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1. Introduction 

The purpose of this paper is to present some results on the Vlasov-Poisson­
Boltzmann system, and especially on its long time asymptotic states. We will 
establish that these states are stationary and we will identify their parameters as 
functions of the macroscopic conserved quantities of the problem of evolution. 

Most of the results which are presented here were obtained in a common work 
with L. Desvillettes (see [De,Do]). 

The Vlasov-Poisson-Boltzmann system is used to describe plasma. We will 
consider the case of only one species of particles (the jellium approximation), evolv­
ing in a bounded domain 0. Since we are not interested in relativistic phenomena, 
we assume that the velocities belong to JR3 . 



We will also neglect the magnetic effects, and consider only the electrostatic 
field. We assume that it derives from a potential obeying to Poisson's law. The 
density f satisfies the Vlasov's equation, with a Boltzmann collision term Q(!, f) . 
The Vlasov-Poisson-Boltzmann system (V P B) is therefore 

{

of &i" + V • 'V,,:f- 'V.,¢ · 'Vvf = Q(f,f) 

- tl..,¢ = p(t,x) = JEP f(t,x,v)dv 

fort ~ 0, X E n, v E JR3
. The Boltzmann collision term Q(!, f) has the usual form 

Q(f,f) = j f B(v- v.,w)(/J~- //.) dv.dw 
J/lf.3xSN-I 

f=f(t,x , v) f.= f(t, x, v.) !' = f(t , x,v') 

v'=v-(v-v.).ww 

v~ = v. + ( v - v.) .w w 

where v. belongs to JR3 and w denotes a unit vector of JR3 : w E 5 2 . B ( w, w) is the 
cross section. For instance, in the case of the hard spheres, B( w, w) = lw · wl. 

In the following, we shall assume that the cross section satisfies the conditions 
(HO) B(w,w) = b(lwl, i(w,w)l) . 
(Hl) BE Lioc(S2 x JR3) 
(H2) B > 0 a .e. 
(H3) Les~ B(v- v1,w) dw :S K(l + lvla + lvtla) 

Conditions on the boundary : 

f(t,x,v) = f(t,x,Rv) 

Rv = v- 2(v · n(x)) n(x) 

for all t in JR+, (x, v) E on X JR3 such that v · n(x) :5 0, n(x) beeing the outward 
normal to an at point X. We assume Dirichlet conditions for ¢. To simplify, we 
take 4> constant on the boundary (condition of perfect conductor), and since 4> is 
defined up to an additive constant, we assume 

Initial conditions : 

4> = 0 on an 

f(t = O;x, v) = fo(x, v), 

¢(t = O,x) = 4>o(x), 

satisfying the compatibility assumption : 

-t14>o = f fo(x, v) dv 
}liP 



2. Stationary solutions with fixed mass and temperature 

In this part, we recall a result of Gogny and Lions (see [G,L]) which gives 
some motivations to our study. The stationary solutions (!, ¢) are such that f is a 
maxwellian function 

1 _ !v-•+"')!0 

f(x , v) = (21rT)3/ 2 · p(x) · e , 

and ¢ satisfies a semilinear elliptic equation 

-6.¢=p 

Here, the temperature Tis a strictly positive constant and the mean velocity u(x) 
is of the form 

u(x) = w 1\ x 

where w is a constant vector of JR3 . The specular reflection condition ensures that 

n(x) . u(x) = 0 v X E en 

Then, if 
(h) n is not a surface of revolution 
we get w = 0. We will also assume that n is bounded and regular (of class C 2 ) . If 
the mass and the temperature are fixed, (VPB) is reduced to 

{ 

'iJp =- 'iJ¢ 
p T 
-6.¢=p 

with the mass normalization 

M = lp(x) dx 

Finally 
e-f 

p(x)=M · • J0 e-'1' dx 

and¢ is solution in HJ(rl of 

Proposition 1. The above equation has a unique solution in HJ(rl). This solution 
belongs to C 00 (11). 



Proof. The proof relies on classical minimization arguments for the following 
functional (the parameters M and Tare unessential) 

3. Properties of the Vlasov-Poisson-Boltzmann system 

3.1 A priori estimates 

Using the changes of variables 

(v, v.) .,_. (v., v), (v, v.) .,_. (v', v:), (v, v.) .,_. (v', v:), 

we easily get that for all regular function 1/;( v) 

f Q(f, f)· 1/;(v) dv J,p 
= J J f B(v- v.,w)(/ f~- f f.)· 1/;(v) dvdv.dw 

ln•xR.•xsN-1 

0 

1!!1 I I 1 1 =--
4 

B(v-v.,w)(f f.-ff.)·(t/J+t/J.-1/J -1/J.)dvdv.dw 
R.3 xR.3 xSN-t 

1/;(v) = 1 and 1/l(v) = lvl2 are collision invariants (i.e. 1/J + 1/J. = 1/;' + 1/;:), and it is 
easy to prove (at least formally) 

• the conservation of mass 

~ J f f(t,x,v) dxdv = 0 
vt lnxB• 

J f f(t,x,v)dxdv=Mo 
lnxR• 

• the conservation of energy 

! (/ kx~P f(t, x, v) ·lvl2 
dxdv + fo l'vt/J(t, xW dx) = o 

J f f(t, x, v) ·lvf dxdv + f IY't/J(t, xW dx =Eo 
lnx~P ln 

One can also establish an H-theorem, using 1/;(v) =log/(.,., v) 

~! f (flogf-f)(t,x,v)dxdv 
Vt lnxEP 

= -~ J J J. B(v- v.,w)(/ f~- !f.) ·log(!/'{;) dvdv.dw ~ 0 
4 B 3 xB3 xsN- 1 J• 



Remark 2. (Jlogf)(. ,x , v) belongs to L1 (Q x JR3
) as soon as the mass and the 

energy are conserved and (!0 logf0 )(x,v) belongs to L 1 (Q x JR3 ). Indeed, following 
an argument of DiPerna and Lions (see [DP,L 1-2) or [Ge)), 

o~J f l(flogf)(t,x,v)ldxdv 
lnxJIP 

~~ f (flogf)(t,x,v) dxdv 
lnx:EP 

+Canst+ 2j { f(t, x, v) · (1 + lvl 2
) dxdv 

lnxfl3 

~~ f (fologfo)(x ,v) dxdv 
lnxn• 

+Canst+ 2 J 1 fo(x, v) · (1 + lvl2
) dxdv 

· nxn• 

and, as a consequence 

r= dt j J j f B(v- v. ,w)(/ f~- !f.) lo lnxfl'xllPxsN-l 

(/!') ·log f 
1
: dxdvdv.dw < +oo 

3.2 Some results on related problems 

Before going further, let us give a (non extensive) list of results concerning 
problems related to the Vlasov-Poisson-Boltzmann system: 

• on the Vlasov-Poisson system : 
- existence of weak solutions in JR3 (see [DP,L 3-4]) 

- existence of strong solutions in JR3 (see [Pf], [Ho),[L,P)) 
- existence of stationary solutions in a bounded domain (see [Po)) 
• on the spatially inhomogeneous Boltzmann equation : 
- existence of renormalized solutions in/R3 (see [DP,L 1-2), [Ge]) 
- existence of renormalized solutions in a bounded domain (see [Ha)) 
- large time asymptotics (see [A), [De]) 
• on the Vlasov-Poisson-Boltzmann system: 
- existence of stationary solutions in a bounded domain (see [G,L)) 
- existence of stationary solutions in JR:3, with a confining potential (see (Dr}, 

[Do)) 



4. Long time asymptotics of the Vlasov-Poisson-Boltzmann system 

The first result concerns the convergence of a solution of (V P B) towards a 
long time asymptotic state. Since up to now no existence result is known, we will 
assume to simplify quite strong conditions, whose essential features are to autho­
rize the use of Ascoli's theorem (if we had to deal with solutions as weak as the 
renormalized solutions of DiPerna and Lions, we could still adapt the proof, using 
averaging lemmas and weak-£1 compactness properties). Let us assume that(!,¢) 
is a solution of (V P B) such that 
(i) f is nonnegative, bounded and uniformly continuous onJR+ x n x JR3 and 

p(t,x) = JR.3 f(t,x,v) dv belongs to U"'([O,I1 X n) 
(ii) ¢ belongs to C 2 (JR+ x IT) and its derivatives up to second order are bounded 

and uniformly continuous 

(iii) /o t 0, Eo= f fnxR.• /o(x, v) ·lvl2 dxdv + fn l\7¢o(x)l2 dx < +oo 
and J fnxR•lfo(x,v)logfo(x,v)! dxdv < +oo 

Let (tn)nEN be a sequence of real numbers going to infinity, and T be a strictly 
positive real number. 
We define r(t, x, v) = f(t + tn, x, v) and ¢"(t, x, v) = <P(t + tn, x, v). 

Theorem 3. There exist a subsequence (tn. hEN, a function tf;(x) in C2(0) and two 

strictly positive constant numbers p and(} such that (!"• hElv converges uniformly 

on every compact set of (0, 11 X f2 X JR3 to 

p (t/J(x) v
2

) 
g(x,v) = (271"0)3/2 exp- - 0-- 20 

and ( ¢"• h:EN converges in C 2([0, T] x 0) to t/J( x). Moreover, t/J satisfies the fol­
lowing equation: 

Proof. First, we can notice that the solutions of (V P B) satisfying assumptions 
(i)-(iii) satisfy also the a priori estimates. Ascoli's theorem ensures the existence 
of a subsequence (tn.hEN• a function g(t,x,v) and a function tfJ(t,x) such that 
(!"•)kEN converges tog and (¢"•)~co• converges to 1/J. Using (H3), one can prove 
that (Q(f"•,r•))kEN converges to Q(g,g) in the sense of distributions. As a 
consequence of remark 2, 

!!! f B (g'g:- gg.) ·log(g'g:) dxdvdv.dw = 0 
lnxR.•xR.•xsN-1 gg. 

g is therefore a maxwellian solution of the Vlasov-Poisson system, and according to 
[De], g and tf; are like stated in theorem 3 (they do not depend on t any more). 0 



As quoted before, if the mass and the temperature are given, then pis fixed and 
the equation for t/J has a unique solution . But the asymptotic temperature is not 
known. In the following, we will prove that it is natural to identify the asymptotic 
states in terms of the initial mass and energy. 

5. Conservation of the macroscopic quantities and consequences for the 
asymptotic states 

The total mass is conserved in the large time limit : 

11 
g(x,v)dxdv=Mo 

nx.I:P 

but we have only an inequality for the energy : 

Eoo = j 1 g(x, v) · lvl 2 dxdv + 1l'V't/J(xW dx :5 Eo 
nx.n• n 

To get the conservation of energy, we can for instance assume that there exists an 
t > 0 such that 

(H4) sup1e.n+ I InxR• f ·lvj2+•dvdx + sup1e.n+ In I'V'</>j2+•dx < +oo 
This assumption is not natural at all, and has no other justification than the fol­
lowing fact : under this condition, we get 

Eoo =Eo 

Then, making the change of unknown function OU = t/J, we get 

Mo = p fo e-u dx 

Eo= j 1 g(x, v) · lvl2 dxdv + rP 11'V'Uj2 dx 
nx.n• n 

= ~0 · p fo e-U dx + 02 fo j'V'Uj2 dx 

and U is solution of 

3 AU e-u 
--X 7,..---;:=:=:=::::;:::=~ - M -=-----=~ 

2 ( ) - In e-U dx 1 + yl + Xll'V' ~Ullll(n) 

· h 4E 
Wit X= 9M'' 

Proposition 4. The above equation has a unique solution in HJ(O). This solution 
belongs to C 00(0). 



Under the previous assumptions, 

Corollary 5. For all Eo > 0, for all Mo > 0, there exist a unique function U 
solution of ( * ), a unique temperature 0 given by 

such that, when T ---+ +oo, 

M ( v2) r(t,x ,v)=f(t+r,x,v)-+g(x,v)= ~ exp- U(x)+-
8 (211"8)~ f0 e-U dx 2 

uniformly on every compact set of [0, T] x n x JR3 , and 

~r(t,x) = ¢(t + r,x)-+ BU(x) 

Proof. Like in section 2, let us introduce on HJ(n) the C 1 convex functional 

where 

j(t) = ~ ( y'1 + xt2 - log(l + y'1 + xt2)) V t E JR+ 

According to the 

Lemma 6. For all U in HJ(n), we have 

(i) log (In e-U dx) 2: log lf21 - Vlm IIY'UIIP(n) , where C(f2) is Poincare's con­

stant. 

(ii) log(fn e-u dx) 2: -2log(IIY'UIIP(n)) when IIY'UIIP(n) ....... +oo. 

U is a solution of(*) if and only if U is a minimizer for J. This minimizer exists 
and is unique. The proof of part (i) of lemma 6 is a straightforwrd consequence 
of Jensen's inequality and Poincare's inequality. The part (ii) relies on Hardy's 
inequality. 0 
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