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1. Introduction: from fractional diffusion limits to hypocoercivity

We study decay rates in kinetic equations when local equilibria have fat tails.
Let us start by some heuristics in a simplified framework, in order to outline our
strategy and explain why fractional diffusion limits play a crucial role. Our goal
is to build an adapted Lyapunov functional and develop a L2-hypocoercivity
method. In this introduction, we shall insist on scalings and exponents. The
reader interested in detailed results is invited to go directly to Section 2.

Let us consider the Cauchy problem

∂tf + v · ∇xf = Lf , f(0, x, v) = f in(x, v) (1)

mailto:bouin@ceremade.dauphine.fr
mailto:dolbeaul@ceremade.dauphine.fr
mailto:lafleche@ceremade.dauphine.fr
mailto:Christian.Schmeiser@univie.ac.at


2 E. Bouin, J. Dolbeault, L. Lafleche & C. Schmeiser

for a distribution function f(t, x, v) depending on a position variable x ∈ Rd,
on a velocity variable v ∈ Rd, and on time t ≥ 0. The collision operator L
acts only on the v variable and, by assumption, its null space is spanned by a
local equilibrium F . We shall also assume that F is a probability density with
algebraic decay given for some γ > 0 by

∀ v ∈ Rd, F (v) =
cγ

〈v〉d+γ
where 〈v〉 :=

√
1 + |v|2 . (2)

It is classical that the normalization constant cγ is given by

cγ =
Γ
(
d+γ
2

)
πd/2 Γ (γ2 )

.

We shall also consider the measure

dµ = F−1(v) dv

and define for functions f and g of the variable v ∈ Rd a scalar product and a
norm respectively by

〈f, g〉 :=

∫
Rd
f̄ g dµ and ‖f‖2 :=

∫
Rd
|f |2 dµ . (3)

Here f̄ denotes the complex conjugate of f , as we shall later allow for complex
valued functions.

1.1. Decay rates of the homogeneous solution. If f is an homogeneous solution
of (1), that is, a function which depends only on v ∈ Rd, with initial datum
f in ∈ L1

+(dv) ∩ L2(dµ) such that
∫
Rd f

in dv = 1, then

d

dt
‖f − F‖2 = 2 〈f, Lf〉 .

It is natural to ask whether such an estimate proves the convergence of the
solution f(t, ·) to F as t → +∞ and provides us with a rate of convergence.
Let us assume that L is a self-adjoint operator on L2(dµ) such that, for some
k ∈ (0, γ):
(i) the interpolation inequality∫

Rd
|g|2 dµ ≤ C

(
− 〈g, Lg〉

)θ (∫
Rd
|g|2 〈v〉k dµ

)1−θ

(4)

holds if
∫
Rd g dµ = 0, for some θ ∈ (0, 1) and C > 0,

(ii) there is a constant Ck such that

∀ t ≥ 0 ,

∫
Rd
|f(t, ·)|2 〈v〉k dµ ≤ Ck

∫
Rd

∣∣f in∣∣2 〈v〉k dµ ,

then an elementary computation shows the algebraic decay rate

∀ t ≥ 0 , ‖f(t, ·)− F‖2 ≤
(
‖f in − F‖−2 a + κ a t

)−1/a
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with a = (1− θ)/θ and κ = 2 C−1/θ
(
Ck
∫
Rd |f

in|2 〈v〉k dµ
)−a. In this framework,

the convergence rate to F is algebraic. This is already an indication that in the
general case of (1), we can expect a similar bound on the rate of convergence to
a local equilibrium, that is, locally in x. The bound depends on k and, of course,
on the choice of L. For a general solution, the main difficulty is to understand
the interplay of the transport operator v ·∇x and of the collision operator L: this
question is the main issue of this paper.

1.2. Scalings and fractional diffusion limits. We consider the non-homogeneous
case of (1), i.e., solutions which explicitly depend on x, and specialize to solutions
which have a finite total mass. Since there is no stationary solution, we expect
that a nonnegative solution f of (1) with appropriate conditions on the initial
datum is locally vanishing as t→ +∞ and we aim at measuring its decay rate in a
well-chosen norm. Our strategy is to adapt the L2-hypocoercivity method of [11]
to the case of local equilibria with fat tails and, in practice, to F . We expect
some decoupling of the rate of convergence to local equilibria and the decay rate
of the spatial density ρ =

∫
Rd f dv in a micro/macro decomposition perspective.

We learn from [21,11,10] that diffusion limits are usually a convenient tool for
uncovering the decay rate at the macroscopic scale, for the simple reason that
the rate is uniform with respect to the scaling corresponding to this limit. This is
not a surprise because the Lyapunov function in the standard L2-hypocoercivity
method is built by twisting the standard L2-norm with the term which measures
the macroscopic rate of convergence in the diffusion limit. A new difficulty arises
from local equilibria with fat tails: in a certain range of γ, only fractional diffusion
equations can be expected in the appropriate scaling. Let us explain at a formal
level why.

In order to fix ideas, we consider the simple scattering operator defined by

Lf = Z−1
∫
Rd

b(v, v′) (f ′ F − f F ′) dv′ with b(v, v′) = 〈v〉β 〈v′〉β

with Z :=
∫
Rd 〈v〉

β
F (v) dv and local mass conservation property:

∫
Rd Lf dv = 0.

Let us investigate the diffusion limit as ε → 0+ of the scaled kinetic equation
written in Fourier variables as

εα ∂tf̂ + i ε v · ξ f̂ = Lf̂ (5)

for some exponent α to be chosen. We can rewrite the scattering operator as

Lf̂ = Z−1 〈v〉β
(

rF − Z f̂
)

with r(t, ξ) :=

∫
Rd
〈v′〉β f̂(t, ξ, v′) dv′ .

As a consequence, the Fourier transform of the spatial density defined as

ρ(t, ξ) :=

∫
Rd
f̂(t, ξ, v) dv

solves the continuity equation

εα ∂tρ+ i ε

∫
Rd
ξ · v f̂ dv = 0 .
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The fractional diffusion limit as ε → 0+ has already been studied, for instance
in [33,4] (more references will be given later). Let us perform a formal Hilbert
expansion as in [36], in which only the case β = 0 is covered, and as in [19] where
the collision frequency is |v|β . We look for some g such that f̂ = Z−1 rF + g, so
that (5) has to be replaced with

εα (F ∂tr + ∂tg) + i ε v · ξ
(
Z−1 rF + g

)
+ 〈v〉β g = 0 .

If we assume that the O(εα) term is negligible compared to the other factors,
this means that g(t, ξ, v) ≈ gε(t, ξ, v) up to lower order terms, where

gε(t, ξ, v) = − i ε v · ξ
i ε v · ξ + 〈v〉β

Z−1 r(t, ξ)F (v) .

Hence we obtain at formal level that

Z ρ(t, ξ) = r(t, ξ) + Z

∫
Rd
g(t, ξ, v) dv ≈ r(t, ξ) + Z

∫
Rd
gε(t, ξ, v) dv = aε(ξ) r(t, ξ)

and
i ε Z

∫
Rd
ξ · v f̂ dv ≈ i ε

∫
Rd
ξ · v gε dv = bε(ξ) r(t, ξ)

where

aε(ξ) :=

∫
Rd

〈v〉β

i ε v · ξ + 〈v〉β
F (v) dv and bε(ξ) :=

∫
Rd

ε2 (v · ξ)2

i ε v · ξ + 〈v〉β
F (v) dv .

In the limiting regime, the continuity equation becomes

εα ∂tρ+
bε(ξ)

aε(ξ)
ρ ≈ 0 .

It is easy to check that limε→0+ aε(ξ) = 1, so that

r(t, ξ) ∼
ε→0+

Z ρ(t, ξ) .

If β + γ > 2, then limε→0+ ε
−2 bε(ξ) = κ |ξ|2. With the choice α = 2, we recover

the standard diffusion limit as ε → 0+ and obtain that, in the diffusion limit,
the spatial density ρ solves the heat equation written in Fourier variables,

∂tρ+ κ |ξ|2 ρ = 0

with diffusion coefficient κ = cγ
∫
Rd (v · e)2 〈v〉−(d+β+γ) dv, where e = ξ/|ξ|. No-

tice that κ is independent of e ∈ Sd−1.
Now let us consider the range β + γ < 2. As a subcase of (2), for local equi-

libria with heavy tails such that

F (v) := cγ 〈v〉−(d+γ) with β + γ < 2 , β < 1 ,

bε(ξ) diverges as ε→ 0+ for ξ 6= 0. This is why we have to pick an appropriate
value of α 6= 2. After observing that bε(ξ) = b1(ε |ξ| e) with e = ξ/|ξ|, a tedious
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but elementary computation inspired by [33] and [36, Proposition 2.1] shows
that

b1(ε e) ∼
∫
|v|>1

ε2 (v · e)2

i ε v · e + 〈v〉β
F (v) dv

∼
∫
|v|>1

ε2 (v · e)2 〈v〉β

(ε v · e)2 + 〈v〉2β
F (v) dv

∼ ε
γ−β
1−β

∫
|w|>ε

1
1−β

(w · e)2 |w|β

(w · e)2 + |w|2β
cγ
|w|d+γ

dw

using the change of variables v = ε
1

β−1 w. This suggests to make the choice

α =
γ − β
1− β

.

By taking the limit as ε→ 0+, we expect that the spatial density ρ (in Fourier
variables) solves the fractional heat equation

∂tρ+ κ |ξ|α ρ = 0 (6)

with κ =
∫
Rd

(w·e)2 |w|β
(w·e)2+|w|2β

cγ
|w|d+γ dw. The expression of α is going to play a key

role in this paper.

1.3. Mode-by-mode L2-hypocoercivity. We recall that

lim
ε→0+

ε−α bε(ξ) =

∫
Rd

(v · ξ)2 〈v〉β

(v · ξ)2 + 〈v〉2β
cγ

〈v〉d+γ
dv .

As in [11,10], our goal is to build a quadratic form f̂ 7→ H[f̂ ] that can be com-
pared with its own t-derivative whenever f solves (1), and which is also equiva-
lent to ‖f̂‖2, without integrating on ξ ∈ Rd. Let us introduce some notation. We
define the transport operator T in Fourier variables by

Tf̂ := i v · ξ f̂

and the orthogonal projection Π on the subspace generated by F is given by

Π g = ρg F where ρg :=

∫
Rd
g dv .

In the mode-by-mode approach of the L2-hypocoercivity method, in which ξ can
be seen as a simple parameter, we define

Hξ[f̂ ] := ‖f̂‖2 + δ Re
〈
Aξ f̂ , f̂

〉
, Aξ := Π

(− i v · ξ) 〈v〉β

(v · ξ)2 + 〈v〉2β
.

If f solves (1), then
d

dt
Hξ[f̂ ] = −Dξ[f̂ ]
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with

Dξ[f̂ ] :=− 2 〈Lf̂ , f̂〉+ δ 〈AξTΠf̂ , f〉

− δ Re〈TAξ f̂ , f̂〉+ δ Re〈AξT(1− Π)f̂ , f̂〉 − δ Re〈AξLf̂ , f̂〉 .

We can expect that −〈Lf̂ , f̂〉 controls ‖(1− Π)f̂‖2 by (4) and notice that

〈AξTΠf̂ , f̂〉 = b1(ξ) ‖Πf̂‖2 .

The technical point of the method is to prove that all other terms in Dξ[f̂ ] can
be estimated in terms of −〈Lf̂ , f̂〉 and 〈AξTΠf̂ , f̂〉.

Even if this is not straightforward, the expression of Hξ[f̂ ] is compatible with
a fractional diffusion limit and this is why one can expect to get a decay rate
which corresponds to the decay of the solution of (6), given by the fractional
Nash inequality

‖u‖L2(dx) ≤ CNash ‖u‖
α
d+α

L1(dx) ‖|ξ|
α
2 û‖

d
d+α

L2(dξ) . (7)

Let d ≥ 2 and assume that β ∈ (0, 1) and γ ∈ (0, 2) are such that β < γ < 2−β.
We shall prove that there exists a positive constant C such that, if f is a solution
of (1) with initial condition f in ∈ L1(dxdv) ∩ L2(dxdµ), then

∀ t ≥ 0 , ‖f‖2L2(dx dµ) ≤ C (1 + t)−
d
α ‖f in‖2L1(dx dv)∩L2(dx dµ) .

Here and throughout this paper, we use the notation ‖f‖2X∩Y := ‖f‖2X + ‖f‖2Y .
Detailed results and references will be given in Section 2 for a much wider range
of parameters (covering the case β ≤ 0) and other collision operators L. For
technical reasons that will be exposed later, we shall also use a slightly modified
definition of the operator Aξ. Our main task is to relate the corresponding
functionals Dξ and Hξ and to establish decay rates using a convenient extension
of the fractional Nash inequality. The outline of the strategy and key technical
results are given in Section 3.

2. Assumptions and main results

2.1. Three collision operators. We shall cover three cases of linear collision op-
erators whose local equilibria are given by (2):
B the generalized Fokker-Planck operator with local equlibrium F

L1f = ∇v ·
(
F ∇v

(
F−1f

))
, (a)

B the linear Boltzmann operator, or scattering collision operator

L2f =

∫
Rd

b(·, v′)
(
f(v′)F (·)− f(·)F (v′)

)
dv′ , (b)

B the fractional Fokker-Planck operator

L3f = ∆σ/2
v f +∇v · (E f) , (c)
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with σ ∈ (0, 2). In this latter case, we shall simply assume that the friction force
E = E(v) is radial and solves the equation

∆σ/2
v F +∇v · (E F ) = 0 . (8)

The operator ∆σ/2
v has Fourier symbol − |ξ|σ and coincides with ∆v if σ = 2 but

Case (a) should not be considered as a limit of Case (c) when σ → 2−. Notice
that ∆σ/2

v is a shorthand notation for −(−∆v)
σ/2.

In Case (b), for the linear Boltzmann operator, we have in mind a collision
kernel b with either b(v, v′) = Z−1 〈v〉β 〈v′〉β with Z :=

∫
Rd 〈v〉

β
F (v) dv as

in [33] and in Section 1, or b(v, v′) = |v′−v|β . We shall assume that the collision
frequency ν is positive, locally bounded and verifies

ν(v) :=

∫
Rd

b(v, v′)F (v′) dv′ ∼
|v|→+∞

|v|β (H0)

for a given β ∈ R. Inspired by our observations on the fractional diffusion limit
of Section 1 and after noticing that the three above operators can formally be
written as B[f ]−ν(v) f , we define β as the exponent at infinity of the function ν.
This means β = − 2 in Case (a) and β = γ − σ in Case (c), as a consequence of
the fact that

E(v) = G(v) 〈v〉β v ,

where G ∈ L∞(Rd) is a positive function such that G−1 ∈ L∞(Bc0(1)). This
property is independent of the other results of the paper and will be proved in
Proposition 4 of Section 6.1. Notice that β = γ−σ in Case (c) does not approach
β = − 2 of Case (a) as σ → 2−: in view of rates, this limit is very singular.

In Case (b), additional assumptions are needed. The local mass conservation
property is equivalent to∫

Rd

(
b(v, v′)− b(v′, v)

)
F (v′) dv′ = 0 . (H1)

As in [10], we also assume the existence of constants β ≤ 0 and B > 0 such that

1

Z
〈v〉β 〈v′〉β ≤ b(v, v′) ≤ B |v − v′|β . (H2)

All these assumptions are verified for instance when

b(v′, v) = Z−1 〈v′〉β 〈v〉β with |β| ≤ γ ,
b(v′, v) = |v′ − v|β with β ∈ (−d/2, 0] .

Summarizing, we shall say that Assumption (H) holds if L is one of the three
operators corresponding to the cases (a), (b), or (c), and if additionally the above
assumptions hold in Case (b), i.e.,

L = L1 , L2 , or L3 and (H0)–(H2) hold in Case (b) . (H)
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2.2. Main results: decay rates. Our purpose is to consider a solution of (1) with
finite mass and discuss its decay rates as t→ +∞ in terms of β, γ > 0,

α =
γ − β
1− β

and

{
α′ = α if β + γ < 2 ,

α′ = 2 if β + γ ≥ 2 .
(9)

Notice that α ∈ (0, 2) if β + γ < 2. With this notation, our main result goes as
follows.

Theorem 1. Let d ≥ 2, γ > 0 and assume that β and γ are such that

β < γ , β + γ 6= 2 .

Under Assumption (H), for any k ∈ (0, γ), there is a constant C > 0 such that,
for any solution f of (1) with initial condition f in ∈ L1(dxdv)∩ L2(dxdµ) and
for any t ≥ 0,

‖f‖2L2(dx dµ) ≤ C (1 + t)−
d
α′ ‖f in‖2L1(dx dv)∩L2(dx dµ) if β ≥ 0 ,

‖f‖2L2(dx dµ) ≤ C (1 + t)
−min

{
d
α′ ,

k
|β|

}
‖f in‖2

L1(dx dv)∩L2(〈v〉kdx dµ)
if β < 0 .

1

decay rate t�
d
↵

decay rate t
� k

|�|

decay rate t�
d
2

decay rate (t ln(t))�
d
2

�

�

� = 0+

� = 2�

� = � 2

Fig. 1. As t→ +∞, decay rates are at most O(t−k/|β|) if β < 0 < k < γ sufficiently close to γ
and γ < γ?(β), with γ? given by (10), and otherwise either O(t−d/α) if max{0, β} < γ < 2−β
or O(t−d/2) if γ > max{2 − β, β}. The picture corresponds to Theorem 1 and 2 with d = 3.
In Case (c), γ is limited to the strip enclosed between the two dashed red lines.

If d ≥ 2 and β ≤ 0, the threshold between the region with decay rate
O(t−k/|β|), with k < γ but close enough to γ, and the region with decay rate
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O(t−d/α
′
) is obtained by solving d

α′ + k
β = 0 in the limit case k = γ. The corre-

sponding curve is given by β 7→ γ?(β) defined as

γ?(β) := max
{

1
2

(
β +

√
(4 d+ 1)β2 − 4 d β

)
, d2 |β|

}
if d ≥ 3 ,

γ?(β) = 1
2

(
β +

√
β (9β − 8)

)
if d = 2 .

(10)

If d ≥ 3, notice that γ?(β) :=
(
β+
√

(4 d+ 1)β2 − 4 d β
)
/2 if − 4/(d−2) ≤ β < 0

and γ?(β) = d
2 |β| if β ≤ − 4/(d− 2). See Figures 1 and 2.

2

�

�

� = 0+

� = 2�

� = � 2

Fig. 2. Decay rates of Theorem 1 and 2 depending on β and γ in dimension d = 2, as t→ +∞.
The caption convention is the same as for Figure 1. When β ≤ 0, the upper threshold of the
region with decay rate O(t−k/|β|), with k close enough to γ, is γ = γ?(β).

If β+γ = 2, there is a logarithmic correction. The following result deals with
this special case, in any dimension.

Theorem 2. Let d ≥ 1, γ > 0, β = 2 − γ < 1 and f be a solution of (1) with
initial condition f in ∈ L1(dxdv). Assume that (H) holds. For any k ∈ (0, γ) if
β ≤ 0 and for k = 0 if β > 0, if f in ∈ L2(〈v〉k dxdµ), then there is a constant
C > 0 such that, for any t ≥ 0,

‖f‖2L2(dx dµ) ≤ C
(
(2 + t) log(2 + t)

)− d2 ‖f in‖2
L1(dx dv)∩L2(〈v〉kdx dµ)

,

under the additional condition k ≤ d
2 |β| if d ≥ 3. If d ≥ 3 and k > d

2 |β|, then,
for any t ≥ 0,

‖f‖2L2(dx dµ) ≤ C (1 + t)
− k
|β| ‖f in‖2

L1(dx dv)∩L2(〈v〉kdx dµ)
.
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If d = 1, the results when β 6= 2− γ slightly differs from Theorem 1. Let

γ?(β) = max
{
|β|, 12

(
β +

√
(5β − 4)β

)}
.

Notice that α < 0 if β + γ < 0 and γ?(β) = −β > 0 if and only if β ≤ −1.

Theorem 3. Assume that (H) holds. Let d = 1, γ > max{0, β} and f be a
solution of (1) with initial condition f in ∈ L1(dxdv).
• If β ≥ 0 and β + γ 6= 2 and f in ∈ L2(dxdµ), there is a constant C > 0 such
that, for any t ≥ 0,

‖f‖2L2(dx dµ) ≤ C (1 + t)−
d
α′ ‖f in‖2L1(dx dv)∩L2(dx dµ) .

• If f in ∈ L2(〈v〉k dxdµ) and the parameters β, γ and k are in the range

β < −1 , γ ∈ (1,−β) , k ∈
(
γ
α , γ

)
and 0 < τ < k+γ

k α− γ+ |β| (α+1) , (11)

there is a constant C > 0 such that, for any t ≥ 0,

‖f‖2L2(dx dµ) ≤ C (1 + t)−τ ‖f in‖2
L1(dx dv)∩L2(〈v〉k dx dµ)

.

• If β < 0, γ > 0, γ + β 6= 2 and k ∈ (0, γ) but (γ, k) /∈ (1,−β) × ( γα , γ), then
there is a constant C > 0 such that, for any f in ∈ L2(〈v〉k dxdµ) and any t ≥ 0,

‖f‖2L2(dx dµ) ≤ C (1 + t)
−min

{
d
α′ ,

k
|β|

}
‖f in‖2

L1(dx dv)∩L2(〈v〉kdx dµ)
.

3

�

�

� = 0+

� = 2�

� = � 2

Fig. 3. Decay rates of Theorem 3 depending on β and γ in dimension d = 1, as t → +∞.
When β ≤ 0, k is chosen arbitrarily close to γ. The caption convention is the same as for
Figure 1 except for 1 < γ < |β| which corresponds to the decay rate O(t−τ ).
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See Figure 3 for an illustration of Theorem 3 in dimension d = 1.

Our method for proving Theorems 1, 2 and 3 relies on a mode-by-mode anal-
ysis in Fourier variables based on the L2-hypocoercivity method as in [11]. A
detailed outline of the strategy and the sketch of the proof of the main results
will be given in Section 3.

2.3. A brief review of the literature. Fractional diffusion limits of kinetic equa-
tions attracted a considerable interest in the recent years. The microscopic jump
processes are indeed easy to encode in kinetic equations and the diffusion limit
provides a simple procedure to justify the use of fractional operators at macro-
scopic level. Formal derivations are known for a long time, see for instance [38],
but rigorous proofs are more recent. In the case of linear scattering operators like
those of Case (b), we refer to [33,32,36,4] for some early results and to [25] for a
closely related work on Markov chains. Numerical schemes which are asymptot-
ically preserving have been obtained in [18,19]. Beyond the classical paper [20],
we also refer to [33,32,36,4] for a discussion of earlier results on standard, i.e.,
non-fractional, diffusion limits. Concerning the generalized Fokker-Planck op-
erators of Case (a), such that local equilibria have fat tails, the problem has
recently been studied in [31] in dimension d = 1 by spectral methods and, from
a probabilistic point of view, in [23]. Depending on the range of the exponents,
various regimes corresponding to Brownian processes, stable processes or inte-
grated symmetric Bessel processes are obtained and described in [23] as well
as the threshold cases (some were already known, see for instance [15]). Higher
dimensional results have recently been obtained in [22]. Concerning Case (c),
the fractional diffusion limit of the fractional Vlasov-Fokker-Planck equation,
or Vlasov–Lévy–Fokker–Planck equation, has been studied in [16,1,2] when the
friction force is proportional to the velocity. Here our Case (c) is slightly differ-
ent, as we pick forces giving rise to collision frequencies of the order of |v|β as
|v| → +∞.

In the homogeneous case, that is, when there is no x-dependence, it is classical
to introduce a function Φ(v) = − logF (v), where F denotes the local equilibrium
but is not necessarily of the form (2), and classify the possible behaviors of the
solution f to (1) according to the growth rate of Φ. Assume that the collision
operator is either the generalized Fokker-Planck operator of Case (a) or the
scattering operator of Case (b). Schematically, if

Φ(v) = 〈v〉ζ ,

we obtain that ‖f(t, ·)−M F‖L2(dµ) decays exponentially if ζ ≥ 1, with M =∫
Rd f dv. In the range ζ ∈ (0, 1), the Poincaré inequality of Case (a) has to be
replaced by a weak Poincaré or a weighted Poincaré inequality : see [37,27,10]
and rates of convergence are typically algebraic in t. Summarizing, the lowest is
the rate of growth of Φ as |v| → +∞, the slowest is the rate of convergence of f
to M F . Now let us focus on the limiting case as ζ → 0+. The turning point
precisely occurs for the minimal growth which guarantees that F is integrable,
at least for solutions of the homogeneous equation with initial data in L1(dv).
Hence, if we consider

Φ(v) = η log 〈v〉 ,
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with η < d, then diffusive effects win over confinement and the unique local
equilibrium with finite mass is 0. To measure the sharp rate of decay of f to-
wards 0, one can replace the Poincaré inequality and the weak Poincaré or the
the weighted Poincaré inequalities by weighted Nash inequalities. See [12] for
details. In this paper, we consider the case η = γ + d > d, which guarantees
that F is integrable. Standard diffusion limits can be invoked if β + γ > 2, but
here we are interested in the regime corresponding to fractional diffusion limits,
with β + γ ≤ 2.

As explained in Section 1, standard diffusion limits provide an interesting in-
sight into the micro/macro decomposition which is the key of the L2-hypocoercive
approach of [21]. Another parameter can be taken into account: the confinement
in the spatial variable x. In presence of a confining potential V = V (x) with
sufficient growth and when F has fast decay, typically for ζ ≥ 1, the rate of
convergence is found to be exponential. A milder growth of V gives a slower
convergence rate as analyzed in [14]. If e−V is not integrable, the diffusion wins
in the hypocoercive picture, and the rate of convergence of a finite mass solution
of (1) towards 0 can be captured by Nash and related Caffarelli-Kohn-Nirenberg
inequalities: see [11,12].

A typical regime for fractional diffusion limits is given by local equilibria
with fat tails which behave according to (2) with γ ∈ (0, 2− β): F is integrable
but has no standard diffusion limit. Whenever fractional diffusion limits can
be obtained, it was expected that rates of convergence can also be obtained
by an adapted L2-hypocoercive approach. To simplify the exposition, we shall
consider only the case V = 0 and measure the decay rate. In view of [28] (also see
references therein), it is natural to expect that a fractional Nash type approach
has to play the central role, and this is indeed what happens. The mode-by-
mode hypocoercivity estimate shows that rates are of the order of |ξ|α as ξ → 0
which results in the expected time decay. In this direction, let us mention that
the spectral information associated with |ξ|α is very natural in connection with
the fractional heat equation as was recently observed in [5]. As far as we know,
asymptotic rates for (1) have not been studied so far, to the exception of the very
recent results of [2] which deal with the Vlasov–Lévy–Fokker–Planck equation
in the case of a spatial variable in the flat torus Td by an H1-hypocoercivity
method and the simplest version (β = 0) of the scattering collision operator: see
Section 8.2 for more details. Preliminary versions of the present paper can be
found in [29] and [9, v1].

3. Mode by mode hypocoercivity method and outline of the method

3.1. Definitions and preliminary observations. Let us consider the measure dµ =
F−1(v) dv and the Fourier transform of f in x defined by

f̂(t, ξ, v) := (2π)−d/2
∫
Rd
e− i x·ξf(t, x, v) dx .

If f solves (1), then the equation satisfied by f̂ is

∂tf̂ + Tf̂ = Lf̂ , f̂(0, ξ, v) = f̂ in(ξ, v) , Tf̂ = i v · ξ f̂ ,
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where ξ ∈ Rd can be seen as a parameter, so that for each Fourier mode ξ, we
can study the decay of f . For this reason why we call it a mode-by-mode analysis,
as in [11].

For any given ξ ∈ Rd, taken as a parameter, we consider (t, v) 7→ f̂(t, ξ, v) on
the complex valued Hilbert space L2(dµ) with scalar product and norm given
by (3). We also recall that Π denotes the orthogonal projection on the subspace
generated by F and observe that the property

ΠTΠ = 0

holds as a consequence of the radial symmetry of F . Let us define the operator
Aξ by

Aξ :=
1

〈v〉2
Π

(− i v · ξ) 〈v〉−β

1 + 〈v〉2 |1−β| |ξ|2

and the entropy functional by

Hξ[f ] := ‖f̂‖2 + δ Re
〈

Aξ f̂ , f̂
〉
.

These definitions are reminiscent of the considerations in Section 1.3 on the
quadratic form Hξ and the operator Aξ. Up to the weight 〈v〉−2, we may notice
that Aξ and Aξ have the same scaling structure with respect to (v, ξ) for any
β ≤ 1. The first elementary result is the observation that Aξ is a bounded
operator and that Hξ[f ] is equivalent to ‖f‖2 if δ > 0 is not too large.

Lemma 1. With the above notation, for any δ ∈ (0, 2) and f ∈ L2(dµ), we have

| 〈Aξf, f〉 | ≤
1

2
‖f‖2 and (2− δ) ‖f‖2 ≤ 2 Hξ[f ] ≤ (2 + δ) ‖f‖2 .

We shall use the notation

ϕ(ξ, v) :=
〈v〉−β

1 + 〈v〉2 |1−β| |ξ|2
and ψ(v) := 〈v〉−2

and may notice that Aξ f̂ = ψΠT∗ ϕ f̂ , where T∗ denotes the dual of T acting
on L2(dµ).

Proof (Proof of Lemma 1). With these definitions, we obtain |ψ| ≤ 1 and
|(v · ξ)ϕ(ξ, v)| ≤ 1/2, so that the Cauchy-Schwarz inequality yields

|〈Aξf, f〉|2 ≤
∫
Rd
|ψ(v)|2 |f(ξ, v)|2 dv

∫
Rd
|(v · ξ)ϕ(ξ, v)|2 |f(ξ, v)|2 dv ≤ 1

4
‖f‖4 ,

which completes the proof of Lemma 1. ut

We observe that

− d

dt
Hξ[f̂ ] = Dξ[f̂ ] := − 2 〈Lf̂ , f̂〉+ δ Rξ[f̂ ]

if f solves (1), where Rξ[f̂ ] = − d
dt Re 〈Aξ f̂ , f̂〉. Our goal is to relate Hξ[f̂ ] and

Dξ[f̂ ]. Any decay rate of Hξ[f̂ ] obtained by a Grönwall estimate gives us a decay
rate for ‖f‖2 by Lemma 1 and, using an inverse Fourier transform, in L2(dx dµ).
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More notation will be needed. Let us define the weighted norms

‖g‖2k :=

∫
Rd
|g|2 〈v〉k dµ ,

so that in particular ‖g‖ = ‖g‖0. A crucial observation, which will be used
repeatedly, is the fact that for any constant κ > 0,

‖g − κF‖2k = ‖g‖2k + κ2
∫
Rd
〈v〉k F dx− 2κ

∫
Rd
〈v〉k g dx ≥ ‖(1− Πk) g‖2k

where

Πk g :=

∫
Rd 〈v〉

k
g dv∫

Rd 〈v〉
k
F dv

F .

This is easily shown by optimizing the l.h.s. of the inequality on κ ∈ R. Notice
that Π0 = Π.

The parameters β and γ are chosen as in Theorems 1, 2 or 3 (see Section 2.2)
while α and α′ are given by (9): α′ = α if β+ γ < 2 and α′ = 2 if β+ γ ≥ 2. For
simplicity, we shall not keep track of all constants and simply write that a . b
and a & b if there is a positive constant c such that, respectively, a ≤ b c and
a ≥ b c. We define ωd := |Sd−1| where Sd−1 denotes the unit sphere in Rd.

3.2. Outline of the method and key intermediate estimates. Assume that f is a
finite mass solution of (1) on R+ × Rd × Rd. Our goal is to relate

H[f ] :=

∫
Rd

Hξ[f̂ ] dξ

and

− d

dt
H[f ] = − 2

∫∫
Rd×Rd

f Lf dxdµ+ δ

∫
Rd

Rξ[f̂ ] dξ

by a differential inequality and use a Grönwall estimate. According to Lemma 1,
the decay rate of ‖f‖2 is the same as for Hξ[f̂ ]. Under Assumption (H), we
consider a solution f of (1) with initial condition f in ∈ L1(dxdv) ∩ L2(dx dµ).
The main steps of our method are as follows:

B The solution is bounded in a weighted L2 space. We shall prove the following
result in Section 4.

Proposition 1. Assume that (H) holds. Let d ≥ 1, γ > 0, γ ≥ β, k ∈ (0, γ) and
f be a solution of (1) with initial condition f in ∈ L2(〈v〉k dxdµ). Then, there
exists a positive constant Ck depending on d, γ, β and k such that

∀ t ≥ 0 , ‖f(t, ·, ·)‖L2(〈v〉kdx dµ) ≤ Ck ‖f
in‖L2(〈v〉kdx dµ) .

B The collision term controls the distance to the local equilibrium. We have the
following microscopic coercivity estimate.
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Proposition 2. Let d ≥ 1, γ > 0, γ ≥ β, η ∈ [β, γ) and k ∈ (0, γ). Assume that
β = − 2 if L = L1, that Assumptions (H1) and (H2) hold if L = L2, and that
σ ∈ (0, 2), β = γ−σ if L = L3. Then there exists a positive constant C depending
on ‖f‖L2(dx dµ) such that for any f ∈ L2(〈v〉k dx dµ),

C ‖(1− Πη)f‖2
k−β
k−η

L2(dx 〈v〉ηdµ) ‖f‖
− 2 η−βk−η
L2(dx 〈v〉kdµ) ≤ −

∫∫
Rd×Rd

f Lf dxdµ .

This estimate is the extension of (4) to the non-homogeneous case. The proof is
done in Section 5. We shall use Proposition 2 with η = β if β + γ > 0 and for
some η ∈ (− γ, 0) if β + γ ≤ 0. The case η ≥ 0 is needed only in Step 4 of the
proof of Proposition 3.

B Our proofs require the computation of a large number of coefficients and
various estimates which are collected in Section 6. There we also prove bounds
on E if L = L3, in Case (c).

B A microscopic coercivity estimate is established in Section 7.1, which goes as
follows. Let us define the function

L(ξ) :=
|ξ|α′

〈ξ〉α
′ if β + γ 6= 2 , L(ξ) :=

|ξ|2
∣∣ log |ξ|

∣∣
1 + |ξ|2 log |ξ|

if β + γ = 2 .

Proposition 3. Let γ > max{0, β} and η ∈ (− γ, γ) such that η ≥ β. Under
Assumption (H), there exists a positive, bounded function ξ 7→ K(ξ) such that

Rξ[f̂ ] & L(ξ) ‖Πf̂‖2 −K(ξ) ‖(1− Π)f̂‖2η .

In Section 7.2, inspired by fractional Nash inequalities, we deduce from Propo-
sition 3 an estimate on the distance in the direction which is orthogonal to the
local equilibria.

Corollary 1. Under Assumption (H), we have∫
Rd

Rξ[f̂ ] dξ & ‖Πf‖2 (1+α′
d )

L2(dx dµ) − ‖(1− Π)f‖2
L2(dx 〈v〉β dµ)

if β + γ 6= 2 ,

∫
Rd

Rξ[f̂ ] dξ & ‖Πf‖2 (1+α′
d )

L2(dx dµ) log

( ‖Πf‖L2(dx dµ)

‖f‖L1(dx dµ)

)
−‖(1− Π)f‖2

L2(dx 〈v〉β dµ)

if β + γ = 2 .

The proof is a straightforward consequence of Lemma 14 if β + γ 6= 2 and of
Lemma 15 if β + γ = 2. See details in Section 7.2 and 7.3.
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3.3. Sketch of the proof of the main results. The difficult part of the paper is
the proof of Propositions 1, 2 and 3, and Corollary 1. If β + γ ≤ 0, we have to
take η 6= β and use additional interpolation estimates: see Section 8. Otherwise,
the proof of Theorems 1, 2 and 3 is not difficult if β+ γ > 0 and can be done as
follows.

Under Assumption (H), a solution of (1) is such that

−1

2

d

dt
H[f ] = −

∫∫
Rd×Rd

f Lf dxdµ− δ
∫
Rd

Rξ[f̂ ] dξ .

Let us assume that β + γ 6= 2 and β + γ > 0. We rely on Proposition 2.
• If β ≥ 0, with η = β, we find that∫

Rd
Rξ[f̂ ] dξ & ‖Πf‖2 (1+α′

d )

L2(dx dµ) −
∫
Rd
‖(1− Π)f‖2β dx .

We obtain

−1

2

d

dt
H[f ] & (1− δ)

∫
Rd
‖(1− Π)f‖2β dx+ δ ‖Πf‖2 (1+α′

d )

L2(dx dµ)

& (1− δ) ‖(1− Π)f‖2L2(dx dµ) dx+ δ ‖Πf‖2 (1+α′
d )

L2(dx dµ)

& H[f ]2 (1+α′
d )

using the simple observation that ‖(1− Π)f‖2β ≥ ‖(1− Π)f‖2L2(dµ) if β ≥ 0.

• If β ∈ (− γ, 0) and 2 6= β + γ > 0, again with η = β, we find that

−1

2

d

dt
H[f ] & (1− δ)

∫
Rd
‖(1− Π)f‖2β dx+ δ ‖Πf‖2 (1+α′

d )

L2(dx dµ) .

Using Hölder’s inequality

‖(1− Π)f‖2 ≤ ‖(1− Π)f‖
2 k
k−β
β ‖(1− Π)f‖

2 β
β−k
k ,

we conclude that

−1

2

d

dt
H[f ] & (1− δ)‖(1− Π)f‖2 (1+

|β|
k )

L2(dx dµ) + δ ‖Πf‖2 (1+α′
d )

L2(dx dµ) .

• If d ≥ 1, β ≤ 0 and β + γ = 2, α′ = 2 but there is a logarithmic correction in
the expression of

∫
Rd Rξ[f̂ ] dξ, which is responsible for the O(log t) correction of

Theorem 2 as t→ +∞.
• For integrability reasons, the case β+γ ≤ 0 requires further estimates involving
some η ∈ (− γ, 0) that will be dealt with in Sections 5.4 and 8.1. Except in this
case, the proofs of Theorems 1, 2 and 3 are complete.

4. Estimates in weighted L2 spaces

In this section, we assume that β ≤ 0.
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4.1. A result in weighted L2 spaces. Let us prove Proposition 1, i.e., the propa-
gation of weighted norms L2(〈v〉k dxdµ) with power law of order k ∈ (0, γ).

The conservation of weighted norms has also been used in [10] when F has a
sub-exponential form. In that case, any value of k was authorized, and this was
implicitly a consequence of the fact that such a local equilibrium F had finite
weighted norms L2(〈v〉k dx dµ) for any k ∈ R+. For a local equilibrium given
by (2), there is a limitation on k as we cannot expect a global propagation of
higher moments than those of F .

For any function h ∈ L2(〈v〉k dxdµ), one can notice that

‖h‖L2(〈v〉kdx dµ) = ‖F−1h‖L2(F 〈v〉kdx dv) .

In other words, it is equivalent to control the semi-group e(L−T)t in L2(〈v〉k dxdµ)

and F−1 e(L−T)t in L2(F 〈v〉k dxdv). Since L2(〈v〉k F dxdv) is a space interpolat-
ing between L1(F 〈v〉k dx dv) and L∞(dxdv) (see [39, Theorem (2.9)]), we shall
establish the result of Proposition 1 by proving that F−1 e(L−T)t is bounded
onto L∞(dxdv) in Section 4.2 and onto L1(F 〈v〉k dxdv) in Section 4.5. In order
to prove this last estimate, as in [27,28,10], we shall use a Lyapunov function
method in Section 4.3 and a splitting of the operator in Section 4.4.

4.2. The boundedness in L∞(dxdv).

Lemma 2. Let d ≥ 1 and γ > 0. If (H) holds, then

∀ t ≥ 0 , ‖F−1et(L−T)‖L∞(dx dv)→L∞(dx dv) ≤ 1 .

Proof. This is a consequence of the maximum principle in Case (a). In Case (b),
h#(t, x, v) = F−1(v) f(t, x+ v t, v) solves

∂th
# + ν(v)h# =

∫
Rd

b(v, v′)F (v′)h#(t, x, v′) dv′ ,

which is clearly a positivity preserving equation. The positivity of

(t, x, v) 7→ ‖h(0, ·, ·)‖L∞(dx dv) − h#(t, x, v)

is also preserved, as it solves the same equation, which proves the claim. Case (c)
is less standard as it relies on the maximum principle for fractional operators. As
this is out of the scope of the present paper, we will only sketch the main steps of
a proof. First of all, the results of [28] can be adapted to E as defined by (8), thus
proving that the evolution according to ∂t − F L3(F−1·) preserves L∞ bounds.
This is also the case of ∂t − T. We can then conclude using a time-splitting
approximation scheme of evolution and a Trotter formula. ut
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4.3. A Lyapunov function method. The boundedness of the operator F−1et(L−T)

in L1(F 〈v〉k dxdv) is equivalent to the boundedness of the operator et(L−T) in
L1(〈v〉k dxdv). To obtain such a bound, we rely on a Lyapunov function estimate.

Lemma 3. Let d ≥ 1 and γ > 0 ≥ β. If (H) holds, then for any k ∈ [0, γ − β),
there exists (a, b, R) ∈ R× R+ × R+ such that for any f ∈ L1(〈v〉k dx dv),∫∫

Rd×Rd
f
|f | Lf 〈v〉k dxdv ≤

∫∫
Rd×Rd

(
a1BR − b 〈v〉

β
)
|f | 〈v〉k dxdv .

As a special case corresponding to k = 0, we have
∫∫

Rd×Rd
f
|f | Lf dxdv ≤ 0.

Here by convention, we shall write that f
|f | = 0 if f = 0.

Proof. First assume that f ≥ 0. Then one may write,∫∫
Rd×Rd

Lf 〈v〉k dx dv =

∫∫
Rd×Rd

Lf F 〈v〉k dxdµ

=

∫∫
Rd×Rd

L∗(F 〈v〉k) f dxdµ .

• In Case (a), we notice that L is self-adjoint on L2(dµ), recall that β = − 2 and
compute

F−1 L1

(
F 〈·〉k

)
(v) = 〈v〉d+γ ∇v ·

(
〈v〉−d−γ ∇v 〈v〉k

)
= k 〈v〉d+γ ∇v ·

(
〈v〉−d−γ+k−2 v

)
= k (d+ γ − k + 2) 〈v〉k−4 − k (γ + 2− k) 〈v〉k−2

and obtain the result for any k < γ − β = γ + 2.

• In Case (b), by Assumption (H1) one obtains that

F−1 L∗2
(
F 〈·〉k

)
(v) =

∫
Rd

b(v′, v)
(
〈v′〉k F (v′)− 〈v〉k F (v′)

)
dv′

=

(∫
Rd

b(v′, v)
〈v′〉k

〈v〉k
F (v′) dv′ − ν(v)

)
〈v〉k .

By Assumption (H2), we know that

Cb(k) := sup
v∈Rd

〈v〉−β
∫
Rd

b(v′, v) 〈v′〉k F (v′) dv′

is finite for any k ∈ (0, γ − β), and as a consequence, we know that

∀ v ∈ Rd , ν(v) ≤
∫
Rd

b(v′, v) 〈v′〉k F (v′) dv′ ≤ Cb(k) 〈v〉β .
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This yields

F−1 L∗2
(
F 〈·〉k

)
(v) ≤

(
Cb(b)

〈v〉k
− ν(v)

〈v〉β

)
〈v〉β .

We conclude that Inequality (3) holds for any k ∈ (0, γ−β) by Assumption (H0).

• In Case (c), it is elementary to compute L∗3 and observe that

F−1 L∗3
(
F 〈·〉k

)
(v) = ∆σ/2

v 〈v〉k − E(v) · ∇v 〈v〉k

=
[
〈v〉−k∆σ/2

v 〈v〉k − k (v · E) 〈v〉−2
]
〈v〉k ,

≤
[
〈v〉−k∆σ/2

v 〈v〉k − C 〈v〉β
]
〈v〉k ,

where the estimate k (v · E) 〈v〉−2 ≥ C 〈v〉β for some C > 0 arises as a conse-
quence of Proposition 4. According to [7, Lemma 3.1] (also see [6,28]), we have

∀ v ∈ Rd , ∆σ/2
v 〈v〉k . 〈v〉k−σ ,

under the condition that k < σ = γ − β. This again completes the proof of
Inequality (3).

When f changes sign, it is possible to reduce the problem to the case f ≥ 0
as follows. In Case (a), we use Kato’s inequality to assert that

f

|f |
∆vf ≤ ∆v|f |

in the sense of Radon measures (see [26, Lemma A] or, for instance, [13, Theo-
rem 1.1]). Case (b) relies on the elementary observation that∫∫

Rd×Rd
f
|f | L2f 〈v〉k dv dv′ =

∫∫
Rd×Rd

b(v, v′) f ′
f

|f |
F 〈v〉k dv dv′ −

∫
Rd
ν |f |dv

≤
∫∫

Rd×Rd
b(v, v′) |f ′|F 〈v〉k dv dv′ −

∫
Rd
ν |f |dv .

In Case (c), the result follows from Kato’s inequality extended to the fractional
Laplacian as follows. Let us consider ϕε(s) =

√
ε2 + s2 and notice that(

∆σ/2
v ϕε(f)

)
(v)− ϕ′ε(f(v))

(
∆σ/2
v f

)
(v)

= Cd,σ

∫∫
Rd

ϕε(f(v′))− ϕε(f(v))− ϕ′ε(f(v)) (f(v′)− f(v))

|v′ − v|d+σ
dv ≥ 0

because ϕε is convex since ϕ′′ε (s) = ε2 (ε2 + s2)−3/2 and according for example
to [30, Chapter 2]

Cd,σ = − 2σ

πd/2
Γ
(
d+σ
2

)
Γ
(
− σ

2

) > 0 . (12)

By passing to the limit as ε→ 0, we obtain

f

|f |
∆σ/2
v f ≤ ∆σ/2

v |f | .
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In all cases, with L = Li, i = 1, 2, 3, we have∫
Rd

f

|f |
Lf 〈v〉k dxdv ≤

∫
Rd

(L|f |) 〈v〉k dx dv

and the problem is reduced to the case of a nonnegative distribution function f .
ut

4.4. A splitting of the evolution operator. We rely on the strategy of [24,27,34]
by writing L− T as the sum of a dissipative part C and a bounded part B such
that L− T = B + C.

Lemma 4. Under the assumptions of Lemma 3, let (k, k∗) ∈ (0, γ)× (0, γ − β)
be such that k∗ > k−β, a = max{ak, ak∗}, R = min

{
Rk, Rk∗

}
, C := a1BR and

B := L− T− C. Then for any t ∈ R+, we have:

(i) ‖C‖L1(dx dµ)→L1(〈v〉k∗ dx dµ) ≤ a (1 +R2)k∗/2,

(ii) ‖etB‖L1(〈v〉kdx dµ)→L1(〈v〉kdx dµ) ≤ 1,

(iii) ‖etB‖L1(〈v〉k∗ dx dµ)→L1(〈v〉kdx dµ) ≤ c (1 + t)
k∗−k
β for some c > 0.

Proof. Property (i) is a consequence of the definition of C. Property (ii) follows
from Lemma 3. Indeed, for any g ∈ L1(〈v〉k dx dv),∫∫

Rd×Rd

g

|g|
B g 〈v〉k dxdv ≤

∫∫
Rd×Rd

(
ak 1BRk − a1BR − bk 〈v〉

β
)
|g| 〈v〉k dx dv

≤ − bk ‖g‖L1(〈v〉k+β dx dv) .

To prove (iii), define g := etB gin. By Hölder’s inequality, we get

‖g‖L1(〈v〉kdv dx) ≤ ‖g‖
k∗−k

k∗−k−β
L1(〈v〉k+β dx dv)

‖gin‖
|β|

k∗−k−β
L1(〈v〉k∗ dx dv)

and, as a consequence of the above contraction property,∫∫
Rd×Rd

g

|g|
B g 〈v〉k dxdv ≤ − bk

(
‖g‖L1(〈v〉kdv dx)

)1+ |β|
k∗−k ‖gin‖

− |β|
k∗−k

L1(〈v〉k∗ dx dv)
,

so that by Grönwall’s lemma, we obtain

‖g‖L1(〈v〉kdx dv) ≤
(
‖gin‖

− |β|
k∗−k

L1(〈v〉kdx dv)
+ bk |β|

k∗−k ‖g
in‖
− |β|
k∗−k

L1(〈v〉k∗ dx dv)
t

)− k∗−k
|β|

≤
(

1 + k∗−k
bk |β| t

)− k∗−k|β| ‖gin‖L1(〈v〉k∗ dx dv) .

ut
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4.5. The boundedness in L1(F 〈v〉k dxdv).

Lemma 5. Let d ≥ 1, γ > 0 ≥ β, k ∈ (0, γ) and assume that (H) holds. There
exists a positive constant Ck such that, for any solution f of (1) with initial
condition f in ∈ L1(〈v〉k dxdv),

∀ t ≥ 0 , ‖f(t, ·, ·)‖L1(〈v〉kdx dv) ≤ Ck ‖f
in‖L1(〈v〉kdx dv) .

Proof. Let us consider the Duhamel formula

et(L−T) = etB +

∫ t

0

e(t−s)B C es(L−T) ds .

By Lemma 3, we know that

‖et(L−T)‖L1(〈v〉kdx dv)→L1(〈v〉kdx dv) ≤ a (1 +R2)k∗/2 .

Using the estimates of Lemma 4, we get

‖et(L−T)‖L1(〈v〉kdx dv)→L1(〈v〉kdx dv) ≤ 1 + a c (1 +R2)k∗/2
∫ t

0

(1 + s)
k∗−k
β ds ,

which is bounded uniformly in time with the choice k∗ − k > −β = |β|. ut

5. Interpolation inequalities

We refer to [41] for a general strategy for proving (4) which applies in particular
to L3 in Case (c). However, for the operators considered in this paper, direct
estimates can be obtained as follows.

5.1. Hardy-Poincaré inequality and consequences.

Lemma 6. Let d ≥ 1 and γ > 0. We have the Hardy-Poincaré inequality

∀h ∈ L2(〈v〉−2 F dv) ,

∫
Rd
|∇vh|2 F dv ≥ 2 (d+ γ)

∫
Rd
|h− h−2|2 〈v〉−2 F dv

(13)
with h−2 :=

∫
Rd h 〈v〉

−2F dv∫
Rd 〈v〉

−2F dv
.

See [8] for a proof. We deduce the following interpolation inequality.

Corollary 2. Let d ≥ 1, γ > 0 and k ∈ (0, γ). There exists a positive constant C1
such that, for any f ∈ L2(〈v〉k dxdµ) such that ∇vh ∈ L2(dx dµ) where h = f/F ,
we have the inequality

C1 ‖(1− Π)f‖2+
4
k

L2(dx dµ) ≤
(∫∫

Rd×Rd
|∇vh|2 F dxdv

)
‖f‖

4
k

L2(〈v〉kdx dµ)
.
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Proof. Let h0 :=
∫
Rd hF dv and observe that∫

Rd
|h− h0|2 F dv = inf

H∈R

∫
Rd
|h−H|2 F dv ≤

∫
Rd
|h− h−2|2 F dv.

Setting g = h − h−2, we deduce on the one hand from the Cauchy-Schwarz
inequality that∫∫

Rd×Rd
|h− h−2|2 F dx dv =

∫∫
Rd×Rd

|g|2 F dxdv

≤

(∫∫
Rd×Rd

|g|2 F

〈v〉2
dxdv

) k
k+2 (∫∫

Rd×Rd
|g|2 〈v〉k F dxdv

) 2
k+2

,

and we deduce that

|g|2 ≤ 1

2

(
|h|2 + h

2

−2

)
≤ 1

2

(
|h|2 +

h
2

0∫
Rd 〈v〉

−2
F dv

)

using 〈v〉 ≥ 1 and the definition of h−2 on the other hand. Collecting these
estimates with the result of Lemma 6 shows that

21+
2
k (d+ γ) ‖(1− Π)f‖2+

4
k

L2(dx dµ)(
‖f‖2

L2(〈v〉kdx dµ)
+ ck ‖Πf‖2L2(dx dµ)

) 2
k

≤
∫
Rd
|∇vh|2 F dv

where ck :=
∫
Rd 〈v〉

k
F dv/

∫
Rd 〈v〉

−2
F dv. This completes the proof after observ-

ing that
‖Πf‖L2(dx dµ) ≤ ‖f‖L2(dx dµ) ≤ ‖f‖L2(〈v〉kdx dµ) .

ut

5.2. A gap inequality for the scattering operator. Let L = L2 be the scattering
operator of Case (b).

Lemma 7. Let γ > max{0, β}. Assume that (H1) holds and that b(v, v′) ≥
Z−1 〈v〉β 〈v′〉β for any v, v′ ∈ Rd. Then we have∫∫

Rd×Rd
b(v, v′) (h− h′)2 F F ′ dv dv′ ≥ Λ

∫
Rd

∣∣h− hβ∣∣2 〈v〉β F dv

for any h ∈ L2(dv), with Λ := 2
Z

∫
Rd F 〈v〉

β
dv and hβ :=

∫
Rd hF 〈v〉

β dv∫
Rd F 〈v〉

β dv
.

Notice that here we do not assume the upper bound in (H2) and consider any
β ∈ (−∞, γ).
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Proof. Using (H1), we have

2

∫∫
Rd×Rd

b(v, v′) (h′ − h)hF F ′ dv dv′

=

∫∫
Rd×Rd

b(v, v′)
(
2h′h− h2

)
F F ′ dv dv′ −

∫∫
Rd×Rd

b(v′, v)h2F F ′ dv dv′ .

Exchanging variables v and v′ gives

−
∫∫

Rd×Rd
b(v, v′) (h′ − h)hF F ′ dv dv′

=
1

2

∫∫
Rd×Rd

b(v, v′) (h− h′)2 F F ′ dv dv′ .

By assumption, we know that b(v, v′) ≥ Z−1 〈v〉β 〈v′〉β and observe that∫∫
Rd×Rd

〈v〉β 〈v′〉β (h− h′)2 F F ′ dv dv′

= 2

∫
Rd
F 〈v〉β dv

∫
Rd

|f |2

F
〈v〉β dµ− 2

(∫
Rd
f 〈v〉β dv

)2

= 2

∫
Rd
F 〈v〉β dv

∫
Rd

∣∣∣∣∣ fF −
∫
Rd f 〈v〉

β
dv∫

Rd F 〈v〉
β

dv

∣∣∣∣∣
2

〈v〉β F dv

= ΛZ

∫
Rd

∣∣h− hβ∣∣2 〈v〉β F dv .

ut

Next we deduce the following interpolation inequality.

Corollary 3. Under the assumptions of Lemma 7, for any k ∈ (0, γ), there
exists a positive constant C2 such that, for any f ∈ L2(〈v〉k dx dµ),

C2 ‖(1− Π)f‖2+2
|β|
k

L2(dx dµ) ≤
(
−
∫
Rd
f L2f dµ

)
‖f‖2

|β|
k

L2(〈v〉kdx dµ)
if β < 0 ,

C2 ‖(1− Π)f‖2L2(dx dµ) ≤ −
∫
Rd
f L2f dµ if β ≥ 0 .

Proof. If β ≥ 0, the result is a straightforward consequence of Lemma 7 using
〈v〉β ≥ 1 and∫

Rd
|h− hβ |2 〈v〉β F dv ≥

∫
Rd
|h− hβ |2 F dv

≥
∫
Rd
|h− h0|2 F dv = ‖(1− Π)f‖2L2(dx dµ) .
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Assume next that β < 0 and let g := h − hβ . We deduce from the Cauchy-
Schwarz inequality that∫∫

Rd×Rd
|g|2 F dxdv

≤
(∫∫

Rd×Rd
|g|2 〈v〉β F dxdv

) k
k−β

(∫∫
Rd×Rd

|g|2 〈v〉k F dxdv

) |β|
k−β

.

The next point is to observe that∫
Rd
|h− h0|2 F dv = inf

H∈R

∫
Rd
|h−H|2 F dv ≤

∫
Rd
|h− hβ |2 F dv =

∫
Rd
|g|2 F dv

on the one hand, and that

|g|2 ≤ 1

2

(
|h|2 + h

2

β

)
≤ 1

2

(
|h|2 +

h
2∫

Rd |g|2 〈v〉
β
F dv

)
using 〈v〉 ≥ 1 and the definition of hβ on the other hand. Collecting these
estimates with the result of Lemma 7 completes the proof.

With h = f/F , we recall that, as a consequence of Lemma 7,

−
∫
Rd
f L2f dµ =

∫∫
Rd×Rd

b(v, v′) (h− h′)2 F F ′ dv dv′ ≥ Λ

2

∫
Rd
|g|2 〈v〉β F dv .

Using ‖Πf‖L2(dx dµ) ≤ ‖f‖L2(〈v〉kdx dµ), the result follows by collecting the esti-
mates. ut

5.3. Fractional Fokker-Planck operator: an interpolation inequality. Let us com-
pute

∫
Rd f L3f dµ. We recall that in Case (c), L3f = ∆

σ/2
v f +∇v · (E f). With

h = f/F , we have∫
Rd
f ∆σ/2

v f dµ = Cd,σ

∫∫
Rd×Rd

h2 − hh′

|v − v′|d+σ
F dv dv′.

On the other hand, we know that h∇v · (f E) = h∇v · (hF E) = 1
2 ∇v(h

2) ·
(F E) + h2∇v · (F E) and after an integration by parts, we obtain∫

Rd
h∇v · (f E) dv =

1

2

∫
Rd
h2∇v · (F E) dv =

1

2

∫
Rd
h2∆σ/2F dv .

After exchanging the variables v and v′, we arrive at∫
Rd
h∇v · (f E) dv = − Cd,σ

2

∫∫
Rd×Rd

h2 − (h′)2

|v − v′|d+σ
F dv dv′.

Altogether, this means that

−
∫
Rd
f L3f dµ =

Cd,σ
2

∫∫
Rd×Rd

|h− h′|2

|v − v′|d+σ
F dv dv′

=
Cd,σ

4

∫∫
Rd×Rd

|h− h′|2

|v − v′|d+σ
(F + F ′) dv dv′ .
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Corollary 4. Let d ≥ 1, γ > 0, σ ∈ (0, 2), β = γ − σ and k ∈ (0, γ). With the
notation of Corollary 3, there exists a positive constant C3 such that, for any
f ∈ L2(〈v〉k dxdµ), we have the inequality

C3 ‖(1− Π)f‖2+2
|β|
k

L2(dx dµ) ≤
(
−
∫
Rd
f L3f dµ

)
‖f‖2

|β|
k

L2(〈v〉kdx dµ)
if β < 0 ,

C3 ‖(1− Π)f‖2L2(dx dµ) ≤ −
∫
Rd
f L3f dµ if β ≥ 0 .

Proof. From the elementary estimate

∀ (v, v′) ∈ Rd × Rd , 〈v〉β 〈v′〉β F F ′ ≤ κ F + F ′

|v − v′|d+σ

with κ = cγ sup(v,v′)∈Rd×Rd
〈v〉d+γ+〈v′〉d+γ
〈v〉d+σ 〈v′〉d+σ |v − v

′|d+σ, we deduce that

−
∫
Rd
f L2f dµ ≤ −κ

∫
Rd
f L3f dµ

and conclude by Corollary 3 with C3 = C2/κ. ut

As a side result, let us observe that we obtain a fractional Poincaré inequality
as in [40, Corollary 1.2, (1)], with an explicit constant, that goes as follows.

Corollary 5. Under the same assumptions as in Corollary 4,

−
∫
Rd
f L3f dµ ≥ κΛ

∫
Rd

∣∣h− hβ∣∣2 〈v〉β F dv

where κ is as in the proof of Corollary 4 and Λ is the constant of Lemma 7.

5.4. Convergence to the local equilibrium: microscopic coercivity. We can sum-
marize Lemma 6, Lemma 7 and Corollary 5 as

C ‖f − hβ F‖2β ≤ −〈f Lf〉

for positive constant C, where hβ =
∫
Rd hF 〈v〉

β
dv/

∫
Rd F 〈v〉

β
dv and h = f/F .

Here L = L1, L2 or L3 respectively in Cases (a), (b) or (c). In the homogeneous
case, an additional Hölder inequality establishes Inequality (4) of Section 1. The
same strategy can be applied in the non-homogeneous case after integrating with
respect to x ∈ Rd.

Proof (Proof of Proposition 2). It is a straightforward consequence of Proposi-
tion 1 on the one hand, and of Corollaries 2, 3 and 4 if, respectively, L = L1, L2

or L3. ut
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As a an alternative formulation of Proposition 2 and in preparation for the
case β + γ ≤ 0 (see Section (8.1)), let us collect some additional observations.
The inequality

‖(1− Π)f‖2η ≤ (−〈f, Lf〉)θ ‖(1− Π)f‖2 (1−θ)
k

with θ = k−η
k−β can be rewritten with xζ := ‖(1− Π)f‖2ζ and z := (−〈f, Lf〉) as

xη ≤ zθ x1−θk =
(
R−1/θ z

)θ (
R1/(1−θ)xk

)1−θ
≤ θ R−1/θ z + (1− θ)R1/(1−θ)xk

for any R > 0, by Young’s inequality. This amounts to

z ≥ 1

θ
R

1
θ xη −

1− θ
θ

R
1
θ+

1
1−θ xk = r xη − (1− θ) θ

θ
1−θ r

1
1−θ xk .

An integration with respect to x shows the following result.

Corollary 6. Let θ = k−η
k−β . Under the assumptions of Proposition 2, we have

−
∫
Rd
〈f, Lf〉dx ≥ r ‖(1− Π)f‖2L2(dx 〈v〉ηdv)

− (1− θ) θ
θ

1−θ r
1

1−θ ‖(1− Π)f‖2
L2(dx 〈v〉kdv) (14)

for any f ∈ L2(〈v〉k dxdµ) and for any r > 0.

6. Technical estimates

This section is devoted to estimates that can be skipped at first reading. With
the notation ‖g‖2η :=

∫
Rd |g|

2 〈v〉η dµ, we want bound µL and λL defined by

µL(ξ) := ‖L∗
(
(v · ξ)ϕ(ξ, v)F

)
‖2η λL := ‖L∗(ψ F )‖2η ,

some parameter η ∈ (− γ, γ), were L∗ denotes the dual of L in L2(dµ), and

λk :=
∫
Rd |v · ξ|

k 〈v〉−2 F dv =
〈
F, |T|k ψ F

〉
,

µk :=
∫
Rd |v · ξ|

k ϕ(v)F dv =
〈
F, |T|k ϕ

〉
,

λ̃k :=
∥∥|v · ξ|k ψ F∥∥

η
,

µ̃k :=
∥∥|v · ξ|k ϕF∥∥

η
.

(15)

Notice that only the case β = η will be needed if β + γ > 0. When β + γ ≤ 0,
we shall assume that η ∈ (− γ, 0). See Section 8.1 for consequences. In Case (c)
with L = L3, we need a bound on E. Let us start by this estimate.
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6.1. Steady states and force field for the fractional Laplacian with drift. This
appendix is devoted to the Case (c) of the collision operator L, that is, to L3f =

∆
σ/2
v f +∇v · (E f). Our goal here is to prove that the collision frequency ν(v)

behaves like |v|β with β = γ − σ as |v| → +∞, as claimed in Section 2.1. By
Definition (8) of the force field E, we know that

∇v · (E F ) = −∆σ/2
v F = −∇v ·

(
∇v(−∆v)

σ−2
2 F

)
,

and this implies that, up to an additive constant,

E F = −∇v(−∆v)
σ−2
2 F = −∇v

(
Cd,σ
|v|d+σ−2

∗ cγ

〈v〉d+γ

)

where cγ and Cd,σ are given respectively by (2) and (12).

Proposition 4. Assume that γ > 0, σ ∈ (0, 2) and let β = γ − σ. There is a
positive function G ∈ L∞(Rd) with 1/G ∈ L∞(Bc0(1)) such that E is given by

∀ v ∈ Rd , E(v) = G(v) 〈v〉β v .

Proof. Let u(v) = −∇v
(

1
|v|d+σ−2 ∗ 1

〈v〉d+γ
)
(v) so that E(v) = Cd,σ 〈v〉d+γ u(v).

Since

u(v) = (d+ γ)

(
1

|v|d+σ−2
∗ v

〈v〉d+γ+2

)

where v 〈v〉−(d+γ+2) ∈ C∞(Rd) ∩ L1(dv), and σ < 2, one has u ∈ C1
loc(Rd) and

u(0) = 0 which proves the result in B1(0). We look for an estimate of u(v) · v
from above and below on Bc0(1). Notice that u can also be written as

u(v) = (d+ σ − 2)

(
v

|v|d+σ
∗ 1

〈v〉d+γ

)
. (16)

Depending on the integrability at infinity of v/|v|d+σ, that is, whether σ ∈ (0, 1)
or not, we have to distinguish two cases.
• Case σ ∈ (0, 1). Using (16), we have the estimates∣∣∣∣∣

∫
|w|≥〈v〉/2

w

|w|d+σ
dw

〈w − v〉d+γ

∣∣∣∣∣ ≤ 2d+σ−1

〈v〉d+σ−1

∫
Rd

dw

〈w〉d+γ
,∣∣∣∣∣

∫
|w|<〈v〉/2

w

|w|d+σ
dw

〈w − v〉d+γ

∣∣∣∣∣ ≤
(∫
|w|<〈v〉/2

dw

|w|d+σ−1

)
2d+σ−1

|v|d+γ

≤ 2d+σ−1 ωd
(1− σ) |v|d+γ+σ−1

,

and obtain
∀ v ∈ Rd , |u(v) · v| ≤ |u(v)| |v| . |v|−(d+σ−2) .
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To get a bound from below on u(v) · v, we cut the integral in two pieces and
use the fact that |v| > 1 and |w − v| < 1/2 implies w · v > 0. First∫

|w−v|>1/2
|w+v|>1/2

w · v
|w|d+σ

dw

〈w − v〉d+γ
=

(∫
|w−v|>1/2
w·v>0

+

∫
|w+v|>1/2
w·v<0

)
w · v
|w|d+σ

dw

〈w − v〉d+γ

=

∫
|w−v|>1/2
w·v>0

(
1

〈w − v〉d+γ
− 1

〈w + v〉d+γ

)
w · v
|w|d+σ

dw ,

which is positive since 〈w + v〉2 − 〈w − v〉2 = 2w · v ≥ 0. The remaining terms
are dealt with as follows∫

|w−v|≤1/2
or

|w+v|≤1/2

w · v
|w|d+σ

dw

〈w − v〉d+γ

=

∫
|w−v|< 1

2

(
1

〈w − v〉d+γ
− 1

〈w + v〉d+γ

)
w · v
|w|d+σ

dw

≥
(
(4/5)d+γ − (2/5)d+γ

) ∫
|w−v|< 1

2

w · v
|w|d+σ

dw ,

since |w + v| ≥ 2 |v| − |w − v| ≥ 3
2 . Finally, if |v| > 1 and |w − v| < 1

2 , we get

2w · v = |v|2 + |w|2 − |w − v|2 ≥ |v|2 − 1

2
≥ |v|

2

2
,

|w| ≤ |v|+ |w − v| ≤ 2 |v| ,

so that ∫
|w−v|< 1

2

w · v
|w|d+σ

dw ≥ |B0(1/2)|
2d+σ+2

1

|v|d+σ−2
.

This implies u(v) ·v ≥ C |v|−(d+σ−2) for some C > 0. Since u is radial, we proved
that

u(v) = G(v)
v

|v|d+σ

where G ∈ L∞(Rd) and G−1 ∈ L∞(Bc0(1)) and the conclusion holds with β =
γ − σ.
• Case σ ∈ [1, 2). The gradient of v 7→ |v|2−d−σ is a distribution of order 1 that
can be defined as a principal value. Indeed, in the sense of distributions, for any
ϕ ∈ D(Rd), we have〈

∇v|v|2−d−σ, ϕ
〉
D′,D = −

∫
Rd

∇vϕ(v)

|v|d+σ−2
dv = −

∫
Rd

∇v(ϕ(v)− ϕ(0))

|v|d+σ−2
dv

= (d+ σ − 2)

∫
Rd

v

|v|d+σ
(ϕ(v)− ϕ(0)) dv

=: (d+ σ − 2)

〈
pv

(
v

|v|d+σ

)
, ϕ

〉
D′,D

.
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Identity (16) is replaced by

u(v)

d+ σ − 2
= pv

(
v

|v|d+σ

)
∗ 1

〈v〉d+γ
=

∫
Rd

w

|w|d+σ

(
1

〈v − w〉d+γ
− 1

〈v〉d+γ

)
dw ,

so that, after computations like the ones in the proof of Lemma 10,

|u(v)|
d+ σ − 2

≤
∫
Rd

1

|w − v|d+σ−1

∣∣∣∣∣ 1

〈w〉d+γ
− 1

〈v〉d+γ

∣∣∣∣∣ dw . 1

〈v〉d+σ−2
.

Now estimate u(v) · v by

∫
|w|≥ 1

2

w · v
|w|d+σ

(
1

〈v − w〉d+γ
− 1

〈v〉d+γ

)
dw

=

∫
|w|≥ 1

2

w · v
|w|d+σ

1

〈v − w〉d+γ
dw &

1

〈v〉d+σ−2
.

and∣∣∣∣∣
∫
|w|< 1

2

w · v
|w|d+σ

(
1

〈v − w〉d+γ
− 1

〈v〉d+γ

)
dw

∣∣∣∣∣
≤ sup
w∈Bv(1/2)

(d+ γ) |v|
〈w〉d+γ+1

∫
|w|< 1

2

dw

|w|d+σ−2
.

1

〈v〉d+γ
.

The result follows from the fact that d+ γ > d > d+ σ − 2. ut

6.2. Quantitative estimates of µL and λL.

Proposition 5. Under Assumption (H), if η ∈ (− γ, γ) is such that η ≥ β, then
λL is finite and

∀ ξ ∈ Rd , µL(ξ) .
|ξ|α′

〈ξ〉α
′ .

6.2.1. Generalized Fokker-Planck operators.

Lemma 8. With L = L1, we have

µL . |ξ|min{2, γ+4+η
3 } 1|ξ|≤1 + |ξ|−2 1|ξ|≥1 and λL . 1 .

We recall that L1 is self-adjoint.

Proof. Let us start by estimating µL. With

F−1 L
(
(v · ξ)ϕF

)
= ∇v ·

(
F ∇v

(
(v · ξ)ϕ

))
= ∆v

(
(v · ξ)ϕ

)
− (d+ γ)

v

〈v〉2
· ∇v

(
(v · ξ)ϕ

)
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and ∇v
(
(v · ξ)ϕ

)
= ϕ ξ + (v · ξ)∇vϕ, ∆v

(
(v · ξ)ϕ

)
= 2 ξ · ∇vϕ+ (v · ξ)∆vϕ, we

end up with

F−1 L
(
(v · ξ)ϕ

)
= 2 ξ · ∇vϕ+ (v · ξ)

(
∆vϕ−

(d+ γ)

〈v〉2
(
ϕ+ v · ∇vϕ

))
.

We recall that β = − 2 and

ϕ(ξ, v) =
〈v〉2

A(ξ, v)
where A(ξ, v) := 1 + 〈v〉6 |ξ|2 ,

so that

∇vϕ =
(

2A−1 − 6 〈v〉6 |ξ|2A−2
)
v = 2

(
1− 2 〈v〉6 |ξ|2

) v

A2

and

ξ · ∇vϕ = 2
(

1− 2 〈v〉6 |ξ|2
) v · ξ
A2

, v · ∇vϕ = 2
(

1− 2 〈v〉6 |ξ|2
) |v|2
A2

.

Using 〈v〉6 |ξ|2 ≤ A, we can readily estimate

|ξ · ∇vϕ| . |v · ξ|A−1, |v · ∇vϕ| . 〈v〉2A−1 .

The last part to estimate is

∆vϕ = 2
(

1− 2 〈v〉6 |ξ|2
)
∇v ·

( v

A2

)
+ 2∇v ·

(
1− 2 〈v〉6 |ξ|2

) v

A2

=
2

A2

(
1− 2 〈v〉6 |ξ|2

)(
d+ 12 |v|2 〈v〉4 |ξ|2A−1

)
− 24 |v|2 〈v〉4 |ξ|2A−2 ,

from which we deduce that
|∆vϕ| . A−1 .

Combining previous estimates, we thus end up with∣∣F−1 L
(
(v · ξ)ϕ

)∣∣ . |v · ξ|A−1 .
This provides us with the estimate

µL(ξ) = ‖L ((v · ξ)ϕ(ξ, ·)F )‖2L2(〈v〉ηdµ) .
∫
Rd

|v · ξ|2(
1 + 〈v〉6 |ξ|2

)2 dv

〈v〉d+γ−η

which allows us to conclude by elementary computations. Similar computations
will be detailed in the proof of Lemma 11.

Next we have to estimate λL. After recalling that ψ = 〈v〉−2, we observe that∣∣F−1 L (ψ F )
∣∣ =

∣∣∣∆vψ − (d+ γ)
v

〈v〉2
· ∇vψ

∣∣∣
is a bounded quantity. Since 〈v〉η F ∈ L1(Rd), we conclude that λL is bounded. �
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6.2.2. Scattering collision operators.

Lemma 9. Assume that (H) holds. With L = L2, we have

µL . |ξ|min{1,1+ γ−η−2
|1−β| } 1|ξ|<1 + |ξ|−2 1|ξ|≥1 and λL . 1 .

Proof. To estimate µL, we write

F−1 L∗ ((v · ξ)ϕF ) =

∫
Rd

b(v′, v)
(
(v′ · ξ)ϕ(v′)− (v · ξ)ϕ(v)

)
F (v′) dv′

=

∫
Rd

b(v′, v) (v′ · ξ)ϕ(v′)F (v′) dv′ − (v · ξ)ϕ(v) ν(v)

The Cauchy-Schwarz inequality yields∫
Rd

∣∣∣∣∫
Rd

b(v′, v) (v′ · ξ)ϕ(v′)F ′ dv′
∣∣∣∣2 〈v〉η F dv

≤
∫
Rd

(∫
Rd

∣∣(v′ · ξ)ϕ(v′)
∣∣2 〈v〉β F ′ dv′)(∫

Rd

b(v′, v)2

ν(v′)
F ′ dv′

)
〈v〉η F dv

≤ Cb
∫
Rd

∣∣ν(v) (v · ξ)ϕ(v)
∣∣2 〈v〉η F dv ,

where, by Assumption (H2), Cb =
∫∫

Rd×Rd
b(v′,v)2

ν(v′) ν(v)FF
′ dv dv′ is finite. Hence∫

Rd

∣∣ν(v) (v · ξ)ϕ
∣∣2 〈v〉η F dv ≤ C

∫
Rd

|v · ξ|2(
1 + 〈v〉2 |1−β| |ξ|2

)2 dv

〈v〉d+γ−η

for some positive constant C, which provides us with the result.
The estimate for λL arises from

F−1 L∗ (ψ F ) =

∫
Rd

b(v′, v)
(
ψ(v′)− ψ(v)

)
F (v′) dv′

=

∫
Rd

b(v′, v)ψ(v′)F (v′) dv′ − ν(v)ψ(v) .

Again, the Cauchy-Schwarz inequality yields∣∣∣∣∫
Rd

b(v′, v)ψ(v′)F ′ dv′
∣∣∣∣2 ≤ ∫

Rd
|ψ(v′)|2 〈v′〉β F ′ dv′

∫
Rd

b(v′, v)2

ν(v′)
F ′ dv′

≤ Cb |ν(v)ψ(v)|2 ,

so that
∣∣F−1 L∗ (ψ F )

∣∣ ≤ (C1/2b + 1
)
|ν(v)ψ(v)|. It follows from∫

Rd
|ν(v)ψ(v)|2 〈v〉η F dv ≤ C

∫
Rd

dv

〈v〉d+γ−η−2β+4

that λL . 1 because γ − η − 2β + 4 > γ − β + η − β > 0. ut
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6.2.3. Fractional Fokker-Planck operators.

Lemma 10. For any σ ∈ (0, 2), we have

|∆σ/2
(
(v · ξ)ϕ

)
| . |ξ|α

′
2 1|ξ|≤1 + 1|ξ|≥1 .

Proof. Let us introduce the notation

∀ v ∈ Rd, m(v) := (v · ξ)ϕ(v)

and estimate the fractional Laplacian by I1 + I2 where

I1 :=

∫
|v−v′|<〈v〉/2

m(v′)−m(v)− (v′ − v) · ∇m(v)

|v − v′|d+σ
dv′ ,

I2 :=

∫
|v−v′|≥〈v〉/2

m(v′)−m(v)

|v − v′|d+σ
dv′ .

• Step 1 : a bound of I1.

We perform a second order Taylor expansion. From

∇vϕ = −
(
β + (β + 2 |1− β|) 〈v〉2 |1−β| |ξ|2

)
〈v〉β−2 ϕ2 v ,

we deduce that |∇vϕ| . 〈v〉−1 ϕ. In order to estimate the Hessian of ϕ, we write∣∣∇2
vϕ(v)

∣∣ =
∣∣∣∇v ((β + (β + 2 |1− β|) 〈v〉2 |1−β| |ξ|2

)
〈v〉β−2 ϕ2 v

)∣∣∣
. 〈v〉−2 ϕ2 + 〈v〉−1 |∇vϕ| ,

from which we deduce that |∇2
vϕ| . 〈v〉

−2
ϕ. It turns out that∣∣∇2

v

(
(v · ξ)ϕ

)∣∣ . |∇vϕ(v)| |ξ|+ |v · ξ|
∣∣∇2

v (ϕ(v))
∣∣ . |ξ| 〈v〉−1 ϕ

because ∇v
(
(v · ξ)ϕ(v)

)
= ϕ(v) ξ + (v · ξ)∇vϕ(v). Therefore,

|I1| ≤
∫
|z|≤〈v〉/2

‖∇2
vm‖L∞(B(v,〈v〉/2))

|z|d+σ−2
dz

≤ 2σ−2 ωd |ξ|
(2− σ) 〈v〉σ−2

‖〈·〉−1 ϕ‖L∞(B(v,〈v〉/2)) .
|ξ|ϕ(v)

(2− σ) 〈v〉σ−1

because 〈v′〉 is comparable to 〈v〉 uniformly on B(v, 〈v〉 /2).

• Step 2: a bound of I2.

We distinguish two cases, |ξ| ≤ 1 and |ξ| ≥ 1.

• Assume that |ξ| ≥ 1. We estimate I2 by the three integrals∫
|v−v′|≥〈v〉/2
|v′|<〈v〉

|m(v′)|
|v − v′|d+σ

dv′ ,

∫
|v−v′|≥〈v〉/2
|v′|≥〈v〉

|m(v′)|
|v − v′|d+σ

dv′

and
∫
|v−v′|≥〈v〉/2

|m(v)|
|v − v′|d+σ

dv′
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so that

|I2| ≤
2d+σ

〈v〉d+σ
‖m‖L1(B0(〈v〉)) +

2σωd ‖m‖L∞(Bc0(〈v〉))

σ 〈v〉σ
+

2σωd |m(v)|
σ 〈v〉σ

. 〈v〉−σ
(
〈v〉−d ‖m‖L1(B0(〈v〉)) + ‖m‖L∞(Bc0(〈v〉)) + |m(v)|

)
.

To proceed further, we have to estimate 〈v〉−d ‖m‖L1(B0(〈v〉)) and ‖m‖L∞(Bc0(〈v〉))
for any v ∈ Rd and this is where |ξ| ≥ 1 will help. Let us observe that

〈v〉−d ‖m‖L1(B0(〈v〉)) ≤


〈v〉−d |ξ|−1 if β + 2 |1− β| − 1 > d ,

〈v〉−d 〈v〉d+1−β−2 |1−β| |ξ|−1 if β + 2 |1− β| − 1 < d ,

2 |ξ| 〈v〉ϕ(v) if β + 2 |1− β| − 1 < d .

For any v′ ∈ Bc0(〈v〉), we have

|(v′ · ξ)ϕ(v′)| ≤ 〈v′〉 |ξ| 〈v′〉−β

1 + 〈v′〉2 |1−β| |ξ|2
≤ 〈v′〉1−β |ξ|

1 + 〈v′〉2 |1−β| |ξ|2

≤ 〈v〉1−β |ξ|
1 + 〈v〉2 |1−β| |ξ|2

= 〈v〉 |ξ|ϕ(v) ,

where we have used that 〈v′〉 7→ 〈v′〉1−β |ξ|
1+〈v′〉2 |1−β||ξ|2 is decreasing for 〈v′〉 ≥ 〈v〉.

Indeed, when 1 − β ≤ 0 this is straightforward and when 1 − β ≥ 0 it results
from the fact that 〈v′〉|1−β| |ξ| ≥ 1 because |ξ| ≥ 1. Hence

|I2| .

{
〈v〉−σ

(
〈v〉−d |ξ|−1 + 〈v〉 |ξ|ϕ(v)

)
if β + 2 |1− β| − 1 > d ,

〈v〉−σ 〈v〉 |ξ|ϕ(v) if β + 2 |1− β| − 1 < d .

• Assume now that |ξ| < 1. Let us write

|I2| ≤
∫
|z|≥〈v〉/2

sup
|v−v′|>〈v〉/2

(
|m(v)−m(v′)|
|v − v′|`

)
dz

|z|d+σ−`

≤ 2σ−` ωd

(σ − `) 〈v〉σ−`
sup

|v−v′|>〈v〉/2

(
|m(v)−m(v′)|
|v − v′|`

)
where ` will be chosen later. The next step is to estimate the `−Hölder semi-norm
of m. For β < 1 and any w ∈ Rd, we may write

|m(w)| ≤ |ξ| 〈w〉ϕ =
〈w〉1−β |ξ|

1 + 〈w〉2 |1−β| |ξ|2

≤ |ξ|α
′

2 〈w〉
α′(1−β)

2
〈w〉

(1−β)(2−α′)
2 |ξ| 2−α

′
2

1 + 〈w〉2 |1−β| |ξ|2
. |ξ|α

′
2 〈w〉` ,
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with ` = α′(1 − β)/2 ∈ (0, 1). For any (v, v′) such that |v − v′| > 〈v〉 /2, we
deduce that

|m(v)−m(v′)| . |ξ|α
′

2

(
2 〈v〉` + |v′ − v|`

)
. |ξ|α

′
2 |v − v′|` ,

and finally obtain

|I2| ≤ |ξ|
α′
2

2σ−`ωd

(σ − `) 〈v〉σ−`
.

In the case β ≥ 1, the estimate can be performed exactly as for |ξ| ≥ 1 and we
do not repeat the argument. ut

Proposition 6. Let γ > |β|. With L = L3, we have

µL . |ξ|α
′
1|ξ|≤1 + 1|ξ|≥1 .

Proof. We recall that F−1 L∗(F ·) = ∆
σ/2
v − E · ∇v and compute

µ2
L =

∫
Rd

∣∣∣∆σ/2
v

(
(v · ξ)ϕ

)
− E · ∇v

(
(v · ξ)ϕ

)∣∣∣2 dv

〈v〉d+γ+η

≤ 2

∫
Rd

∣∣∣∆σ/2
v

(
(v · ξ)ϕ

)∣∣∣2 dv

〈v〉d+γ+η

+ 2

∫
Rd

∣∣E · ∇v((v · ξ)ϕ)∣∣2 dv

〈v〉d+γ+η
.

We have to estimate the two integrals of the latter r.h.s. The first one follows
from Lemma 10. As for the second one, using Proposition 4, we obtain∣∣E · ∇v((v · ξ)ϕ)∣∣ . |E · ξ ϕ|+ |(v · ξ)E · ∇vϕ|

. |v · ξ| 〈v〉β ϕ+ |v · ξ|ϕ 〈v〉−2 〈v〉β |v|2

. |v · ξ| 〈v〉β ϕ ,

so that

‖E · ∇v
(
(v · ξ)ϕ

)
‖2L2(〈v〉ηF dv) .

∫
Rd

|v · ξ|2

(1 + 〈v〉2 |1−β| |ξ|2)2

dv

〈v〉d+γ−η

. |ξ|α
′− β+η1−β 1|ξ|≤1 + 1|ξ|≥1 .

ut

Proposition 7. Let γ ≥ β+ and consider L = L3. There exists a constant C > 0,
independent of ξ, such that

λL ≤ C .
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Proof. We follow the same steps as in the proof of Proposition 6. We have

λ2L =

∫
Rd

(
∆σ/2
v ψ − E · ∇vψ

)2 dv

〈v〉d+γ−η

≤ 2

∫
Rd

∣∣∆σ/2
v ψ

∣∣2 dv

〈v〉d+γ−η
+ 2

∫
Rd
|E · ∇vψ|2

dv

〈v〉d+γ−η
.

Since ∆σ/2
v ψ is a bounded function, the first integral of the r.h.s. is bounded

because γ − η > 0. For the second integral, we simply observe that∫
Rd
|E · ∇vψ|2

dv

〈v〉d+γ−η
≤
∫
Rd

|v|2 dv

〈v〉d+γ−η−2 β+8

is bounded because γ − η − 2β + 6 > 0. ut

6.3. Two technical estimates. We recall that the coefficient µ2 and µ̃k have been
defined in (15). The coefficients µ̃1 and µ̃2 are well defined when β ≤ η < γ since
(β − 1) + |β − 1| = 2 (β − 1)+ so that, for any k ≤ 2,

η + γ + 2β + 4 |β − 1| = (η − β) + (γ − β) + 8 (β − 1)+ + 4 > 2 k .

The notation a ' b means that there exists a constant C > 0 such that a/C ≤
b ≤ C a. Our first result investigates the dependence of µ2 and µ̃k in ξ ∈ Rd.

Lemma 11. For β ≤ η < γ with γ > 0, the coefficient µ2 is bounded from above
and below for large values of |ξ| and satisfies

µ2(ξ) '
ξ→0
|ξ|min{2,2+ β+γ−2

|1−β| } if β + γ 6= 2 ,

µ2(ξ) ∼
ξ→0
− 1

d |1− β|
|ξ|2 log |ξ| if β + γ = 2 .

If η + γ + 2β + 4 |1− β| > 2 k, then µ̃k(ξ) '
|ξ|→+∞

|ξ|k−2 and

µ̃k(ξ) '
ξ→0
|ξ|min{k,k+ γ+η+2 β−2k

2 |1−β| } if γ + 2β + η 6= 2 k ,

µ̃k(ξ) '
ξ→0
− |ξ|k log |ξ| if γ + 2β + η = 2 k .

Proof. We start by considering ξ → 0. Let c := |1− β| ≥ 0. If β + γ > 2, then

µ2(ξ) ∼
ξ→0
|ξ|2

∫
Rd

cγ |v1|2

〈v〉d+β+γ
dv .

• If β+ γ < 2, then β < 1 and c > 0. With the change of variables v = u |ξ|−1/c,
we observe that

µ2(ξ) ∼
ξ→0
|ξ|2+

β+γ−2
c

∫
Rd

|u1|2

1 + |u|2 c
cγ du

|u|d+β+γ
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using
〈
u |ξ|−1/c

〉
∼
ξ→0
|u| |ξ|−1/c for any u ∈ Rd\{0}.

• If β + γ = 2 and γ > β, then β < 1, c = 1− β is positive and

µ2 = |ξ|2
∫
Rd

cγ |v1|2

1 + 〈v〉2 c |ξ|2
dv

〈v〉d+2
.

With the change of variables v = u |ξ|−1/c, we have that

I0 :=

∫
|v|≥|ξ|−

1
c

|v1|2

1 + 〈v〉2 c |ξ|2
dv

〈v〉d+2
∼
ξ→0

∫
|u|≥1

|u1|2

1 + |u|2 c
du

|u|d+2

is finite. Using the invariance under rotation with respect to ξ ∈ Rd,

d

∫
|v|<|ξ|−

1
c

|v1|2

1 + 〈v〉2 c |ξ|2
dv

〈v〉d+2
=

∫
|v|<|ξ|−

1
c

|v|2

1 + 〈v〉2 c |ξ|2
dv

〈v〉d+2

can be splitted, using |v|2 = −1 + 〈v〉2, into

−
∫
|v|<|ξ|−

1
c

1

1 + 〈v〉2 c |ξ|2
dv

〈v〉d+2
∼
ξ→0
−
∫
Rd

dv

〈v〉d+2

and∫
|v|<|ξ|−

1
c

1

1 + 〈v〉2 c |ξ|2
dv

〈v〉d
=

∫
|v|<|ξ|−

1
c

dv

〈v〉d
−
∫
|v|<|ξ|−

1
c

1

1 + 〈v〉−2 c |ξ|−2
dv

〈v〉d

using 1
1+X = 1− 1

1+1/X with X = 〈v〉2 c |ξ|2.∫
|v|<|ξ|−

1
c

dv

〈v〉d
∼
ξ→0
− ωd

c
log |ξ|

and ∫
|v|<|ξ|−

1
c

1

1 + 〈v〉−2 c |ξ|−2
dv

〈v〉d
∼
ξ→0

∫
|u|<1

|u|2c

1 + |u|2c
du

|u|d

by the change of variables v = |ξ|−1/c u. After collecting terms, this yields

µ2 ∼
ξ→0
− ωd
c d
|ξ|2 log |ξ| .

On the other hand, when |ξ| → +∞, we have

µ2(ξ) =

∫
Rd

|v · ξ|2 〈v〉β

〈v〉2β + 〈v〉2 |ξ|2
cγ dv

〈v〉d+γ
∼

|ξ|→+∞

∫
Rd

cγ |v1|2

〈v〉d+γ+2−β dv .

The claim on µ2 is now completed. All other estimates follow from similar com-
putations and we shall omit further details. ut

The coefficients λ0, λ1, λ̃0 and λ̃1 have also been defined in (15). Our second
technical estimate goes as follows.

Lemma 12. The coefficients λ0 and λ1 are well defined for any γ > 0. The
coefficients λ̃0 and λ̃1 are also well defined if γ > 0 and η > − γ.
The proof is straightforward and left to the reader.
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7. Hypocoercivity estimates

7.1. A macroscopic coercivity estimate. We recall that Rξ[f̂ ] = − d
dt Re 〈Aξ f̂ , f̂〉

if f solves (1) where

Aξ =
1

〈v〉2
Π

(− i v · ξ) 〈v〉−β

1 + 〈v〉2 |1−β| |ξ|2
= ψΠT∗ ϕ f̂

with ϕ(ξ, v) = 〈v〉−β

1+〈v〉2 |1−β| |ξ|2 and ψ(v) := 〈v〉−2. In this section, our goal is to

establish an estimate of Rξ[f̂ ]. In this section, we use the notation (15) and prove
Proposition 3.

Proof (Proof of Proposition 3). Since ϕ and ψ commute with T and ΠTΠ = 0,
we get

Aξ Π = −ψΠTΠϕ = 0, A∗ξTΠ = ϕTΠTΠψ = 0 .

Moreover, LΠ = 0. With these identities, using the micro-macro decomposition
f̂ = Πf̂ + (1− Π)f̂ , we find that

Rξ[f̂ ] := I1 + I2 + I3 + I4 + I5 + I6 + I7

where

I1 :=
〈

Aξ TΠf̂ ,Πf̂
〉
, I2 :=

〈
Aξ TΠf̂ , (1− Π)f̂

〉
, I3 :=

〈
Aξ T(1− Π)f̂ ,Πf̂

〉
,

I4 :=
〈

Aξ T(1− Π)f̂ , (1− Π)f̂
〉
, I5 :=

〈
Aξ(1− Π)f̂ ,T(1− Π)f̂

〉
,

I6 := −
〈

Aξ L(1− Π)f̂ , f̂
〉
, I7 := −

〈
Aξ(1− Π)f̂ , L(1− Π)f̂

〉
.

• Step 1: macroscopic coercivity.

Since
∫
Rd F dv = 1 and Πf̂(ξ, v) = ρf̂ (ξ)F (v), we first notice that

|ρf̂ (ξ)|2 =

∫
Rd
|ρf̂ (ξ)F |2 dµ = ‖Πf̂‖2 .

and
I1 = 〈Aξ TF, F 〉 |ρf̂ |

2 =
〈
ψΠ |T|2 ϕF, F

〉
‖Πf̂‖2 = λ0 µ2 ‖Πf̂‖2

by definition of Aξ.

• Step 2: micro-macro terms.

By definition of Aξ,

I2 =
〈
ψΠT∗ ϕTΠf̂ , (1− Π)f̂

〉
=
〈
F, |T|2 ϕF

〉
ρf̂
〈
ψ F, (1− Π)f̂

〉
can be estimated using |ρf̂ | = ‖Πf̂‖ and the Cauchy-Schwarz inequality〈

ψ F, (1− Π)f̂
〉
≤ ‖ψ F‖−η ‖(1− Π)f̂‖η
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by
|I2| ≤ λ̃0 µ2 ‖Πf̂‖ ‖(1− Π)f̂‖η .

By similar estimates, we obtain

|I3| ≤ λ0 µ̃2 ‖Πf̂‖ ‖(1− Π)f̂‖η ,

|I4| ≤ λ̃0 µ̃2 ‖(1− Π)f̂‖2η ,

|I5| ≤ λ̃1 µ̃1 ‖(1− Π)f̂‖2η .

To get a bound on I6, we use the fact that T∗ = −T to obtain

I6 =
〈
ψΠTϕ L(1− Π)f̂ , f̂

〉
=
〈
F,Tϕ L(1− Π)f̂

〉〈
F ψ, f̂

〉
= −

〈
L∗TϕF, (1− Π)f̂

〉〈
F ψ, f̂

〉
.

By the micro-macro decomposition f̂ = Πf̂ + (1− Π)f̂ , we have〈
F ψ, f̂

〉
= λ0 ρf̂ +

〈
F ψ, (1− Π)f̂

〉
and the Cauchy-Schwarz inequality gives〈

L∗TϕF, (1− Π)f̂
〉
≤ µL ‖(1− Π)f̂‖η .

This yields

|I6| ≤ λ0 µL ‖Πf̂‖ ‖(1− Π)f̂‖η + λ̃0 µL ‖(1− Π)f̂‖2η .

In the same way, we get

|I7| ≤ λL µ̃1 ‖(1− Π)f̂‖2η .

• Step 3: cross terms.

With X := ‖Πf̂‖ and Y := ‖(1− Π)f̂‖η, we collect all above estimates into

Rξ[f̂ ] ≤ −λ0 µ2X
2 +

(
λ̃0 µ2 + λ0 µ̃2 + λ0 µL

)
XY

+
(
λ̃0 µ̃2 + λ̃1 µ̃1 + λ̃0 µL + λL µ̃1

)
Y 2 ,

which by Young’s inequality leads to

Rξ[f̂ ] ≤
(a

2

(
λ̃0 µ2 + λ0 µ̃2 + λ0 µL

)
− λ0 µ2

)
X2

+

(
λ̃0 µ̃2 + λ̃1 µ̃1 + λ̃0 µL + λL µ̃1 +

λ̃0 µ2 + λ0 µ̃2 + λ0 µL

2 a

)
Y 2 .

With the choice
a =

λ0 µ2

λ̃0 µ2 + λ0 µ̃2 + λ0 µL

,



Fractional hypocoercivity 39

we get

Rξ[f̂ ] ≤ − 1

2
λ0 µ2 ‖Πf̂‖2 +K(ξ) ‖(1− Π)f̂‖2η ,

with

K(ξ) = λ̃0 µ̃2 + λ̃1 µ̃1 + λ̃0 µL + λL µ̃1 +

(
λ̃0 µ2 + λ0 µ̃2 + λ0 µL

)2
2λ0 µ2

.

• Step 4: A uniform bound on K(ξ).

According to Lemma 12, λ0 and λ̃0 are independent of ξ and take finite
positive values, so that

K(ξ) . µ̃2 + λ̃1 µ̃1 + µL + λL µ̃1 + µ2 +
µ̃2
2

µ2
+
µ2
L

µ2
.

We also deduce from their definitions in (15) that µ2, µ̃2, |ξ| µ̃1 and λ̃1/|ξ| have
finite, positive limits as |ξ| → +∞. By Proposition 5, µL and λL are bounded
from above, so that

∀ ξ ∈ Rd such that |ξ| ≥ 1 , K(ξ) . 1 + µL +
λL
|ξ|

+ µ2
L . 1 .

It remains to investigate the behaviour of K(ξ) as ξ → 0 and we shall distinguish
two main cases:
• if β < 1, under the assumption that β+γ 6= 2, γ+η+2β 6= 4 and γ+η+2β 6= 2,
for some positive constants C1, C2, C̃1, C̃2, we have

µ2 ∼
ξ→0

C2 |ξ|α
′
, µ̃2 ∼

ξ→0
C̃2 |ξ|min{2, γ−2 β+η

2 (1−β) } ,

µ̃1 ∼
ξ→0

C1 |ξ|min{1, γ+η
2 (1−β)} , λ̃1 ∼

ξ→0
C̃1 |ξ| ,

where α′ = min
{

2, γ−β1−β

}
as in (9). Since η ≥ β ≥ 2β − γ and η ≥ − γ, this

implies by Proposition 5 that

∀ ξ ∈ Rd such that |ξ| ≤ 1 , K(ξ) . 1 + µL + λL +
µ̃2
2

µ2
+
µ2
L

µ2
. 1 +

µ̃2
2

µ2
.

Then µ̃2
2

µ2
= O (|ξ|ε) is bounded as ξ → 0 either if β + γ < 2 because

ε = min
{
η−β
1−β ,

4−3 β−γ
1−β

}
, η ≥ β , 4− 3β − γ = 2 (1− β) + 2− (β + γ) ≥ 0 ,

or if β + γ > 2 because

ε = min
{

2, γ+η−21−β

}
and η ≥ β > 2− γ .
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• if β > 1, under the assumption that γ+2β+η−4 6= 0 and γ+2β+η−2 6= 0,
for some positive constants C1, C2, C̃1, C̃2, we have

µ2 ∼
ξ→0

C2 |ξ|2 , µ̃2 ∼
ξ→0

C̃2 |ξ|min{2, γ+η+6 β−8
2 (β−1) } ,

µ̃1 ∼
ξ→0

C1 |ξ|min{1, γ+η+4 β−4
2 (β−1) } , λ̃1 ∼

ξ→0
C̃1 |ξ| .

Since η ≥ β > 1, we get γ + η + 6β − 8 > 0 and γ + η + 4β − 4 > 0, so that

K(ξ) . 1 +
µ̃2
2

µ2
.

where µ̃2
2

µ2
= O (|ξ|ε) is bounded as ξ → 0 because

ε = min
{

2, γ+η+4 β−6
β−1

}
and γ + η + 4β − 6 > 0 .

In the critical cases when a log |ξ| appears in the expression of µ2, µ̃1 or µ̃2,
we obtain expressions of the form |ξ|ε

∣∣ log |ξ|
∣∣ for some ε > 0, so that all terms

also remain bounded. We conclude that in all cases, K(ξ) is bounded from above
uniformly with respect to ξ. This ends the proof of Proposition 3. ut

7.2. A fractional Nash inequality and consequences. For any a > 0, let us define
the function Na by

∀ s ≥ 0 , Na(s) :=
sa

(1 + s2)a/2

and the quadratic form

Qa[u] :=

∫
Rd
Na
(
|ξ|
)
|û(ξ)|2 dξ

where û denotes the Fourier transform of a function u ∈ L2(dx) given by

û(ξ) = (2π)−d/2
∫
Rd
e− i x·ξ u(x) dx .

We recall that by Plancherel’s formula, ‖u‖2L2(dx) = ‖û‖2L2(dξ).

Lemma 13. Let d ≥ 1 and a ∈ (0, 2]. There is a monotone increasing function
Φa : R+ → R+ with Φa(s) ∼ sd/(d+a) as s→ 0+ such that

∀u ∈ D(Rd) , ‖u‖2L2(dx) ≤ ‖u‖
2
L1(dx) Φa

(
Qa[u]

‖u‖2L1(dx)

)
.
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Proof. We rely on a simple argument based on Fourier analysis inspired by
the proof of Nash’s inequality in [35, page 935], which goes as follows. Since
‖û‖L∞(dξ) ≤ ‖u‖L1(dx), we obtain

‖u‖2L2(dx) = ‖û‖2L2(dξ) ≤
∫
|ξ|≤R

|û(ξ)|2 dξ +

∫
|ξ|>R

|û(ξ)|2 dξ

≤ 1

d
ωd ‖u‖2L1(dx)R

d +
1

Na(R)
Qa[u]

for any R > 0, using the monotonicity of s 7→ Na(s).
Let us consider the function

f(x,R) :=
1

d
Rd +

x

a
(1 +R−2)a/2

and notice that, as a function of R, f has a unique minimum R = R(x) such
that

Rd+a (1 +R2)1−
a
2 = x

for any x > 0. With a ∈ (0, 2], it is clear that x 7→ R(x) is monotone increasing
and such that R(x) ≤ x1/(d+2)

(
1 + o(1)

)
as x→ +∞ and R(x) = x1/(d+a)

(
1 +

o(1)
)
as x → 0+. Altogether, for the optimal value R = R(x), we obtain that

φ(x) = f
(
x,R(x)

)
is such that

φ(x) =
(
1
d + 1

a

)
x

d
d+a

(
1 + o(1)

)
as s→ 0+ ,

φ(x) =
x

a

(
1 + o(1)

)
as s→ +∞ .

The proof is concluded with Φa(s) = ωd φ
(
a s
ωd

)
. ut

Let us consider the Fourier transform with respect to x of a distribution
function f depending on x and v and define

Qa[f ] :=

∫
Rd
Qa[f ] dµ .

Lemma 14. Let d ≥ 1 and a ∈ (0, 2]. With the above notation, we have

∀ f ∈ L1 ∩ L2(dxdµ) , ‖Πf‖2L2(dx dµ) ≤ ‖f‖
2
L1(dx dv) Φa

(
Qa[Πf ]

‖f‖2L1(dx dv)

)
,

where the function Φa is defined in Lemma 13.

Proof. We apply the strategy of Lemma 13 to Πf = ρf F and bound

‖ρf‖L2(dx) = ‖Πf‖2L2(dx dµ) = ‖Π̂f‖2L2(dξ dµ)

by∫∫
|ξ|≤R

|Π̂f(ξ, v)|2 dξ dµ =
1

d
ωdR

d ‖ρf‖2L1(dx)

∫
Rd
F 2 dµ

=
1

d
ωdR

d ‖f‖L1(dx dv)
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and ∫∫
|ξ|>R

|Π̂f(ξ, v)|2 dξ dµ ≤ Qa[ρf ]

Na(R)

∫
Rd
F 2 dµ =

Qa[Πf ]

Na(R)
.

From this point, the computations are exactly the same as in the proof of Lem-
ma 13. ut

7.3. A limit case of the fractional Nash inequality. In the case when β + γ = 2,
we recall that

Rξ[f̂ ] & Λ(ξ) ‖Πf̂‖2 − C ‖(1− Π)f̂‖2β
by Proposition 3, where Λ(ξ) = h(|ξ|) and h(r) = r2 | log r|/(1 + r2 log r). The
function h : [0, 1/

√
e)→ R is monotone increasing. Define

Φ(x) :=
1

d
x1+

2
d |log x| .

The proof of Corollary 1 relies on the following result.

Lemma 15. Let d ≥ 1 and assume that β + γ = 2. With the above notation,
there exists a positive constant A such that, if

‖Πf‖2L2(dx dµ)

‖f‖2L1(dx dv)

≤ A ,

then

‖Λ 1
2 Πf̂‖2L2(dx dµ) ≥

ωd
2 d ‖f‖

2
L1(dx dµ) Φ

(
‖Πf‖2L2(dx dµ)

‖f‖2L1(dx dv)

)
.

Proof. As in the case β + γ 6= 2, we use

‖Πf‖2L2(dξ dµ) = ‖ρf‖2L2(dx) =

∫
|ξ|<R

|ρ̂f |2 dξ +

∫
|ξ|≥R

|ρ̂f |2 dξ

≤ ωd
d Rd ‖ρ̂f‖2L∞(dξ) +

1

h (R)

∫
|ξ|≥R

Λ |ρ̂f |2 dξ

≤ ωd
d Rd ‖f‖2L1(dx dµ) +

1

h (R)
‖Λ 1

2 Πf̂‖2L2(dx dµ)

for some R > 0, small enough. The last inequality can be written as

X ≤ Rd a+
b

h(R)

with a = ωd
d ‖f‖

2
L1(dx dµ), b = ‖Λ 1

2 Πf̂‖2L2(dx dµ) and X = ‖Πf‖2L2(dξ dµ). There is
a unique R > 0, small, such that Rd+2 | logR| ∼ Rd h(R) = b/a if b/a is small
enough, from which we deduce that X ≤ 2 aRd, i.e,

b

a
& Φ

(
X

2 a

)
where Φ(x) :=

1

d
x1+

2
d |log x| .

The conclusion holds for some A < Rd h(R) with R = 1/
√
e, whose detailed

expression is inessential. ut
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7.4. An extension of Corollary 1 when β + γ ≤ 0. We do not have a good
control of ‖(1− Π)f‖2

L2(dx 〈v〉β dµ)
when β ≤ − γ, but we claim that the issue can

be solved if we consider ‖(1− Π)f‖2L2(dx 〈v〉ηdµ).

Corollary 7. Let β + γ ≤ 0 and η ∈ (− γ, 0). Under Assumption (H), if f is a
solution of (1), then for any t ≥ 0,∫

Rd
Rξ[f̂ ] dξ & ‖Πf‖2 (1+α

d )

L2(dx dµ) − ‖(1− Π)f‖2L2(dx 〈v〉ηdµ) .

8. Completion of the proofs and extension

8.1. The case β + γ ≤ 0. Let us define

Xζ :=

∫∫
Rd×Rd

|(1− Π)f |2 〈v〉ζ dxdµ and Y :=

∫∫
Rd×Rd

|Πf |2 dxdµ .

With this notation, Inequality (14) in Corollary 6 can be written as

∀ r > 0 , −
∫
Rd
〈f, Lf〉dx ≥ r Xη − (1− θ) θ

θ
1−θ r

1
1−θ Xk (17)

with θ = k−η
k−β , β ≤ − γ < η < 0 < k < γ, while Corollary 7 simply means∫

Rd
Rξ[f̂ ] dξ & Y 1+α

d −Xη . (18)

Let us consider

H := X0 + Y + δ(t) Re

(∫
Rd
〈Af, f〉dx

)
with δ(t) = δ0 (1 + ε t)−a ,

for some constant numbers a ∈ (0, 1), δ0 > 0 and ε > 0, to be chosen. The
major difference with the case β + γ > 0 considered in Section 3.3 is that we
allow δ to depend on t and that we shall actually make an explicit choice of this
dependence.

We know that (
1− δ

2

)
(X0 + Y ) ≤ H ≤

(
1 + δ

2

)
(X0 + Y )

and compute

−dH
dt

= − 2

∫∫
Rd×Rd

f Lf dxdµ+ δ(t)

∫
Rd

Rξ[f̂ ] dξ+ δ′(t) Re

(∫
Rd
〈Af, f〉dx

)
.

Using (17) and (18), we get the estimate

−dH
dt
& δ Y 1+α

d − δ Xη + r Xη − r
k−β
η−β − δ ε

1+ε t H .

We recall that &means that the inequality holds up to a positive, finite constant,
which changes from line to line. Next we choose r = 2 δ, δ0 > 0 and ε > 0 small
enough so that the above r.h.s. of the inequality is positive. However, we shall
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still do some further reductions before fixing the values of δ0 and ε. The decay
rate of H is governed by

−dH
dt
& δ Y 1+α

d + δ Xη − δ
k−β
η−β − δ ε

1+ε t H ,

with a positive r.h.s. at t = 0. Using Hölder’s inequality

X0 ≤ X
k

k−η
η X

η
η−k
k

and the fact that Xk is uniformly bounded in t by a positive constant depending
only on the initial datum, we obtain

−dH
dt
& δ Y 1+α

d + δ X
1− ηk
0 − δ

k−β
η−β − δ ε

1+ε t H ,

and we can still assume that the inequality has a positive r.h.s. at t = 0 without
loss of generality. It is now clear that

−dH
dt
& δ

(
H1+κ − δ

k−η
η−β − ε

1+ε t H
)

with κ = max
{α
d
,−η

k

}
.

Up to a multiplication by a constant, we can actually fix the mutiplicative con-
stant to a given value τ > 0 that will be chosen below (with the corresponding
redefinition of ε and δ0) so that the differential inequality is

−dH
dt
≥ τ δ

(
3H1+κ − δ

k−η
η−β − ε

1+ε t H
)
.

Now, let us fix δ0 > 0 and ε > 0 small enough so that

δ
k−η
η−β
0 + εH0 ≤ H1+κ

0

with H0 = H(t = 0). We have to check that this condition is stable under the
evolution, that is,

∀ t ≥ 0 , δ(t)
k−η
η−β ≤ H(t)1+κ and εH(t) ≤ H(t)1+κ . (19)

Keeping track of the coefficients is paid by unnecessary complications, so that
we are going to make some simplifying assumptions, in order to emphasize the
key idea of the estimate. Up to a change of variable t 7→ ε t, we can choose ε = 1
and also take δ0 = 1 and H0 = 1 without loss of generality, so that, in particular,

∀ t ≥ 0 , δ(t) = (1 + t)−a .

As a result, let us consider the differential inequality

−dH
dt
≥ τ δ

(
3H1+κ − δ

k−η
η−β − H

1+t

)
.

We aim at showing that

H(t) ≤ H(t) := (1 + t)− τ (20)
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where H solves
dH′

dt
= − τ δH1+κ

with τ =
1− a

κ
.

As a consequence of

δ
k−η
η−β = (1 + t)−a

k−η
η−β and H

1+t = (1 + t)−
1−a
κ −1 ,

we learn that

∀ t ≥ 0 , δ(t)
k−η
η−β ≤ H(t)1+κ and H

1+t ≤ H(t)1+κ

under the condition that

− a
k − η
η − β

≤ − (1− a)
1 + κ

κ
and a ≥ 0 . (21)

Since − dH′
dt ≤ −

dH′
dt if H(t) = H(t), it is then clear that (19) holds and H(t) ≤

H(t) for any t ≥ 0. In other words, H is a barrier function and (20) holds for
any t ≥ 0. The result is also true for the generic case.

With the choice a = (β − η)/β, Condition (21) is satisfied if β ≤ η ≤ 0 ≤ k
and κ = |η|/k, with τ = k/|β| if d ≥ 2 because

α =
γ − β
1− β

≤ max

{
1,

2 γ

1 + γ

}
and because κ = |η|/k > α/d for an appropriate choice of η ∈ (− γ, 0) and
k ∈ (0, |η| d/α). The same argument applies if d = 1 and γ ≤ 1.

If d = 1, in the range 1 ≤ γ ≤ |β|, we have α > 1 and distinguish two cases.
• Either κ = α > |η|/k: with |η|/α < k < γ and η > − γ, we find that
τ = τ?(η, k) and a = a?(η, k) where

τ?(η, k) :=
k − η

α (k − β) + η − β
and a?(η, k) :=

(1 + α) (η − β)

α (k − β) + η − β
.

Using ∂τ?
∂k > 0 and ∂τ?

∂η < 0, the largest admissible value of τ? is achieved by

lim
(η,k)→(− γ,γ)

τ?(η, k) =
2 γ

α (γ − β) + |β + γ|
.

• Or α ≤ |η|/k = κ: in that case, we can take a = (β − η)/β, Condition (21) is
satisfied if − γ ≤ η ≤ 0 ≤ k ≤ |η|/α < γ/α, τ = k/|β| and κ = |η|/k. This is
possible as soon as k < γ/α since this condition is then verified if we take any
η ∈ (− γ,− k α).

This completes the proof of Theorems 1, 2 and 3 with τ = k/|β|, except if
d = 1, 1 ≤ γ ≤ |β| and k ∈ [γ/α, γ), where the rate can be chosen arbitrarily
close to τ?(− γ, k).
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8.2. The case of a flat torus. As in [11], the case of the flat d-dimensional torus
Td (with position x ∈ Td and velocity v ∈ Rd) follows from our method without
additional efforts. In that case, Equation (1) admits a global equilibrium given
by f∞ = ρ∞ F with ρ∞ = 1

|Td|
∫∫

Td×Rd f
in dxdv, and the rate of convergence to

the equilibrium is just given by the microscopic dynamics

‖f − f∞‖L2(dx dµ) . e
−λ t ‖f in − f∞‖L2(dx dµ) if 0 ≤ β < γ ,

‖f − f∞‖L2(dx dµ) . (1 + t)−k/|β| ‖f in − f∞‖L2(〈v〉kdx dµ) if β < 0 ,

with k ∈ (0, γ). In particular, if f = f(t, v) does not depend on x, then (1)
is reduced to the homogeneous equation ∂tf = Lf and we recover the rate of
convergence of f to F in the norm L2(dµ), as in Section 1. This is coherent
with the results in [3,41,40,17,28,2]. Moreover, we point out that our result
is a little bit stronger than some of those results, because it relies on a finite
‖f in‖L2(〈v〉kdx dµ) norm for the initial condition, which is a weaker condition than
the usual boundedness condition on ‖f in F−1‖L∞(dx dv), or H1-type estimates as
in [2, Section 6], where β = 0 in Case (b). Remark however that weighted L2

norms already appear in the homogeneous case in [27,28].
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