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Abstract

This paper is devoted to stability results for the Gaussian logarithmic Sobolev in-
equality. Our approach covers several cases involving the strongest possible norm
with the optimal exponent, under constraints. Explicit constants are obtained. The
strategy of proof relies on entropy methods and the Ornstein-Uhlenbeck flow.
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1. Introduction and main results

Let us consider the Gaussian logarithmic Sobolev inequality
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where dγ = γ(x)d x is the normalized Gaussian probability measure with density

γ(x) = (2π)−
d
2 e−

1
2 ∣x∣

2
∀x ∈Rd .

In this paper we are interested in stability results, that is, in estimating the difference
of the two terms in (1) from below, by a distance to the set of optimal functions.
According to [20, 4], equality in (1) is achieved by functions in the manifold

M ∶= {wa,c ∶ (a,c) ∈Rd
×R}

where
wa,c(x) = c e−a⋅x

∀x ∈Rd
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and only by these functions. The ultimate goal of stability estimates is to find a no-
tion of distance d, an explicit constant β > 0 and an explicit exponent α > 0, which
may depend on d, such that
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for any given u ∈H1(Rd ,dγ). In this paper we consider the slightly simpler question
of finding a specific wu ∈M such that
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which provides us with no more than an estimate for (S ): any estimate of α and β
for (⋆) is also an estimate for (S ). In order to illustrate the difference between the
two questions, let us consider the following elementary example. Assume that d = 1
and consider the functions uε(x) = 1+εx in the limit as ε→ 0. With d(u, w) = ∥u′−
w ′∥L2(R,dγ), which is the strongest possible notion of distance that we can expect
to control in (⋆), elementary computations show that the deficit of the logarithmic
Sobolev inequality, i.e., the left hand-side in (⋆), is
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while, using the test function waε,cε ∈M where aε = 2ε and cε = e−a2
ε/4, we obtain

d(uε,1)2
= ∥u′ε∥

2
L2(R,dγ) = ε

2 and inf
w∈M

d(uε, w)
α
≤ d (uε, waε,cε)

2
=

1

2
ε4
+O(ε6) .

In practice we will consider only the case

wu = 1

in (⋆) and the above example shows that the best we can hope for without additional
restriction is α ≥ 4. Similar examples in higher dimensions can be obtained by con-
sidering for an arbitrary given ν ∈ Sd−1 the functions uε(x) = 1+ εx ⋅ν in the limit
as ε→ 0. This is not a surprise in view of [33, 30, 39], and also of the detailed Tay-
lor expansions of [36, 17, 18]. Still with wu = 1, we can expect to have α = 2 in (⋆)
under additional conditions, including for d(u, w) = ∥∇u−∇w∥L2(Rd ,dγ), while it is
otherwise banned as shown for instance from [39, Theorem 1.2 (2)], or simply from
considering the above example. Before entering the details, let us mention a recent
stability result for (S ) with α = 2 involving a constructive although very delicate ex-
pression for β > 0 and d(u, w) = ∥u−w∥L2(Rd ,dγ) that appeared in [27]. Here we aim
at stronger estimates under additional constraints, with wu = 1, which is a different
point of view. Let us start by a first stability result.
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Proposition 1. For all u ∈H1(Rd ,dγ) such that ∥u∥L2(Rd) = 1 and ∥x u∥
2
L2(Rd) ≤ d, we

have
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and, with ψ(s) ∶= s − d
4 log(1+ 4

d s), we also have the stronger estimate
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Similar results are already known in the literature (see for instance [14, 33, 30, 39])
and we claim no originality for the the results. Also see references to earlier proofs
at the end of the introduction. Our method is based on the carré du champ method.
Even if some ideas go back to [2], it is elementary, new as far as we know, and of
some use for our other results.

Coming back to (⋆), we may notice that there is no loss of generality in imposing
the condition ∥u∥L2(Rd) = 1, as we can always replace u by u/∥u∥L2(Rd). Because of
the Csiszár-Kullback-Pinsker inequality
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∣u∣
2 log ∣u∣
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−1∥

2

L1(Rd ,dγ)
(4)

and ∣ ∣u∣− 1 ∣ = ∣ ∣u∣2 − 1 ∣/∣ ∣u∣+ 1 ∣ ≤ ∣ ∣u∣2 − 1 ∣, we find that (2) implies (⋆) type with
d(u, w) = ∥u−w∥L1(Rd ,dγ) for nonnegative functions u, α = 4, and β = 1/(32d). For

functions far away from the optimal functions, say such that ∥∇u∥L2(Rd ,dγ) ≥ A un-
der the conditions of Proposition 1, Inequality (3) provides us with an even stronger
stability result of (⋆) type with α = 2 and d(u, w) = ∥∇u−∇w∥L2(Rd ,dγ), but with a
positive constant β which depends on A > 0. Again, notice that (⋆) with such a dis-
tance cannot hold without constraints.

Next we aim at explicit results with α = 2, under other constraints. Let

C⋆ = 1+
1

1728
≈ 1.0005787.

Theorem 2. For all u ∈H1(Rd ,dγ) such that u2γ is log-concave and such that

∫
Rd

(1, x) ∣u∣
2 dγ = (1,0) and ∫

Rd
∣x∣2 ∣u∣

2 dγ ≤ d , (5)

we have

∥∇u∥
2
L2(Rd ,dγ)−

C⋆
2 ∫Rd

∣u∣
2 log ∣u∣

2 dγ ≥ 0. (6)

The condition ∫Rd ∣x∣2 ∣u∣2 dγ ≤ d in (5) is a simplifying assumption. A result like (6)
also holds if ∫Rd ∣x∣2 ∣u∣2 dγ > d , but with a constant that differs from C⋆ and actually
depends on ∫Rd ∣x∣2 ∣u∣2 dγ. We refer to Section 3.5: see Proposition 7 for an exten-
sion of Theorem 2, and also for further comments on the extension of Proposition 1.
The constant C⋆ in (8) relies on an estimate of [12].

Inequality (6) with improved constant C⋆ > 1 compared to (1) can be recast in

3



the form of a stability inequality of type (⋆) around the normalised Gaussian as
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for all functions u ∈H1(Rd ,dγ) such that ∥u∥L2(Rd) = 1, which covers the case α = 2,

β = (C⋆−1)/8 and d(u, w) = ∥u−w∥L1(Rd ,dγ) in (⋆) for nonnegative functions by (4),

or even in the stronger Ḣ1(Rd ,dγ) semi-norm, as
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for all functions u ∈H1(Rd ,dγ) such that ∥u∥L2(Rd) = 1, which corresponds to α = 2,

β = (C⋆−1)/C⋆ and d(u, w) = ∥∇(u−w)∥L2(Rd ,dγ) in (⋆). By the Gaussian Poincaré

inequality, notice that the case of (⋆) with α = 2, β = (C⋆ −1)/C⋆ and the standard
distance d(u, w) = ∥u−w∥L2(Rd ,dγ) is also covered.

Log-concavity might appear as a rather restrictive assumption, but this is useful
because a function which is compactly supported at time t = 0 evolves through the
diffusion flow into a logarithmically concave function after some finite time that can
be estimated by the heat flow estimates of [48]. This is enough to produce a stability
result with an explicit constant. Compact support is in fact a too restrictive condition
and we have the following result.

Theorem 3. Let d ≥ 1. For any ε > 0, there is some explicit C > 1 depending only on ε
such that, for any u ∈H1(Rd ,dγ) satisfying (5) and

∫
Rd

∣u∣
2 e ε ∣x∣

2
dγ <∞ , (7)

then we have

∥∇u∥
2
L2(Rd ,dγ) ≥

C

2 ∫Rd
∣u∣

2 log ∣u∣
2 dγ . (8)

Additionally, if u is compactly supported in a ball of radius R > 0, then (8) holds with

C = 1+
C⋆−1

1+C⋆R2
.

This expression of the constant C in (8) is given in the proof, in Section 3.4. The
simpler estimate in terms of R relies on Theorem 2.

Let us conclude this introduction with a review of the literature. The logarithmic
Sobolev inequality historically appeared in [54, 11], in a form that was later rediscov-
ered as an equivalent scale-invariant form of the Euclidean version of the inequality
in [56]. We refer to [37] for the Gaussian version (1) of the inequality, and also to [34]
for an equivalent result. The optimality case in the inequality has been characterized
in [20] but can also be deduced from [4]. Also see [55] for a short introductory review
with an emphasis on information theoretical aspects. The logarithmic Sobolev in-
equality can be viewed as a limit case of a family of the Gagliardo-Nirenberg-Sobolev
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(GNS) as observed in [25], in the Euclidean setting, or as a large dimension limit of
the Sobolev inequality according to [9]. See [27, 18] for recent developments and fur-
ther references. We refer to [1, 38, 52, 5] to reference books on the topic. In a classical
result on stability in functional inequalities, Bianchi and Egnell proved in [10] that
the deficit in the Sobolev inequality measures the Ḣ1(Rd ,d x) distance to the mani-
fold of the Aubin-Talenti functions. The estimate has been made constructive in [27]
where a new L2(Rd ,d x) stability result for the logarithmic Sobolev inequality is also
established (also see [39] for furrther results in strong norms). Still in the Euclidean
setting a first stability result in strong norms for the logarithmic Sobolev inequal-
ity appears in [33], where the authors give deficit estimates in various distances for
functions inducing a Poincaré inequality. Under the condition ∥x u∥L2(Rd ,dγ) =

√
d ,

a stability result measured by an entropy is given in [30]. For sequential stability re-
sults in strong norms, we refer to [40] when assuming a bound on u in L4(Rd ,dγ)
and to [39] when assuming a bound on ∣x∣2 u in L2(Rd ,dγ). Stability according to
other notions of distance has been studied in [47, 46, 35].

To our knowledge, the first result of stability for the logarithmic Sobolev inequal-
ity is a reinforcement of the inequality due to E. Carlen in [20] where he introduces
an additional term involving the Wiener transform. Stability in logarithmic Sobolev
inequality is related to deficit in Gaussian isoperimetry and we refer to [14] for an
introduction to early results in this direction, [7] for a sharp, dimension-free quanti-
tative Gaussian isoperimetric inequality, and [31] for recent results and further ref-
erences. Results of Proposition 1 are known from [14, Theorem 1.1] where it is de-
duced from the HWI inequality due to F. Otto and C. Villani [51]. Such estimates have
even been refined in [31]. There are several other proofs. In [33], M. Fathi, E. Indrei
and M. Ledoux use a Mehler formula for the Ornstein-Uhlenbeck semigroup and
Poincaré inequalities. The proof in [30] is based on simple scaling properties of the
Euclidean form of the logarithmic Sobolev inequality, which also apply to Gagliardo-
Nirenberg inequalities. Various stability results have been proved in Wasserstein’s
distance: we refer to [41, 14, 33, 40, 43, 15, 31, 39]. A key argument for Theorem 2
is the fact that the heat flow preserves log-concavity according, e.g., [53], which is a
pretty natural property in this framework: see for instance [24].

In this paper, we carefully distinguish stability results of type (S ) where stability
is measured w.r.t. M , and of type (⋆) where the distance to a given function is esti-
mated. Even if this function is normalized and centered, this is not enough as shown
in [39]. Many counter-examples to stability are known, involving Wasserstein’s dis-
tance for instance in [41, 14, 33, 40, 43], weaker distances like p-Wasserstein, or
stronger norms like Lp or H1: see for instance [40, 39]. The main counter-examples
which we might try to apply to our setting are [43, Theorem 1.3] and [31, Theorem 4]
but, as already noted in [40], they are based on the fact that the second moment
diverges along a sequence of test functions, which is forbidden in our assumptions.

This paper is organized as follows. Section 2 is devoted to the standard carré du
champ method and a proof of Proposition 1. Theorem 2 is proved in Section 3.3,
under a log-concavity assumption. Using properties of the heat flow, the method is
extended to the larger class of functions of Theorem 3 in Section 3.4.
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2. Entropy methods and entropy – entropy production stability estimates

This section is devoted to the proof of Proposition 1.

2.1. Definitions and preliminary results

Consider the Ornstein-Uhlenbeck equation on Rd

∂h

∂t
=L h , h(t = 0, ⋅) = h0 , (t , x) ∈R+×Rd , (9)

where L h ∶=∆h− x ⋅∇h denotes the Ornstein-Uhlenbeck operator.
Let us recall some classical results. If h0 ∈ L1(Rd ,dγ) is nonnegative, then there

exists a unique nonnegative weak solution to (9) (see for instance [32]). The two key
properties of the Ornstein-Uhlenbeck operator are

∫
Rd

v1 (L v2)dγ =− ∫
Rd
∇v1 ⋅∇v2 dγ and [∇,L ]v =−∇v .

As a consequence, we obtain the two identities

∫
Rd

(L v)2 dγ =∫
Rd

∥Hess v∥2 dγ+∫
Rd

∣∇v ∣2 dγ (10)

and

∫
Rd

L v
∣∇v ∣2

v
dγ =−2∫

Rd
Hess v ∶

∇v ⊗∇v

v
dγ+∫

Rd

∣∇v ∣4

v2
dγ , (11)

where Hess v = ∇⊗∇v is the Hessian matrix of v . Here we use the following no-
tations. If a and b take values in Rd , a⊗b denotes the matrix (ai b j )1≤i , j≤d . With

matrix valued m and n, we define m ∶ n =∑
d
i , j=1 mi , j ni , j and ∥m∥2 = m ∶m. If h is a

nonnegative solution of (9), notice that v =
√

h solves

∂v

∂t
=L v +

∣∇v ∣2

v
. (12)

Let us fix ∥v∥L2(Rd) = 1, then the entropy and the Fisher information, respectively
defined by

E [v] ∶=∫
Rd

∣v ∣2 log ∣v ∣2 dγ and I [v] ∶=∫
Rd

∣∇v ∣2 dγ ,

evolve along the flow according to

d

d t
E [v] =−4I [v] and

d

d t
I [v] =−2∫

Rd
((L v)2

+L v
∣∇v ∣2

v
)dγ

if v solves (12). Using (10) and (11), we obtain the classical expression of the carré
du champ method

d

d t
I [v]+2I [v] =−2∫

Rd
∥Hess v −

∇v ⊗∇v

v
∥

2

dγ (13)
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as for instance in [3, 28, 5]. By writing that

d

d t
(I [v]−

1

2
E [v]) ≤ 0 and lim

t→+∞
(I [v(t , ⋅)]−

1

2
E [v(t , ⋅)]) = 0,

we recover the standard proof of the entropy – entropy production inequality

I [v]−
1

2
E [v] ≥ 0, (14)

i.e., of (1) by the method of [4].
Several of the above expression can be rephrased in terms of the pressure variable

P ∶=− logh =−2 log v

using the following elementary identities

∇v =−
1

2
e−P/2

∇P ,
∇v ⊗∇v

v
=

1

4
e−P/2

∇P ⊗∇P ,

Hess v =−
1

2
e−P/2 HessP +

1

4
e−P/2

∇P ⊗∇P ,

so that, by taking into account v∇P =−2∇v and h = v2, we have

I [v] =
1

4 ∫Rd
∣∇P ∣

2 h dγ and ∫
Rd

∥Hess v −
∇v ⊗∇v

v
∥

2

dγ =
1

4 ∫Rd
∥HessP∥

2 h dγ .

2.2. Improvements under moment constraints

In standard computations based on the carré du champ method, one usually
drops the right-hand side in (13) which results in the standard exponential decay of
I [v(t , ⋅)] if v solves (12) and, after integration on t ∈R+, proves (1). Keeping track of
the right-hand side in (13) provides us with improvements as shown in [2, 26, 29] in
various interpolation inequalities but generically fails in the case of the logarithmic
Sobolev inequality. We remedy to this issue by introducing moment constraints.
This is not a very difficult result but, as far as we know, it is new in the framework of
the carré du champ method.

Lemma 4. With the notations of Section 2.1, if v ∈ H2(Rd ,dγ) is a positive function
such that ∫Rd ∣x∣2 ∣v ∣2 dγ ≤ d, then

4I [v] ≤∫
Rd

(∆P)h dγ ≤

√

d∫
Rd

∥HessP∥2 h dγ .

Proof. Using h∇P =−∇h, we obtain

4I [v] =∫
Rd

∣∇P ∣
2 h dγ =−∫

Rd
∇P ⋅∇h dγ =∫

Rd
h (L P)dγ .
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After recalling that L P =∆P − x ⋅∇P , using an integration by parts we deduce that

−∫
Rd

h x ⋅∇P dγ =∫
Rd

x ⋅∇h dγ =∫
Rd

h (∣x∣2−d)dγ =∫
Rd

∣v ∣2 (∣x∣2−d)dγ ≤ 0

which proves the first inequality. The second inequality follows from a Cauchy-
Schwarz inequality and the arithmetic-geometric inequality

(∆P)
2
≤ d ∥HessP∥

2 .

Proof of Proposition 1. Let h = v2 be the solution of (9) with initial datum h0 = u2.
Since x↦ (∣x∣2−d) is an eigenfunction of L with corresponding eigenvalue −2 and

L is self-adjoint on L2(Rd ,dγ), we have

d

d t ∫Rd
(∣x∣2−d)h dγ =∫

Rd
(∣x∣2−d)(L h)dγ

=∫
Rd

h L (∣x∣2−d)dγ =−2∫
Rd

(∣x∣2−d)h dγ . (15)

The sign of t ↦ ∫Rd (∣x∣2−d)h(t , x)dγ is conserved and in particular we have that

∫Rd ∣x∣2 ∣v ∣2 dγ ≤ d for any t ≥ 0. For any i = 1, 2. . . d , we also notice that x↦ xi is also
an eigenfunction of L with corresponding eigenvalue −1 so that

d

d t ∫Rd
x h dγ =−∫

Rd
x h dγ

and, as a consequence ∫Rd x h(t , ⋅)dγ = 0 for all t ≥ 0 because ∫Rd x h0 dγ = 0.
For smooth enough solutions, we deduce from Lemma 4, (13) and (14) that

d

d t
I [v]+2I [v] ≤−

8

d
I 2

[v] ≤
1

2d

d

d t
(E [v])2

and obtain by considering the limit as t →+∞ that

I [v] ≥
1

2
E [v]+

1

2d
(E [v])2 .

This provides us with (2). In the general case, one can get rid of the H2(Rd ,dγ)
regularity of Lemma 4 by a standard approximation scheme, which is classical and
will not be detailed here.

As in [17], a better estimate is achieved as follows. Let

φ(s) ∶=
d

4
(e

2
d s
−1) ∀ s ≥ 0.
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Using d
d t E [v] =−4I [v], we notice that

d

d t
(I [v]−φ(E [v])) =−

8

d
(I [v]−φ(E [v])) .

Since limt→+∞I [v(t , ⋅)] = 0 as can be deduced from a Gronwall estimate relying on
d

d t I [v] ≤ −2I [v] and limt→+∞E [v(t , ⋅)] = 0 as a consequence of (1), one knows
that

lim
t→+∞

(I [v(t , ⋅)]−φ(E [v(t , ⋅)])) = 0.

Moreover, Gronwall estimates show that I [v(t , ⋅)]−φ(E [v(t , ⋅)] cannot change
sign and an asymptotic expansion as t → +∞ as in [17, Appendix B.4] is enough to
obtain that I [v(t , ⋅)]−φ(E [v(t , ⋅)] takes nonnegative values for t > 0 large enough.
Altogether, we conclude that

I [v(t , ⋅)]−φ(E [v(t , ⋅)]) ≥ 0

for any t ≥ 0 and, as a particular case, at t = 0 for v(0, ⋅) = u. The function φ is convex
increasing and, as such, invertible, so that we can also write

ϕ(I [u])
−1
−φ(E [u]) ≥ 0.

his completes the proof of (3) with the convex monotone increasing function

ψ(s) ∶= s −
1

2
φ−1

(s) .

3. Stability results

3.1. Log-concave measures and Poincaré inequality
According to [6], given a Borel probability measure µ on Rd , its isoperimetric

constant is defined as

h(µ) ∶= inf
A

Pµ(A)

min{µ(A),1−µ(A)}

where the infimum is taken on the set of arbitrary Borel subset Rd with µ-perimeter
or surface measure Pµ(A) ∶= limε→0+ (µ(Aε)−µ(A))/ε and Aε ∶= {x ∈ Rd ∶ ∣x − a∣ <
ε for some a ∈ A}. Here and in what follows, we shall say that a measure µ with
density e−ψ with respect to Lebesgue’s measure is a log-concave probability measure
if ψ is a convex function, and denote by λ1(µ) the first positive eigenvalue of −Lψ

where Lψ is the Ornstein-Uhlenbeck operator Lψ ∶=∆−∇ψ⋅∇. In that case, we learn
from [45, Ineq. (5.8)] that

1

4
h(µ)2

≤λ1(µ) ≤ 36h(µ)2
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where the lower bound is J. Cheeger’s inequality that goes back to [22] for Rieman-
nian manifolds and also to earlier works by V.G. Maz’ya [49, 50]. This bound was later
improved in [19, 44]. The characterization of h(µ) has been actively studied, but it
is out of the scope of the present paper. We learn from [12, Theorem 1.2] and [12,
Ineq. (3.4)] that

h(µ) ≥
1

6
√

3∫Rd ∣x − xµ∣2 dµ
where xµ =∫

Rd
x dµ

for any log-concave probability measure µ. This estimate is closely related with the
results by R. Kannan, L. Lovász and M. Simonovits in [42] and their conjecture, which
again lies out of the scope of the present paper (see for instance [13] for a recent work
on the topic).

Altogether, if µ is a log-concave probability measure with dµ = e−ψd x such that

∫Rd ∣x∣2 dµ ≤ d , then we have the Poincaré inequality

∫
Rd

∣∇ f ∣2 dµ ≥
1

432 ∫Rd
∣ f ∣2 dµ ∀ f ∈H1

(Rd ,dµ) such that ∫
Rd

f dµ = 0. (16)

We refer to [21] and references therein for further estimates on λ1(µ).

3.2. Time evolution, log-concave densities and Poincaré inequality

Lemma 5. Let us consider consider a solution h of (9) with initial datum h0 = v2 and
assume that µ0 ∶= h0γ is log-concave. Then µt ∶= h(t , ⋅)γ is log-concave for all t ≥ 0.

Proof. The function g ∶= hγ solves the Fokker-Planck equation

∂g

∂t
=∆g +∇⋅(x g) .

The function f such that

f (t , x) ∶= g (
1

2
log(1+2 t),

x
√

1+2 t
) ∀(t , x) ∈R+×Rd

solves the heat equation and can be represented using the heat kernel. According for
instance to [53, 8], log-concavity is preserved under convolution, which completes
the proof.

The log-concavity property becomes true under the action of the flow of (9) after
some delay t⋆ for large classes of initial data. With the notation of Lemma 5, for
any R > 0, we read from [48, Theorem 5.1] by K. Lee and J-L. Vázquez that µt is log-
concave for any

t ≥ t⋆(R) ∶= log(
√

R2+1) , (17)

if v is compactly supported in a ball of radius R > 0, by reducing the problem to the
heat flow as in the above proof. As a consequence, we know that (16) holds for any
t ≥ t⋆(R).
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Alternatively, under Assumption (7), we learn from a recent paper [23, Theo-
rem 2] by H.-B. Chen, S. Chewi, and J. Niles-Weed that the Poincaré inequality

∫
Rd

∣∇ f ∣2 dµt ≥λ1(µt)∫
Rd

∣ f ∣2 dµt ∀ f ∈H1
(Rd ,dµt) such that ∫

Rd
f dµt = 0

(18)
holds for all t ≥ tε⋆ with

tε⋆ ∶= log(
√

1+ε−1) ,
1

λ1(µt)
≤ τ(

ετ

ετ−1
+ A

1
ετ−1 ) and τ =

1

2
(e2t

−1) .

3.3. Explicit stability results for log-concave densities

Let us start by an elementary observation.

Lemma 6. If h ∈H1(Rd ,dγ) is such that ∫Rd x h dγ = 0 and P =− logh is the pressure
variable, then

∫
Rd
∇P h dγ = 0.

Proof. The result follows from ∫Rd ∇P h dγ =−∫Rd ∇h dγ = ∫Rd x h dγ = 0.

With this result in hand, we can now prove our first main result.

Proof of Theorem 2. The function h = v2 is such that ∫Rd x h dγ = 0 and Lemma 6
applies. Since hγ is log-concave, we can apply (16) with f = ∂P/∂xi for any i = 1,
2,. . . d and obtain

∫
Rd

∥HessP∥
2 h dγ ≥

1

432 ∫Rd
∣∇P ∣

2 h dγ .

It follows from (13) that

d

d t ∫Rd
∣∇v ∣2 dγ+2∫

Rd
∣∇v ∣2 dγ ≤−

1

864 ∫Rd
∣∇v ∣2 dγ ,

and the stability result is obtained as in the proof of Proposition 1.

3.4. Extension by entropy methods and flows

This section is devoted to the proof of Theorem 3. The key idea is to evolve the
function by the Ornstein-Uhlenbeck equation, so that the solution after an initial
time layer has the log-concavity property of Theorem 2, at least if the initial datum
has compact support. To some extent, the strategy is similar to the one used in [16].
During the initial time layer, we use an improved version of the entropy – entropy
production inequality which arises as a consequence of the carré du champ method.

Proof of Theorem 3. Let h be the solution to (9) with initial datum h0 = u2 and define

Q(t) ∶=
I [

√
h(t , ⋅)]

E [
√

h(t , ⋅)]
∀ t ≥ 0.

11



Let us assume first that v has compact support. With no loss of generality, we can as-
sume that v is supported in B(0,R) for some R > 0. With t⋆ = t⋆(R) given by (17), we
know from [48, Theorem 5.1] that µt is log-concave at t = t⋆ and Theorem 2 applies:

Q(t⋆) ≥
C⋆
2

.

With an estimate similar to [16, Lemma 2.9], we learn from Section 2 that

dQ

d t
≤ 2Q(2Q−1) . (19)

An integration on (0, t⋆) shows that

Q(0) ≥
1

2
(1+

2Q(t⋆)−1

1+2Q(t⋆)(e2 t⋆ −1)
) ≥

1

2
(1+

C⋆−1

1+C⋆R2
) =

C

2
.

Under the more general assumption (7), we rely on (18) and obtain with same
notations as above and t⋆ = tε⋆ that

∫
Rd

∥HessP∥
2 h(t , ⋅)dγ ≥λ1(µt)∫

Rd
∣∇P ∣

2 h(t , ⋅)dγ ∀ t ≥ t⋆ .

Moreover, for some explicit t0 = t0(ε) > t∗, we notice that t ↦ λ1(µt) is nonincreas-
ing on (t0,+∞). Hence we deduce from

I [v(t0, ⋅)]−
1

8 ∫
+∞

t0

(4+λ1(µs))E ′
[v(s, ⋅)]d s ≥ 0

after an integration by parts that

Q(t0) ≥
1

2
(1+

1

4
λ1(µt0)) =∶C0 .

Using (19), we obtain

C = 1+
C0−1

1+C0 (e2 t0 −1)
.

This concludes the proof.

3.5. Normalization issues

If we do not assume that ∥u∥L2(Rd ,dγ) = 1 and ∥x u∥L2(Rd ,dγ) ≤ d , it is still possible
to state the analogue of Theorem 2, but the price to be paid is a dependence on

κ[u] ∶=
∥u∥L2(Rd ,dγ)

max{
√

d ,∥(x − x0)u∥L2(Rd ,dγ)}
where x0 =∫

Rd
x h0 dγ ,

which goes as follows.
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Proposition 7. For all u ∈ H1(Rd ,(1+ ∣x∣2)dγ) such that ∫Rd x u2 dγ = 0, and u2γ is
log-concave, we have

∥∇u∥
2
L2(Rd ,dγ)−

1

2
(1+(C⋆−1)κ[u])∫

Rd
∣u∣

2 log
⎛

⎝

∣u∣2

∥u∥
2
L2(Rd ,dγ)

⎞

⎠
dγ ≥ 0.

Proof. We learn from (15) that

∫
Rd

∣x∣2 h(t , x)dγ = d ∥u∥
2
L2(Rd ,dγ)+e−2t

∫
Rd

(∣x∣2−d)h0 dγ ∀ t ≥ 0.

Hence [12, Theorem 1.2] and [12, Ineq. (3.4)] apply with

h(µ) ≥
κ[u]

6
√

3
.

and the remainder of the proof of Theorem 2 is unchanged.

A similar extension of Theorem 3 can be done on the same basis. Details are left
to the reader. As for Proposition 1, we can make the following observations. The
case ∫Rd ∣x∣2 ∣v ∣2 dγ ≤ d is already covered in Lemma 4. If

A ∶=∫
Rd

∣u∣
2 (∣x∣2−d)dγ

is positive, let us consider the solution h of (9) with initial datum h0 = u2. We know
from (15) that

∫
Rd

h(t , x)(∣x∣2−d)dγ = A e−2t

and deduce as in the proof of Lemma 4 that

4I [v] =∫
Rd

∣∇P ∣
2 h dγ =∫

Rd
h (L P)dγ+ A e−2t

≤

√

d∫
Rd

∥HessP∥2 h dγ+ A e−2t

with P =− logh. Hence by (13), we learn that

d

d t
I [v]+2I [v] =−

1

2 ∫Rd
∥HessP∥

2 h dγ ≤−
1

2d
(4I [v]− A e−2t)

2

and this estimate can be rephrased with z(t) ∶= e2 t I [v(t , ⋅)] as

z′ ≤−
e−2 t

2d
(4 z − A)

2 .

Knowing that z′ < 0 is an improvement on the decay rate I [v(t , ⋅)] ≤I [u]e−2 t can
be rephrased as an improved entropy – entropy production inequality for A > 0.

13



Acknowledgements

The authors thank Max Fathi and Pierre Cardaliaguet for fruitful discussions
and Emanuel Indrei for stimulating interactions. G.B. has been funded by the Eu-
ropean Union’s Horizon 2020 research and innovation program under the Marie
Sklodowska-Curie grant agreement No 754362.
© 2023 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

References

[1] C. ANÉ, S. BLACHÈRE, D. CHAFAÏ, P. FOUGÈRES, I. GENTIL, F. MALRIEU, C. ROBERTO,
AND G. SCHEFFER, Sur les inégalités de Sobolev logarithmiques, vol. 10, Société mathé-
matique de France Paris, 2000.

[2] A. ARNOLD AND J. DOLBEAULT, Refined convex Sobolev inequalities, J. Funct. Anal., 225
(2005), pp. 337–351.

[3] A. ARNOLD, P. MARKOWICH, G. TOSCANI, AND A. UNTERREITER, On convex Sobolev in-
equalities and the rate of convergence to equilibrium for Fokker-Planck type equations,
Comm. Partial Differential Equations, 26 (2001), pp. 43–100.

[4] D. BAKRY AND M. ÉMERY, Diffusions hypercontractives, in Séminaire de Probabilités XIX
1983/84, Springer, 1985, pp. 177–206.

[5] D. BAKRY, I. GENTIL, AND M. LEDOUX, Analysis and geometry of Markov diffusion oper-
ators, vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences], Springer, Cham, 2014.

[6] D. BAKRY AND M. LEDOUX, Lévy-Gromov’s isoperimetric inequality for an infinite-
dimensional diffusion generator, Invent. Math., 123 (1996), pp. 259–281.

[7] M. BARCHIESI, A. BRANCOLINI, AND V. JULIN, Sharp dimension free quantitative esti-
mates for the Gaussian isoperimetric inequality, Ann. Probab., 45 (2017), pp. 668–697.

[8] J.-B. BARDET, N. GOZLAN, F. MALRIEU, AND P.-A. ZITT, Functional inequalities for Gaus-
sian convolutions of compactly supported measures: Explicit bounds and dimension de-
pendence, Bernoulli, 24 (2018).

[9] W. BECKNER, Sobolev inequalities, the Poisson semigroup, and analysis on the sphereSn ,
Proc. Nat. Acad. Sci. U.S.A., 89 (1992), pp. 4816–4819.

[10] G. BIANCHI AND H. EGNELL, A note on the Sobolev inequality, J. Funct. Anal., 100 (1991),
pp. 18–24.

[11] N. BLACHMAN, The convolution inequality for entropy powers, IEEE Transactions on In-
formation theory, 11 (1965), pp. 267–271.

[12] S. G. BOBKOV, Isoperimetric and analytic inequalities for log-concave probability mea-
sures, Ann. Probab., 27 (1999), pp. 1903–1921.

[13] S. G. BOBKOV AND D. CORDERO-ERAUSQUIN, KLS-type isoperimetric bounds for log-
concave probability measures, Ann. Mat. Pura Appl. (4), 195 (2016), pp. 681–695.

[14] S. G. BOBKOV, N. GOZLAN, C. ROBERTO, AND P.-M. SAMSON, Bounds on the deficit in the
logarithmic Sobolev inequality, J. Funct. Anal., 267 (2014), pp. 4110–4138.

[15] F. BOLLEY, I. GENTIL, AND A. GUILLIN, Dimensional improvements of the logarithmic
Sobolev, Talagrand and Brascamp–Lieb inequalities, The Annals of Probability, 46 (2018),
pp. 261–301.

[16] M. BONFORTE, J. DOLBEAULT, B. NAZARET, AND N. SIMONOV, Stability in Gagliardo-
Nirenberg-Sobolev inequalities: Flows, regularity and the entropy method, Preprint arXiv:
2007.03674 and hal-02887010, to appear in Memoirs of the AMS, (2023).

14

http://arxiv.org/abs/2007.03674
http://arxiv.org/abs/2007.03674
https://hal.archives-ouvertes.fr/hal-02887010


[17] G. BRIGATI, J. DOLBEAULT, AND N. SIMONOV, Logarithmic Sobolev and interpolation in-
equalities on the sphere: constructive stability results, Preprint arXiv:2211.13180 and hal-
03868496, (2022).

[18] , On Gaussian interpolation inequalities, Preprint arXiv: 2302.03926 and hal-
03978122, to appear in C.R. Mathématique, (2023).

[19] P. BUSER, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4), 15 (1982),
pp. 213–230.

[20] E. A. CARLEN, Superadditivity of Fisher’s information and logarithmic Sobolev inequali-
ties, J. Funct. Anal., 101 (1991), pp. 194–211.

[21] P. CATTIAUX AND A. GUILLIN, Functional inequalities for perturbed measures with appli-
cations to log-concave measures and to some Bayesian problems, Bernoulli, 28 (2022).

[22] J. CHEEGER, A lower bound for the smallest eigenvalue of the Laplacian, in Problems in
analysis (Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969),
Princeton Univ. Press, Princeton, N.J., 1970, pp. 195–199.

[23] H.-B. CHEN, S. CHEWI, AND J. NILES-WEED, Dimension-free log-Sobolev inequalities for
mixture distributions, Journal of Functional Analysis, 281 (2021), p. 109236.

[24] T. A. COURTADE, M. FATHI, AND A. PANANJADY, Quantitative stability of the entropy
power inequality, IEEE Transactions on Information Theory, 64 (2018), pp. 5691–5703.

[25] M. DEL PINO AND J. DOLBEAULT, Best constants for Gagliardo-Nirenberg inequalities and
applications to nonlinear diffusions, J. Math. Pures Appl. (9), 81 (2002), pp. 847–875.

[26] J. DEMANGE, Des équations à diffusion rapide aux inégalités de Sobolev sur les modèles
de la géométrie, PhD thesis, Université Paul Sabatier Toulouse 3, 2005.

[27] J. DOLBEAULT, M. J. ESTEBAN, A. FIGALLI, R. L. FRANK, AND M. LOSS, Sharp stability
for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence, Preprint
arXiv: 2209.08651 and hal-03780031, (2022).

[28] J. DOLBEAULT, B. NAZARET, AND G. SAVARÉ, On the Bakry-Emery criterion for linear dif-
fusions and weighted porous media equations, Commun. Math. Sci., 6 (2008), pp. 477–
494.

[29] J. DOLBEAULT AND G. TOSCANI, Improved interpolation inequalities, relative entropy and
fast diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), pp. 917–
934.

[30] , Stability results for logarithmic Sobolev and Gagliardo–Nirenberg inequalities, In-
ternational Mathematics Research Notices, 2016 (2016), pp. 473–498.

[31] R. ELDAN, J. LEHEC, AND Y. SHENFELD, Stability of the logarithmic Sobolev inequality via
the Föllmer process, Ann. Inst. Henri Poincaré Probab. Stat., 56 (2020), pp. 2253–2269.

[32] L. C. EVANS, Partial differential equations, vol. 19 of Graduate Studies in Mathematics,
American Mathematical Society, Providence, RI, second ed., 2010.

[33] M. FATHI, E. INDREI, AND M. LEDOUX, Quantitative logarithmic Sobolev inequalities
and stability estimates, Discrete Contin. Dyn. Syst., 36 (2016), pp. 6835–6853.

[34] P. FEDERBUSH, Partially alternate derivation of a result of Nelson, J. Mathematical Phys.,
10 (1969), pp. 50–52.

[35] F. FEO, E. INDREI, M. R. POSTERARO, AND C. ROBERTO, Some remarks on the stability of
the log-Sobolev inequality for the Gaussian measure, Potential Anal., 47 (2017), pp. 37–52.

[36] R. L. FRANK, Degenerate stability of some Sobolev inequalities, Ann. Inst. H. Poincaré
Anal. Non Linéaire (Online first). Doi: 10.4171/AIHPC/35, (2022).

[37] L. GROSS, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), pp. 1061–1083.
[38] A. GUIONNET AND B. ZEGARLINSKI, Lectures on logarithmic Sobolev inequalities, Sémi-

naire de probabilités de Strasbourg, 36 (2002), pp. 1–134.
[39] E. INDREI, Sharp stability for LSI, Preprint arXiv: 2303.05604, (2023).
[40] E. INDREI AND D. KIM, Deficit estimates for the logarithmic Sobolev inequality, Differen-

15

http://arxiv.org/abs/2211.13180
https://hal.archives-ouvertes.fr/hal-03868496
https://hal.archives-ouvertes.fr/hal-03868496
http://arxiv.org/abs/2302.03926
https://hal.archives-ouvertes.fr/hal-03978122
https://hal.archives-ouvertes.fr/hal-03978122
http://arxiv.org/abs/2209.08651
https://hal.archives-ouvertes.fr/hal-03780031
https://doi.org/10.4171/AIHPC/35
http://arxiv.org/abs/2303.05604


tial Integral Equations, 34 (2021), pp. 437–466.
[41] E. INDREI AND D. MARCON, A quantitative log-Sobolev inequality for a two parameter

family of functions, Int. Math. Res. Not. IMRN, 2014 (2014), pp. 5563–5580.
[42] R. KANNAN, L. LOVÁSZ, AND M. SIMONOVITS, Isoperimetric problems for convex bodies

and a localization lemma, Discrete Comput. Geom., 13 (1995), pp. 541–559.
[43] D. KIM, Instability results for the logarithmic Sobolev inequality and its application to

related inequalities, Discrete Contin. Dyn. Syst., 42 (2022), pp. 4297–4320.
[44] M. LEDOUX, A simple analytic proof of an inequality by P. Buser, Proc. Amer. Math. Soc.,

121 (1994), pp. 951–959.
[45] M. LEDOUX, Spectral gap, logarithmic Sobolev constant, and geometric bounds, in Sur-

veys in differential geometry. Vol. IX, vol. 9 of Surv. Differ. Geom., Int. Press, Somerville,
MA, 2004, pp. 219–240.

[46] M. LEDOUX, I. NOURDIN, AND G. PECCATI, Stein’s method, logarithmic Sobolev and
transport inequalities, Geom. Funct. Anal., 25 (2015), pp. 256–306.

[47] , A Stein deficit for the logarithmic Sobolev inequality, Sci. China Math., 60 (2017),
pp. 1163–1180.

[48] K.-A. LEE AND J. L. VÁZQUEZ, Geometrical properties of solutions of the porous medium
equation for large times, Indiana University Mathematics Journal, (2003), pp. 991–1016.

[49] V. G. MAZ’YA, The negative spectrum of the n-dimensional Schrödinger operator, in Dok-
lady Akademii Nauk, vol. 144, Russian Academy of Sciences, 1962, pp. 721–722.

[50] , On the solvability of the Neumann problem, in Doklady Akademii Nauk, vol. 147,
Russian Academy of Sciences, 1962, pp. 294–296.

[51] F. OTTO AND C. VILLANI, Generalization of an inequality by Talagrand and links with the
logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), pp. 361–400.

[52] G. ROYER, An initiation to logarithmic Sobolev inequalities, vol. 14 of SMF/AMS Texts
and Monographs, American Mathematical Society, Providence, RI; Société Mathéma-
tique de France, Paris, 2007. Translated from the 1999 French original by Donald Bab-
bitt.

[53] A. SAUMARD AND J. A. WELLNER, Log-concavity and strong log-concavity: a review,
Statistics surveys, 8 (2014), p. 45.

[54] A. J. STAM, Some inequalities satisfied by the quantities of information of Fisher and
Shannon, Information and Control, 2 (1959), pp. 101–112.

[55] C. VILLANI, A short proof of the “concavity of entropy power”, IEEE Trans. Inf. Theory, 46
(2000), pp. 1695–1696.

[56] F. B. WEISSLER, Logarithmic Sobolev inequalities for the heat-diffusion semigroup, Trans.
Amer. Math. Soc., 237 (1978), pp. 255–269.

16


	Introduction and main results
	Entropy methods and entropy – entropy production stability estimates
	Definitions and preliminary results
	Improvements under moment constraints

	Stability results
	Log-concave measures and Poincaré inequality
	Time evolution, log-concave densities and Poincaré inequality
	Explicit stability results for log-concave densities
	Extension by entropy methods and flows
	Normalization issues


