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Abstract
We review Streater’s energy-transport models which describe the

temporal evolution of the density and temperature of a cloud of grav-
itating particles, coupled to a mean field Poisson equation. In par-
ticular we consider the existence of stationary solutions in a bounded
domain with given energy and mass. We discuss the influence of the
dimension and geometry of the domain on existence results.
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1 Introduction

Recently, R. F. Streater derived systems of partial differential equations that
describe the dynamics of Brownian particles in the presence of an external po-
tential as well as the accompanying thermodynamic processes, cf. [39, 40, 41]
(and [42] for further extensions), as generalizations of the classical Smolu-
chowski equation (cf. [38]). The paper [6] gave an extension of Streater’s
models to the case of self-interacting particles via a Poisson type coupling.
Also, we refer to [22], where a review of related energy-transport models in
solid state physics is given.

The fundamental property that these models share is that they preserve
the mass or charge, the energy (so that they satisfy the first law of thermo-
dynamics), and that they are compatible with the second law of thermody-
namics.

The models introduced by Streater extend classical Nernst–Planck–De-
bye–Hückel drift-diffusion systems for charged particles (cf., e.g., [4]) and
those for gravitationally attracting particles (cf. [44, 8]) that do not take
into account the evolution of the temperature. Mathematical properties of
solutions of the isothermal models are quite well understood now. In partic-
ular, finite time blow-up of solutions may occur for the models of attracting
particles ([7, 3, 8]), while solutions for electrically interacting particles are
global in time and tend to steady states ([4]).

Systems governing the evolution of the density u ≥ 0 (or rather densities
u1, . . . , uN of different species) of a cloud of particles consist of equations of
two different types. The first group of equations (formally parabolic) takes
into account the Brownian diffusion of particles and their collective motion
caused by the gradient of a mean field potential. The second equation (of
nonclassical type) represents the balance of heat and involves terms con-
nected with thermal diffusion, convection and heat production. The potential
consists of a given external one, and either the electric or the gravitational
potential generated by the particles themselves. The study of the case of
repulsive electric interaction was started recently in [2], where the steady
states and time asymptotics of a solution of the evolution problem have been
considered. Here we will deal with the case of gravitationally attracting
particles.

We remark that the energy-transport models are valid in a transition
regime between a fully kinetic (or hydrodynamic) and an isothermal situa-
tions. The Cauchy problem of a parabolic model for which the temperature
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is globally defined and which modelizes the relaxation to the same stationary
states as in Streater’s models has been studied in [36].

In this paper we will focus on the existence and (non)uniqueness of sta-
tionary solutions for fixed mass and energy in the gravitational case (cf.
previous results in [25, 30]). The existence of solutions of the Cauchy prob-
lem is only partially known and a proof of a global existence result is open
and seems very difficult (cf. comments in [6] and [2]). Here we review known
results, present case studies (special geometries) and extend the existing the-
ory.

Before going further, let us point out a few references which are relevant
for our purpose (but the list is far from being exhaustive). Our study is
centered around the Poisson–Boltzmann–Emden equation (see for instance
[1] and references therein) which arises in the context of statistical mechanics
of gravitating systems (see [33] for an introduction). Standard results on the
Poisson–Boltzmann–Emden equation go back to Emden and Fowler (we refer
to [10, 19] for classical results). The study of bounded radial solutions in balls
uses results on the branches which have been established in [21].

In the two-dimensional case, the Poisson–Boltzmann–Emden equation
also appears in the context of Onsagers’s approach to turbulence for the
Euler equation (see [32, 27, 23, 11, 26] and more specifically [17, 11] in the
microcanonical framework). For star-shaped domains Pohozaev’s identity
(see [34]) is of great importance, for linear equations this method actually
goes back to Rellich: see [35]. It is a crucial tool for the study of branches of
smooth solutions as well as for singular solutions (see [28, 18] and references
therein).

2 The equations

We consider the system of parabolic-elliptic equations for the density u ≥ 0
of a cloud of gravitationally interacting particles, the temperature θ > 0 and
the potential φ




ut = ∇ ·
[
κ(∇u + u

θ
(∇φ + ∇φ0))

]
(uθ)t = ∇ · (λ∇θ) + ∇ · [κ(θ∇u + u∇φ + u∇φ0)]

+(∇φ + ∇φ0) ·
[
κ(∇u + u

θ
(∇φ + ∇φ0))

]
∆φ = u.

(1)
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The above system is considered in a bounded connected domain Ω ⊂ IRd,
and supplemented by the boundary conditions{

∂νu + u
θ
(∂νφ + ∂νφ0) = 0 (no mass flux),

∂νθ = 0 (no heat flux),
(2)

where ∂ν denotes the normal outgoing derivative on the boundary ∂Ω. For
the potential φ we consider either the Dirichlet boundary condition

φ = 0 on ∂Ω, (3)

or the “free” condition
φ = Ed ∗ uΩ, (4)

where uΩ(x) = u(x) for x ∈ Ω, uΩ(x) = 0 for x /∈ Ω, and Ed is the funda-
mental solution of the Laplacian in IRd. It is reasonable to assume that the
given function φ0 satisfies e−φ0/T ∈ L1(Ω) for some T > 0, i.e. the external
potential φ0 is confining at the temperature T .

Note here that we could also consider the case of an unbounded domain
(eventually the whole space) for which the confinement is entirely due to
the external potential (see [9] for examples in the isothermal case). The
boundary conditions (2) and (3)/(4) then have to be replaced by appropriate
growth conditions on the external potential, at infinity. Actually, there is
a balance between φ0 and the geometric properties of the domain. For the
simplicity of the analysis, we shall consider here a bounded domain without
external potential, but physically the other situation (unbounded domain
and external potential) is certainly more realistic. In some sense the “free”
boundary condition corresponds to an external potential which is constant
inside the domain and infinite outside, and at least at a qualitative level our
results should extend to a less singular external potential. Concerning the
confinement, also note that many results for stationary solutions of gravita-
tional systems are similar to stationary states of charged particles (with the
same charge) in the presence of an external potential (see [15]).

The case of Dirichlet boundary conditions is somehow academic but al-
lows computations that we hope to be relevant for more realistic boundary
conditions, like for instance the “free” boundary condition. What we have
in mind here is the description of a localized gravitational structure, which
is confined by an external mechanism which is not described in the model.

The analysis of the (physically relevant) free condition (4) is slightly dif-
ferent in some aspects and will be considered elsewhere.

4



The coefficients κ, λ are nonnegative functions of x, u, θ, φ, which can
vanish only at θ = 0.

The Cauchy problem for the system (1), (2) and either (3) or (4) consists
in finding a solution 〈u, θ, φ〉 with prescribed initial data u(x, 0) = u0(x) and
θ(x, 0) = θ0(x).

The boundary conditions (2) guarantee that the total mass M =
∫
Ω u dx

and the total energy

E =
∫
Ω
u
(
θ + φ0 +

1

2
φ
)
dx

are preserved for classical solutions. We define also the entropy by

W =
∫
Ω
u log

(
u

θ

)
dx.

For sufficiently smooth solutions of (1)–(2) and either (3) or (4), the
entropy W is decreasing and the following production-of-entropy formula
holds

dW

dt
= −

∫
Ω
λ
|∇θ|2
θ2

dx−
∫
Ω
κu
∣∣∣∣∇u

u
+

1

θ
(∇φ + ∇φ0)

∣∣∣∣
2

dx . (5)

The entropy production relation (5) implies that for steady states 〈u, θ, φ〉
θ = const, and the flux ∇u + u

θ
∇(φ + φ0) vanishes a.e. in Ω, so that

∇
(
ue(φ+φ0)/θ

)
= 0. Thus u has the Boltzmann-distributed form

u = C e−(φ+φ0)/θ, (6)

where C = M
(∫

Ω e−(φ+φ0)/θ dx
)−1

, since
∫
Ω u dx = M .

3 The Poisson–Boltzmann–Emden equation

The case of gravitational interaction is much more complicated than the
electric case studied in [2], where the third equation of the system (1) is
replaced by the repulsive mean field coupling −∆φ = u. The reason is
that, contrary to the case of electric interaction, the potential φ could be
(very) negative in the attractive case, so that neither the energy nor the
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entropy relations give reasonable a priori bounds on 〈u, θ, φ〉. From a more
mathematical viewpoint, the energy is no more a convex function of u because
of the sign of the potential energy term. Even if the external potential φ0

is absent, the structure of the set of steady states (existence–uniqueness vs.
nonexistence–multiplicity), determined by the (scaled) Poisson–Boltzmann–
Emden equation (7) below, is complicated and depends in a very sensitive
manner on geometric properties of the domain, cf. [11], [14], and [13] for
the case of Riemannian manifolds. For the case of an external (singular)
potential, see, e.g., [8]. Typically, variational methods can be used in the two-
dimensional case (see Section 4), while they are of lesser use for d > 2 (the
case studied in Section 5), cf. [31] and remarks in [44]. For a refined analysis
of the problem in three dimensions close to a planar one via variational
methods, we refer the reader to the recent paper [26].

Now we study stationary solutions of (1), with φ0 ≡ 0, in a bounded
domain Ω ⊂ IRd, i.e.,

u ≡ ∆φ = M
e−φ/θ∫

Ω e−φ/θ dx
in Ω, (7)

(see (6)), supplemented by the Dirichlet boundary condition (3).
Although the equation (7) as steady state equation for the gravitational

Streater’s model has a physical meaning only on 1, 2 or 3-dimensional do-
mains, we shall in the sequel consider its scaled version (9) subject to (8)–(10)
on domains of arbitrary dimension d. The main reason for this is that the
most important mathematical properties do not change for d larger or equal
3. Also we believe that more mathematical structure is revealed by this
generality.

Scaling the potential solving (7) with (3) as φ = θψ, the energy becomes
E = Mθ + 1

2
θ2
∫
Ω ψ∆ψ dx = Mθ − 1

2
θ2
∫
Ω |∇ψ|2 dx. The problem of finding

a solution of (7) with given energy E and mass M > 0 is equivalent to looking
for a solution of the equation

(
E

M2

)
m2 = m− 1

2

∫
Ω
|∇ψ|2 dx ≡ E(m,ψ). (8)

Here m = M/θ and ψ solves the Poisson–Boltzmann–Emden equation

∆ψ = m
e−ψ∫

Ω e−ψ dx
in Ω, (9)
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subject to the condition

ψ = 0 on ∂Ω, (10)

in the range of admissible m > 0, and satisfies E/M2 = E(m,ψ)/m2 for some
ψ solution of (9)–(10). In cases in which this problem does not have a unique
solution, it is useful to define

F(m) = inf
ψ solutions of (9)−(10)

E(m,ψ) ,

where (9) is the Poisson–Boltzmann–Emden equation, with parameter m.
Some of the results on the problem (8)–(10) in Section 4 (in the two-

dimensional case) are consequences of subtle properties of solutions of the
Poisson–Boltzmann–Emden equation (9)–(10) proved in [11].

As it is well known (compare also examples below), (9)–(10) has nontrivial
bounded solutions either for m ∈ (0,mΩ) or m ∈ (0,mΩ] with some 0 <
mΩ ≤ ∞ (mΩ may be defined as the supremum of the interval I containing 0
such that for any m ∈ I, the Poisson–Boltzmann–Emden Dirichlet problem
(9), (10) has at least one bounded solution). In the first case, typically, the
density becomes unbounded in L∞(Ω) as m ↗ mΩ. Moreover, in the case of
star-shaped domains Ω ⊂ IRd, d ≥ 2, one has mΩ < ∞, while, e.g., for annuli
Ω ⊂ IRd, mΩ = ∞.

The proofs of nonexistence of solutions of (9)–(10) in star-shaped domains
for m � 1 employ either the Pohozaev identity (in strictly star-shaped do-
mains) or the moment method for the evolution (isothermal) problem. We
refer the reader to [11] in the case of the Dirichlet condition and dimension
d = 2. For dimensions d ≥ 3 see e.g., [16], [7], p. 322 and also [3], Th. 2,
and to [7], Th. 2 (v), [3], Th. 1, and [29] in the case of the free condition (4)
for φ. We recall an argument based on the Pohozaev method in the proofs of
Remark 5.1 and Theorem 5.7. In the two-dimensional case this nonexistence
result has been extended to an arbitrary simply connected domain, see [24].

4 Planar domains

We emphasize that the results of this section are strongly based on [11], [43].
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Let us start with an explicit example of the analysis of the problem (8)–(10).

Example 1. If Ω is the unit disc B(0, 1) = {x ∈ IR2 : |x| < 1}, we have for
a fixed m ∈ [0, 8π) a unique radially symmetric solution ψm of (9)–(10) (see
[43]). Moreover, by [20], there is no other bounded solution of this problem.
The function ψm satisfies ∂

∂r
ψm = 4r (r2 + 8π/m− 1)

−1
with r = |x|. The

direct integration of the equation yields:

∫
Ω
|∇ψm|2 dx = 2π

∫ 1

0
r

(
∂

∂r
ψm

)2

dr = 32π
∫ 1

0
r3
(
r2 +

8π

m
− 1

)−2

dr ,

which leads to limm↗8π

∫
Ω |∇ψm|2 dx = ∞, i.e. limm↗8π E(m,ψm) = −∞.

Since infm∈(0,8π) E(m,ψm) = −∞ and E(m,ψm) ∼ m − Cm2 as m → 0+

F(m)

m8π

The function m �→ F(m) = 2m + 8π log(1 − m
8π

).

for some C > 0, we have from the analysis of the graph of E and by the
connectedness of the set {ψm , m ∈ [0, 8π) } (see [43]; see also Remark
(5.9)), the following

Proposition 4.1 For each E ∈ IR and each M > 0, there exists a solution
of (8)–(10) in the unit disc in the plane.

In the two-dimensional case solutions of (9)–(10) can be obtained as

the absolute maxima of certain functionals, e.g., I[ψ] = log
(∫

Ω e−ψ dx
)

+
1
2

∫
Ω ψ∆ψ dx or J [ψ]=− ∫Ω(∆ψ) log(∆ψ) dx− 1

2

∫
Ω ψ∆ψ dx considered in the

class of potentials ψ corresponding to the densities ∆ψ ≥ 0,
∫
Ω ∆ψ dx = m

and satisfying boundary conditions (10), see [11]. However, there exist steady
states that cannot be obtained in this (direct variational) way (cf. [11],
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‖ψm‖L∞(Ω)

m
8π

The bifurcation diagram in (0,∞) × L∞(Ω) when Ω is the unit disc in IR2
.

and [14] in non-simply connected domains). The applicability of the direct
method of the calculus of variations to the functionals I or J is based on the
Moser–Trudinger inequality

∫
Ω

exp (|ψ|) dx ≤ C exp
(
|Ω|−1

∣∣∣∣
∫
Ω
ψ dx

∣∣∣∣+ |∇ψ|22/(8β)
)
, (11)

see [12] and [7], (15.1)–(15.2). The range of the parameter m for which this
inequality is useful depends on which boundary condition (3) or (4) is used
in domains Ω with either smooth (C2) or piecewise smooth boundary ∂Ω,
and β = γ (the minimal interior angle at the vertices of ∂Ω for (4)), β = 2γ
for (3), while 0 ≤ m < 4β in all these cases. The functionals I and J are
also important in the study of global-in-time existence of solutions of the
isothermal evolution problem in [3, 4, 8].

However, these variational principles do not give all the solutions of the
Poisson–Boltzmann–Emden problem (9)–(10), e.g. if m > 8π. The solv-
ability of the homogeneous Dirichlet problem for (7) (and thus (9)–(10)),
called also the Mean Field Problem in [11], can be studied in two-dimensional
smooth domains using the more general Microcanonical Variational Principle
as was done in the second part of [11]. Namely, the maximizer of the entropy
functional S( ) = − ∫Ω  log  dx on the set of densities of nonnegative mea-
sures  ≥ 0,

∫
Ω  dx = 1, under the constraint of the fixed potential energy

Ep =
∫∫

Ω×Ω G(x, y) (x) (y) dx dy satisfies (7) for M = 1 and some θ depend-
ing on Ep. Here G is the Green function for −∆ on the domain Ω. Note
that, corresponding to m(= 1

θ
) > 8π, there may exist solutions of (9)–(10)

satisfying the Microcanonical Variational Principle which are neither maxi-
mizers of I nor of J , and these solutions are not unique. The nonequivalence
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of the above mentioned variational principles may occur in the, so-called,
planar domains of the second kind introduced in [11, Part II, Sec. 6]. Below
there is an example of such a domain (its boundary is only piecewise smooth,
but it does not matter). A smooth domain of the first kind is, by definition,
one with inf { E(m,ψ) : m ∈ (0, 8π), ψ solution of (9) − (10) } = −∞. In
domains of the first kind which are simply connected (9)–(10) has a unique
bounded solution for each m ∈ [0, 8π), and no bounded solution for m ≥ 8π.
Discs and simply connected domains close to a disc are examples of such
domains.

Example 2. (cf. [11], p. 523) If Ω ⊂ IR2 is a “long” rectangle, i.e. Ω =
(0, a) × (0, b) with b � a > 0, then mΩ < ∞ but there exists a solution
maximizing the functional I[ψ] for m = 8π, unlike in the case of a disc in
the plane. This is a consequence of the relation supm∈(0,8π) I[ψ] < ∞ which
permits us to prove that a maximizing sequence for I with m ↗ 8π converges
to a maximizer of I for m = 8π. Moreover, there is nonuniqueness of solutions
of (9)–(10) : either there are at least two distinct solutions of (9)–(10) for
m = 8π or there exists a sequence mn ↘ 8π as n → ∞ such that there
are at least two distinct bounded solutions of (9)–(10) for every m = mn

(see Theorem 7.1 in [11, Part II]). Here, infm∈(0,8π] F(m) > −∞ is satisfied,
while infm∈(0,mΩ) F(m) = −∞ still holds. In this case, one can easily see
that solutions of (8)–(10) exist for arbitrary E/M2 ∈ IR as was the case for
the disc.

Theorem 4.2 If Ω is a bounded strictly star-shaped domain in IR2, with
smooth boundary, then for all M > 0 and E ∈ IR there exists a solution of
(8)–(10).

Proof. The problem (9)–(10) has a solution for m ∈ [0,mΩ), for some 8π ≤
mΩ < ∞, and has no solution for m > mΩ. Moreover, for each m ∈ [0, 8π)
there is a unique bounded solution ψm and the set {ψm ∈ L∞(Ω) : 0 ≤
m < 8π } is connected (see [43]).

It follows from the bound ‖ψ‖L∞(Ω) ≤ mC(Ω,m) with C(Ω,m) uniformly
bounded as m ↘ 0 (cf. [8, p. 187]; see also Lemma 5.3 and Corollary 5.4),
that E(m,ψm) ∼ m for small m.

If Ω is of the first kind, then limm↗8π E(m,ψm) = −∞ and therefore, the
problem (8)–(10) has a solution for all E ∈ IR and M > 0.
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For domains of the second kind, limm↗8π E(m,ψm) > −∞ (cf. [11, p.
251]), but there exists a branch of solutions ψm, 0 ≤ m < mΩ , such that
inf0<m<mΩ

E(m,ψm) = −∞ (see [43] and [11]). This implies the existence of
solutions of (8)–(10) in that case (and they may be multiple for m ≥ 8π ,
see Theorem 7.1 in [11, Part II]). ��

As we already remarked, problem (9)–(10) in star-shaped domains does
not have solutions for large m (see a simple proof of this fact in the next
section). However, in certain domains, e.g. the annuli, solutions exist for
all m > 0, as can be seen in [11]. In those cases there exists &0 ∈ IR such
that there is no steady state of Streater’s system (1)–(3) if E/M2 < &0 (see
Proposition 5.10). Such results are typical in higher dimensional situations
as well as on 1-dimensional intervals.

5 Higher dimensional problem

The goal of this section is to analyze the existence of solutions of (8)–(10)
in higher dimensions d ≥ 3. However, several results of this section are also
valid in lower dimensions. Our strategy here is to prove that

(i) Near m = 0+, F(m) ∼ m.

(ii) There exists a constant &0 ∈ IR such that F(m) ≥ &0m.

5.1 Preliminary results – star-shaped domains

Let us start with some standard facts and preliminary results.

Note first that (9) is autonomous, so that we may assume without loss of
generality that Ω is star-shaped with respect to the origin as soon as it is
star-shaped with respect to some point.

Using x ·∇ψ as a test function in (9), and integrations by parts, we easily
recover Pohozaev’s identity

1

2

∫
∂Ω

(x · ν)|∂νψ|2 dσ +
d− 2

2

∫
Ω
|∇ψ|2 dx = dm

(
1 − |Ω|∫

Ω e−ψ dx

)
, (12)

where σ is the measure on ∂Ω induced by the Lebesgue measure. If Ω is
a star-shaped bounded domain (with respect to the origin), then the first
term of the left hand side is nonnegative.
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Remark 5.1 Recall a standard fact that if Ω is a strictly star-shaped bounded
domain in IRd, d ≥ 2, the range of m > 0 such that (8)–(10) has a bounded
solution is bounded: mΩ < ∞.

The argument goes as follows. We assume that Ω is strictly star-shaped with
respect to the origin. Then β = minx∈∂Ω x · ν(x) > 0. We integrate (9) over
Ω and use the Gauss theorem:∫

∂Ω
∂νψ dσ =

∫
Ω

∆ψ dx = m ,

which combined with Hölder’s inequality gives

m2 =
(∫

∂Ω
∂νψ dσ

)2

≤
∫
∂Ω

|∂νψ|2 dσ |∂Ω| ,

and thus, according to (12),

dm− β

2

m2

|∂Ω| ≥ 0 .

Note that this argument is sharp for a ball in dimension d = 2 (see [11, 16, 24]
and references therein) and gives for unit balls in IRd, d ≥ 2, the condition

m ≤ mΩ ≤ 2d σd ,

where σd = |Sd−1| is the surface of the unit sphere, with a strict inequality if
d > 2 (for the last assertion see, for instance, [7], Sec. 2).

Lemma 5.2 Assume that Ω is a bounded star-shaped domain in IRd, with
d ≥ 3. Then there exists a constant αd, such that F(m) ≥ αdm. Moreover,
if d ≥ 15, then αd > 0.

Proof. Consider the equation

∆ψ = m
e−ψ∫

Ω e−ψ dx
≡  .

Taking the logarithm of the right hand side, we have

−ψ = log  − log

(
m∫

Ω e−ψ dx

)
.

12



Thus ∫
Ω
|∇ψ|2 dx =

∫
Ω
 log  dx−m log

(
m∫

Ω e−ψ dx

)
. (13)

On one hand, Jensen’s inequality gives

∫
Ω
 log  dx ≥ m log

(
m

|Ω|

)
, (14)

and on the other hand, from Pohozaev’s identity (12), we know that

1

2

∫
Ω
|∇ψ|2 dx ≤ dm

d− 2

(
1 − |Ω|∫

Ω e−ψ dx

)
. (15)

A combination of (13), (14) and (15) implies that X = |Ω|−1
∫
Ω e−ψ dx satis-

fies the inequality

logX ≤ 2d

d− 2

(
1 − 1

X

)
,

or, in other words, that

X ∈ [1, X∗(d)] with logX∗(d) =
2d

d− 2

(
1 − 1

X∗(d)

)
> 0 .

It is straightforward that d �→ X∗(d) is decreasing on (0,∞). To conclude,
we simply use again (15) and write

E(m,ψ) = m− 1

2

∫
Ω
|∇ψ|2 dx ≥ m− dm

d− 2

(
1 − |Ω|∫

Ω e−ψ dx

)
,

E(m,ψ) ≥ m

d− 2

(
d

X∗(d)
− 2

)
≡ αdm .

With this notation, αd > 0 if and only if X∗(d) < d/2, which according to
the definition of X∗(d) means d > 2 e2 ∈ (14, 15). ��

In particular, the results in Lemma 5.2 exclude the existence of solutions
of (7), (3) with negative energies (cf. Th. 5.7) for d ≥ 15.

If d = 2, it is possible to prove a uniqueness result for small m > 0, (see
[11] or [8] p. 187). For the completeness of this article, we state the result
here, with a short proof.
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Lemma 5.3 Assume that Ω is a bounded domain in IR2. Then there exists
an m∗ ∈ (0,mΩ] such that for any m ∈ (0,m∗), equation (9) has a unique
bounded solution ψ, which moreover satisfies

‖ψ‖L∞(Ω) ≤ mC(Ω,m)

with C locally bounded in m ∈ [0,m∗) (but possibly limm↗m∗ C(Ω,m) = ∞).

Proof. Let G be the Green function of the negative Laplacian in Ω corre-
sponding to the homogeneous Dirichlet boundary conditions and consider s,
s′ ∈ (1,∞) such that 1/s + 1/s′ = 1. With the notations  = mµ−1e−ψ,
µ =

∫
Ω e−ψdx, if ψ is a solution of (9)–(10), we have

−sψ(x) ≤ sm
∫
Ω
|G(x, y)|  (y) dy

m
.

Using Jensen’s inequality and integrating with respect to x, we obtain

‖e−ψ‖sLs(Ω) =
∫
Ω
e−sψ(x) dx ≤

∫
Ω

 (y) dy

m

∫
Ω
esm|G(x,y)| dy dx . (16)

Since
∫
Ω
�(y) dy
m

= 1 and |G(x, y)| ≤ C (|log |x− y|| + 1) for some constant
C > 0, ‖e−ψ‖Ls(Ω) is bounded uniformly with respect to m sufficiently small.
Next, using Hölder’s inequality, it is easy to check that

|Ω| ≤ µs/(s+1)‖e−ψ‖s/(s+1)
Ls(Ω) ,

and hence 0 < µ−1 ≤ |Ω|−1−1/s‖e−ψ‖Ls(Ω). Thus we have

‖mµ−1e−ψ‖Ls(Ω) ≤ m|Ω|−1−1/s‖e−ψ‖2
Ls(Ω) ≤ C m

for some constant C > 0 independent of m, which implies

‖ψ‖L∞(Ω) =
∥∥∥∥mµ−1

∫
Ω
G(x, y)e−ψ(y) dy

∥∥∥∥
L∞ (Ω)

≤ C m

(
sup
x∈Ω

∫
Ω
|G(x, y)|s′ dy

)1/s′

.

It is easy to check that supx∈Ω

∫
Ω |G(x, y)|s′ dy is finite for any s′ ∈ (1,∞)

which, combined with a contraction mapping argument, completes the proof.
��

In higher dimensions it is possible to replace the inequality (16) by a direct
estimate of ‖e−ψ‖Ls(Ω) if one is able to show at least the existence of a uniform
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bound for the density  in an appropriate Morrey space containing Ld/2(Ω)
(see Th. 1 (ii) in [7]). Uniqueness then follows.

Apart from uniqueness questions, for d = 2, Lemma 5.3 is sufficient to
estimate E(m,ψm) for m small.

Corollary 5.4 With the same notations as in Lemma 5.3,

E(m,ψm) ≥ m− 1

2
C(Ω,m)m2 for each m ∈ [0,m∗) . (17)

Proof. Under the boundary condition (10),

∫
Ω
|∇ψ|2 dx = −

∫
Ω
 ψ dx ≤ C(Ω,m)m2 .

��

Going back to the case d ≥ 3, we will state a result which is valid for
bounded solutions only. Note that for such a solution ψ, e−ψ ∈ L∞(Ω), and
by a standard iteration method, one gets ψ ∈ C∞(Ω). The regularity up to
the boundary depends on the regularity of ∂Ω, cf. [28].

Consider now the solutions 〈λ, ψ〉 ∈ [0,∞) × L∞(Ω) to




∆ψ = λ e−ψ in Ω ,

ψ = 0 on ∂Ω ,
(18)

with 0 < λ = m∫
Ω
e−ψ dx

. Note that λ ≤ m
|Ω| , since ψ < 0 in Ω by the Maxi-

mum Principle. There exists a constant C > 0, which only depends on the
dimension d ≥ 3 such that, for any bounded solution ψ of (18),

∫
Ω
|∇ψ|2 dx ≤ C λ

as a consequence of the computations of Lemma 5.2 (also see [28]). Let us
state the the following result, due to X. Cabre and P. Majer and cited in [28]
(also see [37]).

Theorem 5.5 If Ω is star-shaped and if d ≥ 3, there exists λ0 > 0 such that
for any λ ∈ (0, λ0), there exists a unique bounded solution of (18).
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Corollary 5.6 If Ω is star-shaped and if d ≥ 3, there exist a continuous
family of bounded solutions ψm. Moreover, there exists two positive constants
C, m∗ such that if m ∈ (0,m∗) then, for any solution ψm, m ≥ E(m,ψm) ≥
m− C m2.

Proof. The function ψm exists by results of [7]. Moreover, applying Theorem
5.5 with λ = m∫

Ω
e−ψm dx

≤ m
|Ω| → 0 as m → 0, any bounded solution ψm is

uniformly small in L∞(Ω) with respect to m > 0, small:

1 − |Ω|∫
Ω e−ψm dx

= O(m) as m → 0+ ,

which proves that
∫
Ω |∇ψm|2 dx = O(m2) as m → 0. ��

Theorem 5.7 If Ω is a bounded star-shaped domain in IRd, d ≥ 3, with
a smooth boundary, then there exists a constant &1 ∈ IR such that for any
E/M2 > &1, there is a nontrivial bounded solution of the problem (8)–(10),
and there exists a constant &0 such that if E/M2 < &0, then (8)–(10) has
no nontrivial bounded solution. Moreover, if d ≥ 15, there exists a positive
constant &̃0 such that if E/M2 < &̃0, then (8)–(10) has no solution in H1

0 (Ω).

Note that &0 ≤ &1, with equality if, for instance, there is a single curve of
bounded solutions of (8)–(10).

Proof. By Corollary 5.6 the existence of &1 follows. On the other hand,
Lemma 5.2 and Corollary 5.6 imply the statement concerning &0.

The case d ≥ 15 follows from the estimate of Lemma 5.2. ��

5.2 Examples

5.2.1 Balls

If Ω is the unit ball B(0, 1) ⊂ IRd, d > 2, the problem (9)–(10) is no longer
integrable as it was the case for d = 2, but it can be reduced to the study of
a dynamical system in the plane (introduced by I. M. Gelfand in [19]), cf. [5]
and [8]. Moreover, the set of the solutions can be explicitly parametrized (see
Remark 5.9) and forms a single connected branch. Using this idea, one checks
that infm∈(0,mΩ) F(m) > −∞. This means that (8) does not have solutions
for E/M2 below some real constant, &0 (and &0 = &1 with the notations of
Theorem 5.7). Also remark that if 3 ≤ d ≤ 9, the solutions of (9)–(10) for
given m are not, in general, unique, see e.g. [5, Sec. 2].
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Proposition 5.8 There exists &0 ∈ IR such that for E/M2 > &0 there is
a bounded negative solution of (8)–(10) in the unit ball of IRd, d ≥ 3, and
there are no nontrivial bounded negative solutions if E/M2 < &0.

Proof. According to [20], negative solutions of (8)–(10) in a ball are radially
symmetric. For such solutions, we introduce an auxiliary function Q(r) =∫
Br

∆ψ dx (the integrated density). A simple computation shows that Q
satisfies the system

Qrr − (d− 1)r−1Qr + σ−1
d r1−dQQr = 0, (19)

Q(0) = 0, Q(1) = m, (20)

and d
dr
ψ(r) = σ−1

d r1−dQ(r), cf. [5, Sec. 2]. Note that this is a boundary
value problem for a nonlinear second order differential equation, i.e. it is
no longer a nonlocal problem as (9) was. Changing the variables s = log r,
v(s) = σ−1

d r3−dQr(r), w(s) = σ−1
d r2−dQ(r), we obtain

v′ = (2 − w)v, w′ = (2 − d)w + v, (21)

where ′ denotes d
ds

, together with the boundary conditions w(−∞) = 0
and w(0) = σ−1

d m. Observe that there is a unique trajectory (a separa-
trix) such that w(s) ≥ 0 for s → −∞, and which satisfies w(−∞) = 0.
Since lims→∞〈w(s), v(s)〉 = 〈2, 2(d− 2)〉, this trajectory is bounded (in fact,
sups∈IR w(s) < 2dσd). A shift of the argument s gives the proper normaliza-
tion of the value of w(0).

w

v

〈2, 2〉

The trajectory s �→ 〈v(s), w(s)〉 with limits 〈0, 0〉 as s → −∞ and 〈2(d− 2), 2〉 =
〈2, 2〉 as s → ∞ in the case d = 3.
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To prove that for d ≥ 3 the relation infm∈(0,mΩ) F(m) > −∞ holds, we
compute

∫
Ω
|∇ψ|2 dx=σ−1

d

∫ 1

0
Q2(r)r1−d dr=

∫ 0

−∞
w(s)Q(s) ds=σd

∫ 0

−∞
w2(s)es(d−2) ds

which is uniformly bounded for all m ≤ mΩ < 2dσd (by Remark 5.1). We see
also that for d = 2 the above integral is not bounded which was explicitly
checked in Example 1. ��

Remark 5.9 In the case of a ball of IRd (d > 1), the shift in s of the tra-
jectory s �→ 〈w(s), v(s)〉 also parametrizes the set of bounded solutions which
therefore belong to a simply connected branch. This can be seen more easily
in the original variables: for any a > 0, consider the solution ϕa = ϕ of{

ϕ′′ + d−1
r
ϕ′ = e−ϕ , r > 0 ,

ϕ(0) = −a , ϕ′(0) = 0 .
(22)

For any a > 0, define m(a) = σd
∫ 1
0 rd−1e−ϕa(r) dr and ψa(r) = ϕa(r) −

ϕa(1). Then ψ(r) = ψa(r) for r ∈ (0, 1) is a solution of (9)–(10) with
m = m(a). Reciprocally, to any bounded nontrivial radial solution of (9)–
(10) corresponds a solution of (22) with

a = ψ(0) − log

(
m∫

Ω e−ψ dx

)
∈ (0,∞) .

This proves that the set of bounded nontrivial radial solutions of (9)–(10) is
parametrized by a > 0. As a consequence, it is straightforward to check that
the set of the solutions of (9)–(10) in (0,∞) × L∞(Ω) is a connected branch
parametrized by the map

a �→ (m(a), ψa) ,

when Ω is a ball.

5.2.2 Annuli

Our last example is the analysis of the radially symmetric problem (8)–(10)
in annuli Ω = {x ∈ IRd : a < |x| < A}, 0 < a < A < ∞. However, there are
also nonradial solutions of (9)–(10) in certain cases, cf. [31] and the references
therein. Notice here that there are no restrictions on the dimension.
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‖ψ‖L∞(Ω)

m

The bifurcation diagram in (0,∞) × L∞(Ω) when Ω is the unit disc in IR3
.

This case is qualitatively generic for 3 ≤ d ≤ 9. Uniqueness is true only for m > 0
small enough.

‖ψm‖L∞(Ω)

m

The bifurcation diagram in (0,∞)×L∞(Ω) when Ω is the unit disc in IRd
, with d = 10.

Proposition 5.10 Assume that d ≥ 1. In the annulus Ω = {x ∈ IRd : a <
|x| < A}, given E ∈ IR and M > 0, radially symmetric solutions of (8)–(10)
exist if E/M2 > &1 for some &1 ∈ IR, and they do not exist if E/M2 < &0 ≤ &1.
Moreover, if d = 1 or 2, then &0 = &1.

Proof. The equation (9) for radially symmetric ψ, or (19) give (with ′ = d
dr

)

(rd−1ψ′(r))′ = λrd−1e−ψ, a < r < A, λ = m
(∫

Ω
e−ψ dx

)−1

, (23)

ψ(a) = ψ(A) = 0 . (24)

The function rd−1ψ′(r) is increasing and because of the boundary conditions
(24), ψ′(a) ≤ 0 ≤ ψ′(A) holds by Hopf’s lemma, so that ψ′(α) = 0 for some
α ∈ (a,A), and ψ′(r) ≤ 0 for r ∈ [a, α], ψ′(r) ≥ 0 for r ∈ [α,A]. Integrating
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(23) on either [r, α], a ≤ r < α, or [α, r], α < r ≤ A, we obtain

|rd−1ψ′(r)| < λ
∫ A

a
ρd−1e−ψ(ρ) dρ =

m

σd
.

Hence we have
|ψ′(r)| < m

σd
r1−d, (25)

for all a ≤ r ≤ A, and

∫
Ω
|∇ψ|2 dx = σd

∫ A

a
rd−1|ψ′(r)|2 dr

< m2σ−1
d

∫ A

a
r1−d dr ≡ C(a,A, d)m2

for all m > 0, and this leads to the estimate

m ≥ F(m) > m− C m2 (26)

with C = 1
2
C(a,A, d). This proves the existence of &0 and &1.

We still have to prove that radial solutions belong to a single connected
branch if d = 1 or 2.

If d = 1, consider the auxiliary problem

{
ϕ′′ = e−ϕ , r > 0 ,
ϕ(0) = 0 , ϕ′(0) = −γ ,

(27)

for any given γ > 0. Thus

d

dr

(
1

2
(ϕ′(r))

2
+ e−ϕ(r)

)
= 0 ,

so that it is easy to prove that there exists a r(γ) = r > 0 such that ϕ(r) = 0.
The function ψ = ψγ defined for a < r < A by

ψγ = ϕ
(
r(γ)

r − a

A− a

)

is a solution of (9)–(10) with

m = m(γ) ≡ r(γ)

A− a

∫ r(γ)

0
e−ϕ(s) ds = 2

γ r(γ)

A− a
.
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Reciprocally, to any radial bounded solution ψ of (9) corresponds a unique

solution of (27) with γ = −
(

1
m

∫ A
a e−ψ(s) ds

)1/2

ψ′(a).

If d = 2, let us first transform (9)–(10) according to the change of variables
given by

ψ(r) = χ(− log r) − 2 log r ,

so that the function χ is a solution of

χ′′ =
m

2π
∫− log a
− logA e−χ(s) ds

e−χ , χ(− log a) = χ(− logA) = 0 ,

which is exactly the one-dimensional problem, and can therefore be parame-
trized by the solutions of (27).

The estimate (25) combined with the Leray–Schauder argument leads to
a quick proof of existence of solutions of the problem (9)–(10) in annuli for
each m > 0. ��

‖ψm‖L∞(Ω)

m

The bifurcation diagram in (0,∞) × L∞(Ω) when Ω is the annulus {x ∈ IR2 : 1 <
|x| < 2}.

5.3 Conclusion

We believe that the situations described in examples for balls, strictly star-
shaped domains, and radially symmetric solutions in annuli are (qualita-
tively) generic for all bounded domains Ω ⊂ IRd, d ≥ 3.

Conjecture. For every bounded domain in IRd, d ≥ 3, with piecewise smooth
boundary, there exists &0 ∈ IR such that the problem (8)–(10) has a solution
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with given M > 0 and E ∈ IR if E/M2 > &0, and it does not have solutions
if E/M2 < &0.

Evidently, if Ω ⊂ IRd is such that (9)–(10) has solutions for all m > 0, i.e.
mΩ = ∞, the analysis of the local behavior (17) of the graph of E(m,ψm)
in a vicinity of 〈0, 0〉, and a global lower bound for E , like (26) for some
C = C(Ω), will imply the conjectured result, provided the set of the bounded
solutions is a (single) connected branch.

It would be of interest to check for which domains infm∈(0,mΩ) F(m) < 0,
because in such a case &0 < 0 is satisfied.
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Birkhäuser, Basel, Boston, 2000.

[23] M. K. H. Kiessling, Statistical mechanics of classical particles with log-
arithmic interactions, Comm. Pure Appl. Math. 46 (1993), 27–56.

[24] A. Krzywicki, T. Nadzieja, A note on the Poisson–Boltzmann equation,
Zastos. Mat. 21 (1993), 591–595.

[25] A. Krzywicki, T. Nadzieja, Steady states for a model of interacting par-
ticles, Appl. Math. Lett. 13 (2000), 113–117.

[26] P. L. Lions, A. Majda, Equilibrium statistical theory for nearly parallel
vortex filaments, Comm. Pure Appl. Math. 53 (2000), 76–142.

[27] J. Messer, H. Spohn, Statistical mechanics of the isothermal Lane–
Emden equation, J. Stat. Phys. 29 (1982), 561–578.

[28] F. Mignot, J.-P. Puel, Quelques résultats sur un problème elliptique avec
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