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Charged particles: f(z,v,t),z € w CR? (d = 1,2,3), v € R,
teRT.

Electric field: £ = FE(x,t) = —V¢o(z) — Vo(x, 1)

Phase space O =w x RY, T' = 90 = 0w x R?

Outward unit normal vector at a point x of dw: v(z). For any
given x € dw, we set

S>EFa)={veR?: +v-v(z) >0}

I ={(z,v) €l : veXH(ax)}
OnTl, do(x,v) := |v(z)-v|dr(xz,v) where dr(z,v) = dg,(x) dv
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The model

The Vlasov-Poisson-Boltzmann system:

( Oif+v-Vaf = (Vad +Vado) - Vof = Q(f)
and f|t=0 — f07 f’F_XRJF(xJU?t) :7(%|v|2+¢0($))

—Ap=p= | fdv, (z,1) € w x RT
Rd
and ¢(z,t) =0, (z,t) € 0w x RT
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Assumptions

Property P
The function ~ is defined on (min,.c,, ¢o(z), +00), bounded,

smooth, strictly decreasing with values in R}, and rapidly
decreasing at infinity, so that

rew

+00
sup/ s92~ (s + ¢o(z)) ds < 400
0

The collision operator () is assumed to preserve the mass
Jra Q(g) dv = 0, and satisfies the following H-theorem

Pl =~ [ Qo) [Hvﬁ—v—l(g)] do >0

and Dig] =0 <= Q(g) =0
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Example 1

The Vlasov-Poisson-Fokker-Planck system.

Rrpal(f) =divy(vf(l —af)+0V,f)

for some a > 0

f
o)1 d
Rd Qrpalf)log ((1af)Me> v

f
[ ora—ap|v.io ( — f)M)
where My = (2r)~4/2¢~10I"/(20)

9 —1
Stationary states: f(v) = (a + el /Q—M)/H)

2
dv
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Example 2: BGK

BGK approximation of the Boltzmann operator.
Qalf) = /ﬂgw,v’) [Me(v)f(v’)(1—af(v))—Me(v’)f(v)(1—af(v’))

2 —1
Stationary states: f(v) = (a +ellv /Q—MW)
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Example 3: Linear elastic collisions

Qu(f) = [ x(w.t) (7)) = F(0) 81 = [of) v
where x IS a symmetric positive cross-section. Assume that
A©) = [ x(w.0) 8ol = o)

Rd

is in L>° . Then Qg is bounded on L' N L>°(R%). Moreover,
for any measurable function ) and for any increasing
function H on R, we have

” Qr(f)w(lv]?)dv=0 and H(f)= 5 Qp(f)-H(f) dv <0

Stationary solutions: f(v) = ¥(|v|?)
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Relative entropy

Relative entropy of two functions g, h:

S, lglh]= [ (3,(9) = 55(0) = (g = W3, () dadvt; [ [VUlg-h]

where (3, is the real function defined by

By(9) = — /Og v (z) dz

v is strictly decreasing = (3, is strictly convex.
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Irreversibility

Theorem 1 Assume that fy € L' N L™ is a nonnegative
function such that X[ fo|M] < +oc0. Then the relative

entropy ¥ [f(t)|M] where M is the (unique) stationary
solution, satisfies

S @M =~ O]~ [ Difi(a.t)da

w

where X7 is the boundary relative entropy flux given by

S1lglhl = [ (9,09) = 5, () = (g = B3 (1) do
I+
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Solutions to the limit problem

Convergence to a large time limit can be proved assuming
the compatibility of the incoming distribution function

fio- ke (z.v.2) = (5o + do()

with the collision kernel. Otherwise: very difficult question.

Corollary 2 Letd =1, Q = 0. Assume that ~ satisfies
Property (P) and consider a solution (f, ¢) achieved by
passing to the limitt — oo.

If ¢o Is analytic in x with C*° (in time) coefficients and if ¢y is

analytic with —‘5 f;’ > 0 onw, then (f, ¢) Is the unique
stationary solution.
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I — Entropy methods for linear diffusions

The logarithmic Sobolev inequality
Convex Sobolev inequalities

e /ogarithmic Sobolev inequality: [Gross], [Weissler], [Coulhon],...
e probability theory: [Bakry], [Emery], [Ledoux], [Coulhon],...

e linear diffusions (PDEs): [Toscani], [Arnold, Markowich, Toscani,
Unterreiter], [Otto, Kinderlehrer, Jordan], [Arnold, J.D.]



I-A. Intermediate asymptotics: heat equation

_ u = Au reR", te RT
Heat equation: w(it = 0) = ug > 0 / updz =1 (1)
ez /4t

Optimal rate of convergence of ||ju(-,t) — U(',t)”Ll(Rn) ?



The time dependent rescaling

w(zt) =~ o (g _ Rg(ct),f — log R() + 7(0)>

allows to transform this question into that ofzthe convergence
to the stationary solution veo(€) = (2m)/2 e~ I€l7/2,

e Ansatz: %{ = % R(O)=1 ~(0)=0:
R(t) =V14+2t, 7(t)=logR(t)

As a consequence: v(T = 0) = ug.

e Fokker-Planck equation:

vy = Av+ V(D) (ER?, 1 € RT

v(7=0)=ug >0 /nugd;v=1

\



Entropy (relative to the stationary solution fuoo)'

> [v] = /R v log <?JZ<>> d:I:=/R (’U logv + — |:1:|2 > dx + Const

If v is a solution of (2), then (I is the Fisher information)

L= [ o[vioa ()] de =i 1o 7]

dt
e Euclidean logarithmic Sobolev inequality: If ||jv||;1 = 1, then

V|2

v

dx

/nvlogvd:v+n<1—|——log(27r)) ;/

Equality: v(€) = voo(€) = (2m) /2 ¢~ [E17/2
= S [v(-,7)] < 5I[v(-,7)]

S[w(-,7)] < e 275 [ug] = e 27 / g log (:OO) dx




e (Csiszar-Kullback inequality: Consider v > 0, v > 0 such that
Jrrvdr = [gnvde =: M >0

U 1 —2
/ v log (5) dx > 4MHU — UHLl(Rn)

= ||v — UOOHLl(R”) < 4M3[ugle™

7(t) = log+v/1 + 2t

4
|u(-,t) — uoo(-,t)H%l(Rn) < 1101

1
Uoo(x,t) = R (D) Voo (R(t) 7'(75))

Proof of the Csiszar-Kullback inequality: Taylor development at second order.

> [uo]
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Euclidean logarithmic Sobolev inequality: other formulations
1) independent from the dimension [Gross, 75]

1
ogw du(z) <~ | w|Viogu|? d
| wiogwdu(@) <5 | wViegu|? du(a)

with w = ML’UOO’ |v||;1 =M, du(xr) = vool(x) dx.
2) invariant under scaling [Weissler, 78]

2
w? log w? dx < " log < / |V’w|2 dac)
R" 2 mTne JR"

for any w € H1(R") such that [w?dz =1



Proof: take w = ,/Mf‘;oo and optimize on A for wy(x) = A 20 (N )

/R” Vw,|? dz — o w% log w% dr

=)\2/ |Vw|2d:13—/ w? log w? dz — nlog A w? dx
R" R" R"

ENTROPY-ENTROPY PRODUCTION METHOD

A method to prove the Euclidean logarithmic Sobolev inequality:

2
dr <0

d n

- (I[o(, D] = 25 (-, D)) = _Ci;l/ ) -
for some C >0, a, b € R. Here w = /v.
Ifv(-, 7)] — 2X[v(-,7)] \\ I[veo] — 2X [voo] = O

—— VYug, Ilug]—2XZ[ug] > I[v(-,7)]—2X[v(-,7)]> 0 forT>0



I-B. Applications...

e Homogeneous and non-homogenous collisional Kinetic equa-
tions [L. Desvillettes, C. Villani, G. Toscani,...]

e Drift-diffusion-Poisson equations for semi-conductors [A. Arnold,
P. Markowich, G. Toscani], [P. Biler, J.D., P. Markowich],...

e [ he two-dimensional Keller-Segel model [A. Blanchet, B. Perthame,
J.D.], [P. Biler, P. Laurencot, G. Karch, T. Nadzieja]

e Streater’'s models [P. Biler, J.D., M. Esteban, G. Karch]

e Heat equation with a source term [[J.D., G. Karch]

e [ he flashing ratchet [J.D., D. Kinderlehrer, M. Kowalczyk]

e Models for traffic flow [J.D., Reinhard Iliner]

e Navier-Stokes in dimension 2 [T. Gallay, Wayne], [C. Villani], [J.D.,
A. Munnier]



and questions under investigation

e Hierarchies of inequalities

e VlIasov-Fokker-Planck [Héraut, Nier, Helffer, Villani]

e Derivation of entropy - entropy-production inequalities in non-
standard frameworks:

- singular potentials: [JD, Nazaret, Otto]

- vanishing diffusion coefficients: [Bartier, JD, Iliner, Kowalczyk]

e Homogeneization and long time behaviour: [Allaire, Blanchet,
Kinderlehrer, Kowalczyk]

e Relaxation and diffusion properties on intermediate time scales,
corrections to convex Sobolev inequalities

e Connections with differential geometry [Sturm, Villani]

e ctcC



II — Porous media / fast diffusion equation

and generalizations

[coll. Manuel del Pino (Universidad de Chile)] = Relate entropy
and entropy-production by Gagliardo-Nirenberg inequalities

Other approaches:

1) “entropy — entropy-production method”

2) mass transportation techniques

3) hypercontractivity for appropriate semi-groups

e nonlinear diffusions: [Carrillo, Toscani], [Del Pino, J.D.], [Otto], [Juen-
gel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unter-
reiter], [Biler, J.D., Esteban], [Markowich, Lederman], [Carrillo, Vazquez],
[Cordero-Erausquin, Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani],
[Agueh, Ghoussoub]
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II-A. Porous media / Fast diffusion equation
[Del Pino, JD]
utZAum in R"
Ujy—g = uo > 0 (3)
up(1 + |z|?) € L, up' € Lt

Intermediate asymptotics: ug € L=, [ug dx = 1, the self-similar
(Barenblatt) function: U(t) = O@ "/ (2-n(1-m))) a5 t — oo,
[Friedmann, Kamin, 1980]

lu(t,-) — U, )| poo = ot~/ (2=nl1=m)))
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Rescaling: Take u(t,x) = R~ "(t) v (7(t),z/R(t)) where
R=prM1-m-1 " pO)=1, 7=IogR

vr = QA"+ V- (zv), Vjr=0 = U0

[Ralston, Newman, 1984] Lyapunov functional: Entropy

m 1
> [v] =/<m"’_ - —|—§|az|2fv> dr — 3

2

vm
Y dx

v

+ x

d
—x] = —1f], Il =/v

13



Stationary solution: C s.t. ||[veo|l;1 = ||lulj;j1 =M >0

1 — —1/(1-m)
vo(@) = (O =5 )

Fix X so that X[vs] = 0.

T[] = [ (Y) v tdr  with ¢(8) = 4L 41

Theorem 1 me[” ,+00), m>2,m7él

I[v] > 2% [v]
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An equivalent formulation

> [v] =/< v —I——|:1:|2v> dr—3g S—/v‘l—l—x
m—1 2 2 (&

— 1 — 2D
P=op=-1: V=W

2

1
dr = =1
v = 1]

122 [ |[Vw|?dz + (1. —n) [ |w|*Pdz + K > 0

K<O0ifm<l K>0ifm>1

m = "1 Sobolev, m — 1: logarithmic Sobolev

[Del Pino, J.D.], [Carrillo, Toscani], [Otto]
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OPTIMAL CONSTANTS FOR (GAGLIARDO-NIRENBERG INEQ
[Del Pino, J.D.]

l<p<_—5forn=>3

|wll2p < Al VW]l ||w]|57

p—l—l
2\ 5 L 2
A = (yp=1) (2y n) 2p () \n
2mn 2y r(y—>5
_ n(p—1) _ p+1
p(n+2—(n—2)p)’ p—1
Similar results for 0 < p < 1. Uses [Serrin-Pucci], [Serrin-Tang].
— 1 n : : . n—1
l1<p=5.,-7< ;-5 < Fast diffusion case: == <m <1

0 <p<1<«= Porous medium case: m > 1

16



> [v] < Z[ug] e 27+ Csiszar-Kullback inequalities

= Intermediate asymptotics [Del Pino, J.D.]

(D%#<m<fzn?3
limsup;_, 4o t2 A= ||u™ —ull|| 1 < 400

(i) 1 <m<?2
14+n(m—-1)
liM SUPy— 100 2T =D || [u — uco) w1 |71 < +o0

17



The optimal LP-Euclidean logarithmic Sobolev inequality

(an optimal under scalings form) [Del Pino, J.D., 2001], [Gentil 2002],
[Cordero-Erausquin, Gangbo, Houdré, 2002]

Theorem 2 If ||ul|;p = 1, then

/|u|plog u| do < % log [[,p/ VP da:]
p

b
vl e[ @+ |n
(%)p " [I_(n +1)]

NS

£p:

SERS!

—1/p
Equality: u(z) = (7‘(‘2( ) I’((;j—_l))) e~ le=z”

p = 2. Gross' logaritmic Sobolev inequality [Gross, 75], [Weissler, 78]
p = 1: [Ledoux 96], [Beckner, 99]

20



II-B. Consequences for u; = Apul/(P—1)
[Del Pino, JD, Gentil]

e EXistence

e Uniqueness

e Hypercontractivity, Ultracontractivity

e Large deviations

21



EXISTENCE

Consider the Cauchy problem

U = Ap(ul/(p_l)) (Q},t) e R™ x R+ (4)

Apu™ = div (|Vum|p_2Vum) is 1-homogeneous <= m =1/(p—1).
Notations: |jullq = (Jgn |u|9dz)Y/?, ¢ #0. p* =p/(p—1), p> 1.

Theorem 3 Letp>1, f e LY(R") s.t. |z’ f, flog f € L1(RM).
Then there exists a unique weak nonnegative solution u € C(]R;", LYH
of (4) with initial data f, such that ul/? e LL (R}, WLP).
[Alt-Luckhaus, 83] [Tsutsumi, 88] [Saa, 91] [Chen, 00] [Agueh, 02]

[Bernis, 88], [Ishige, 96]

Crucial remark: [Benguria, 79], [Benguria, Brezis, Lieb, 81], [Diaz,Saa, 87]
The functional v — [ |Vu®|P dx is convex forany p > 1, a € [l, 1].
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UNIQUENESS

Consider two solutions u7 and us of (4).
d U1

— log (—) d

dt/’dl g (UQ) x

= / (1 + log (ﬂ)> (u1)t dox — / (L) (uo) da
uo U

2
— —(p—l)_(p_l)/ w [V’Lﬂ B V’uQ] . |:

u1 u?

Vuq

ui

—2
P=° Yy

u1

Vuo

u

p—2
V
u2] dr

u

It is then straightforward to check that two solutions with same
initial data f have to be equal since

Lt
Ju1 () — ua(-0)]|3 < /u1<-,t> log (ul( )> dr < /flog <§> de = 0

U/Q(',t)

1
4| fll1
by the Csiszar-Kullback inequality.
23



HyYPER- AND ULTRA-CONTRACTIVITY

Understanding the regularizing properties of

w = Apul/P—1)

Theorem 4 Let o, B € [1,400] With 8> «. Under the same as-
sumptions as in the existence Theorem, if moreover f € L*(IR™),
any solution with initial data f satisfies the estimate

n B—«

luC Dllg < [[flla Aln,p, o, B)t P @5 VE>0

. npf-a I _1yp-1
with A(n,p,a, 8) = (€1 (8 — a))? & €4, € = nLyer~t C=L17=,

1-6 1-p 1
e, = (B=1) P g7 a7

1— 1-p 1 ’
(a—l)Ta an_B"H

Case p=2: Lo = 2 [Gross 75]

TmTne'
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AsS a special case of Theorem 4, we obtain an ultracontractivity
result in the limit case corresponding to a =1 and 8 = oo.

Corollary 5 Consider a solution uw with a nonnegative initial data
feL1(R™). Then for any t >0

e\ p
(s D) loo < If11 <—1> |

t

Case p = 2, [Varopoulos 85]
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Proof. Take a nonnegative function v € LY(R™) with u?logw in
LI(R"). It is straightforward that

d
—/uqda:Z/uqlogudm. (5)
dq
Consider now a solution u; = A,ul/(P~1) For a given q € [1, 400),
d —1
—/uq dr = — alg — 1) u? P|VulP dx . (6)
dt (p—1)p~1

Assume that ¢ depends on t and let F(t) = ||u(-,t)||q(t). Let

=4 A combination of (5) and (6) gives

F' ! ud 2(g—1) 1
F q “og (_)d /q (q )_1
F Fa qg(p—1)p—1 F4

/uq_p|Vu|p dm] :

26



Since [ui™P|VulP dz = (B)P [ IVul/P|P dz:, Corollary ?? applied with
w = uQ/p,
= (¢ —1)p”
¢ qP=2 (p— 1)p~1

gives for any t > 0

t p—2 ./
F(t) < F(O)eA®  with A@) =" / T log (Jcpq q) ds
p JO q q—1
e pp‘l']- '

Now let us minimize A(t): the optimal function t — ¢(t) solves

the ODE
1

at+b
Take qp=«a, q(t) =0 allows to compute at:O;—_ﬁﬁ and bzé. O

¢"q=2¢° < qt) =

27



CONCLUSION

The three following identities are equivalent:
(i) For any w € WLP(R™) with [|w|P dx = 1,
/|w|plog w| de < % log [Lp/ VP da:]
p

(i) Let PP be the semigroup associated u; = Ap(ul/(P—1));

n B—a

1PPFllg < Iflla A(n,p, o, B) ¢ P o
(iii) Let @f be the semigroup associated to v + = |Vu|P = 0:

n B—a
1919 5 < (€9l B(n, p, ct, B) t P o8

The Prékopa-Leindler inequality implies (iii).
28
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Higher order diffusion equations

The one dimensional porous medium/fast diffusion equation
ou _
ot

The thin film equation

(W), €8, t>0

up = —(u" Ugga )z resSt. t>0
The Derrida-Lebowitz-Speer-Spohn (DLSS) equation
up = —(u(logw)gg)ee, x €S, t>0

... with initial condition u(-,0) = ug > 0in S* = [0, 1)
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Entropies and energies

Averages:

p
fiplv] = (/ p1/P daz) and v ::/ v dx
St St

Entropies: p € (0, +), ¢ € R, v € H:(S1), v # 0a.c.

1 ATV B
Spaltl = oo [ e Gl | ipa#1andg 20

v4
> = [ 91 dr ffpg=1andq#0
1/q.Y /51 v? log <f51 v dw) v ifpg q #

1 v
)y = —— ] d ifg =0
p,O[U] p /S"l Og (,Ufp [U]) X q
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Convexity

>p.qlv] 1S non-negative by convexity of

p1/P
Ypaglv] = Mp[v]q/Sl Up,q<(ﬂp[v])1/p> .

AV
5
=,
()
?q
)
Y
o
<
p—
~—
S
p—
~—
S
QL
=
v
|
=
=S
=,
?q
)
N\
p—d
N——"
|
o
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Limit cases

pq = 1:
pgrﬁq Ypglv] = 1/q4v] fOrg>0
qg = 0:
éi_l’)f(l) Ypqlv] =2p0lv] forp >0
p=q=70

20,0[?}] = —/ log v dx
St HvHoo

Some references (2005 or to appear):

M. J. Caceres, J. A. Carrillo, and G. Toscani]
| M. Gualdani, A. Jingel, and G. Toscani]

' A. Jungel and D. Matthes]

| R. Laugesen]

Entropy-Energy inequalities and improved convergence

rates
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Global functional inequalities

Theorem 1 For allp € (0,+c0) and q € (0,2), there exists a
positive constant r,, , such that, for any v € H1 (S'),

1 1
Spglo < — o] i= — [ P da

Kp,q Kp,q JS1

Corollary 1 Letp € (0,+0) and q € (0,2). Then, for any
ve HL (S,

1 1
2 o 12
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A minimizing sequence (v, )ncn iS bounded in H1(S1)

vy — o in HY(SY) and X,,vn] — Sp4fv] as n— oo

If 3, 4v] =0, lim, 0 J1|vn] = 0. Let

En = J1lon] ,  wy =

Taylor expansion

ex)/P — —LELE 17“5 £ T, € I
(1+\/_ )1 1 D Sp (Oap) V(,)E( \/57\/5)
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en = J1 [Un] ; Zp,q[vn] < 0(507]97 Q) En
Hence, since ¢ < 2,

J1[vn) en J1[wn] e o
Ypglvn]?/® Sy q[vn]2/4 T c(e0,p,q)] e ~

gives a contradiction
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Asymptotic functional inequalities

The regime of small entropies:
xP1 = {ve Hy(SY) : S,40v] <eand pylv] =1}

Theorem 2 Foranyp > 0, q € R andey > 0, there exists a
positive constant C such that, for any ¢ € (0, ¢,

1+O\f

8p?m

Ypqlv] < Jilv] Vv e a

Without the condition p,[v] = 1:

Entropy-Energy inequalities and improved convergence rates for nonlinear parabolic equations — p.9/16



If J1[v] < 8p? w2 ¢, define w := (v—1)/(

koo y/e)s Jiw] <1

“ralt] = pQ(pql—l [/(1+H°O\/w)qd$ (/glJrﬁoofw)l/pdx)pq]

1

002 2
= 8(% ) / w? dx — (/ wd:z:) + 03
2p* | /s g1

o0\ 2
_ ’ip ) / _3/2
ROO)Q J1|w] J1|v]
< p 3/2 3/2
< ey e H O = g + O

using Poincaré’s inequality

Entropy-Energy inequalities and improved convergence rates for nonlinear parabolic equations — p.10/16



1" application: Porous media

%:(um)ij re S t>0

A one parameter family of entropies :
( 1

/f(k+1)/ (wf = at* ) dr i ke R\ {-1,0)

Ylul =< /Slulog (u) dx if k=0

\—/Sllog(u) dx if k=-1

With v := uP, p i= It g = EEL = 9 BEL U5, 1) = 3, (0]
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Lemma 1 Letk € R. Ifu is a smooth positive solution

2

d dr =0

EZk[u(,t)] —|—)\/S1

with \ := 4m/(m + k)* whenever k +m # 0, and

(u(k+m)/ )

d
—SpfuC )]+ A [ |(logw)e|” dz =0
dt o

with A :=m fork +m = 0.
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Decay rates

Proposition 1 Letm € (0,+00), k € R\ {—m},
q=2k+1)/(m+k),p=(m-+k)/2 and u be a smooth
positive solution

i) Short-time Algebraic Decay: If m > 1 and k > —1, then
—q/(2—q)

2 —
Slu(-, )] < IEk[uO]_(Z_Q)/q + Tq Ny gt

i) Asymptotically Exponential Decay: If m > 0 and
m + k > 0, there exists C > 0 and t1 > 0 such that for
t > 11,

202 \aP2=9) (¢ — 14
Sp[u( )] < Zglu(, 1)) exp <8p1 + C):\/Ek[u('(ttl)]t )>
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2" Application: fourth order egs.

1

ut:—(um (umerau_ uxuerbu_Qui)) : xGSl,t>O,

i

Example 1. The thin film equation: a = b =0

Ut = _(um umxw)xa

Example 2. The DLSS equation: m =0,a=—-2,andb =1

U = — (u (log u)m) ,

rx

Ly :=1Ba+5)£3/(a—1)2—8b
A=Fk+m+1)2-9k+m—-12?+12a(k+m—2)—36b
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Theorem 3 Assume (a — 1)* > 8b
i) Entropy production: If L_ < k+m < L

d
= Slu( )] S0 V>0

ii) Entropy production: If k +m + 1 # 0 and
L_<k+4+m< Ly,

0]+ [

Ifk+m+1=0anda+b+2—pu <0 forsome( < u <1, then

2
(u(k+m+1)/2)m de <0 Vt>0

d
- Silu(-, )] + p [(logw)ge|” dz <0 V>0
Sl
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Decay rates

Theorem 4 Letk, meRbesuchthatL_ <k-+m <L,
i) Short-time Algebraic Decay: If k > —1 and m > 0, then

_(2—-q)/ 5 9 —q/(2—q)
Yelu(-t)] < [ Xk|uo] DI+ AT 1 Kp g i 1) ¢

i) Asymptotically Exponential Decay: If m+k+1 > 0, then
there exists C' > 0 andt; > 0 such that

32 p? 7l ,uup( )(tt1)>

Zk[U(',t)] < Zk[u(-,h)] exp ( 14 C\/Zk : 1)]
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The Keller-Segel model L

The Keller-Segel(-Patlak) system for chemotaxis describes the collective
motion of cells (bacteria or amoebae) [Othmer-Stevens, Horstman].

The complete Keller-Segel model is a system of two parabolic
equations. Simplified two-dimensional version :

([ On 5
E:An—xv-(nVc) reR?, t>0

{ —Ac=n rcR?, t>0 (1)
n(-,t=0)=mng>0 r € R?

\

n(z,t) : the cell density
c(x,t) : concentration of chemo-attractant
x > 0 : sensitivity of the bacteria to the chemo-attractant

=
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Keller-Segel model

|. Main results and a priori estimates




Dimension 2 is critical

The total mass of the system

M = ng dx
R2

IS conserved
There are related models in gravitation which are defined in R?

The L!-norm is critical in the sense that there exists a critical mass
above which all solution blow-up in finite time and below which they
globally exist. The critical space is L4/2(R?) for d > 2, see
[Corrias-Perthame-Zaag]. In dimension d = 2, the Green kernel
associated to the Poisson equation is a logarithm, namely

1
c=——1log| |*n

L 2m
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First main result

Theorem 1. Assume thatng € L1 (R? (1 + |x|?) dz) and nglogng € L*(R3dx).
If M < 87 /x, then the Keller-Segel system (1) has a global weak non-negative
solution n with initial data ng such that

¢
(14+]z)*+|logn|) n € LS. (R, LT (R?)) // n|Vlogn — xVel? dx dt < oo
0 JR2

M
and / z|? n(z,t) de = z|? ng(z) dz + 4M (1 - X—) t
R2 R2

ST

forany t > 0. Moreovern € LS ((g,00), LP(R?)) forany p € (1, 00) and any
e > 0, and the following inequality holds for anyt > 0 :

Fln(-,t)] + /0 /R2 n |V (logn) — xVe|® dzds < F[no]

L Here Fn] := [, nlognds — % [, ncdx
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Notion of solution

The equation holds in the distributions sense. Indeed, writing
An —xV-(nVec) = V- [n(Vlogn — xVc)]

we can see that the flux is well defined in L* (R} . x R?) since
// n|Vlogn — xVe| dx dt
[0,T] xR?

1/2 1/2
< // n dx dt // n|Vlogn — xVel? dedt | < oo
[0, T] xR? [0, T] xR?
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Second main result : Large time behavior

Use asymptotically self-similar profiles given in the rescaled variables by
the equation

GX'UOO_|33‘2/2 A . h 1 1
T o7y = A W v = —5 gt (@

Uoo = M

In the original variables :

1

Noo (X, 1) = T (log(vV1+ 2t), z/V1+ 2t)

Voo (log(v1+ 2t),z/v1+ 2t)

Coo(T, 1)

Theorem 2. Under the same assumptions as in Theorem 1, there exists a stationary
solution (Ueo, Vo ) in the self-similar variables such that

L lim Hn<°,t)—noo(°,t)HL1(R2) =0 and lim ch('at)_vcoo('yt)HL?(R?) =0

t—o0 t—o0
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Assumptions
We assume that the initial data satisfies the following asssumptions :
ng € Li(RZ, (1 + |z|?) dz)
nglogng € L*(R%dx)

The total mass is conserved

M := no(z) dx :/ n(z,t) dr
R2 R2

Goal : give a complete existence theory [J.D.-Perthame],
[Blanchet-J.D.-Perthame] in the subcritical case, i.e. in the case

M < 87/x
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Alternatives

There are only two cases :
1. Solutions to (1) blow-up in finite time when M > 87/
2. There exists a global in time solution of (1) when M < 87/

The case M = 8x/x is delicate and for radial solutions, some results
have been obtained recently [Biler-Karch-Laurencot-Nadzieja]

Our existence theory completes the partial picture established in
[Jager-Luckhaus].
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Convention

The solution of the Poisson equation —Ac = n Is given up to an
harmonic function. From the beginning, we have in mind that the
concentration of the chemo-attractant is defined by

1

c(@,t) = — o . log |z — y[n(y,t) dy

1 T —1y

Ve(x,t) = n(y,t) dy

or R2 ‘95 — y\2
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1

Blow-up for super-critical masses

Case M > 8x/x (Case 1) : use moments estimates

Lemma 3. Consider a non-negative distributional solution to (1) on an interval [0, T'|
that satisfies the previous assumptions, [ |x|? no(z) dz < oo and such that

(z,t) = g |1x+_|z|| n(y,t) dy € L>=((0,T) x R?) and

(z,t) — (1 + |z|)Ve(z,t) € L= ((0,T) x R?). Then it also satisfies

d M
— z|* n(x,t) do = 4M (1 — A
dt R2 ST

Formal proof.

d

@ oo z|* n(x, t) de

/ z|* An(z,t) dx
R2

X r—Y
4+ &
27T JRr2xR2 |33 - y|2

n(z,t)n(y,t) dedy
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Justification

Consider a smooth function . with compact support such that

lim. .o ¢ (|]) = [z[*

d
o R2gpsndx = /R2Ag0€nd:z:
X [ (Vee(r) = Vee(y)) - (z —y)
— = t t) de d

A\ . 4
~

—1

Since £ [, p.ndx < C. [.,no dz where C. is some positive constant,
as e — 0, fR2 wendr <cp+cot

/ lz|*n(z,t) dx < oo Vtec(0,T)
R2

[]
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Weaker notion of solutions

We shall say that » is a solution to (1) if for all test functions ) € D(R?)

4 Y(x)n(x,t) de = AY(z)n(zx,t) dx
dt RQ RQ
“ar Lo V@) = V)] () () de dy

Compared to standard distribution solutions, this is an improved concept
that can handle measures solutions because the term

Vip(z) — Vip(y)] -

|z —y|?

IS continuous
However, this notion of solutions does not cover the case of measure

Lvalued (-, 1)
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Finite time blow-up

Corollary 4. Consider a non-negative distributional solutionn € L>°(0,T*; L' (R?))
to (1) and assume that [0, T*), T* < oo, is the maximal interval of existence. Let

1
Iy = [z|* no(z) dr < oo and / *lz n(y,t) dy € L=((0,T) x R?)
R2 Rz [T — Y|
If x M > 8w, then
T* < 2T IQ
= M(x M — 8r)

If xy M > 87 and Iy = oo : blow-up in finite time ?

Blow-up statements in bounded domains are available

Radial case : there exists a L' (R? x R™) radial function 7 such that
8

n(z,t) - — 0 +n(x,t) ast /T
X
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Comments
1. x M = 8 [Biler-Karch-Laurencot-Nadzieja] : blow-up only for T = oo

2. If the problem is set in dimension d > 3, the critical norm is LP(R%)
with p = d/2 [Corrias-Perthame-Zaag]

3. In dimension d = 2, the value of the mass M is therefore natural to
discriminate between super- and sub-critical regimes. However, the limit
of the LP-norm is rather fRQ n logn dx than fR2 n dz, which is preserved
by the evolution. This explains why it is natural to introduce the entropy,
or better, as we shall see below, the free energy
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The proof of Jager and Luckhaus L

[Corrias-Perthame-Zaag] Compute % Jg2 nlogn dz. Using an integration
by parts and the equation for ¢, we obtain :

4 Jganlogndr = —4 [o, |Vy/nl” do+ x foo Vn-Vedz

= —4 [po IV\/W dx + X [ge n’ dz

The entropy is nonincreasing if xM < 4Cg 5, Where Cans = cgﬂs is the

best constant for p = 4 in the Gagliardo-Nirenberg-Sobolev inequality :

2—4 4
lul2o @2y < CRes [Vullra il lulloeey ¥ ue HY(R?) ¥ p e [2,00)

Numerically : xM < 4C5xq ~ 1.862... x (47) < 87

=
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A sharper approach : free energy

The free energy :

Fn] ::/ nlogndx—z/ nc dx
- 2 S

Lemma 5. Consider a non-negative C°(R™, L' (IR?)) solution n of (1) such that
n(1 + |z|?), nlogn are bounded in L° (R, L' (R?)), Vy/n € Li (RY, L?(R?))
and Ve € L (RT x R?). Then

loc

L P 1) = —/ n |V (logn) — xVel? dz = T
it o

7 IS the free energy production term Or generalized relative Fisher information.
Proof.

L %F[n(-,t)]:/mp [(1—|—logn—xc) v. (%—ch)] dz
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Hardy-Littlewood-Sobolev inequality

F[n(-,t)]:/ nlognda:—l——// n(zx,t)n(y,t) log|r — y| de dy
R2 R2 x R2

Lemma 6. [Carlen-Loss, Beckner] Let f be a non-negative function in L* (R?) such
that f log f and flog(1 + |z|*) belong to L' (R?). If [, f dx = M, then

flogfda:+—// y)log |x — y| de dy > — C(M)
R2 R2><R2

with C(M) := M (1 + logm — log M)

The above inequality is the key functional inequality

The Keller-Segel model — p.17/44



1

Consequences

(1—9)/nlogndx—|—0 [/ nlognda:+—// y) log |z — dxdy]
R2 R2 410 RZXRQ

Lemma 7. Consider a non-negative C° (R™, L1 (IR?)) solution n of (1) such that
n(1 + |x|?), nlogn are bounded in L° (R, L1 (R?)),

loc
Je 2 n(y, £) dy € L((0,T) x R?), V/n € Ll (R, L2(R?)) and
Ve e LE° (R+ x R?). If x M < 8, then the following estimates hold :

loc

87TFO+XMC(M)
8T —x M

M log M — M log|m(1 + t)] —K§/ nlogn dr <
R2

O§/OdS/RQn(x,s)}V(logn(a:,s)) — XVC(:E,S)}Qd:E

<Oy + Cy [M log (W(lj\; t>> +K]

=
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Lower bound

Because of the bound on the second moment

1
— z)?n(z,t)de <K VYt>0,
L+t e
1
/ n(x,t)logn(x,t) o lz|* n(z,t) doe — K —|—/ n(x,t)logn(x,t)dr
R2 141 Jpe R2
n(x,t) n(x,t)
= ———~log pu(x,t)de— M log|r(1 +t)]|— K
R? :u(xat) :u(xat)
with p(x,t) := ﬁ e By Jensen’s inequality,
t
/ LCILIR. ("(x’ t)) du(z,t) > X log X where X = [ &0 4y
R2 ,LL(l’,t) /L(ZC,t) R2 /L(ZIZ‘,t)
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> (R, L1(IR%)) bound of the entropy term L

loc

Lemma 8. Foranyu € LY (R?), if [, |z]|? uwdx and [5, u logu dx are bounded

from above, then u log u is uniformly bounded in L (R," | L*(R?)) and

2
/u|logu|daj§/ u(logu+]a:]2> d:c—|—210g(27r)/ u dx + —
R2 R2

R2 (&
Proof. Let @ := w1y, <1y and m = [, adz < M. Then

1
/ u (logu + §|x|2) dr = / UlogU du — mlog (27)
R2 R2

U :=a/u, du(z) = p(z)de, p(z) = (27) " te=171°/2_ Jensen’s inequality :

1 1 1
/ u logu dx > mlog (ﬁ)——/ z|* a dx > ———Mlog(27r)——/ z|* u d
R2 2T 2 R2 2 R2

e
L and conclude using
Jgo ullogu| de = [o, ulogu dr —2 [, ulogu dx
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Keller-Segel model

ll. Proof of the existence result
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Weak solutions up to critical mass

Proposition 9. If M < 87 / X, the Keller-Segel system (1) has a global weak
non-negative solution such that, for any I’ > 0,

(1+ |z|? + |logn|)n € L>=(0,T; L*(R?))

and

// n|Vlegn — xVe|* dz dt < oo
0,7

| xR2

For R > /e, R +— R?/log R is an increasing function, so that

2 log R
0 < // log [z—y|n(x,t)n(y,t) dedy < 0g2 M z|* n(z,t) do
lz—y[>R R

RQ

Since [/, j_yi<rloglz —yln(z, t)n(y,t) dedy < M? log R, we only
L need a uniform bound for |z — y| < 1
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A regularized model

Let K=(2) := K (2) with

( 1 :
Kl(z) = —=—log|z| if |z| >4
< 2T
L K'(z) =0 if [z] <1
0< VK Nz) < —— K M2) < ——log|z| and — AK(z) >0
- — 27 |7 — 2 -

Since K¢(z) = K'(z/¢), we also have

1

V 2z € R?
o lz]

0 < —-VK(z) <
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Proposition 10. For any fixed positive €, if ng € LQ(]R{Q), then for any T" > 0 there
existsn® € L?(0,T; H (R?)) N C(0,T; L*(R?)) which solves

¢ Ont

— Anf — (W EXT AE
5 n® —xV-(n°Vc°)

c® = Kf xn®

\

1. Regularize the initial data : no € L?(R?)

2. Use the Aubin-Lions compactness method with the spaces H := L?(R?),
Vi={ve HY R?) : /|z|v € L*(R?)}, L*(0,T;V), L*(0,T; H) and
{ve L*0,T;V) : (%/875 c L*(0,T;V")}

3. Fixed-point method

=
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Uniform a priori estimates

Lemma 11. Consider a solution n® of the regularized equation. If Y M < 8 then,
uniformly as € — 0, with bounds depending only upon [, (1 4 |z|*) ng dx and
Jg2 1o logng dx, we have :

(i) The function (t, ) — |z|?>n®(x,t) is bounded in L> (R;"

loc7

L' (R?)).
(i) The functions t — [, n®(z,t)logn®(z,t) dx and

t = oo n®(2,t) ¢ (x,t) dz are bounded.
(iii) The function (t, z) — n®(x,t)log(n®(z,t)) is bounded in L>°(R;" ;

V/ne(z,t) is bounded in L? (R = x R?).
°(z,t) is bounded in L*(R;" = x R?).
)

L' (R?)).
(iv) The function (t, x

(v) The function loc

n®(x,t) Act (x,t) is bounded in L (R x R?).

loc

Vneé(x,t) Ve (x,t) is bounded in L2 (R"  x R?).

loc

)
(t,x) —
(t,z) —n
(vi) The function (t, ) —
(t,x) —

(vii) The function (t, x
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Proof of (iv)
d 2
— | n®logn® dr < —4/ VVvne| dx + x/ n® - (—Ac®) dx
dt R2 R2 R2

./1@2 n® - (—Ac®) dr = ‘/RQ n® - (—A(K® *n®)) de = (1) + (II) + (III)

(I) ::/ n®-(—A(Kxn®)), (II) ::/ n®-(—A(K®xn®))—(III), (III) = Inc|?

<K e>K ne>K

Lot Lon (:) = —AKT: Lon(:) = —AKZ =6 inD’
This heuristically explains why (II) should be small

=
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Keller-Segel model

Ill. Reqularity and free energy
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Weak regularity results

Theorem 12. [Goudon2004] Letn® : (0,T) x RY — R be such that for almost all
t € (0,T), n°(t) belongs to a weakly compact set in L1 (R for almost any
t € (0,T). IfOn® = Z|a|<k 6§g§a) where, for any compact set K C R",

lim sup (Sup / / 19| dt da:) =0
|E|—0 e>0.J JExK

ECR IS measurable

then (n).~q is relatively compact in C° ([0, T]; LL . (RY).

Corollary 13. Letn® be a solution of the regularized problem with initial data

ng = min{ng, e~} such thatng (1 + |x|? + |logng|) € L1(R?). Ifn is a solution
of (1) with initial data nq, such that, for a sequence (€ )ken With limg_, o € = 0,
nt — nin L'((0,T) x R?), thenn belongs to C°(0,T; L . (R?)).

=
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LP uniform estimates

Proposition 14. Assume that M < 87 /x hold. If ng is bounded in LP (R?) for some
p > 1, then any solution n. of (1) is bounded in L° (R™, LP (R?)).

loc

1 d 2
n(z, )| de = —- V(nP'?)|? dz + x V(nP'?).nP/2.Ve da
2p— 1) di R2|( )| 5 IR{2| (n?%)) g (n?"%)
2
= —= IV (nP/?)|? d:c+x/ n? (—Ac) dz
D JRrz2 R2

2
- = |V(np/2)\2 dx—|—x/ nPT! dx

P JRr2 R2

Gagliardo-Nirenberg-Sobolev inequality with n = v2/7 :

0|20HL/P) 4 < K, / Vol? dx 0|2/P dx
R2

R2 R?

=
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1 d
2(p—1) dt

2
/ n? dx < IV (nP/?)|? dx (——+prM>
R2 R2 p

2

which proves the decay of [, n” dz if M < S72—

Otherwise, use the entropy estimate to get a bound : Let K > 1

/ npda;:/ npda;+/ npdeKp_1M+/ nP dx
R2 n<K n>K n>K

Let M(K) := [ _,ndz:
M(K)<1/ logn dz < —— | |nlogn]| d
xr n 102N xr
SlogK foox B S 10g K Jp !B

Redo the computation for [.(n — K)% dx [Jager-Luckhaus]

=
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The free energy inequality in a regular setting

Using the a priori estimates of the previous section for p = 2 + ¢, we can
prove that the free energy inequality holds.

Lemma 15. Letng be in a bounded setin L} (R?, (1 + |z|*)dx) N L*T=(R?, dx),
for some € > 0, eventually small. Then the solution n of (1) found before, with initial

data no, is in a compact set in L?(IR;"  x R?) and moreover the free energy

loc

production estimate holds :

Fln] + /Ot (/R n |V (logn) — xVe| daz) ds < Fng)

1. nis bounded in L2(R;"  x R?)

loc

2. Vn is bounded in L2(R;"  x R?)

loc

LS. Compactness in L2(R;" x R?)

loc
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Taking the limit in the Fisher information term

Up to the extraction of subsequences

// Vn|? dedt < 11m1nf// Vng|* de dt
0,7 xR2 k—o0 0,T] x R2

// |Vc|2da:dt < hmmf// Nk |V0k| dx dt
0,7] xR2 k—o0 0,T] X R2

// n? dr dt = liminf// Ing|* de dt
[0,T] x R2 k—o0 0,7 xR2

Fisher information term :

// IV (logn) — xVe|* dz dt
[0,T] xR?

:4/ IV/n|? dx dt + x* // |Vc\2d$dt—2xf/n2dwdt
[[0,T]xRR? 0,T]xR2 [[0,T] xR?

[
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Hypercontractivity

Theorem 16. Consider a solution n of (1) such that x M < 8. Then for any

p € (1, 00), there exists a continuous function h,, on (0, 00) such that for almost any
t> 0, ln(-,1)l|pocea) < hy(2).

Notice that unless ng is bounded in L?(R?), lim;_.¢, h,(t) = +oc. Such a
result is called an hypercontractivity result, since to an initial data which is
originally in L' (R?) but not in LP(R?), we associate a solution which at
almost any time ¢ > 0 is in L?(R?) with p arbitrarily large.

Proof. Fix t > 0 and p € (1,00) and consider ¢(s) := 1+ (p — 1) . Define :
M(K) = SUPse(0,t) fn>K n(-,s) dr

1
n(-,s) dr < n(-,s) logn(-,s)| dr
| ntsyde < [ ) logn.s

and
] 1/q(s)

F(s) = UR (n— K)1® (2, 5) dz
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/ ’rL—Kq B
F’Fq_lzq—2 (n—K)ilog(( )+)+/ nt(n—K)il
q° JRr2 R2
—1 —1
d 5 Vol? d:c+xq— w29 gy
q R2 q R2

/ (n—K)+_ ne de = —4
R2

. 2
with v := (n — K)i/

Logarithmic Sobolev inequality

2
/ v2log( v2 ) dr <20 |Vv|2dx—(2+log(27ra))/ v? dx
R2 fRQ v¢dx R2 R2

Gagliardo-Nirenberg-Sobolev inequality

L [oPH YD) da < KC(q) [[V0]|F 2 ey . o>/ dx V¥ q € [2,00) -
R2 2
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The free energy inequality for weak solutions

Corollary 17. Let (n”),cn be a sequence of solutions of (1) with regularized initial
datanf . Foranyty > 0,T € RT suchthat0 < to < T, (n®)ren is relatively
compact in L?((to, T) x R?), and if n is the limit of (n*)cn, then n is a solution
of (1) such that the free energy inequality holds.

Proof.

t
F[n"(-,t)] —|—/ (/ nk A% (logn*) — chk‘z d:z:) ds < Fnf (-, to)]
to R2
Passing to the limit as £ — oo, we get
t
Fn(-,t)] +/ (/ n|V (logn) — xVe|’ dx) ds < F[n(-,tg)]

to R2

Let t; — 0, and conclude ]

=
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Keller-Segel model

IV. Large time behaviour
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Self-similar variables

1 x x
n(zx,t) = 0 u (mﬂ'(t)> and c(x,t) =wv (mﬂ-(t))
with R(t) = v1+2t and 7(t) =log R(t)

(0
W Au-V-(uz+ V) zE€RE 130
1 2
{ v:——log‘-‘*u reR*, t>0
27
L u(,t=0)=ng >0 r € R?

Free energy : F¥[u| := [, ulogudr — & [ouvde+ 5 [ [2]*u dx

iFR[u(-,t)] < —/ u [Vlegu — xVou + z|* dx

L dt -
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Self-similar solutions : Free energy

Lemma 18. The functional F'** is bounded from below on the set

{u e IL(R?) : |ofu € L}(R?) /

u logu dor < oo}
RQ

if and only if x ||u|| 11 (r2) < 8.
Proof. If x ||u||,1(r2) < 87, the bound is a consequence of the
Hardy-Littlewood-Sobolev inequality

Scaling property. For a given u, let uy(z) = A 2u(A"1z) :
|ux||z1(r2)y =: M does not depend on A > 0 and

M A1
FRluy| = FRlu] —2M (1 -2 Y logh+ 2= | |2Puda
87'(' 2 R2

[
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Strong convergence

Lemma19. Letxy M < 8m. Ast — o0, (s,x) — u(x,t + s) converges in
L>(0,T; L*(IR?)) for any positive T to a stationary solution self-similar equation and

x M

2% U dz = 2M (1 - —)

lim z|* u(x, t) do = / 2
T

Proof. We use the free energy production term :

t— o0 t— o0

¢
Ffug] — liminf F®u(-,t)] = lim </ u |[Vlegu — xVu + x| dx) ds
0 \JR2

and compute [o, |z|* u(z,t) dx :

M
z|* u(x, t) de = z|* ng dz e 2 4+ 2M (1 - X—) (1 —e 2%
[]

L R2 R2 87
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Stationary solutions

Notice that under the constraint ||u| .1 (r2) =M, u is a critical point of
the free energy.

Lemma 20. Letu € LY (R?, (1 + |x|?) dz) with M := [, u dx, such that
o2 w log u da: < 00, and define v(z) := — 5= [, log |z — y| u(y) dy. Then there
exists a positive constant C' such that, for any x € R? with |x| > 1,

M
v(z) + 5 loglz| | < C

Lemma 21. [Naito-Suzuki] Assume that V' is a non-negative non-trivial radial function
onR? such thatlimy | |2|* V (z) < oo for some ac > 0. If w is a solution of

Au+V(z)e =0 z € R?

L such thatu € L°°(R?), then u is radially symmetric decreasing w.r.t. the origin
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Because of the asymptotic logarithmic behavior of v, the result of
Gidas, Ni and Nirenberg does not directly apply. The boundedness from
above is essential, otherwise non-radial solutions can be found, even
with no singularity. Consider for instance the perturbation

6(z) = 50 («3 — x3) for any z = (z1, z2), for some fixed 6 € (0, 1), and
define the potential ¢(z) = : |=|*> — d(x). By a fixed-point method we can
find a solution of

1 eXxw—o(z)

w(x) = o log| |+ M ng =) d

since, as |z| — oo, ¢(x) ~ 3 [(1 — 0)z] + (1 + 0)z3] — +oo. This solution
is such that w(z) ~ —2% log |z|. Hence v(x) := w(x) + §(x)/x is a
non-radial solution of the self-similar equation, which behaves like

Lé(x)/x as |z| — oo with |z1| # |z2].
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Lemma 22. /fy M > 8, the rescaled equation has no stationary solution (U, Voo )
such that ||ueo|| L1 (r2) = M and [, |2]? teo dx < 00. If x M < 8, the
self-similar equation has at least one radial stationary solution. This solution is C'°° and
Use is dominated as |z| — oo by e=(1=9)121°/2 for any e € (0, 1).

Non-existence for y M > 87 :

_d
dt Jpe

x M

0 2% Uoo dx = 4M (1——) —2/ 2] Uoo d
8 -

s
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Intermediate asymptotics

Lemma 23.
lim F2u(-, - +1t)] = F®us]

t— o0

Proof. We know that u(-, - + t) converges to u, in L?((0,1) x R?) and that
Jgo u(e, - +t)v(-, - +t) de converges to [, us v dz. Concerning the
entropy, it is sufficient to prove that u(-,- +t) logu(-,- + t) weakly
converges in L1((0,1) x R?) to us log us,. Concentration is prohibited by
the convergence in L?((0, 1) x R?). Vanishing or dichotomy cannot occur
either : Take indeed R > 0, large, and compute

f|x|>Ru |log u| = (I) + (II), with m := f|a:|>R, w1 U dzand

1
(I) = / u logu dx < —/ u|? dz
|>R, u>1 2 Jiz|>R, u>1

1 m

(1) = _/ u logu dr < —/ z|* w dz — mlog (—)
L |lz| >R, u<l 2 |lz| >R, u<l 27
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Conclusion

The result we have shown above is actually slightly better : all terms
converge to the corresponding values for the limiting stationary solution

FEu] — FRlug] :/ u log (i) das—% Vv — Ve | do
R2

uoo RQ

Csiszar-Kullback inequality : for any nonnegative functions f, g € L'(IR?)
such that [, f dz = [, g de = M,

1 J
f—all3:ipe < — flog(—) dx
H ||L (R2) 4 M R q

Corollary 24.

lim Hu(, -+ t) — uooHLl(R2) =0 and lim HV’U(, -+ t) — VUOOHL2(R2) =0

t— o0 t— o0

=
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Outline of the talk

N o O s WD =

Kinetic BGK Model: Formulation
Motivations and references
Main results and assumptions

Existence and uniqueness
Drift diffusion limit
Convergence to equilibrium

Examples

Q
Q
Q

Porous medium flow
Fast diffusion

Fermi-Dirac statistics

@ Bose-Einstein statistics
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BGK models

@ BGK model of gas dynamics

L p(ib‘,t) —|U—U(Qf,t)‘2
atf T - vxf _ (27_‘_T)n/2 €xp ( QT(Q?,t) ) T f )

where p(z,t) (position density), u(zx,t) (local mean
velocity) and T'(z, t) (temperature) are chosen such that
they equal the corresponding quantities associated to f.

[Perthame,Pulvirenti]: Weighted L°° bounds and uniqueness for the Boltzmann BGK
model, 1993

@ Linear BGK model in semiconductor physics
Vv, = P& L)
Of +v-Vaf = ViV Vol = 5505 exp( 2|v|) f.
where p(x,t) equals the position density of f.

[Poupaud]: Mathematical theory of kinetic equations for transport modelling in

semiconductors, 1994
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BGK-type kinetic equation

SO +ev - Vafs —eV,V(x) - Voft = Gy — f°,
flavt=0 = fi(z,v), =zveR’,
o)

with the Gibbs equilibrium G :=~ (7 + V(x) — Mpf(x,t)) .

The Fermi energy 1, (z,t) is implicitly defined by
[ (5 +v@ = ity ) do = [ f,0.00 = oyl
R3 R3

fe(z,v,t) ... phase space particle density
V(x) ... potential
¢ ... mean free path.
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Motivations, |

@ Local Gibbs states in stellar dynamics (polytropic
distribution functions) and semiconductor theory
(Fermi-Dirac distributions).

Collisions : short time scale

@ Monotone energy profiles are natural for the study of
stability: monotonicity < convex Lyapunov functional,
Global Gibbs states

@ (Goal: derive the nonlinear diffusion limit consistently
with the Gibbs state: a relaxation-time kernel
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Motivations, li

@ Gibbs states <« generalized entropies

@ nonlinear diffusion equations are difficult to justify
directly

@ global Gibbs states have the same macroscopic density
at the kinetic / diffusion levels

@ they have the ‘same’ Lyapunov functionals
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Main result

Theorem 1. For any € > 0, the equation has a unique weak solution
€€ C(0,00; L' N LP(RY)) forallp < 0o. Ase — 0, f€ weakly
converges to a local Gibbs state f 0 given by

1 _
Oz, 0,t) =7 (5 v]? — u(p(fﬂ,t))>
where p is a solution of the nonlinear diffusion equation
Orp = V- (Vav(p) +p Ve V()

with initial data p(z,0) = pr(z) == [ps f1(z,v)

V(o) = /0 " l(s) ds
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Assumptions on the energy profile

@ (E) € CYH((E1, Es),RT) where —oco < Ey < Ey < oo.
@~ monotonically decreasing and limg_.g, v(E) = 0.

N

.

|
< ) — - i I
E =-c \/ £ E =0 E, \ £ E=w E E E

>
|

(a) Asymptotically exponen- (b) Asymptotically expo- (c) By < 0.

tial lower bound. nential upper bound..
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Initial condition

@ f(z,0,t=0)= fr(z,0)

@ The total mass M := [ f1(z,v) dv dx is preserved by
the evolution.

Q@ Ju*s.t 0L frlx,v) < ff(x,v) =7 (@ + Vi(x) — ,u*)

@ Maximal macroscopic density

1
p:= lim (—02—9)(1@.
pi= dm f 7 51|

Observe p = > if £ = —oo0.
@ If p < oo we require p* () := [ f*dv < pVz € R.
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Fermi energy

The Fermi-energy u,.(x,t) ensures local mass
conservation,

,02
[ora=[ 2%+ v@-mwt  Jdo=plo)
R3 R3 2 S ~ <

=:—n(ps(x,t)) (quasi Fermi level’)

@ Compute i in terms of ~ N
0 =472 [ 2= 0Edp
= i(p) : (0,p) — (—FE92, —FE1), Increasing.
@ Differentiation leads to an Abelian equation = ~ In

terms of j: , i 1
1 = (nm)(e
(B) d (m=)6) .,
V22r2dE? | o V/—E —0
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Assumptions on the potential

@ Boundedness from below
V(I’) 2 Vmin — 07

@ Regularity
Ve bR
@ Potential is confining in the sense that

//Rfs <1+_+V( )> <|2]2|2+V( ) — *>Jdvd:17<oo.

N
V
:f*
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Existence and uniqueness

Proposition 1. Let 1 < p < oo, then the problem has a unique solution
inV = {f cC(0,00; (L' N LP)(RY)) : 0 < f < f*,Vt >0 ae.}.
The proof uses a fixpoint argument on the map f — g,

where ¢ satisfies
(V) 2 .
Y (% — M(pf)> -9,

f[(.ilj‘,?}) )

where p¢(z,t) = flx,v,t) dv .
R3

528tg +ev-Vgeg—eV,V-Vyug

g(t=0,z,0v)

f< = fely,,pe Ly, andif f* has compact support

in R>, this will also be true for f (porous medium case).
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Formal asymptotics

20 f +ev-Vuf — eV V() Vof = Qlf]

Expand f=>"2 f'c", p' = [os [P dv, Gy = 2, G'". Then
GY = y([o|*/2 = (")) = v(Jv[?/2+V — ).
O(1): GY = 9.
Oe):v-Vofl =V, V -V, f0 =Gt - f!
= fl=v- Vo0 (50* + V() — p0(x,1)) + G
= Jpsvftdv=—p"Vu°
O(E?) : 0t f + v - Vo fl =V, V-V, fl =G* — f?
= O’ =V (Vi) = Av(p?) + V- (p°V,V)

where p(z,t) = [ps fO(z,v,t)dv, po(:ztﬂ 0) = Jps f1(z,v)dv.

The nonlinearity v is given by v(p) := / o (p) dp
0
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Free energy

@ Define the free energy (convex functional)

://RG _(|02|2+V( ))f—/ofv_l(f)df_ dv dz.

Q Production of free energy

F(f7) = / / WEr) — ) (Epe — (v")(f7)) dvda <0,
2
with Ef = % -+ V( ) pse (ZC,t) : Gfa — ’y(Efa)

@ Free energy is finite, V¢ € Ry:

00 < F(f*) < F(Gpo(o ) € F((ornnt)) < F(f1) < 00

as F(f>) ffRGW( +V —pu )(,uoo—%)<ooby
assumptions on the potential.
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Perturbations of moments

@ Perturbations of 1st and 2nd moments
£ fg R Gf8

€_G .
G = v dv and &° ::/ v@vf .
R3 E

R3 E
@ = VU open and bounded 3 uniform bounds,

177 22,y < My and 5722, ) < M

@ Proof uses production of free energy

_ ///{Gf€>0} (G — £) (=7~ (f*)da do di+

+ ///{ (Ef: — Ea+ Ep — Yy Hf) [ de dv dt.

G e=0 ~ ' Vv
re=0} 5 >0
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ond moments of local Gibbs states

Q Let

o) = [ 2 (GlP - al) do.

=v'(p) = pi(p).
@ On [0, p™a := 1 (u*)] for some C > 0:
either /(p) >C or 1/V(p)>C .

@ If By < oo ("porous medium case"): lim,_,g v/(p) = 0.
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Strong convergence of p, |

Proposition 2. p° — p" in LY strongly for allp € (1, 00).

loc

The proof uses compensated compactness theory applying
the Div-Curl-Lemma to

Ue:=(p°,5°), V°:=(v(p),0,0,0).

Rewrite the equations for the mass and momentum
densities (using (curlw);; := w}, — wz,)

din,ng — atpg + V., °j€ = 0,
(curly 2 V)12..4 =Vv(p™) = \—f —p°V,V —eVy, - k5 — 52(915]"3

precompactin  H_ '

x,t

as j°, k® and p° € L2'e

x,t
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Strong convergence of p, li

The Div-Curl-Lemma yields

pU=pT.

where

et ... YOUNg measure associated with p7 = 5
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Strong convergence of p, lll

The mean value theorem yields

v(p) = v(p) +v'(p)(p — D)

for some p € (0, p™#). Conclude

0=pr—pV =
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Weak formulation of the pde |

Lemma . Let f5 — U, then f¥ = G o ae. .
Lemma 2. Let j5 — Y in Dy 4, then 70 = —V.v(p?) — "V, V.
Proof. Multiply the kinetic equation by 1,

E_Ga
O fS+v-Vift =V, V-V, f° = —f - /
lin D'(R"
v-Vefl =V, V-V, f0 =
=0v-V;Gp —V,V-V,Gpo = —1°

Using uniform boundedness of x* we prove

Dy
G5 — vr¥do = — (pOVxV -+ ny(po)) .
R3
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Weak formulation of the pde |l

Proposition 3. p := fR3 £V dv satisfies a weak formulation of the
formal macroscopic limit.

Integrate the kinetic equation w.r. to v,

€_G€
vf f dv =
R3 e

8tp5+Vx- 8tp€—|—vx°j620.

In the limit as =« — 0 we obtain
Op’ = Av(p’) +Vu- (p°ViV),

Pl t=0) = fr(z,v)dv.
R3

0
with (p) = /0 i (5) dp
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Convergence to equilibrium, |

If > < oo we additionally require that V' is uniformly convex.

We consider the evolution in time of solutions of the
problem with e =1

Of +v-Vaf —VeV(2) Vof =G — f |

Proposition 4. For every sequence t,, — 0O, there exists a
subsequence (again denoted by t,,) such that

2
fn(t,l’,’lj) L= f(tn+t,:13,v) — foo — GOO =y <|02| + V( ) Iuoo)

where ,u is the unique constant Fermi energy which satisfies
Jgs b 1 (p>® =V (z))de =M = Jge f1dvdz.
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Velocity averaging

@ Let¢ € Dy, then (of) € L7, and

Or(of™) +v-Va(of™) =
= ¢G" + " (O +v - Vo — ¢ — ViV - Vyop) +
+ Vo (0f"V,V) = g" € L2, (H;Y) .

@ Golse, Perthame, Sentis '85:

PR = / ™ dv
<R

@ As (f"), is weakly precompact in L (U x R?):

L :(U)

. A0
/IOR

1p>° = lim p% = lim p" In Li,t(U).

R—o00 n—0o0
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Convergence to equilibrium, Il

By boundedness of the free energy from below and
integrating the production of free energy we obtain

o< [ [[ oE) - N -y ) dvdrdr < oo

Hence

0= tim [ [] (B = g =7 ) do e
Finally implying > = G*°. Boundedness in L' and L* on
RY x [0,T) and choosing particular test-functions in the

weak formulation of the problem yields
° v|?

f"=G*=n (‘% - u(poo(%t))> = (7 + V(@) - MOO) -
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Ex. 1, fast diffusion case

o Maxwellian is a negative power of the
energy, v(F) := E’“ D >0andk >5/2.

vvvvvvvvvvvvvvvvvvvv

5/2
- = Oy =V - <@(/~C)V(,0’lz 3/2 ) + pVV)
Observe 0 < z:gg <land v (p) =0%=2p [ RGNS
@ Sufficient confinement of the potential
3

V(z) > Clz|?, ae.for |z/>R with ¢>

_ 2
2
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Ex. 2, borderline case

Maxwell distribution v(F) = exp(—F)
@ l|eads to the linear kinetic BGK model
(simplified version).

@ = Linear drift-diffusion equation
Op =V - (Vp+pVV).

@ v(p) = p and the diffusivity v/(p) = 1.
@ Growth of the potential

V(x) > qlog(|x|), a.e.for |z|>R with g¢> 3.
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Ex. 3, porous medium case

Cut-off power as Gibbs state:
% — ]
YE)=(E2—E), k>0 ]

@ = Porous medium equation

Sp— - (@(kw(pﬁ?ﬁ) ' pvv)

k+5/2
k+3/2

5 1y O2k+5 g 0
1 < < g and v (p) = O53p"7 — 0.

@ Potential (* is the upper bound for the Fermi enery)
1

« 3
(Eo+u —V(ZE)) =0 (m ) a.e., q > YD as |z| — oo

Nonlinear diffusions as limits of BGK-type kinetic equations
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EX. 4, Fermi-Dirac statistics

For the Fermi-Dirac distribution

1
exp(F) + «

V(E) =

we obtain  9;p =V - (D(p)Vp+ pVV).

D(p) = vV'(p) = . ——
(27)3/2 L11/2((L13/12)((27T)552))
— 1+\/§ P L0, as p—0.

4 (27‘()3/2

with the polylogarithmic function Li, (z) := 332, 4.
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EX. 5, Bose-Einstein statistics

For the Bose-Einstein distribution

1
NE) = exp(F) — «
the diffusivity is given by
+ 0
D(p) = V'(p)= . — 4
(277)3/2 L11/2((L13/12)((2—;)8p/2))
\/§ ap 2
= 1- 1 2n) +O0(p”), as p—0.
The maximal density p is given by p = (2”)3;2“%) . (Riemann

Zeta function ¢(s) := Lis(1) = > 7 | ).
Observe: lim, ,;1/'(p) = 0 and lim,_o ' (p) =1
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Extension

@ An extended model with local energy conservation:

1
= (st (Gl + V@) 4yt ) = 1

where the parameter functions p¢(z,t) and a(x,t) are

adjusted to the position density and to the energy
density of f.

@ The diffusion limit of this equation is an energy
transport model, see [Degond, Génieys, Jungel, 1997].
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