathsf{T} = \frac{2\,d}{d+2} \, \frac{\mathsf{T}}{\mathsf{S}_d} \left(\int_{\mathbb{R}^d} v_0^{m+1} \, dx \right)^{-\frac{2}{d}} \leq \frac{d}{2}$$

Improved inequality: proof (2/2)

By the **Cauchy-Schwarz inequality**, we have

$$\frac{J'^{2}}{(m+1)^{2}} = \|\nabla v^{m}\|_{L^{2}(\mathbb{R}^{d})}^{4} = \left(\int_{\mathbb{R}^{d}} v^{(m-1)/2} \, \Delta v^{m} \cdot v^{(m+1)/2} \, dx\right)^{2} \\
\leq \int_{\mathbb{R}^{d}} v^{m-1} \, (\Delta v^{m})^{2} \, dx \int_{\mathbb{R}^{d}} v^{m+1} \, dx = Cst \, \mathsf{J}'' \, \mathsf{J}$$

so that $Q(t) := \|\nabla v^m(t,\cdot)\|_{L^2(\mathbb{R}^d)}^2 \left(\int_{\mathbb{R}^d} v^{m+1}(t,x) \ dx\right)^{-(d-2)/d}$ is monotone decreasing, and

$$H' = 2 J (S_d Q - 1), \quad H'' = \frac{J'}{J} H' + 2 J S_d Q' \le \frac{J'}{J} H' \le 0$$

$$H'' \le -\kappa H' \quad \text{with} \quad \kappa = \frac{2 d}{d+2} \frac{1}{S_d} \left(\int_{\mathbb{R}^d} v_0^{m+1} dx \right)^{-2/d}$$

By writing that $-H(0) = H(T) - H(0) \le H'(0) (1 - e^{-\kappa T})/\kappa$ and using the estimate $\kappa T \le d/2$, the proof is completed

d = 2: Onofri's and log HLS inequalities

0

$$\begin{aligned} \mathsf{H}_2[v] &:= \int_{\mathbb{R}^2} \left(v - \mu \right) (-\Delta)^{-1} (v - \mu) \; dx - \frac{1}{4 \, \pi} \int_{\mathbb{R}^2} v \, \log \left(\frac{v}{\mu} \right) \, dx \\ \text{With } \mu(x) &:= \frac{1}{\pi} \left(1 + |x|^2 \right)^{-2}. \text{ Assume that } v \text{ is a positive solution of } \\ \frac{\partial v}{\partial t} &= \Delta \log \left(v / \mu \right) \quad t > 0 \; , \quad x \in \mathbb{R}^2 \end{aligned}$$

Proposition

If $v=\mu\,e^{u/2}$ is a solution with nonnegative initial datum v_0 in $L^1(\mathbb{R}^2)$ such that $\int_{\mathbb{R}^2} v_0\ dx=1$, $v_0\log v_0\in L^1(\mathbb{R}^2)$ and $v_0\log \mu\in L^1(\mathbb{R}^2)$, then

$$\begin{split} \frac{d}{dt}\mathsf{H}_2[v(t,\cdot)] &= \frac{1}{16\,\pi} \int_{\mathbb{R}^2} |\nabla u|^2 \; dx - \int_{\mathbb{R}^2} \left(e^{\frac{u}{2}} - 1\right) u \; d\mu \\ &\geq \frac{1}{16\,\pi} \int_{\mathbb{R}^2} |\nabla u|^2 \; dx + \int_{\mathbb{R}^2} u \; d\mu - \log\left(\int_{\mathbb{R}^2} e^u \; d\mu\right) \geq 0 \end{split}$$

Free energies, nonlinear flows and functional inequalities

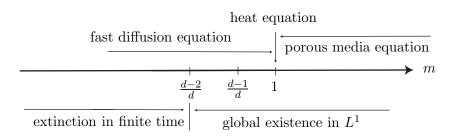
Fast diffusion equations

- entropy methods
- linearization of the entropy
- improved Gagliardo-Nirenberg inequalities

B1 – Fast diffusion equations: entropy methods

Existence, classical results

$$\begin{array}{ll} u_t = \Delta u^m & x \in \mathbb{R}^d \;,\; t>0 \\ \text{Self-similar (Barenblatt) function: } \mathcal{U}(t) = O(t^{-d/(2-d(1-m))}) \text{ as } \\ t \to +\infty \\ \text{[Friedmann, Kamin, 1980] } \|u(t,\cdot) - \mathcal{U}(t,\cdot)\|_{L^\infty} = o(t^{-d/(2-d(1-m))}) \end{array}$$



Existence theory, critical values of the parameter m

Time-dependent rescaling, Free energy

Time-dependent rescaling: Take $u(\tau, y) = R^{-d}(\tau) v(t, y/R(\tau))$ where

$$\frac{dR}{d\tau} = R^{d(1-m)-1}$$
, $R(0) = 1$, $t = \log R$

 $lue{}$ The function v solves a Fokker-Planck type equation

$$\frac{\partial v}{\partial t} = \Delta v^m + \nabla \cdot (x \, v) \,, \quad v_{|\tau=0} = u_0$$

■ [Ralston, Newman, 1984] Lyapunov functional:

Generalized entropy or Free energy

$$\Sigma[v] := \int_{\mathbb{R}^d} \left(\frac{v^m}{m-1} + \frac{1}{2} |x|^2 v \right) dx - \Sigma_0$$

Entropy production is measured by the **Generalized Fisher information**

$$\frac{d}{dt}\Sigma[v] = -I[v] , \quad I[v] := \int_{\mathbb{R}^d} v \left| \frac{\nabla v^m}{v} + x \right|^2 dx$$

Relative entropy and entropy production

Stationary solution: choose C such that $||v_{\infty}||_{L^1} = ||u||_{L^1} = M > 0$

$$v_{\infty}(x) := \left(C + \frac{1-m}{2m}|x|^2\right)_+^{-1/(1-m)}$$

Relative entropy: Fix Σ_0 so that $\Sigma[v_{\infty}] = 0$

Entropy – entropy production inequality

Theorem

$$d\geq 3$$
, $m\in [rac{d-1}{d},+\infty)$, $m>rac{1}{2}$, $m
eq 1$

$$I[v] \geq 2\Sigma[v]$$

Corollary

A solution v with initial data $u_0 \in L^1_+(\mathbb{R}^d)$ such that $|x|^2 u_0 \in L^1(\mathbb{R}^d)$, $u_0^m \in L^1(\mathbb{R}^d)$ satisfies $\sum [v(t,\cdot)] \leq \sum [u_0] e^{-2t}$

An equivalent formulation: Gagliardo-Nirenberg inequalities

$$\sum [v] = \int_{\mathbb{R}^d} \left(\frac{v^m}{m-1} + \frac{1}{2} |x|^2 v \right) dx - \sum_0 \le \frac{1}{2} \int_{\mathbb{R}^d} v \left| \frac{\nabla v^m}{v} + x \right|^2 dx = \frac{1}{2} I[v]$$

Rewrite it with $p = \frac{1}{2m-1}$, $v = w^{2p}$, $v^m = w^{p+1}$ as

$$\frac{1}{2} \left(\frac{2m}{2m-1} \right)^2 \int_{\mathbb{R}^d} |\nabla w|^2 dx + \left(\frac{1}{1-m} - d \right) \int_{\mathbb{R}^d} |w|^{1+p} dx - K \ge 0$$

- for some γ , $K = K_0 \left(\int_{\mathbb{R}^d} v \, dx = \int_{\mathbb{R}^d} w^{2p} \, dx \right)^{\gamma}$
- $w = w_{\infty} = v_{\infty}^{1/2p}$ is optimal

Theorem

[Del Pino, J.D.] With $1 (fast diffusion case) and <math>d \ge 3$

$$\|w\|_{L^{2p}(\mathbb{R}^d)} \le A \|\nabla w\|_{L^2(\mathbb{R}^d)}^{\theta} \|w\|_{L^{p+1}(\mathbb{R}^d)}^{1-\theta}$$

$$A = \left(\frac{y(p-1)^2}{2\pi d}\right)^{\frac{\theta}{2}} \left(\frac{2y-d}{2y}\right)^{\frac{1}{2p}} \left(\frac{\Gamma(y)}{\Gamma(y-\frac{\theta}{2})}\right)^{\frac{\theta}{d}}, \quad \theta = \frac{d(p-1)}{p(d+2-(d-2)p)}, \quad y = \frac{p+1}{p-1}$$

... a proof by the Bakry-Emery method

Consider the generalized Fisher information

$$I[v] := \int_{\mathbb{R}^d} v |Z|^2 dx \quad \text{with} \quad Z := \frac{\nabla v^m}{v} + x$$

and compute

$$\frac{d}{dt} I[v(t,\cdot)] + 2 I[v(t,\cdot)] = -2 (m-1) \int_{\mathbb{R}^d} u^m (\operatorname{div} Z)^2 dx - 2 \sum_{i,j=1}^d \int_{\mathbb{R}^d} u^m (\partial_i Z^j)^2 dx$$

• the Fisher information decays exponentially:

$$I[v(t,\cdot)] \leq I[u_0] e^{-2t}$$

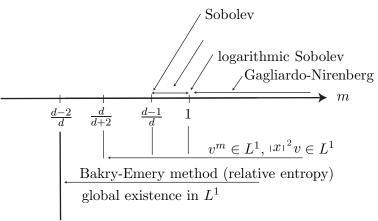
- $\lim_{t\to\infty} I[v(t,\cdot)] = 0$ and $\lim_{t\to\infty} \Sigma[v(t,\cdot)] = 0$
- $\frac{d}{dt} \left(I[v(t,\cdot)] 2\Sigma[v(t,\cdot)] \right) \le 0 \text{ means } I[v] \ge 2\Sigma[v]$

J. Dolbeault

[Carrillo, Toscani], [Juengel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Carrillo, Vázquez]

Fast diffusion: finite mass regime

Inequalities...



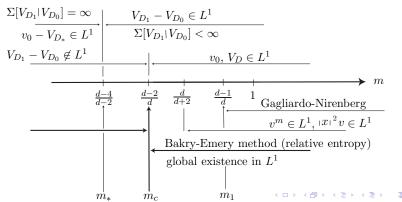
B2 – Fast diffusion equations: the infinite mass regime by linearization of the entropy

Extension to the infinite mass regime, finite time vanishing

- If $m > m_c := \frac{d-2}{d} \le m < m_1$, solutions globally exist in $L^1(\mathbb{R}^d)$ and the Barenblatt self-similar solution has finite mass
- For $m \leq m_c$, the Barenblatt self-similar solution has infinite mass

Extension to $m \le m_c$? Work in relative variables!

Free energies, nonlinear flows and functional inequalities



J. Dolbeault

Entropy methods and linearization: intermediate asymptotics, vanishing

[A. Blanchet, M. Bonforte, J.D., G. Grillo, J.L. Vázquez]

$$\frac{\partial u}{\partial \tau} = -\nabla \cdot (u \, \nabla u^{m-1}) = \frac{1-m}{m} \, \Delta u^m \tag{4}$$

• $m_c < m < 1, T = +\infty$: intermediate asymptotics, $\tau \to +\infty$

$$R(\tau) := (T + \tau)^{\frac{1}{d(m-m_c)}}$$

• $0 < m < m_c$, $T < +\infty$: vanishing in finite time $\lim_{\tau \nearrow T} u(\tau, y) = 0$

$$R(\tau) := (T - \tau)^{-\frac{1}{d(m_c - m)}}$$

Self-similar $Barenblatt\ type\ solutions$ exists for any m

$$t := \frac{1-m}{2} \log \left(\frac{R(\tau)}{R(0)} \right)$$
 and $x := \sqrt{\frac{1}{2 d |m-m_c|}} \frac{y}{R(\tau)}$

Generalized Barenblatt profiles: $V_D(x) := (D + |x|^2)^{\frac{1}{m-1}}$

Sharp rates of convergence

Assumptions on the initial datum v_0

(H1)
$$V_{D_0} \le v_0 \le V_{D_1}$$
 for some $D_0 > D_1 > 0$

(H2) if $d \ge 3$ and $m \le m_*$, $(v_0 - V_D)$ is integrable for a suitable $D \in [D_1, D_0]$

Theorem

[Blanchet, Bonforte, J.D., Grillo, Vázquez] Under Assumptions (H1)-(H2), if m < 1 and $m \neq m_* := \frac{d-4}{d-2}$, the entropy decays according to

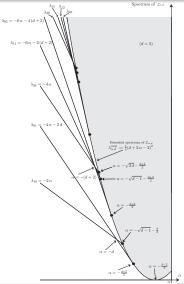
$$\mathcal{E}[v(t,\cdot)] \leq C e^{-2(1-m)\Lambda_{\alpha,d} t} \quad \forall \ t \geq 0$$

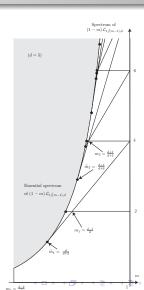
where $\Lambda_{\alpha,d} > 0$ is the best constant in the Hardy–Poincaré inequality

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_{lpha,d} & \int_{\mathbb{R}^d} |
abla f|^2 \, d\mu_lpha & orall \, f \in H^1(d\mu_lpha) \end{aligned}$$

with
$$\alpha := 1/(m-1) < 0$$
, $d\mu_{\alpha} := h_{\alpha} dx$, $h_{\alpha}(x) := (1+|x|^2)^{\alpha}$

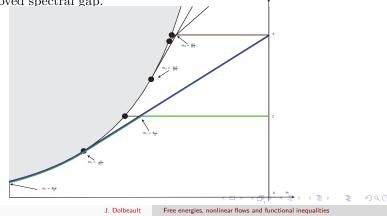
Plots (d = 5)





Improved asymptotic rates

[Bonforte, J.D., Grillo, Vázquez] Assume that $m \in (m_1, 1)$, $d \ge 3$. Under Assumption (H1), if v is a solution of the fast diffusion equation with initial datum v_0 such that $\int_{\mathbb{R}^d} x \, v_0 \, dx = 0$, then the asymptotic convergence holds with an improved rate corresponding to the improved spectral gap.



Higher order matching asymptotics

[J.D., G. Toscani] For some $m \in (m_c, 1)$ with $m_c := (d-2)/d$, we consider on \mathbb{R}^d the fast diffusion equation

$$\frac{\partial u}{\partial \tau} + \nabla \cdot \left(u \, \nabla u^{m-1} \right) = 0$$

Without choosing R, we may define the function v such that

$$u(\tau, y + x_0) = R^{-d} v(t, x)$$
, $R = R(\tau)$, $t = \frac{1}{2} \log R$, $x = \frac{y}{R}$

Then v has to be a solution of

$$\frac{\partial v}{\partial t} + \nabla \cdot \left[v \left(\sigma^{\frac{d}{2}(m - m_c)} \nabla v^{m-1} - 2x \right) \right] = 0 \quad t > 0 , \quad x \in \mathbb{R}^d$$

with (as long as we make no assumption on R)

$$2\,\sigma^{-\frac{d}{2}(m-m_c)} = R^{1-d\,(1-m)}\,\frac{dR}{d\tau}$$

Refined relative entropy

Consider the family of the Barenblatt profiles

$$B_{\sigma}(x) := \sigma^{-\frac{d}{2}} \left(C_M + \frac{1}{\sigma} |x|^2 \right)^{\frac{1}{m-1}} \quad \forall \ x \in \mathbb{R}^d$$
 (5)

Note that σ is a function of t: as long as $\frac{d\sigma}{dt} \neq 0$, the Barenblatt profile B_{σ} is not a solution (it plays the role of a local Gibbs state) but we may still consider the relative entropy

$$\mathcal{F}_{\sigma}[v] := \frac{1}{m-1} \int_{\mathbb{R}^d} \left[v^m - B_{\sigma}^m - m B_{\sigma}^{m-1} (v - B_{\sigma}) \right] dx$$

The time derivative of this relative entropy is

$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = \underbrace{\frac{d\sigma}{dt}\left(\frac{d}{d\sigma}\mathcal{F}_{\sigma}[v]\right)_{|\sigma=\sigma(t)}}_{|\sigma=\sigma(t)} + \frac{m}{m-1}\int_{\mathbb{R}^d} \left(v^{m-1} - B_{\sigma(t)}^{m-1}\right)\frac{\partial v}{\partial t} dx$$

$$choose it = 0$$

 $\iff \text{Minimize } \mathcal{F}_{\sigma}[v] \text{ w.r.t. } \sigma \iff \int_{\mathbb{R}^d} |x|^2 B_{\sigma} \ dx = \int_{\mathbb{R}^d} |x|^2 v \ dx$

The entropy / entropy production estimate

Using the new change of variables, we know that

$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = -\frac{m\,\sigma(t)^{\frac{d}{2}(m-m_c)}}{1-m}\int_{\mathbb{R}^d}v\left|\nabla\left[v^{m-1} - B^{m-1}_{\sigma(t)}\right]\right|^2\,dx$$

Let $w := v/B_{\sigma}$ and observe that the relative entropy can be written as

$$\mathcal{F}_{\sigma}[v] = \frac{m}{1-m} \int_{\mathbb{R}^d} \left[w - 1 - \frac{1}{m} (w^m - 1) \right] B_{\sigma}^m dx$$

(Repeating) define the relative Fisher information by

$$\mathcal{I}_{\sigma}[v] := \int_{\mathbb{R}^d} \left| \frac{1}{m-1} \nabla \left[\left(w^{m-1} - 1 \right) B_{\sigma}^{m-1} \right] \right|^2 B_{\sigma} w \ dx$$

so that
$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = -m(1-m)\sigma(t)\mathcal{I}_{\sigma(t)}[v(t,\cdot)] \quad \forall \ t>0$$

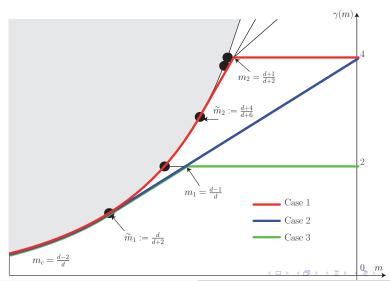
When linearizing, one more mode is killed and $\sigma(t)$ scales out

Theorem (J.D., G. Toscani)

$$\text{Let } m \in (\widetilde{m}_1, 1), \ d \geq 2, \ v_0 \in L^1_+(\mathbb{R}^d) \ \text{such that } v_0^m, \ |y|^2 \ v_0 \in L^1(\mathbb{R}^d)$$

$$\mathcal{E}[v(t, \cdot)] \leq C \ e^{-2\gamma(m)\,t} \quad \forall \ t \geq 0$$
 where
$$\gamma(m) = \begin{cases} \frac{((d-2)\,m - (d-4))^2}{4\,(1-m)} & \text{if } m \in (\widetilde{m}_1, \widetilde{m}_2] \\ 4\,(d+2)\,m - 4\,d & \text{if } m \in [\widetilde{m}_2, m_2] \\ 4 & \text{if } m \in [m_2, 1) \end{cases}$$

Spectral gaps and best constants



B3 – Gagliardo-Nirenberg and Sobolev inequalities : improvements

[J.D., G. Toscani]

Best matching Barenblatt profiles

(Repeating) Consider the fast diffusion equation

$$\frac{\partial u}{\partial t} + \nabla \cdot \left[u \left(\sigma^{\frac{d}{2}(m - m_c)} \nabla u^{m-1} - 2x \right) \right] = 0 \quad t > 0 , \quad x \in \mathbb{R}^d$$

with a nonlocal, time-dependent diffusion coefficient

$$\frac{\sigma(t)}{K_M} = \frac{1}{K_M} \int_{\mathbb{R}^d} |x|^2 u(x,t) dx , \quad K_M := \int_{\mathbb{R}^d} |x|^2 B_1(x) dx$$

where

$$B_{\lambda}(x) := \lambda^{-\frac{d}{2}} \left(C_M + \frac{1}{\lambda} |x|^2 \right)^{\frac{1}{m-1}} \quad \forall \ x \in \mathbb{R}^d$$

and define the relative entropy

$$\mathcal{F}_{\lambda}[u] := \frac{1}{m-1} \int_{\mathbb{R}^d} \left[u^m - B_{\lambda}^m - m \, B_{\lambda}^{m-1} \left(u - B_{\lambda} \right) \right] \, dx$$

Three ingredients for global improvements

 \bullet inf_{$\lambda>0$} $\mathcal{F}_{\lambda}[u(x,t)] = \mathcal{F}_{\sigma(t)}[u(x,t)]$ so that

$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[u(x,t)] = -\mathcal{J}_{\sigma(t)}[u(\cdot,t)]$$

where the relative Fisher information is

$$\mathcal{J}_{\lambda}[u] := \lambda^{\frac{d}{2}(m-m_c)} \frac{m}{1-m} \int_{\mathbb{R}^d} u \left| \nabla u^{m-1} - \nabla B_{\lambda}^{m-1} \right|^2 dx$$

② In the *Bakry-Emery method*, there is **an additional (good) term**

$$4\left[1+2C_{m,d}\frac{\mathcal{F}_{\sigma(t)}[u(\cdot,t)]}{M^{\gamma}\sigma_{0}^{\frac{d}{2}(1-m)}}\right]\frac{d}{dt}\left(\mathcal{F}_{\sigma(t)}[u(\cdot,t)]\right)\geq \frac{d}{dt}\left(\mathcal{J}_{\sigma(t)}[u(\cdot,t)]\right)$$

■ The Csiszár-Kullback inequality is also improved

$$\mathcal{F}_{\sigma}[u] \geq \frac{m}{8 \int_{\mathbb{R}^d} B_1^m dx} C_M^2 \|u - B_{\sigma}\|_{L^1(\mathbb{R}^d)}^2$$

improved decay for the relative entropy

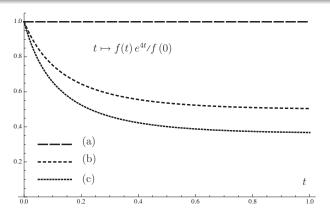


Figure: Upper bounds on the decay of the relative entropy: $t \mapsto f(t) e^{4t}/f(0)$.

- (a): estimate given by the entropy-entropy production method
- (b): exact solution of a simplified equation.
- (c): numerical solution (found by a shooting method)

An improved Sobolev inequality: the setting

Sobolev's inequality on \mathbb{R}^d , $d \geq 3$ can be written as

$$\int_{\mathbb{R}^d} |\nabla f|^2 \ dx - \mathsf{S}_d \left(\int_{\mathbb{R}^d} |f|^{\frac{2d}{d-2}} \ dx \right)^{\frac{d-2}{d}} \ge 0 \quad \forall \ f \in \mathcal{D}^{1,2}(\mathbb{R}^d)$$

and optimal functions take the form

$$f_{M,y,\sigma}(x) = \frac{1}{\sigma^{\frac{d}{2}} \left(C_M + \frac{|x-y|^2}{\sigma} \right)^{d-2}} \quad \forall \ x \in \mathbb{R}^d$$

where C_M is uniquely determined in terms of M by the condition that $\int_{\mathbb{R}^d} f_{M,y,\sigma}^{\frac{2d}{d-2}} dx = M$ and $(M,y,\sigma) \in \mathcal{M}_d := (0,\infty) \times \mathbb{R}^d \times (0,\infty)$. Define the manifold of the optimal functions as

$$\mathfrak{M}_d := \left\{ f_{M,y,\sigma} : (M,y,\sigma) \in \mathcal{M}_d \right\}$$

and consider the relative entropy functional

$$\mathcal{R}[f] := \inf_{g \in \mathfrak{M}_d} \int_{\mathbb{R}^d} \left[g^{-\frac{2}{d-2}} \left(|f|^{\frac{2d}{d-2}} - g^{\frac{2d}{d-2}} \right) - \frac{d}{d-1} \left(|f|^{2\frac{d-1}{d-2}} - g^{2\frac{d-1}{d-2}} \right) \right] \, dx$$

An improved Sobolev inequality: the result (1/2)

0

Theorem

[J.D., G. Toscani] Let $d \geq 3$. For any $f \in \mathcal{D}^{1,2}(\mathbb{R}^d)$, we have

$$\int_{\mathbb{R}^d} |\nabla f|^2 \ dx - \mathsf{S}_d \left(\int_{\mathbb{R}^d} |f|^{\frac{2d}{d-2}} \ dx \right)^{\frac{d-2}{d}} \ge \frac{\mathsf{C}_d \ \mathcal{R}[f]^2}{\||x|^2 \ f^{\frac{2d}{d-2}}\|_{\mathrm{L}^1(\mathbb{R}^d)}}$$

The functional $\mathcal{R}[f]$ is a measure of the distance of f to \mathfrak{M}_d and because of the Csiszár-Kullback inequality, we get

$$\frac{\mathcal{R}[f]}{\||x|^2 f^{\frac{2d}{d-2}}\|_{\mathrm{L}^1(\mathbb{R}^d)}^{1/2}} \ge \frac{\mathsf{C}_{\mathrm{CK}}}{\|f\|_{\mathrm{L}^2(\mathbb{R}^d)}^{\frac{3d+2}{d-2}}} \inf_{g \in \mathfrak{M}_d} \||f|^{\frac{2d}{d-2}} - g^{\frac{2d}{d-2}}\|_{\mathrm{L}^1(\mathbb{R}^d)}^2$$

with explicit expressions for C_d and C_{CK}

An improved Sobolev inequality: the result (2/2)

Q

Corollary

[J.D., G. Toscani] Let $d \geq 3$. For any $f \in \mathcal{D}^{1,2}(\mathbb{R}^d)$, we have

$$\int_{\mathbb{R}^{d}} |\nabla f|^{2} dx - S_{d} \left(\int_{\mathbb{R}^{d}} |f|^{\frac{2d}{d-2}} dx \right)^{\frac{d-2}{d}}$$

$$\geq \frac{\mathfrak{C}_{d}}{\|f\|_{L^{2^{*}}(\mathbb{R}^{d})}^{2\frac{3d+2}{d-2}}} \inf_{g \in \mathfrak{M}_{d}} \||f|^{\frac{2d}{d-2}} - g^{\frac{2d}{d-2}}\|_{L^{1}(\mathbb{R}^{d})}^{4}$$

- The expression of \mathfrak{C}_d is also explicit
- This solves an old open question of [Brezis, Lieb (1985)] with (partial) answers given in [Bianchi-Egnell (1990)] and [Cianchi, Fusco, Maggi, Pratelli (2009)]
- A similar result holds for Gagliardo-Nirenberg inequalities with $p \in (1, \frac{d}{d-2})$

C: Keller-Segel model

- Small mass results
- Spectral analysis
- Collecting estimates: towards exponential convergence

The parabolic-elliptic Keller and Segel system

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u - \nabla \cdot (u \nabla v) & x \in \mathbb{R}^2, \ t > 0 \\ -\Delta v = u & x \in \mathbb{R}^2, \ t > 0 \\ u(\cdot, t = 0) = n_0 \ge 0 & x \in \mathbb{R}^2 \end{cases}$$

We make the choice:

$$v(t,x) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log|x-y| \ u(t,y) \ dy$$

and observe that

$$\nabla v(t,x) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \frac{x-y}{|x-y|^2} u(t,y) dy$$

Mass conservation:
$$\frac{d}{dt} \int_{\mathbb{R}^2} u(t, x) dx = 0$$

Blow-up

 $M=\int_{\mathbb{R}^2}n_0\,dx>8\pi$ and $\int_{\mathbb{R}^2}|x|^2\,n_0\,dx<\infty$: blow-up in finite time a solution u of

$$\frac{\partial u}{\partial t} = \Delta u - \nabla \cdot (u \, \nabla v)$$

satisfies

$$\frac{d}{dt} \int_{\mathbb{R}^{2}} |x|^{2} u(t,x) dx
= -\int_{\mathbb{R}^{2}} 2x \, \Delta u \, dx + \frac{1}{2\pi} \iint_{\mathbb{R}^{2} \times \mathbb{R}^{2}} \underbrace{\frac{2x \cdot (y-x)}{|x-y|^{2}} u(t,x) u(t,y) \, dx \, dy}_{\frac{(x-y) \cdot (y-x)}{|x-y|^{2}} u(t,x) u(t,y) \, dx \, dy}
= 4 M - \frac{M^{2}}{2\pi} < 0 \quad \text{if} \quad M > 8\pi$$

Existence and free energy

 $M = \int_{\mathbb{R}^2} n_0 \, dx \le 8\pi$: global existence [Jäger, Luckhaus], [JD, Perthame], [Blanchet, JD, Perthame], [Blanchet, Carrillo, Masmoudi]

If u solves

$$\frac{\partial u}{\partial t} = \nabla \cdot \left[u \left(\nabla \left(\log u \right) - \nabla v \right) \right]$$

the free energy

$$F[u] := \int_{\mathbb{R}^2} u \log u \, dx - \frac{1}{2} \int_{\mathbb{R}^2} u \, v \, dx$$

satisfies

$$\frac{d}{dt}F[u(t,\cdot)] = -\int_{\mathbb{R}^2} u \left| \nabla \left(\log u \right) - \nabla v \right|^2 dx$$

Log HLS inequality [Carlen, Loss]: F is bounded if $M \le 8\pi$ Existence: $n_0 \in L^1_+(\mathbb{R}^2, (1+|x|^2) dx)$, $n_0 \log n_0 \in L^1(\mathbb{R}^2, dx)$

Time-dependent rescaling

$$u(x,t) = \frac{1}{R^2(t)} n\left(\frac{x}{R(t)}, \tau(t)\right) \quad \text{and} \quad v(x,t) = c\left(\frac{x}{R(t)}, \tau(t)\right)$$
with $R(t) = \sqrt{1+2t}$ and $\tau(t) = \log R(t)$

$$\begin{cases} \frac{\partial n}{\partial t} = \Delta n - \nabla \cdot (n(\nabla c - x)) & x \in \mathbb{R}^2, \ t > 0 \\ c = -\frac{1}{2\pi} \log |\cdot| * n & x \in \mathbb{R}^2, \ t > 0 \\ n(\cdot, t = 0) = n_0 \ge 0 & x \in \mathbb{R}^2 \end{cases}$$

[Blanchet, JD, Perthame] Convergence in self-similar variables

$$\lim_{t\to\infty}\|n(\cdot,\cdot+t)-n_\infty\|_{L^1(\mathbb{R}^2)}=0\quad\text{and}\quad\lim_{t\to\infty}\|\nabla c(\cdot,\cdot+t)-\nabla c_\infty\|_{L^2(\mathbb{R}^2)}=0$$

means "intermediate asymptotics" in original variables:

$$\|u(x,t)-\frac{1}{R^2(t)}n_{\infty}\left(\frac{x}{R(t)},\tau(t)\right)\|_{L^1(\mathbb{R}^2)}\searrow 0$$

The stationary solution in self-similar variables

$$n_{\infty} = M \frac{e^{c_{\infty} - |x|^2/2}}{\int_{\mathbb{R}^2} e^{c_{\infty} - |x|^2/2} dx} = -\Delta c_{\infty} , \qquad c_{\infty} = -\frac{1}{2\pi} \log |\cdot| * n_{\infty}$$

- A minimizer of the free energy in self-similar variables
- Radial symmetry [Naito]
- Uniqueness [Biler, Karch, Laurençot, Nadzieja]
- As $|x| \to +\infty$, n_{∞} is dominated by $e^{-(1-\epsilon)|x|^2/2}$ for any $\epsilon \in (0,1)$ [Blanchet, JD, Perthame]
- Bifurcation diagram of $\|n_{\infty}\|_{L^{\infty}(\mathbb{R}^2)}$ as a function of M:

$$\lim_{M\to 0_+}\|n_\infty\|_{L^\infty(\mathbb{R}^2)}=0$$

[Joseph, Lundgreen] [JD, Stańczy]

Parabolic-elliptic case: large time asymptotics

Q

Theorem

[Blanchet, JD, Escobedo, Fernández] Under the above conditions, if $M \leq M^* < 8\pi$, there is a unique solution

Moreover, there are two positive constants, C and δ , such that

$$\int_{\mathbb{R}^2} |n(t,x) - n_{\infty}(x)|^2 \frac{dx}{n_{\infty}} \le C e^{-\delta t} \quad \forall \ t > 0$$

As a function of M, δ is such that $\lim_{M\to 0_+} \delta(M) = 1$

Smallness conditions in the proof:

- Uniform estimate: the method of the trap
- Spectral gap of a linearized operator \mathcal{L}
- Comparison of the (nonlinear) relative entropy with $\int_{\mathbb{R}^2} |n(t,x) n_{\infty}(x)|^2 \frac{dx}{n_{\infty}}$

A parametrization of the solutions and the linearized operator

$$\left[\text{ Campos, JD } \right] \\ -\Delta c = M \frac{e^{-\frac{1}{2} |x|^2 + c}}{\int_{\mathbb{R}^2} e^{-\frac{1}{2} |x|^2 + c} \ dx}$$

Solve

$$-\phi'' - \frac{1}{r}\phi' = e^{-\frac{1}{2}r^2 + \phi}, \quad r > 0$$

with initial conditions $\phi(0) = a$, $\phi'(0) = 0$ and get

$$M(a) := 2\pi \int_{\mathbb{R}^2} e^{-\frac{1}{2}r^2 + \phi_a} dx$$

$$n_a(x) = M(a) \frac{e^{-\frac{1}{2}r^2 + \phi_a(r)}}{2\pi \int_{\mathbb{R}^2} r e^{-\frac{1}{2}r^2 + \phi_a} dx} = e^{-\frac{1}{2}r^2 + \phi_a(r)}$$

With $-\Delta \varphi_f = n_a f$, consider the operator defined by

$$\mathcal{L} f := \frac{1}{n_a} \nabla \cdot (n_a(\nabla (f - \varphi_f))), \quad x \in \mathbb{R}^2$$

Spectrum of \mathcal{L} (lowest eigenvalues only)

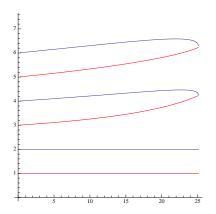


Figure: The lowest eigenvalues of $-\mathcal{L}$ (shown as a function of the mass) are 0, 1 and 2, thus establishing that the spectral gap of $-\mathcal{L}$ is 1

Simple eigenfunctions

Kernel Let $f_0 = \frac{\partial}{\partial M} c_M$ be the solution of

$$-\Delta f_0 = n_M f_0$$

and observe that $g_0 = f_0/c_M$ is such that

$$\frac{1}{n_M}\nabla\cdot\left(n_M\nabla(f_0-c_M\,g_0)\right)=:\mathcal{L}\,f_0=0$$

Lowest non-zero eigenvalues $f_1 := \frac{1}{n_M} \frac{\partial n_M}{\partial x_1}$ associated with

 $g_1 = \frac{1}{c_M} \frac{\partial c_M}{\partial x_1}$ is an eigenfunction of \mathcal{L} , such that $-\mathcal{L} f_1 = f_1$

With $D := x \cdot \nabla$, let $f_2 = 1 + \frac{1}{2} D \log n_M = 1 + \frac{1}{2 n_M} D n_M$. Then

$$-\Delta (D c_M) + 2 \Delta c_M = D n_M = 2 (f_2 - 1) n_M$$

and so $g_2 := \frac{1}{c_M} (-\Delta)^{-1} (n_M f_2)$ is such that $-\mathcal{L} f_2 = 2 f_2$

Functional setting...

$$F[n] := \int_{\mathbb{R}^2} n \log \left(\frac{n}{n_M} \right) dx - \frac{1}{2} \int_{\mathbb{R}^2} (n - n_M) c - c_M) dx$$

achieves its minimum for $n = n_M$ according to log HLS and

$$Q_1[f] = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^2} F[n_M(1 + \varepsilon f)] \ge 0$$

if $\int_{\mathbb{R}^2} f \, n_M \, dx = 0$. Notice that f_0 generates the kernel of Q_1

Lemma

For any $f \in H^1(\mathbb{R}^2, n_M dx)$ such that $\int_{\mathbb{R}^2} f n_M dx = 0$, we have

$$\int_{\mathbb{R}^2} |\nabla (g \ c_M)|^2 \ n_M \ dx \le 2 \int_{\mathbb{R}^2} |f|^2 \ n_M \ dx$$

... and eigenvalues

With g such that $-\Delta(g c_M) = f n_M$, Q_1 determines a scalar product

$$\langle f_1, f_2 \rangle := \int_{\mathbb{R}^2} f_1 f_2 n_M dx - \int_{\mathbb{R}^2} f_1 n_M (g_2 c_M) dx$$

on the orthogonal to f_0 in $L^2(n_M dx)$ and with $G_2(x) := -\frac{1}{2\pi} \log |x|$

$$Q_2[f] := \int_{\mathbb{R}^2} |\nabla (f - g c_M)|^2 n_M dx$$
 with $g = \frac{1}{c_M} G_2 * (f n_M)$

is a positive quadratic form, whose polar operator is the self-adjoint operator $\mathcal L$

$$\langle f, \mathcal{L} f \rangle = \mathsf{Q}_2[f] \quad \forall \ f \in \mathcal{D}(\mathsf{L}_2)$$

Lemma

In this setting, $\mathcal L$ has pure discrete spectrum and its lowest eigenvalue is positive

Concluding remarks

lacktriangle The spectral gap inequality of $\mathcal L$ is a refined version of

Theorem (Onofri type inequality)

For any
$$M \in (0,8\pi)$$
, if $n_M = M \frac{e^{c_M - \frac{1}{2}|x|^2}}{\int_{\mathbb{R}^2} e^{c_M - \frac{1}{2}|x|^2} dx}$ with $c_M = (-\Delta)^{-1} n_M$, $d\mu_M = \frac{1}{M} n_M dx$, we have the inequality

$$\log\left(\int_{\mathbb{R}^2} e^{\phi} d\mu_M\right) - \int_{\mathbb{R}^2} \phi d\mu_M \leq \frac{1}{2M} \int_{\mathbb{R}^2} |\nabla \phi|^2 dx \quad \forall \ \phi \in \mathcal{D}_0^{1,2}(\mathbb{R}^2)$$

- Exponential convergence of the relative entropy should follow [Campos, JD, work in progress]

Thank you for your attention!

C: Keller-Segel model