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We deal with the long time asymptotics of the Vlasov-Poisson-Roltzmann system. We
present some tesults on the stationary states with fixed mass and temperature, and prove the
convergence of the solntions of the evolution problem towards such states. Then, using the
conservation laws, we are able to prove the existence and the uniqueness of the asymptotic
state, and to identify its parameters in terms of the conserved quantities of the evolution

problem.
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1. Introduction

The purpose of this paper is to present some results on the Vlasov-Poisson-
Boltzmann system, and especially on its long time asymptotic states. We will
establish that these states are stationary and we will identify their parameters as
functions of the macroscopic conserved quantities of the problem of evolution.

Most of the results which are presented here were obtained in a common work
with L. Desvillettes (see [De,Do]).

The Vlasov-Poisson-Boltzmann system is used to describe plasma. We will
consider the case of only one species of particles (the jellium approximation), evolv-
ing in a bounded domain . Since we are not interested in relativistic phenomena,
we assume that the velocities belong to IR3.



We will also neglect the magnetic effects, and consider only the electrostatic
field. We assume that it derives from a potential obeying to Poisson’s law. The
density f satisfies the Vlasov’s equation, with a Boltzmann collision term Q(f, f).
The Vlasov-Poisson-Boltzmann system (V PB) is therefore

%tfiw‘v,f—vm«vuf:Q(f,f)

-Ab=ptr) = [ Stz 0
RS
fort >0, z € Q, v € R The Boltzmann collision term Q(f, f) has the usual form
arn=[ [  Bo-wo) L= 1) dvds
R3xSN-1

f:f(t,a:,v) f*:f(tyzvv*) f’:f(ty'tyv,) f::f(t:xvv:)
vV=v—-(v-v)ww
vi=v.+(v—v)ww
where v, belongs to IR3 and w denotes a unit vector of IR3 : w € S?. B(w,w) is the
cross section. For instance, in the case of the hard spheres, B(w,w) = |w - w}.
In the following, we shall assume that the cross section satisfies the conditions
(HO) B(w,w) = b(jw], |(w,w)])
(H1) Be€ LI°ZC(52 x IR3)
(H2) B>0ae.
(H3) fwes= B(v—v,w)dw < K(1+ [v|* + |[01]%)
Conditions on the boundary :

ft,z,v) = f(t,z, Rv)

Rv = v - 2(v-n(z)) n(z)

for all t in R*, (z,v) € 8Q x IR3 such that v -n(z) < 0, n(z) beeing the outward
normal to 9Q at point z. We assume Dirichlet conditions for ¢. To simplify, we
take ¢ constant on the boundary (condition of perfect conductor), and since ¢ is
defined up to an additive constant, we assume

¢ = 0on 0Q

Initial conditions :

f(t=0,z,v) = fo(z,v),
¢(t =0,z) = ¢o(z),

satisfying the compatibility assumption :

—Adg = /Ra foz,v) dv



2. Stationary solutions with fixed mass and temperature

In this part, we recall a result of Gogny and Lions (see [G,L]) which gives
some motivations to our study. The stationary solutions (f, ¢) are such that f is a
maxwellian function

v—

1) = G - Pl) -7

x

and ¢ satisfies a semilinear elliptic equation
—-A¢=p

Here, the temperature T is a strictly positive constant and the mean velocity u(z)

is of the form
uz)=wAz

where w is a constant vector of JR3. The specular reflection condition ensures that
n(z) u(z)=0 Vzeo

Then, if

(h) 2 is not a surface of revolution

we get w = 0. We will also assume that  is bounded and regular (of class C?). If
the mass and the temperature are fixed, (VPB) is reduced to

Vp____V¢
—Ap=p

with the mass normalization

M= /np(a:) dz

Finally
-
=M.  ———
p(z) e td
and ¢ is solution in H}(Q of
PPPRYRL AL
- Jae foe ¥ dz

Proposition 1. The above equation has a unique solution in H}(Q). This solution
belongs to C*(£2).



Proof. The proof relies on classical minimization arguments for the following
functional (the parameters M and T are unessential)

J(¢) = %/n]ws;? dz + log (/ne""+ d:c)

3. Properties of the Vlasov-Poisson-Boltzmann system

3.1 A priori estimates

Using the changes of variables
(v,va) = (vs,0),  (v,0) (Ul’vi)v (v,0:) = (¢, 1),

we easily get that for all regular function ¥(v)

/U ww
= /// B(v —ve,w)(f f. = f£.) - ¥(v) dvdv,dw
R3xIR3xSN-1 :
== [ [ B L= £ (=¥ - ) dududa
¥(v) = 1 and ¥(v) = |v|? are collision invariants (i.e. ¥ + . = v+ w:), and it is

easy to prove (at least formally)
e the conservation of mass

)
Et—//ﬂxﬂi’ f(t,z,v) dzdv =0

// f(t,z,v) dedv = M,
OxR3

e the conservation of energy

%ULXW ft,z,v) - Jo]? dxdu+fn|v¢(t,z)l2 dz) 0

// f(t, z,v) - |v]? dzdv +/ [Vé(t,z)|? dz = Eo
axR3 a

One can also establish an H-theorem, using ¥(v) = log f(., ., v)

gt_// (flng—-f)(t,z,y) dzdv
A

=“///mxasxs~ Bo—vw)(f L~ 11 log(ff‘)dvdv.deO



Remark 2. (flog f)(.,z,v) belongs to L!(€ x IR?) as soon as the mass and the
energy are conserved and (fo log fo)(z,v) belongs to L}(2 x IR®). Indeed, following
an argument of DiPerna and Lions (see [DP,L 1-2] or [Ge]),

o< [ [ (f1ogf)ta, )l dado
S/Lxﬂa(flogf)(t,x,v) dzdv
+ Const + 2/ /ﬂxns f(t.z,v) - (1 + |v]?) dzdv

S/ans(folog fo)(z,v) dzdv

+ Const + 2// folz,v) - (1 + |v|?) dzdv
’ OQxR3
and, as a consequence

/0+°° dt/ / / /nxnsxxvst-lB (v —ve,@)(f fo ~ ££)

'log(?;‘) dzdvdv.dw < +00

3.2 Some results on related problems

Before going further, let us give a (non extensive) list of results concerning

problems related to the Vlasov-Poisson-Boltzmann system :

e on the Vlasov-Poisson system : ‘

- existence of weak solutions in R? (see [DP,L 3-4])

- existence of strong solutions in IR? (see [Pf], [Ho],[L,P])

- existence of stationary solutions in a bounded domain (see [Po})

e on the spatially inhomogeneous Boltzmann equation :

- existence of renormalized solutions inIR3 (see [DP,L 1-2], [Ge])

- existence of renormalized solutions in a bounded domain (see [Ha))

- large time asymptotics (see [A], [De])

e on the Vlasov-Poisson-Boltzmann system :

- existence of stationary solutions in a bounded domain (see [G,L])

- existence of stationary solutions in IR, with a confining potential (see [Dr],
[Do])



4. Long time asymptotics of the Vlasov-Poisson-Boltzmann system

The first result concerns the convergence of a solution of (V PB) towards a
long time asymptotic state. Since up to now no existence result is known, we will
assume to simplify quite strong conditions, whose essential features are to autho-
rize the use of Ascoli’s theorem (if we had to deal with solutions as weak as the
renormalized solutions of DiPerna and Lions, we could still adapt the proof, using
averaging lemmas and weak-L! compactness properties). Let us assume that (f, ¢)
is a solution of (V PB) such that

(i) f is nonnegative, bounded and uniformly continuous onR* x Q x R® and

p(t,z) = [gs f(t,2,v) dv belongs to L=([0,7] x Q)

(ii) ¢ belongs to C?(IRt x Q) and its derivatives up to second order are bounded
and uniformly continuous
(iii) fo#0, Eo = [ [qxgs fo(z,v) - |v]? dzdv + [ |Vo(z)[? dz < +00

and | o, gs [fo(z,v)log fo(z,v)| drdv < +oo
Let (t,)nemv be a sequence of real numbers going to infinity, and T be a strictly
positive real number.

We define f*(t,z,v) = f(t +1t,,2,v) and ¢"(t,z,v) = ¢(t + t,, 2, v).

Theorem 3. There ezist a subsequence (tn, )reav, @ function ¢(z) in C*($2) and two
strictly positive constant numbers p and 0 such that (f**)ren converges uniformly
on every compact set of [0,T] x 2 x R3 to

_ P P(z) o?
9(2,v) = Grgyerz X _( 5 '2?)

and (¢™)remv converges in C%([0,T] x Q) to (z). Moreover, ¢ satisfies the fol-
lowing equation:

—Ap = pe-¥E)8

Proof. First, we can notice that the solutions of (V PB) satisfying assumptions
(1)-(ii1) satisfy also the a priori estimates. Ascoli’s theorem ensures the existence
of a subsequence (%, )renv, a function g(t,z,v) and a function ¥(t,z) such that
(f™)ken converges to g and (¢™* )rev converges to ¥. Using (H3), one can prove
that (Q(f™*, f**))rem converges to Q(g,g) in the sense of distributions. As a
consequence of remark 2,

//// B (g'g: - 99.) -log(g-lq-:-) dzdvdv,dw = 0
OxXIR3IX A3 SN=1 99x

g is therefore a maxwellian solution of the Vlasov-Poisson system, and according to
[De], g and ¢ are like stated in theorem 3 (they do not depend on ¢ any more). O



As quoted before, if the mass and the temperature are given, then p is fixed and
the equation for ¥ has a unique solution. But the asymptotic temperature is not
known. In the following, we will prove that it is natural to identify the asymptotic
states in terms of the initial mass and energy.

5. Conservation of the macroscopic quantities and consequences for the
asymptotic states

The total mass is conserved in the large time limit :

// g9(z,v) dzdv = M,
OxR3

but we have only an inequality for the energy :
B == // 9(z,v) - [v}? dzdv +/ [Vi(z)|? dz < Eo
QOxR3 [}

To get the conservation of energy, we can for instance assume that there exists an
€ > 0 such that

(H4) supie p+ ffana f - vPP*edvde + SUP:¢ R+ fn [Vé[**edz < +o0
This assumption is not natural at all, and has no other justification than the fol-
lowing fact : under this condition, we get

EOQZEQ

Then, making the change of unknown function 8U = 9, we get

Mozp/e‘uda:
fy]

B = // 9(2,) - [o]? dedv + 92/ [VUP do
axR® a
= §o-p/ eV dz+02/ |VU|? dz
2 Q Q
and U is solution of
3 - AU v

X =M (z€Q) (%)
) T4
(1 + 1+ xnv,,vug,(m) Joe U dz

Proposition 4. The above equation has a unique solution in H}(Q). This solution
belongs to C°(Q).



Under the previous assumptions,

Corollary 5. For all Eg > 0, for all My > 0, there exist a unique function U
solution of (*), a unique temperature 6 given by

8= §Mo X
NN

such that, when 1 — 400,

Tt z,v) = fit+7,2,v) = g(z,v) = M exp — (U(x) + ﬁ)
o T T (270)3 [ye U dz 20

uniformly on every compact sei of [0,T] x Q x IR3, and
¢ (t,z) =¢(t + 1,2) — U ()
in C*([0,T] x Q).

Proof. Like in section 2, let us introduce on H}(£2) the C! convex functional

J(U) — j(”V,;U”Ln(n)) + 10g (L e‘U+ dz)

where
it)=

[ =2 §2]

(\/1+xt2 —log(1+ \/1+xt2)> Vte RY

According to the

Lemma 6. For all U in H}(), we have
(i) log (fn eV dx) > log || — CI?)I [IVUl|z3(n), where C(Q) is Poincaré’s con-

stant.
(11) log (fﬂ C_U dI) 2 —-210g(“VU”L2(Q)> when “VU”LZ(Q) — 400,

U is a solution of (*) if and only if U is a minimizer for J. This minimizer exists
and is unique. The proof of part (i) of lemma 6 is a straightforwrd consequence
of Jensen’s inequality and Poincaré’s inequality. The part (ii) relies on Hardy’s
inequality. 0
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