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1. Introduction

The concentration–compactness method is nowadays a basic tool in applied math-

ematics for the analysis of variational problems with lack of compactness or more

specifically for proving existence of solutions of non-linear partial differential equa-

tions which are invariant under a group of transformations. In this review we explore

the applicability of the concentration–compactness method on the Xα-Schrödinger-

Poisson model. We will also highlight some related questions, which raise a number

of open issues.

Our purpose is to study the existence of steady states of the so-called Xα-

Schrödinger-Poisson (Xα-SP) model or Maxwell-Schrödinger-Poisson system:

i
∂ψ

∂t
= −∆xψ + V (x, t)ψ − C |ψ(x, t)|2α ψ ,

−∆xV = ǫ 4π |ψ|2, (1.1)

ψ(x, t = 0) = φ(x) ,

∗ This work has been partially supported by MINECO (Spain), Project MTM2011-23384, and
ANR projects NoNAP and STAB (France).
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with φ ∈ L2(R3), x ∈ R
3, t ≥ 0. The self-consistent Poisson potential V is explicitly

given by V (x, t) = ǫ |ψ(x, t)|2 ⋆ |x|−1, where ⋆ refers to the convolution with respect

to x on R
3 and where ǫ takes the value +1 or −1, depending whether the interaction

between the particles is repulsive or attractive. The system (1.1) can therefore be

reduced to a single non-linear and non-local Schrödinger-type equation

i
∂ψ

∂t
= −∆xψ + ǫ

(

|ψ|2 ⋆ |x|−1
)

ψ − C |ψ|2α ψ , (1.2)

ψ(x, t = 0) = φ(x) .

Such a model appears in various frameworks, such as black holes in gravita-

tion (ǫ = −1) 31, one-dimensional reduction of electron density in plasma physics

(ǫ = +1), as well as in semiconductor theory (ǫ = +1), as a correction to the

Schrödinger-Poisson system (which is Xα-SP with C = 0): see 6,22,29 and refer-

ences therein.

In the plasma physics case, the Xα-SP correction takes into account a non-

linear, although local, correction to the Poisson potential of opposite sign given by

−C |ψ|2α, where C is a positive constant and where the parameter α, responsible

for the name of the model, takes values in the range 0 < α ≤ 2
3 . Some relevant

values are for example α = 1
3 , which is called the Slater correction, or α = 2

3 ,

which gives rise to the so-called Dirac correction. The idea is to balance the Pois-

son potential (also called Coulombian potential in the electrostatic case) with a

local potential term of opposite sign. This generates a competition between the two

potential energies and the kinetic energy that, depending on the values of the con-

stant C, can modify the typically dispersive dynamics of the Schrödinger-Poisson

system 18,32 in the plasma physics case. The local nonlinear term also modifies

the properties of the solutions in the gravitational case, thus leading to a richer

behaviour 5. Note that the physical constants have been normalized to unity here

for the sake of simplicity.

Throughout the paper we focus our attention on the plasma physical case.

Similar techniques can be used for extending our results to the gravitational case.

Notice that when ǫ = −1 (gravitational case), the sign of the energy associated

to the Poisson potential (also called Newtonian potential) allows to introduce sym-

metric rearrangements that contribute to simplify some computations 20,21. In this

paper, we shall therefore assume that

ǫ = +1 .

We will be concerned with the existence of standing waves, that is, solutions

to (1.2) of the form

ψ(x, t) = eiℓM t ϕ(x)

with ℓM > 0 and ϕ in L2(R3) solving

− ∆ϕ+ ǫ
(

|ϕ|2 ⋆ |x|−1
)

ϕ− C |ϕ|2 α ϕ + ℓM ϕ = 0 . (1.3)

Equation (1.3) is a special case of Schrödinger-Maxwell equations 13.
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The existence and stability analysis of such solutions relies on some preserved

physical quantities. The total mass (which is also the total electronic charge in the

repulsive case, when ǫ = +1)

M [ψ] :=

∫

R3

|ψ(x, t)|2 dx

and the energy functional

E[ψ] := Ekin[ψ] + Epot[ψ]

are invariant quantities for any solution of Xα-SP along the time evolution, where

the kinetic and potential energies are defined by

Ekin[ψ] :=
1

2

∫

R3

|∇ψ(x, t)|2 dx , Epot[ψ] :=
ǫ

4
D[ψ] − C

2α+ 2

∫

R3

|ψ(x, t)|2α+2 dx

and

D[ψ] :=

∫∫

R3×R3

|ψ(x, t)|2 |ψ(x′, t)|2
|x− x′| dx dx′ .

The existence of standing waves has been carried out from various perspectives

in the vast mathematical literature devoted to this topic. Either one investigates

the existence of critical points of the functional E[ϕ] + ℓM M [ϕ] on the whole space

H1(R3), with the parameter ℓM being given and fixed, and in that case the L2(R3)

norm of the solution is not prescribed (see for instance 30 and references therein);

or one looks for critical points of the energy functional E[ϕ] with prescribed L2(R3)

norm, and then the parameter ℓM enters into the game as a Lagrange multiplier

of the constrained minimization problem. From a physical point of view, the most

interesting critical points, the so-called steady states, are the minimizers of the

problem

IM := inf
{

E[ϕ] : ϕ ∈ ΣM

}

, ΣM :=
{

ϕ ∈ H1(R3) : ‖ϕ‖2
L2(R3) = M

}

. (1.4)

Their interest lies in stability properties stated in terms of the energy and the mass.

Such a feature is of course well known in the literature, see for instance 11, and it

provides an easier approach than other methods, which are anyway needed when

elaborate variational methods are required like in 2. The energy functional is not

bounded from below when α > 2
3 . When α > 2, the exponent 2α + 2 lies outside

of the interval (2, 6) and then H1(R3) is not embedded in L2α+2(R3). We therefore

restrict our analysis to the range α in (0, 2).

Concerning the existence of steady states, let us make the following observa-

tions. First of all, the energy and mass functionals are translation invariant that is,

for every y ∈ R
3,

E[ϕ(· + y)] = E[ϕ] , M [ϕ(· + y)] = M [ϕ] .

Therefore the concentration–compactness method 23,24,25 is the natural framework

for the study of the existence of a minimizer and for the analysis of the behavior of

the minimizing sequences to (1.4) and their possible lack of compactness. According
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to the terminology of the concentration–compactness principle, from any minimizing

sequence {ϕn}n≥1 in ΣM we can extract a subsequence (denoted in the same way

for simplicity) that either vanishes, that is,

lim sup
n→∞

sup
y∈R3

∫

y+BR

ϕ2
n dx = 0 ∀R > 0 , (1.5)

or satisfies the property

∃R0 > 0 , ∃ ε0 > 0 , ∃ {yn}n≥1 ⊂ R
3 such that

∫

yn+BR0

ϕ2
n dx ≥ ε0 . (1.6)

In the first case, for any sequence {yn}n≥1 in R
3, {ϕn(· + yn)}n≥1 converges to

zero weakly in H1(R3). In the second case, up to the extraction of a subsequence,

the sequence {ϕn(·+ yn)}n≥1 converges weakly towards a nonzero function ϕ∗ such

that
∫

R3

ϕ2
∗ dx = µ > 0 .

If µ = M , then compactness (i.e., the strong convergence of subsequences) holds.

In the opposite case, µ < M , then dichotomy occurs, that is, the splitting of the

functions in at least two parts that are going away from each other: see 23,24,25

for more details.

The concentrated–compactness method yields the strict inequalities

IM < IM ′ + IM−M ′ ∀M , M ′ such that 0 < M ′ < M (1.7)

as necessary and sufficient conditions for the relative compactness up to translations

of all minimizing sequences. In this case, we deduce the existence of a minimizer and

its orbital stability under the flow (1.1). The proof of this equivalence is based on

the fact that the only possible loss of compactness for minimizing sequences occurs

either from vanishing or from dichotomy. Note that the so-called large inequalities

IM ≤ IM ′ + IM−M ′ ∀M , M ′ such that 0 < M ′ < M (1.8)

always hold true due to the translation invariance. For any ε > 0, one may indeed

find C∞ functions φε ∈ ΣM ′ and ψε ∈ ΣM−M ′ , both with compact supports, such

that IM ′ ≤ E[φε] ≤ IM ′ + ε and IM−M ′ ≤ E[ψε] ≤ IM−M ′ + ε. Then, for any unit

vector e in R
3 and for n ∈ N large enough such that φε and ψε(·+n e) have disjoint

supports, we have φε + ψε(· + n e) ∈ ΣM and

IM ≤ lim sup
n→+∞

E[φε + ψε(· + n e)] ≤ IM ′ + IM−M ′ + 2ε .

The conclusion follows since ε can be made arbitrarily small. For our particular

problem, it can be easily proved that vanishing cannot hold for any minimizing

sequence of (1.4) if IM < 0, although it might hold when IM = 0. This is based on

Lemma I.1 in 25 that ensures that vanishing minimizing sequences converge to zero

strongly in L2α+2(R3). When IM = 0, vanishing has to be avoided by considering

particular sequences.
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Furthermore, when relative compactness up to translations can be proved for

any minimizing sequence, it can also be stated that the minimizing steady state

solution is orbitally stable in the sense developed in 11, thanks to the fact that

mass and energy are time preserved quantities for solutions to (1.1). In this sense,

let us mention that the well-posedness of the Xα-SP system was proved in 10

(Remark 6.5.3) for α ∈ (0, 2
3 ). For the case α = 2

3 , the existence of global solutions

was proved 10 only for initial data with ‖φ‖H1(R3) small enough. A theory of

existence of L2(R3) mixed-state solutions was developed in 6 for the Slater case,

α = 1
3 . Stability properties have been proved to be false for other kind of standing

waves, see for instance 2.

Our aim is to discuss the applicability of the concentration–compactness

method to the problem (1.4) for proving the existence of Xα-SP steady states.

Recall that such solutions are minimizers of the energy functional under mass con-

straint. Let us summarize the results presented in this work in Table 1, with some

references for previously known results. In this table, the constant Cα denotes the

α Energy infimum Existence of steady states Ref.

0 IM < 0 No 18,32

(0, 1
2 ) IM < 0 Yes, for small M 9,33,3,4

Open for large M
1
2 IM = 0 if C < 3√

2 C1/2
No 19

IM = 0 if C = 3√
2 C1/2

Open

IM < 0 if C > 3√
2 C1/2

Yes

(1
2 ,

2
3 ) IM = 0 if CM4α−2 < Vc(α) No

IM = 0 if CM4α−2 = Vc(α) Yes 19

IM < 0 if CM4α−2 > Vc(α) Yes 4

2
3 IM = 0 if CM

2
3 ≤ 5

3C2/3
No

IM = −∞ if CM
2
3 > 5

3 C2/3
No

(2
3 , 2) IM = −∞ No 2

Table 1. Table of existence results of steady states and related references.

optimal constant in the inequality

‖u‖2α+2
L2α+2(R3) ≤ Cα ‖u‖8α−4

L2(R3) D[u]2−3α ‖∇u‖6α−2
L2(R3) ∀u ∈ H1(R3) ,

with D[u] = 4π
∫

R3 u
2 (−∆)−1 u2 dx. The constant

Vc(α) :=
α+ 1

Cα

(

1

3α− 1

)3α−1 (
1

2 (2 − 3α)

)2−3α

(1.9)

will appear in Proposition 2.2.
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In this review, we emphasize that many partial results can been found in var-

ious papers and, concerning variational approaches, particularly in 4,3,19,2. For

other existence and non-existence results with the Lagrange parameter taken as

a parameter, we refer to 12,13,14,30,34. For solutions satisfying a Pohozaev con-

straint (see Proposition 2.3) and in particular the so-called ground state solutions,

we refer to 1,13,30. Our contribution mostly lies in a unified framework based

on the concentration-compactness method. Results corresponding to the ranges

0 < α < 1
2 , α = 1

2 and 1
2 < α < 2

3 have been collected respectively in Proposi-

tions 3.1, 3.2, and 3.4. Our main original contribution deals with the threshold case

α = 1
2 . We also invite the reader to pay attention to the remarks of Section 3 and

to Proposition 3.3 for a some open problems.

In the range α ∈ (0, 1
2 ), we are going to prove that the strict inequalities (1.7)

hold at least forM small enough. The strategy of proof is inspired by 9 (Appendix 3)

and is reproduced here for the reader’s convenience. The same result has been

derived in 4,33 for α = 1
3 and 0 < M < Mc, and in 3,4,9,33 for any α ∈ (0, 1

2 )

and any small positive M . As far as the authors know, the critical case (α = 1
2 )

has been treated only in 19 in the specific case C = 1, where IM = 0; in that

case the non-existence of a minimizer has been established. We will show here that

there exists a critical value for C, which is 3/(
√

2C1/2), such that for larger values

of C the minimizers exists but not for smaller values. The existence of minimizers

for the critical value of C is still an open problem, equivalent to the existence of

optimal functions for the above inequality with α = 1
2 . When α ∈

(

1
2 ,

2
3

)

, existence

holds if and only if M is large enough. The result of existence of steady states was

previously obtained in 4. No steady states exist in the cases α = 0 or α ∈
[

2
3 , 2
)

.

The result for α = 0 is in agreement with the general dispersion property verified

by the solutions to the repulsive Schrödinger-Poisson system proved in 18,32. It

is also one of the motivations for introducing the local, nonlinear correction to

the model. Although the existence of minimizers cannot be expected in the case

α ∈
(

2
3 , 2
)

because IM = −∞, the existence and instability of other standing waves

has recently been proved in 2. Also see 1,13,30 for ground state solutions.

For completeness, let us mention that symmetry breaking issues are not com-

pletely understood 28,16. In this direction, new approaches could be useful like

those developed in 15 and subsequent papers. Stability of minimizers with null

energy also raises a number of open questions.

2. A priori estimates and consequences

Before tackling the existence of steady states, we have to make sure that the min-

imization problem is well-posed for α ∈ [0, 2
3 ), and for small masses M in the case

α = 2
3 . Let us first recall the Gagliardo-Nirenberg inequality

‖u‖2α+2
L2α+2(R3) ≤ CGN(α) ‖∇u‖3α

L2(R3) ‖u‖2−α
L2(R3) ∀u ∈ H1(R3) (2.1)
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where CGN(α) is the optimal constant, depending only on α ∈ [0, 2].

Lemma 2.1. For any α ∈ [0, 1
2 ], there is a positive constant Kα such that, for any

u ∈ H1(R3), we have

‖u‖2α+2
L2α+2(R3) ≤ Kα ‖u‖2−4α

L2(R3) D[u]α ‖∇u‖α
L2(R3) (2.2)

and for any α ∈ [ 12 ,
2
3 ], there is a positive constant Cα such that, for any u ∈ H1(R3),

we have

‖u‖2α+2
L2α+2(R3) ≤ Cα ‖u‖8α−4

L2(R3) D[u]2−3α ‖∇u‖6α−2
L2(R3) . (2.3)

The case α = 1
2 has been established by P.-L. Lions 26 in Formula (55) page 54

and is common to the two inequalities, with K1/2 = C1/2. The case α = 2
3 is a

special case of (2.1), with C2/3 = CGN(2/3). For completeness, let us give a proof.

Proof. We recall that D[u] = 4π
∫

R3 u
2 (−∆)−1 u2 dx. By expanding the square

and integrating by parts, we get that

0 ≤
∫

R3

|∇u− a∇(−∆)−1 u2|2 dx

=

∫

R3

|∇u|2 dx+ a2

∫

R3

u2 (−∆)−1 u2 dx− 2a

∫

R3

u3 dx ,

that is, for an arbitrary positive parameter a,
∫

R3

u3 dx ≤ 1

2a

∫

R3

|∇u|2 dx +
a

2

∫

R3

u2 (−∆)−1 u2 dx .

After optimizing on a, we obtain that

‖u‖6
L3(R3) ≤

1

4π
‖∇u‖2

L2(R3) D[u] . (2.4)

This proves (2.2) and (2.3) when α = 1
2 . The range α ∈ [0, 1

2 ] is then covered by

Hölder’s inequality ‖u‖L2α+2(R3) ≤ ‖u‖2−4α
L2(R3) ‖u‖6α

L3(R3).

For α = 2
3 , (2.3) coincides with (2.1), namely

‖u‖10/3

L10/3(R3)
≤ CGN(2

3 ) ‖∇u‖2
L2(R3) ‖u‖

4/3
L2(R3) .

Hence the case α ∈ [ 12 ,
2
3 ] is covered by Hölder’s inequality

‖u‖α+1
L2α+2(R3) ≤ ‖u‖3(2−3α)

L3(R3) ‖u‖5(2α−1)

L10/3(R3)
.

Notice that from (2.4) we know that

C1/2 ≤ 1

2
√
π
.

Lemma 2.2. The energy functional E is bounded from below in ΣM , if either

α ∈ [0, 2
3 ) or α = 2

3 and C CGN(2
3 )M2/3 ≤ 5

3 . If either α ∈ [0, 2
3 ) or α = 2

3
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and C CGN(2
3 )M2/3 < 5

3 , any minimizing sequence for IM is uniformly bounded in

H1(R3).

Proof. As a direct consequence of (2.1), for every ϕ ∈ ΣM we have the estimate

E[ϕ] ≥ 1

2
‖∇ϕ‖2

L2(R3) −
C CGN(α)

2α+ 2
M

2−α
2 ‖∇ϕ‖3α

L2(R3) .

One of the main ingredients in our analysis is the scaling properties of the

terms involved in the functional E.

Lemma 2.3. Let ϕ ∈ H1(R3). Assume that λ > 0, let p and q be real numbers and

define ϕp,q
λ (x) := λp ϕ(λq x). Then we have

∫

R3

|ϕp,q
λ (x)|2 dx = λ2p−3q

∫

R3

|ϕ(x)|2 dx ,

E[ϕp,q
λ ] = 1

2 λ
2p−q

∫

R3

|∇ϕ|2 dx+ 1
4 λ

4p−5q D[ϕ] − λ(2α+2)p−3q

2α+2 C

∫

R3

|ϕ|2α+2 dx .

In the particular case ϕλ(x) := λ
3
2 ϕ(λx), the mass is preserved,

∫

R3

|∇ϕλ|2 dx = λ2

∫

R3

|∇ϕ|2 dx , D[ϕλ] = λD[ϕ] ,

and

∫

R3

|ϕλ|2α+2 dx = λ3α

∫

R3

|ϕ|2α+2 dx .

As a consequence, we have that M 7→ IM is non increasing and

IM ≤ 0 ∀M ≥ 0 ,

with IM = −∞ when α > 2
3 , for every M > 0.

Proof. The reader is invited to check the changes of variables. Let ϕ be any

function in ΣM . Then, we have

IM ≤ E[ϕλ] =
λ2

2

∫

R3

|∇ϕ|2 dx+
λ

4
D[ϕ] − λ3α C

2α+ 2

∫

R3

|ϕ|2α+2 dx

for all λ > 0, and one concludes by letting the scaling parameter λ go to zero that

IM ≤ 0. As a consequence of (1.8), the function M 7→ IM is non-increasing. The

last claim follows by assuming that α > 2
3 and by letting λ go to infinity.

Remark 2.1. If IM = 0 for some M > 0, we may built a minimizing sequence

that converges to zero weakly in H1(R3) by using the scaling properties. In fact,

Lemma I.1 in 25 can be applied to any minimizing sequence in order to prove

that vanishing cannot hold in the opposite case, IM < 0. Therefore, the condition

IM < 0 is necessary to ensure the relative compactness up to translations of any

minimizing sequence. This is the motivation for characterizing the situations in

which E reaches negative values.
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Lemma 2.4. Let M > 0 and α ∈ [13 ,
2
3 ]. Then E takes negative values in ΣM if

and only if the functional

ϕ 7→
(

1

3α− 1

∫

R3

|∇ϕ|2 dx
)3α−1(

D[ϕ]

2 (2 − 3α)

)2−3α

− C

α+ 1

∫

R3

|ϕ|2α+2 dx

also takes negative values in ΣM . Moreover, if α ∈ (1
3 ,

2
3 ), then

E[ϕ] ≥ 1

4
λ[ϕ] D[ϕ]

[

1 −
(

CM4α−2

Vc(α)

)
1

3−2α

]

∀ϕ ∈ ΣM (2.5)

with λ[ϕ] :=
(

3α−1
α+1 C

R

R3 |∇ϕ|2 dx
R

R3 ϕ2α+2 dx

)

1
2−3α

and Vc(α) given by (1.9).

Here we adopt the convention that xx = 1 whenever x = 0, in order to include

the endpoints of the interval.

Proof. Let ϕ ∈ ΣM . Consider the family {ϕλ}λ>0 associated with ϕ, such that

‖ϕλ‖2
L2(R3) = M for any λ > 0, as in Lemma 2.3. We are interested in the sign of

1

λ
E[ϕλ] =

λ

2

∫

R3

|∇ϕ|2 dx +
1

4
D[ϕ] − λ3α−1 C

2α+ 2

∫

R3

|ϕ|2α+2 dx .

In the case α = 1
3 , both potential terms in the r.h.s. are scale invariant and we

obviously have that E reaches negative values if and only if

1

4
D[ϕ] − 3C

8

∫

R3

|ϕ| 83 dx < 0 .

If α ∈ (1
3 ,

2
3 ), the minimum of the r.h.s. with respect to λ is achieved by λ = λ[ϕ]

and it is negative when

−(2−3α)

(

C

2α+ 2

∫

R3

|ϕ|2α+2 dx

)
1

2−3α
(

1

2(3α− 1)

∫

R3

|∇ϕ|2 dx
)

1−3α
2−3α

+
1

4
D[ϕ] < 0 .

Inequality (2.5) is then a consequence of the definition of Vc(α). Finally, for α = 2
3

we have that

E[ϕλ] = λ2

(

1

2

∫

R3

|∇ϕ|2 dx − 3C

10

∫

R3

|ϕ| 103 dx
)

+ λ
1

4
D[ϕ] (2.6)

takes negative values if and only if the leading order coefficient w.r.t. λ,

1

2

∫

R3

|∇ϕ|2 dx− 3C

10

∫

R3

|ϕ| 103 dx ,

is negative. We conclude the proof by observing that the three different conditions

obtained above correspond to the precise statement of the lemma.

Remark 2.2. In the case α = 2
3 , the functional (2.6) is not bounded from below

in ΣM when the leading order coefficient w.r.t. λ takes negative values. This remark

shows the optimality of the condition on the mass stated in Lemma 2.2 for α = 2
3 .
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In the range 1
2 < α < 2

3 , we will need an additional estimate to handle the

critical case corresponding to CM4α−2 = Vc(α), that goes as follows.

Corollary 2.1. Let α ∈
(

1
2 ,

2
3

)

. Then, for any ϕ ∈ ΣM ,

‖ϕ‖2α+2
L2α+2(R3) ≤ C2−2α

1/2 CGN(1)2α−1Mα− 1
2 ‖∇ϕ‖4α−1

L2(R3) D[ϕ]1−α .

Proof. Let ϕ ∈ ΣM . If α ∈
(

1
2 ,

2
3

)

, then we have that 3 < 2α+ 2 < 10
3 < 4. Using

Hölder’s inequality we get

‖ϕ‖2α+2
L2α+2(R3) ≤ ‖ϕ‖3(2−2α)

L3(R3) ‖ϕ‖4(2α−1)
L4(R3) .

From (2.3) written for α = 1
2 , we know that

‖ϕ‖3
L3(R3) ≤ C1/2 D[ϕ]

1
2 ‖∇ϕ‖L2(R3) .

On the other hand, (2.1) with α = 1 gives

‖ϕ‖4
L4(R3) ≤ CGN(1) ‖∇ϕ‖3

L2(R3)M
1
2

Altogether, these estimates provide the result.

We split the analysis of the strict negativity of IM into two results, from which

we will conclude that this property depends on α and in some cases also on the

mass. Let us start with α < 1
2 .

Proposition 2.1. Let M > 0. If α ∈ [0, 1
2 ), then the functional E always reaches

negative values in ΣM . As a consequence, IM < 0 for all M > 0 if α ∈ [0, 1
2 ).

Proof. For α ∈ [0, 1
3 ) the result is a trivial consequence of the mass-preserving

scaling in Lemma 2.3, since we have that

λ−3α E[ϕλ] =
1

2
λ2−3α

∫

R3

|∇ϕ|2 dx+
1

4
λ1−3α D[ϕ] − C

2α+ 2

∫

R3

|ϕ|2α+2 dx

is negative for any non-trivial ϕ ∈ H1(R3) if λ > 0 is chosen small enough.

To complete the proof for α ∈ [ 13 ,
1
2 ), it remains to find a particular test function

ϕ ∈ ΣM with negative energy for any M > 0. We follow a classical approach in the

literature on the concentration–compactness method, see for instance 27. Consider

M > 0 and η ∈ ΣM such that supp(η) ⊂ B(0, 1), where B(0, 1) denotes the unit

sphere centered at 0. For any positive integer n, define ηn(x) := η(n
1
3 x). Then the

support of ηn is contained in B(0, 1) and by direct calculations we have

‖ηn‖2
L2(R3) = 1

n ‖η‖2
L2(R3) , D[ηn] = 1

n5/3 D[η] ,

‖ηn‖2α+2
L2α+2(R3) = 1

n ‖η‖2α+2
L2α+2(R3) ,

∫

R3 |∇ηn|2 dx = 1
n1/3

∫

R3 |∇η|2 dx .
Let n be a given integer bigger than 1 and let us consider the test function ϕ(x) :=
∑n

i=1 ηn(x − xi), where the points xi ∈ R
3, i = 1, . . . n are chosen such that

|xi − xj | ≥
M2

D[η]
n2/3 + 2 ∀ i 6= j .
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By definition ϕ verifies ‖ϕ‖2
L2(R3) = ‖η‖2

L2(R3) = M , ‖ϕ‖2α+2
L2α+2(R3) = ‖η‖2α+2

L2α+2(R3)

and
∫

R3 |∇ϕ|2 dx = n2/3
∫

R3 |∇η|2 dx. Now, we estimate D[ϕ] as follows:

D[ϕ] =

n
∑

i, j=1

∫∫

R3×R3

|ηn(x − xi)|2 |ηn(x′ − xj)|2
dx dx′

|x− x′|

= nD[ηn] +
∑

j 6=i

∫∫

R3×R3

|ηn(x)|2 |ηn(x′)|2
|x+ xi − x′ − xj |

dx dx′

≤ D[η]

n2/3
+
∑

j 6=i

∫∫

R3×R3

|ηn(x)|2 |ηn(x′)|2
|xi − xj | − 2

dx dx′

≤ D[η]

n2/3
+

D[η]

M2 n2/3

M2 n(n− 1)

2n2
=

2 D[η]

n2/3
.

Combining these estimates and Lemma 2.4 with the fact that (3α−1)−(2−3α) < 0

if α < 1
2 , we are done with the proof.

If α ∈ (1
2 ,

2
3 ], the functional E might not reach negative values depending on

the value of the mass M and the constant C, as stated in the following result.

Proposition 2.2. In the case α ∈ [12 ,
2
3 ], IM = 0 if and only if

CM4α−2 ≤ Vc(α) (2.7)

holds, where the constant Vc(α) is given in (1.9). On the contrary, if (2.7) does not

hold, then IM is negative.

We recall that Vc(α) = α+1
Cα

(

1
3α−1

)3α−1 (
1

2 (2−3α)

)2−3α

where Cα is the opti-

mal constant in (2.3).

Proof. According to Lemma 2.4, IM = 0 for α ∈ [12 ,
2
3 ] if and only if

‖ϕ‖2α+2
L2α+2(R3) ≤

α+ 1

C

(

‖∇ϕ‖2
L2(R3)

3α− 1

)3α−1
(

D[ϕ]

2(2 − 3α)

)2−3α

for all ϕ ∈ ΣM . Comparing with the definition of Cα in (2.3), this clearly entails

that IM = 0 if and only if (2.7) holds. According to Lemma 2.3, IM is negative

(and eventually −∞) otherwise.

Although our problem is originally set in the framework of complex valued

functions, we finally observe that we can reduce it to non-negative real valued

functions.

Lemma 2.5. Consider a complex valued minimizer ψ to the problem (1.4). Then,

the real function |ψ| is also a minimizer for (1.4).
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Proof. It is well known that if ψ ∈ ΣM , then |ψ| also belongs to ΣM . Since the

potential energy only depends on |ψ|2, it takes the same value on ψ and |ψ|. On

the other hand, the kinetic enegy verifies
∫

R3

∣

∣∇|ψ|
∣

∣

2
dx ≤

∫

R3

(

∇|Reψ|2 + ∇|Imψ|2
)

dx =

∫

R3

|∇ψ|2 dx

as a consequence of the convexity inequality for gradients 21, where equality holds

if and only if |Reψ(x)| = c |Imψ(x)| for some constant c. Hence, |ψ| is also a

minimizer.

If IM is achieved, we can then prove the Virial Theorem relation for the terms

of the energy functional by using their scaling properties.

Proposition 2.3. Assume that 0 < α < 2
3 . Any minimizer ϕM of IM satisfies

∫

R3

|∇ϕM |2 dx+
1

4
D[ϕM ] − 3αC

2α+ 2

∫

R3

|ϕM |2α+2 dx = 0 . (2.8)

Proof. Let us assume that there exists a minimizer ϕM ∈ ΣM of IM . According

to Lemma 2.3, for every λ > 0 the rescaled function ϕM,λ = λ3/2 ϕM (λ ·) also lies

in ΣM . The function λ 7→ E[ϕM,λ] attains its minimal value at λ = 1. Since

E[ϕM,λ] =
1

2
λ2

∫

R3

|∇ϕM |2 dx+ λ
1

4
D[ϕM ] − λ3α C

2α+ 2

∫

R3

|ϕM |2α+2 dx ,

the cancellation of the derivative with respect to λ at λ = 1 provides with (2.8).

At this stage, we can write down the Euler-Lagrange equation corresponding

to the minimization problem IM and deduce an energy identity.

Lemma 2.6. Assume that 0 < α < 2
3 . Any minimizer ϕM of IM satisfies (1.3)

and
∫

R3

|∇ϕM |2 dx+ D[ϕM ] − C

∫

R3

|ϕM |2α+2 dx+ ℓM M = 0 . (2.9)

In particular, at least for α ∈ (0, 1
5 ] ∪ (1

2 ,
2
3 ), we have ℓM > 0. If α = 1

2 , then

ℓM = − 6
M IM ≥ 0.

Proof. Identity (2.9) is obtained by multiplying the Euler-Lagrange equation (1.3)

by ϕM and integrating by parts. If we eliminate D[ϕM ] and ‖ϕM‖L2α+2(R3)

from (2.8), (2.9) and use

E[ϕM ] =
1

2

∫

R3

|∇ϕM |2 dx+
1

4
D[ϕM ] − C

2α+ 2

∫

R3

|ϕM |2α+2 dx = −|IM | ,

we complete the proof using

ℓM =
2

M

(

2α− 1

3α− 1

∫

R3

|∇ϕM |2 dx +
5α− 1

3α− 1
|IM |

)

.
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Corollary 2.2. Assume that α ∈ (0, 1
2 )∪ (1

2 ,
2
3 ). Any minimizer ϕM of IM is such

that
∫

R3

|∇ϕM |2 dx =
1

2
(3α− 1) εM − (5α− 1) ηM

D[ϕM ] = (2 − 3α) εM − 2 (2 − α) ηM
∫

R3

|ϕM |2α+2 dx =
1

4
εM − 3

2
ηM

where

εM :=
M ℓM
2α− 1

and ηM :=
IM

1 − 2α
.

Proof. The proof is a straightforward consequence of E[ϕM ] = IM , (2.8) and (2.9).

Lemma 2.6 has interesting consequences concerning the decay of the minimiz-

ers, that can be derived from Lemma 19 and Theorem 6 in 7, as shown in the

following result. Also see Theorem 1.3 in 2 and Theorem 6.1 in 17 for related

results.

Lemma 2.7. Consider a nonnegative solution to (1.3) such that

1

2

∫

R3

|∇ϕM |2 dx+
1

4
D[ϕM ] + ℓM

∫

R3

ϕ2
M dx <∞ , with ℓM ≥ 0 .

Then, there exist positive constants K and δ such that

ϕM (x) ≤ K e−δ
√

1+|x| ∀x ∈ R
3 .

In the case ℓM = 0, this result ensures that the above solution belongs to

H1(R3), since the exponential decay also guarantees that the minimizer is in L2(R3).

The rescaled problem. Given that our main tool in proving the existence of

minimizers will consist in checking the strict inequalities (1.7), we are going to

study the infimum value IM as a function of the mass M . To this purpose, we fix a

function ϕ1 ∈ Σ1 and apply the scaling properties in Lemma 2.3 with 2p− 3q = 1

and λ = M . We denote by ϕM,p be the corresponding rescaled function. Then,

according to Lemma 2.3 we have that ϕM,p ∈ ΣM and

E[ϕM,p] = 1
2 M

4p+1
3 ‖∇ϕ1‖2

L2(R3) + 1
4 M

2p+5
3 D[ϕ1] − C

2α+2 M
2αp+1 ‖ϕ1‖2α+2

L2α+2(R3) ,

(2.10)

for any real number p.

3. Existence and non-existence of steady states

In this section we analyze the existence of minimizers for the variational prob-

lem (1.4).
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3.1. Non-existence results when α = 0 or α = 2/3

In the case α = 0, the minimization problem reduces to

IM = inf

{

1

2

∫

R3

|∇ϕ|2 dx+
1

4
D[ϕ] − C

2

∫

R3

|ϕ|2 dx : ϕ ∈ ΣM

}

= inf

{

1

2

∫

R3

|∇ϕ|2 dx+
1

4
D[ϕ] : ϕ ∈ ΣM

}

− C

2
M = −C

2
M ,

by a scaling argument. Therefore, IM is never achieved when M > 0 (despite it is

always negative) since any possible minimizer would make the gradient term vanish,

and then should vanish itself in R
3.

In the case α = 2
3 , either IM = 0 or IM = −∞, and in both cases there are no

minimizers. Actually, IM = 0 if and only if

1

2

∫

R3

|∇ϕ|2 dx− 3C

10

∫

R3

|ϕ| 103 dx ≥ 0 .

See Lemma 2.4 and its proof for details. Hence, the minimum cannot be attained,

otherwise D[ϕ] = 0, which is absurd.

From now on we shall assume that 0 < α < 2
3 . We first examine the range

0 < α < 1
2 in Subsection 3.2. Subsection 3.3 is devoted to the special limiting case

α = 1
2 . Finally, the range 1

2 < α < 2
3 is analyzed in Subsection 3.4.

3.2. The interval 0 < α < 1

2

We prove the following :

Proposition 3.1. Let 0 < α < 1
2 . Then, for M > 0 small enough, the strict

inequalities

IM < IM ′ + IM−M ′

hold for every M ′ such that 0 < M ′ < M . In particular, all minimizing sequences

are compact in H1(R3) up to translations and the extraction of a subsequence.

Therefore, IM is attained for M small enough.

Proof. In Proposition 2.1 we have proved that IM < 0 for every M > 0. In the

range α ∈ (0, 1
2 ), we may choose the parameter p in the rescaled problem (2.10)

such that

0 ≤ 4p+ 1

3
= 2αp+ 1 <

2p+ 5

3
,

i.e., such that the gradient and the power term are of the same order for small M

and dominate the Poisson energy in this regime. With this choice we can deduce

IM = M
2−α
2−3α JM

1 (3.1)
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where, for every µ > 0,

JM
µ = inf

{

1

2
‖∇ϕ‖2

L2(R3) −
C

2α+ 2
‖ϕ‖2α+2

L2α+2(R3) +M
2(1−2α)
2−3α

1

4
D[ϕ] : ϕ ∈ Σµ

}

.

Note that the same scaling argument shows that

JM
µ = µ

2−α
2−3α JµM

1 . (3.2)

With µ = M ′

M and using (3.1) and (3.2), it is easily proved that the strict inequalities

of Proposition 3.1 are equivalent to

JM
1 < JM

µ + JM
1−µ ∀µ ∈ (0, 1) . (3.3)

We are going to prove that the above strict inequalities hold for M small enough.

Observe now that M
2(1−2α)
2−3α goes to zero as M does, and limM→0 J

M
1 = J0

1 .

The key point is that for every λ > 0, J0
λ satisfies the strict inequalities of the

concentration–compactness principle, namely

J0
λ < J0

µ + J0
λ−µ , ∀µ ∈ (0, λ) . (3.4)

This is an immediate consequence of the fact that J0
λ = λ

2−α
2−3α J0

1 , with J0
1 < 0 and

2−α
2−3α > 1. The sign of J0

1 is deduced from the scaling argument in Lemma 2.3, by

observing that the negative term dominates the gradient contributions for 3α < 2.

We now prove that JM
1 satisfies the strict inequalities (3.3) for M small enough.

We argue by contradiction assuming that this is not the case. Then, there exist a

sequence {Mn}n≥1 going to 0 and a sequence {λn}n≥1 in (0, 1) such that

JMn
1 = JMn

λn
+ JMn

1−λn
. (3.5)

Assume that 1
2 ≤ λn < 1 (if λn ∈ (0, 1

2 ), we may exchange the roles of λn and

1 − λn). By continuity with respect to M we conclude that λn → 1, otherwise we

get a contradiction with (3.4). In addition, we may choose as λn the infimum of

the set {λ ∈ [ 12 , 1) : JMn
1 = JMn

λ + JMn

1−λ}.
We now claim that, for n large enough, JMn

λn
satisfies the strict inequalities of

the concentration–compactness principle

JMn

λn
< JMn

µ + JMn

λn−µ ∀µ ∈ (0, λn) . (3.6)

If not, there exists a sequence {µn}n≥1 with µn ∈ (1
2 λn, λn) such that

JMn

λn
= JMn

µn
+ JMn

λn−µn
. (3.7)

Then, from (3.5) and (3.7) we find

JMn
µn

+ JMn
1−µn

≥ JMn
1 = JMn

µn
+ JMn

λn−µn
+ JMn

1−λn

≥ JMn
µn

+ JMn
1−µn

,

for the reverse large inequalities JMn
1−µn

≤ JMn

1−λn
+ JMn

1−µn−(1−λn) always hold true.

Hence, the equality

JMn
µn

+ JMn
1−µn

= JMn
1 (3.8)
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is verified. By definition of λn and since µn ≥ λn

2 with λn ≥ 1
2 , we must have

1
4 ≤ µn < 1

2 . Extracting a subsequence if necessary, we may assume that µn

converges to µ with 1
4 ≤ µ ≤ 1

2 . Passing to the limit in (3.8), we get J0
µ +J0

1−µ = J0
1

with µ ∈ (0, 1) thereby reaching a contradiction with (3.4). So far we have proved

that the strict inequalities (3.6) hold.

In particular, for n large enough, there exists a minimizer ϕn of JMn

λn
such that

{(λn)−1/2ϕn}n≥1 is a minimizing sequence for J0
1 . Since (3.4) holds, this sequence

converges strongly in H1(R3) up to translations to a minimizer ϕ∞ of J0
1 . The same

holds for {ϕn}n≥1, given that λn → 1. Without loss of generality we may assume

that ϕn and ϕ∞ > 0 satisfy the respective Euler–Lagrange equations in R
3

−∆ϕn − C ϕn
2α+1 +M

2(1−2α)
2−3α

n

(

ϕ2
n ∗ 1

|x|
)

ϕn + θn ϕn = 0 ,

with ‖ϕn‖2
L2(R3) = λn and

−∆ϕ∞ − C ϕ2α+1
∞ + θ1 ϕ∞ = 0 ,

with ‖ϕ∞‖2
L2(R3) = 1 and θ1 > 0. Having in mind to contradict (3.5) we argue as

follows. We first write

JMn
1 − JMn

λn

1 − λn
=

JMn

1−λn

1 − λn
.

As λn goes to 1, the left-hand side can be bounded from above by − θ1, while

from (3.2) the quotient

JMn

1−λn

1 − λn
= (1 − λn)

2α
2−3α J

(1−λn)Mn

1

converges to 0 because J
(1−λn)Mn

1 converges to J0
1 as λn → 1, and 2α

2−3α is positive.

Remark 3.1. The general case for any M is still an open problem. The possibility

of dichotomy is the delicate case to be analyzed since vanishing is easily ruled out

by the fact that IM is negative.

3.3. The limiting case α = 1

2

Our main result is the following.

Proposition 3.2. Let C1/2 be the best constant in (2.3) with α = 1
2 .

(i) If 3√
2 C1/2

> C, then IM = 0 and IM is not achieved for any M > 0.

(ii) If 3√
2 C1/2

< C, then IM < 0 and IM is achieved for every M > 0. In

addition, all minimizing sequences are relatively compact in H1(R3) up to

translations.
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Remark 3.2. The remaining case 3√
2 C1/2

= C, where I1 = 0, might be attained if

and only if P.-L. Lions’ inequality (2.4) has an optimal function in Σ1. This is, for

the moment, an open question.

Proof. As an immediate consequence of the scaling formulae of Lemma 2.3, by

taking p = 2 in (2.10), we have that

IM = M3 I1 , (3.9)

for every M > 0, and IM is achieved if and only if I1 is also achieved. This is the

only case in which all powers of M appearing in the right-hand side of (2.10) are

identical. When I1 < 0, it is a well-known fact 23,24 that the relation (3.9) implies

the strict inequalities (1.7), hence the result. Indeed, the strict inequalities (1.7)

hold as a consequence of the convexity of M 7→M3.

Assume now that I1 = 0, so that IM = 0 for every M > 0. We assume that I1
is achieved by some function ϕ1 in H1(R3). Then ϕ1 satisfies the Euler–Lagrange

equation (1.3) with a zero Lagrange multiplier (since it is also a minimizer without

any constraint on the L2(R3) norm). Also see Lemma 2.6 for a direct proof. If we

apply the corresponding equation to ϕ1, integrate over R
3 and use the information

I1 = E[ϕ1] = 0, we deduce

1

2

∫

R3

|∇ϕ1|2 dx =
1

4
D[ϕ1] =

C

6

∫

R3

|ϕ1|3 dx .

Hence, by definition of C1/2 we obtain

1

C1/2
≤ C

√
2

3
,

or equivalently

3√
2C1/2

≤ C .

Therefore, using (2.7), the equality I1 = 0 can be achieved only when

3√
2C1/2

= C .

As a consequence, I1 (and, up to a scaling, IM ) is attained if and only if the optimal

constant in (2.4) is attained by a minimizer in L2(R3).

We conclude this section by examining the critical case α = 1
2 with the lim-

iting constant C = 3√
2C1/2

. The problem is open, but we can prove that lack of

compactness may occur only by vanishing as shown by the following result.

Proposition 3.3. Assume that α = 1
2 and C = 3√

2C1/2
. Let {φn}n≥1 be a min-

imizing sequence for I1. If vanishing does not occur, that is, if (1.6) holds, then

there exists a minimizer for I1.
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By Lemma 2.2, {φn}n≥1 is bounded in H1(R3). Since I1 is invariant by trans-

lation, relative compactness in H1(R3) may only be expected up to translations.

Also, since Iλ = 0 for every λ > 0, concentration–compactness type inequalities

turn into equalities. In particular, there exist minimizing sequences that are not rel-

atively compact in H1(R3), up to any translations. According to the concentration–

compactness terminology 23,24,25, either {φn}n≥1 fulfills (1.5) and vanishing oc-

curs, or (1.6) holds. If there exists some minimizing sequence for which vanishing

does not occur, we will now prove that existence of a minimizer is guaranteed.

Proof. We first show that (1.6) ensures the existence of a minimizer. Indeed, the

new minimizing sequence {φn(· + yn)}n≥1 converges (up to a subsequence) to a

function φ in H1(R3), weakly in H1(R3) and in Lp(R3) for every 2 ≤ p ≤ 6, strongly

in Lp
loc(R

3) for every 1 ≤ p < 6 (by the Rellich-Kondrachov theorem); consequently,

it also converges almost everywhere in R
3. The condition (1.6) guarantees that

φ 6= 0 since
∫

BR0
φ2 dx ≥ ε0 by passing to the limit as n goes to infinity. Let

µ =
∫

R3 φ
2 dx with 0 < µ ≤ 1.

If µ = 1, we are done : {φn(· + yn)}n≥1 converges to φ strongly in L2(R3),

and therefore in Lp(R3) for every 2 ≤ p < 6 by Hölder’s inequality. In particular,

the convergence is also strong in L3(R3) and 0 = lim infn→+∞ E[φn] ≥ E[φ)] ≥ I1.

Hence, E[φ] = 0 and φ is a minimizer of I1. In addition, the convergence is strong

in H1(R3) since all above inequalities turn into equalities.

If µ < 1, we are in the so-called dichotomy case. We shall prove that φ is a

minimizer of Iµ. Then, according to Lemma 3.2, I1 is also achieved. Let us define

rn := φn(· + yn) − φ. Then, {rn}n≥1 is bounded in H1(R3). Up to a subsequence,

it converges to 0 weakly in H1(R3) and in Lp(R3) for every 2 ≤ p < 6, strongly in

Lp
loc(R

3) for every 1 ≤ p < 6, and almost everywhere in R
3. In addition, by taking

weak limits we find

lim
n→+∞

∫

R3

r2n dx = 1 − µ ,

∫

R3

|∇φn|2 dx =

∫

R3

|∇rn|2 dx+

∫

R3

|∇φ|2 dx + on(1) , (3.10)

where on(1) is a shorthand for a quantity that goes to 0 when n goes to infinity.

Using Theorem 1 in 8, we have
∫

R3

|φn|3 dx =

∫

R3

|rn|3 dx +

∫

R3

|φ|3 dx+ on(1) . (3.11)

We first check as in 9 that

lim
n→+∞

‖φ rn‖Lp(R3) = 0 ∀ p ∈ [1, 3) . (3.12)

We just argue for p = 1, as the analysis for the other powers follows by interpolation.

Since {rn}n≥1 converges strongly to 0 in L2
loc(R

3), {φ rn}n≥1 converges strongly to 0
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in L1
loc(R

3) as n→ ∞. Next, for every R > 0 we have

∫

|x|≥R

|φ rn| dx ≤
(

∫

|x|≥R

|φ|2 dx
)1/2 (

∫

|x|≥R

|rn|2 dx
)1/2

.

The first term in the right-hand side may be taken arbitrarily small for R large

enough since φ ∈ L2(R3), while the second one is bounded independently of n

and R since {rn}n≥1 is bounded in L2(R3). Writing
∫

R3 |φ rn| dx =
∫

|x|≤R |φ rn| dx+
∫

|x|≥R |φ rn| dx we get the result. By writing down

∫

R3

|φn|3 dx −
∫

R3

|rn|3 dx−
∫

R3

|φ|3 dx = 3

∫

R3

|φ rn| (|rn| + |φ|) dx ,

we obtain (3.11) since {|rn|+ |φ|}n≥1 is bounded in L2(R3) and {φ rn}n≥1 converges

to 0 in L2(R3). Finally, we check that

lim inf
n→+∞

D[φn] ≥ D[φ] + lim inf
n→+∞

D[rn] . (3.13)

On the one hand, since {φn}n≥1 is bounded in H1(R3), {φ2
n ⋆

1
|x|}n≥1 is bounded in

L∞(R3) thanks to

∥

∥

∥
φ2 ⋆

1

|x|
∥

∥

∥

L∞(R3)
= sup

x∈R3

∫

R3

φ2(y)

|x− y| dy ≤ sup
x∈R3

(

∫

R3

φ2(y)

|x− y|2 dy
)1/2

‖φ‖L2(R3)

≤ 2 ‖∇φ‖L2(R3) ‖φ‖L2(R3) ,

where we have used Cauchy-Schwarz’ inequality and Hardy’s inequality. Then, we

have

∣

∣

∣

∫

R3

(

φn ⋆
1

|x|
)

(φ rn) dx
∣

∣

∣
≤
∥

∥

∥
φ2

n ⋆
1

|x|
∥

∥

∥

L∞(R3)
‖φ rn‖L1(R3) ,

and hence

lim
n→∞

∫

R3

(

φn ⋆
1

|x|
)

(φ rn) dx = 0 ,

because of (3.12). On the other hand,
∫

R3

(

(φ rn) ⋆ 1
|x|
)

(φ rn) dx ≥ 0. Actually it

is also converging to 0 as n → ∞, and (3.13) follows. Gathering together (3.10),

(3.11) and (3.13), we obtain

0 = lim sup
n→+∞

E[φn] = lim inf
n→+∞

E[φn] = E[φ] + lim inf
n→+∞

E[rn]

≥ E[φ] ≥ Iµ = 0

since E[rn] is nonnegative for every n ≥ 1. Then, all above inequalities turn into

equalities. In particular, Iµ = E[φ] = 0 is attained. By Lemma 3.2, I1 also is

attained. This concludes the proof of Proposition 3.3.
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3.4. The region 1

2
< α < 2

3

We recall from Proposition 2.2 the existence of a critical value Vc such that IM = 0

if and only if CM4α−2 ≤ Vc, and IM < 0 otherwise. Let us define

Mc :=

(

Vc

C

)
1

4α−2

and notice that 4α − 2 is positive if 1
2 < α < 2

3 . The main result in this region is

stated in the following proposition.

Proposition 3.4. Assume that α ∈ (1
2 ,

2
3 ). The following assertions hold true:

(i) If M <Mc, then IM is not achieved.

(ii) If M = Mc, then there exists a minimizer.

(iii) If M > Mc, then the strict inequalities (1.7) always hold, and in particular

there exists a minimizer.

In the critical case M = Mc, the strict inequalities (1.7) do not hold. As

consequence, the stability of such a solution cannot be ensured by usual arguments.

Proof. We first assume that M <Mc, so that IM = 0 by Proposition 2.2. Define

EM [ϕ] :=
1

2

∫

R3

|∇ϕ|2 dx+
1

4
D[ϕ] −M4α−2 C

2α+ 2

∫

R3

|ϕ|2α+2 dx .

We may observe that E1 = E. By applying Lemma 2.3 with p = 2 and q = 1 (or,

equivalently, (2.10) with p = 2), we get

E
[

M2 ϕ(M ·)
]

= M3 EM [ϕ] ∀ϕ ∈ Σ1 .

We argue by contradiction. Assume that IM is achieved. Then, there exists a

minimizer ϕM of

inf{EM [ϕ] : ϕ ∈ Σ1} = M−3 IM .

In this way, ϕM is a test function for M−3
c IMc and EMc [ϕM ] < EM [ϕM ] = 0 since

Mc > M . We contradict the fact that IMc = 0, thus proving (i).

Next, we assume that M > Mc. In order to prove the strict inequalities (1.7)

and establish (iii) in Proposition 3.4, the key point is the following.

Lemma 3.1. If M > Mc, then we have

IM ′ ≤
(M ′

M

)3

IM ∀M ′ > M . (3.14)

In particular, the function M 7→ IM is decreasing on [Mc,+∞). Furthermore,

IM < Im + IM−m ∀m ∈ (0,M) . (3.15)
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Proof. Consider ϕ ∈ ΣM and let ϕ̃ :=
(

M ′

M

)2
ϕ
(

M ′

M ·
)

. We notice that ϕ̃ ∈ ΣM ′ and

IM ′ ≤ E[ϕ̃] =
(

M ′

M

)3
[

1
2

∫

R3

|∇ϕ|2 dx+ 1
2 D[ϕ] − C

2α+2

(

M ′

M

)4α−2
∫

R3

|ϕ|2α+2 dx

]

≤
(

M ′

M

)3

E[ϕ] .

We deduce (3.14) by taking the infimum of the right-hand side over all functions ϕ

in ΣM and the monotonicity of M 7→ IM on [Mc,+∞) follows.

We now turn our attention to the proof of (3.15). If Im = IM−m = 0, in-

equalities (3.15) obviously holds for any M > Mc, since IM is negative. If Im < 0

but IM−m = 0 (so that Mc < m and M − m ≤ Mc), then (3.15) reduces to

IM < Im, which is again guaranteed by (3.14). If both Im and IM−m are negative

(this is equivalent to m > Mc and M −m > Mc, and therefore it may occur only

if M > 2Mc), then we have

IM ≤
(M

m

)3

IM <
M

m
Im and IM ≤

( M

M −m

)3

IM <
M

M −m
IM−m

by using (3.14). Hence, IM = m
M IM + M−m

M IM < Im + IM−m. This concludes the

proof of Lemma 3.1.

Let us come back to the proof of Proposition 3.4. In order to prove the existence

of minimizers in the limiting case CM4α−2 = Vc, that is M = Mc, we follow the

arguments in 19, where a proof for the case C = 1 is given. As noted in Remark 2.1,

relative compactness (up to translations) of all minimizing sequences cannot be

proved in this case, since IMc = 0. We build a particular minimizing sequence as

follows.

Let Mn = Mc + 1
n , for every positive integer n, and assume that ϕn is a

minimizer of IMn in ΣMn , which is already known to exist since Mn > Mc and

therefore IMn < 0 for any n ≥ 1. Since {Mn}n≥1 converges towards Mc, it can

be deduced that limn→∞ E[ϕn] = limn→∞ IMn = IMc = 0. With the notations

of Corollary 2.2, this means that limn→∞ ηMn = 0. If we combine the results of

Corollary 2.1 and Corollary 2.2, then we obtain

1

4
εMn−

3

2
ηMn ≤ C2−2α

1/2 CGN(1)2α−1Mα− 1
2

[

1

2
(3α− 1) εMn − (5α− 1) ηMn

]4α−1

[

(2 − 3α) εMn − 2 (2 − α) ηMn

]1−α

.

By passing to the limit as n→ ∞, we find that

1

4
≤ C2−2α

1/2 CGN(1)2α−1Mα− 1
2

[

1

2
(3α− 1)

]4α−1
[

(2 − 3α)
]1−α

lim inf
n→∞

ε3α−1
Mn

,

thus proving that lim infn→∞ εMn > 0 and hence

lim inf
n→∞

∫

R3

|ϕn|2α+2 dx > 0 .
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Then, by Lemma I.1 in 25 the sequence {ϕn}n≥1 satisfies the non-vanishing con-

dition (1.6). Consequently, up to translations, there exists a subsequence that

converges weakly in H1(R3), strongly in L2
loc(R

3) and pointwise almost everywhere,

towards a nonzero function ϕ∞. This sequence can be also assumed to be strongly

convergent in L2
loc(R

3) and pointwise convergent almost everywhere. Thanks to 8

and Lemma 2.2 in 35, we get

0 = lim
n→∞

IMn = lim
n→∞

E[ϕn] = E[ϕ∞] + lim
n→∞

E[ϕn − ϕ∞] .

Since 0 < ‖ϕ∞‖2
L2(R3) ≤Mc, we have E[ϕ∞] ≥ 0 and

lim
n→∞

‖ϕn − ϕ∞‖2
L2(R3) = Mc − ‖ϕ∞‖2

L2(R3) < Mc ,

then limn→∞ E[ϕn − ϕ∞] ≥ 0. Therefore, E[ϕ∞] = 0. To conclude the proof of

Proposition 3.4 we observe that ‖ϕ∞‖2
L2(R3) = Mc. Otherwise, ϕ∞ is a minimizer

of IM , for some M < Mc, and we reach a contradiction with the first statement in

Proposition 3.4. �

c© 2013 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.
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5. O. Bokanowski, J. L. López, Ó. Sánchez, and J. Soler, Long time behaviour to

the Schrödinger-Poisson-Xα systems, in Mathematical physics of quantum mechanics,
vol. 690 of Lecture Notes in Phys., Springer, Berlin, 2006, pp. 217–232.
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