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Abstract. This paper is devoted to Gaussian interpolation inequalities with endpoint cases corresponding
to the Gaussian Poincaré and the logarithmic Sobolev inequalities, seen as limits in large dimensions of
Gagliardo-Nirenberg-Sobolev inequalities on spheres. Entropy methods are investigated using not only heat
flow techniques but also nonlinear diffusion equations as on spheres. A new stability result is established for
the Gaussian measure, which is directly inspired by recent results for spheres.

Résumé. Cet article est consacré à des inégalités d’interpolation Gaussiennes, avec comme cas extrêmes
l’inégalité de Poincaré Gaussienne et l’inégalité de Sobolev logarithmique, vues comme limites en grandes
dimensions des inégalités de Gagliardo-Nirenberg-Sobolev sur les sphères. Les méthodes d’entropie sont
abordées en utilisant non seulement des techniques basée sur l’équation de la chaleur mais aussi sur des
équations de diffusion non-linéaires, comme pour les sphères. Un nouveau résultat de stabilité est établi
pour les mesures Gaussiennes, qui s’inspire directement de résultats récents sur les sphères.
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1. Introduction and main results

Let us consider the Gagliardo-Nirenberg-Sobolev inequalities on the unit d-dimensional sphere

‖∇u‖2
L2(Sd ,dµd )

≥ d

p −2

(
‖u‖2

Lp (Sd ,dµd )
−‖u‖2

L2(Sd ,dµd )

)
∀u ∈ H1(Sd ,dµd ) (1)

for any p ∈ [1,2)∪ (2,+∞) if d = 1, 2, and for any p ∈ [1,2)∪ (2,2∗] if d ≥ 3. Here dµd denotes the
uniform probability measure on Sd ⊂ Rd+1 and, if d ≥ 3, 2∗ = 2d/(d − 2) is the critical Sobolev
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exponent. By convention, we take 2∗ =+∞ if d = 1 or 2. The purpose of this paper is to clarify the
links of these interpolation inequalities with the family of Gaussian interpolation inequalities

‖∇v‖2
L2(Rn ,dγ) ≥

1

2−p

(
‖v‖2

L2(Rn ,dγ) −‖v‖2
Lp (Rn ,dγ)

)
∀v ∈ H1(Rn ,dγ) (2)

where the exponent p is taken in the range 1 ≤ p < 2. Inequality (2) is intermediate between the
Poincaré inequality corresponding to p = 1 and the Gaussian logarithmic Sobolev inequality

‖∇v‖2
L2(Rn ,dγ) ≥

1

2

∫
Rn

|v |2 log

 |v |2
‖v‖2

L2(Rn ,dγ)

dγ ∀v ∈ H1(Rn ,dγ)

obtained as a limit case of (2) as p → 2−. Here dγ(y) := (2π)−n/2 e−
1
2 |y |2 d y denotes the centred

normalized Gaussian probability measure and the dimension n is any positive integer.

It is somewhat classical that, if we consider the Sobolev inequality on the sphere, i.e., Inequal-
ity (1) with p = 2∗ and d ≥ 3, rescale it to the sphere of radius

p
d and fix a function depend-

ing on n variables only on this sphere, since the curvature tends to 0 at the right order as one
takes the limit as d → +∞, then the sphere tends to the flat space with Gaussian measure. For
instance, we read (with adapted notation) from [9, p. 4818] that if we rescale this inequality so as
to be on a sphere of radius

p
d and take the limit d →∞ or p → 2 we obtain in the Poincaré limit

the Gross logarithmic inequality for the Gaussian measure since −(1/d)∆ on Sd goes to −∆+ x ·∇
on the infinite-dimensional limit. The last part of the sentence refers to a result known as the
Maxwell–Poincaré lemma : see [39] and [43, Remark 4, p. 254] for some historical comments. The
statement of [9] has been made more precise later in [11, 12] using a slightly different limit. How-
ever, to our knowledge, the infinite-dimensional limit has not been considered in the subcritical
range p < 2∗.

On the sphere, Inequality (1) follows from [4, 6] for any p ≥ 1 if d = 1 and any p ∈ [1,2#] with
2# := (2d 2 + 1)/(d − 1)2 if d ≥ 2. The proof in the range p ∈ (2#,+∞) if d = 2 and p ∈ (2#,2∗] if
d ≥ 3 can be found in [15, Corollary 6.1], [16] and [10]. Also see [37] in the case p = 2∗. In the
case of the Gaussian measure, we refer to [8] (also see [34]) for a first proof of Inequality (2). The
formal analogy of (1) and (2) is striking. Although computations are somewhat standard, our first
purpose is to make this point rigorous and recover (2) as a special limit of (1) as d →+∞.

Theorem 1. Let n be a positive integer, p ∈ [1,2) and consider a function v ∈ H1(Rn ,d x) with
compact support. For any d ≥ n, large enough, if ud (ω) = v

(
ω1/

p
d ,ω2/

p
d , . . . ,ωn/

p
d

)
where

ω= (ω1,ω2, . . . ,ωd+1) ∈Sd ⊂Rd+1, then

lim
d→+∞

d

(
‖∇ud‖2

L2(Sd ,dµd )
− d

2−p

(
‖ud‖2

L2(Sd ,dµd )
−‖ud‖2

Lp (Sd ,dµd )

))
= ‖∇v‖2

L2(Rn ,dγ) −
1

2−p

(
‖v‖2

L2(Rn ,dγ) −‖v‖2
Lp (Rn ,dγ)

)
.

The carré du champ method has frequently been applied to prove Gaussian interpolation
inequalities ranging between the logarithmic Sobolev inequality and the Poincaré inequality
like (2) using the linear flow associated with the Ornstein-Uhlenbeck operator; see [4], and [7]
for an overview. Still in the case of the Gaussian measure, we adopt here a new point of view by
using nonlinear diffusion equations in order to prove the same inequalities, but with different
remainder terms. This is a very natural point of view when dealing with inequalities like (1) on
the sphere, as shown for instance in [26] (see earlier references therein). In that case, linear flows
are indeed limited to exponents p ≤ 2# if d ≥ 2. To overcome this difficulty if either d = 2 and
p > 2# or d ≥ 3 and p ∈ (2#,2∗], one has to consider fast diffusion flows. Before explaining the
results for the Gaussian measure, let us summarize the main known results on the sphere.
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On Sd , let us consider a positive solution u of

∂u

∂t
= u−p (1−m)

(
∆u + (m p −1)

|∇u|2
u

)
(3)

where ∆ denotes the Laplace-Beltrami operator on Sd . In the case m = 1, up solves the heat
equation and for this reason, we shall call it the linear case. Otherwise up solves a nonlinear
diffusion equation corresponding either to a fast diffusion flow with m < 1 or to a porous media
equation with m > 1. In any case, we claim that

d

d t
‖u‖2

Lp (Sd )
= 0 and

d

d t
‖u‖2

L2(Sd )
= 2(p −2)

∫
Sd

u−p (1−m) |∇u|2 dµd .

Let us define

m±(d , p) := 1

(d +2) p

(
d p +2±

√
d (p −1)

(
2d − (d −2) p

))
. (4)

The following result can be found in [22, 26] with additional details in [18, 24, 27].

Proposition 2 ([22, 26]). Assume that d ≥ 1, with either p ∈ [1,2) ∪ (2,+∞) if d = 2 or p ∈
[1,2)∪ (2,2∗] if d ≥ 3, and let m ∈ [m−(d , p),m+(d , p)]. If u > 0 solves (3) with an initial datum
in L2 ∩Lp (Sd ,dµd ), then

d

d t

(
‖∇u‖2

L2(Sd ,dµd )
− d

p −2

(
‖u‖2

Lp (Sd ,dµd )
−‖u‖2

L2(Sd ,dµd )

))
≤ 0 ∀ t > 0.

The limit, as t →+∞, of any solution of (3) is a constant. This means that the deficit, that is, the
difference of the two sides in Inequality (1), converges to 0. Then, by Proposition 2, it follows that
the deficit is non-negative, which directly proves (1). The same monotonicity property applies to
the deficit of the logarithmic Sobolev inequality on the sphere

‖∇u‖2
L2(Sd ,dµd )

≥ d

2

∫
Sd

|u|2 log

(
|u|2

‖u‖2
L2(Sd )

)
dµd ∀u ∈ H1(Sd ,dµd )

in the limit case corresponding to p = 2. The admissible values of the parameters are limited to
m−(d , p) ≤ m ≤ m+(d , p) and 1 ≤ p ≤ 2∗ if d ≥ 3. Moreover, at the endpoints, we have m±(d ,1) = 1
and m±(d ,2∗) = (d − 1)/d if d ≥ 3, while m+(d ,2#) = 1 so that m = 1 is admissible if and only
if 1 ≤ p ≤ 2# when d ≥ 2. See Fig. 1. For appropriate initial data, it is shown in [27] that the
monotonicity property of the deficit along the flow of (3) is violated for any p ∈ [2,2∗) or p = 2∗

if d ≥ 3 as soon as either m < m−(d , p) or m > m+(d , p). The case p = 2 corresponding to the
logarithmic Sobolev inequality is included.

1 2 3 4

0.5

1.0

1.5

Figure 1. Case d = 5. The admissible parameters p and m correspond to the grey area.
The boundary of the admissible set is tangent to the vertical lines p = 1 at (m, p) = (1,1) and
p = 2∗ = 10/3 at (m, p) = (4/5,10/3). Qualitatively, this figure does not change as d increases
but gets squeezed in the interval 1 ≤ p ≤ 2 as d →+∞.
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In view of the results of Theorem 1, it is natural to ask whether there is also a monotonicity
property of the deficit associated to the Gaussian interpolation inequalities (2) when we rely on
a nonlinear diffusion flow on Rn . Let m±(p) := limd→+∞ m±(d , p) where m± is given by (4) and
notice that

m±(p) = 1± 1

p

√
(p −1)(2−p) . (5)

The diffusion operator associated to the Gaussian measure is the Ornstein-Uhlenbeck operator
L =∆−x ·∇ and we consider now the nonlinear parabolic equation

∂v

∂t
= v−p (1−m)

(
L v + (m p −1)

|∇v |2
v

)
. (6)

In the definition of L , ∆ denotes the standard Laplacian on Rn . The following result is new for
m 6= 1 while the case m = 1 follows from the method of the carré du champ developed by Bakry
and Emery in [4].

Theorem 3. Assume that n ≥ 1, p ∈ [1,2). If v > 0 solves (6) with m ∈ [m−(p),m+(p)] for an initial
datum in L2 ∩Lp (Rn ,dγ), then

d

d t

(
‖∇v‖2

L2(Rn ,dγ) −
1

p −2

(
‖v‖2

Lp (Rn ,dγ) −‖v‖2
L2(Rn ,dγ)

))
≤ 0 ∀ t > 0.

The limiting case p = 2 corresponding to the Gaussian logarithmic Sobolev inequality is also
covered but it is obtained as a standard application of the linear carré du champ method known
from [4] because m±(2) = 1. See Fig. 2.

0.5 1.0 1.5 2.0
0.4

0.6

0.8

1.0

1.2

1.4

Figure 2. The admissible parameters p and m correspond to the grey area and are inde-
pendent of the dimension n. The boundary of the admissible set is tangent to the vertical
lines p = 1 at (m, p) = (1,1) and p = 2 at (m, p) = (1,2). It is the limit set of the admissible
parameters for Proposition 2 as d →+∞.

Said in simple words, the result of Theorem 3 is that the admissible range of exponents of the
nonlinear flow, for which the deficit associated to (2) is monotone non-increasing, is obtained
as the limit of the range of the corresponding exponents on the sphere, in the large dimensions
limit. Moreover, p = 2 appears as a critical exponent for the Gaussian measure.

Let us now focus on stability results. The main result of [18] for the sphere is a constructive
stability estimate for Inequality (1), limited to the subcritical range p ∈ (1,2∗), which measures the
distance to optimal functions, and distinguishes the subspaces generated by constant functions,
spherical harmonic functions associated to the first positive eigenvalue of the Laplace-Beltrami
operator, and the orthogonal directions. Optimal exponents in the stability estimate measuring
the distance to the set of optimal functions differ, depending on the directions. Here we have the
exact counterpart in the Gaussian case. Let Π1 denote the orthogonal projection of L2(Rn ,dγ)
onto the (n +1)-dimensional function space generated by 1 and xi with i = 1, 2, . . . ,n.
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Theorem 4. For all n ≥ 1, and all p ∈ (1,2), there is an explicit constant cn,p > 0 such that, for all
v ∈ H1(dγ), it holds

‖∇v‖2
L2(Rn ,dγ) −

1

p −2

(
‖v‖2

Lp (Rn ,dγ) −‖v‖2
L2(Rn ,dγ)

)
≥ cn,p

‖∇(Id−Π1)v‖2
L2(Rn ,dγ) +

‖∇Π1v‖4
L2(Rn ,dγ)

‖∇v‖2
L2(Rn ,dγ)

+‖v‖2
L2(Rn ,dγ)

 .

Exponents 2 and 4 which appear in the right-hand side of the inequality are sharp and the
constant cn,p has an explicit although complicated expression given in the proof. If p = 1, the
last term drops and the distance to optimal functions is measured only by

‖∇(Id−Π1)v‖2
L2(Rn ,dγ) ,

and a decomposition on Hermite polynomials shows that the estimate cannot be improved. If
p = 2∗ and n ≥ 3, the recent stability result on Sobolev’s inequality on Rn of [25], which quantifies
the estimate of Bianchi and Egnell in [14] can be translated into a stability result for (1) onSd , that
can be recast in the form of [18, Theorem 6]. By a large dimension argument, a stability on the
Gaussian logarithmic Sobolev inequality is also shown in [25], although the distance is measured
only by an L2(Rn ,dγ) norm. Whether a stronger estimate can be obtained in the limiting case
p = 2, eventually under some restriction, is therefore so far an open question.

This paper is organized as follows. In Section 2, we give a new proof of Inequality (2) as a
consequence of Inequality (1) by taking a large dimensions limit, applied to the inequality written
for a function depending only on a fixed number n of real variables. To our knowledge, this is
new except for the limit case p = 2 of the logarithmic Sobolev inequality. Section 3 is devoted
to the proof of Theorem 3: we characterize the nonlinear diffusion flows of porous medium
or fast diffusion type such that the deficit is monotone non-increasing and recover the picture
known on the sphere in the large dimensions limit. Moreover, by the carré du champ method, we
establish improved inequalities that provide us with first stability results. The stability result of
Theorem 4 for the Gaussian measure is proved in Section 4 using a detailed Taylor expansion and
the improved inequalities of Section 3.

2. From subcritical interpolation inequalities on the sphere to Gaussian interpolation

In this section we explain how Inequality (2) can be seen as the limit of Inequality (1) in the large
dimensions limit, that is, as d →+∞, and prove Theorem 1. Comments on the limit case p = 2
can be found at the end of this section.

The unit sphere Sd is parametrized in terms of the stereographic coordinates by

ω j =
2 x j

1+|x|2 if 1 ≤ j ≤ d and ωd+1 =
1−|x|2
1+|x|2

where ω = (ω1,ω2, . . . ,ωd+1) denote the coordinates in Rd+1 ⊃ Sd and x = (x1, x2, . . . , xd ) are
Cartesian coordinates in Rd . To a function u on Sd , we associate a function w on Rd using the
stereographic projection such that(

2

1+|x|2
) d−2

2

u(ω) = w(x) ∀x ∈Rd .

It is a standard result that∫
Sd

|u|p dµd = 2
δ(p)

2
∣∣Sd ∣∣−1

∫
Rn

〈x〉−δ(p) |w |p d x (7)
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and that ∫
Sd

|∇u|2 dµd + 1
4 d (d −2)

∫
Sd

|u|2 dµd = ∣∣Sd ∣∣−1
∫
Rn

|∇w |2 d x .

where 〈x〉 :=
√

1+|x|2 and δ(p) := 2d−p (d−2). Using the stereographic projection, Inequality (1)
can be written on the Euclidean space Rd as the weighted interpolation inequality∫

Rn
|∇w |2 d x + d δ(p)

p −2

∫
Rn

|w |2
〈x〉4 d x ≥ Cd ,p

p −2

(∫
Rn

|w |p
〈x〉δ(p)

d x

) 2
p

with Cd ,p = 2
δ(p)

p d
∣∣Sd ∣∣1− 2

p . (8)

See [24] for details. Equality is achieved by the Aubin-Talenti function w?(x) := 〈x〉2−d . Assume
that d ≥ 4. Let us consider f = w/w? and notice that the inequality rewritten in terms of f is∫

Rn
|∇ f |2 w2

?d x + 4d

p −2

∫
Rn

| f |2 w2∗
? d x ≥ Cd ,p

p −2

(∫
Rn

| f |p w2∗
? d x

) 2
p

.

Since we are interested in the limit as d → +∞, we shall consider the case 1 ≤ p < 2, which is
admissible for any d ≥ 2.

With g (x) = f
(
x/

p
d

)
, we obtain after changing variables that

1

4

∫
Rd

|∇g |2 d x(
1+ 1

d |x|2)d−2
+ 1

p −2

∫
Rd

|g |2 d x(
1+ 1

d |x|2)d
≥ Cd ,p d d p−2

2 p

4d (p −2)

∫
Rd

|g |p d x(
1+ 1

d |x|2)d

 2
p

.

Let us assume that n ≥ 1 is a given integer and take d > max{n,3}. With x = (y, z) ∈Rn×Rd−n ≈Rd ,
we also assume that the function g depends only on y . In other words, we write g = gd where
gd (y, z) = v(y) for some function v defined on Rn , that is,

gd (y, z) = v(y) ∀ (y, z) ∈Rn ×Rd−n (9)

Here we use a subscript d in order to emphasize that gd has to be considered as a function on Rd .
Let us define

cd := (d π)
d
2
Γ (d/2)

Γ(d)
.

Lemma 5. Let n be a positive integer, p ∈ [1,2), consider a function v ∈ H1(Rn ,d x) with compact
support and define gd according to (9). Then we have

lim
d→+∞

1

4cd

∫
Rd

|∇gd |2
d x(

1+ 1
d |x|2)d−2

+ 1

2−p
lim

d→+∞
1

cd

Cd ,p d d p−2
2 p

4d

∫
Rd

|gd |p
d x(

1+ 1
d |x|2)d

 2
p

−
∫
Rd

|gd |2
d x(

1+ 1
d |x|2)d


= ‖∇v‖2

L2(Rn ,dγ) −
1

2−p

(
‖v‖2

L2(Rn ,dγ) −‖v‖2
Lp (Rn ,dγ)

)
.

In other words, we prove that the infinite dimensional limit of (8), for functions depending only
on a finite number n of real variables, is (2). The assumption of compact support can be removed
if v and ∇v have sufficient decay properties at infinity.

Proof. Using(
1+ 1

d |x|2)2−d =
(
1+ 1

d

(|y |2 +|z|2))2−d = (
1+ 1

d |y |2)2−d (
1+ 1

d |ζ|2)2−d
with ζ= z√

1+ 1
d |y |2

,

we can integrate with respect to z and obtain∫
Rd−n

(
1+ 1

d |x|2)2−d
d z = (

1+ 1
d |y |2)2− d+n

2

∫
Rd−n

(
1+ 1

d |ζ|2)2−d
dζ .
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Let dγ(y) := (2π)−n/2 e−
1
2 |y |2 d y be the centred normalized Gaussian probability measure. We

recall that |Sk−1| = 2πk/2/Γ(k/2) for any k ∈N\ {0} and∫ +∞

0
r a−1 (

1+ 1
d r 2)−b

dr = d
a
2
Γ

( a
2

)
Γ

(
b − a

2

)
2Γ(b)

if 0 < a < 2b. Applying these formulas with a = k = d −n and b = d −2 > 2−n, we find that∫
Rd−n

(
1+ 1

d |ζ|2)2−d
dζ= (d π)

d−n
2

Γ
(

d+n
2 −2

)
Γ(d −2)

.

Applying these formulas with a = b = k = d ≥ 2, we find that∫
Rn

(
1+ 1

d |x|2)−d
d x = cd

and, as a consequence

lim
d→+∞

1

cd

∫
Rd−n

(
1+ 1

d |ζ|2)2−d
dζ= 4

(2π)n/2

using Stirling’s formula. Since

lim
d→+∞

(
1+ 1

d |y |2)2− d+n
2 = e−

1
2 |y |2 ,

we obtain
lim

d→+∞
1

cd

∫
Rn

|∇gd (y)|2 (
1+ 1

d |x|2)2−d
d x = 4

∫
Rn

|∇v |2 dγ .

Similar computations show that∫
Rn

|gd (y)|2 (
1+ 1

d |x|2)−d
d x =

∫
Rn

|gd (y)|2 (
1+ 1

d |y |2)− d+n
2 d y

∫
Rd−n

(
1+ 1

d |ζ|2)−d
dζ ,

lim
d→+∞

1

cd

∫
Rn

|gd (y)|2 (
1+ 1

d |x|2)−d
d x =

∫
Rn

|v |2 dγ ,

and∫
Rn

|gd (y)|p (
1+ 1

d |x|2)−d
d x =

∫
Rn

|gd (y)|p (
1+ 1

d |y |2)− d+n
2 d y

∫
Rd−n

(
1+ 1

d |ζ|2)−d
dζ ,

lim
d→+∞

Cd ,p d d p−2
2 p

4d cd

(∫
Rn

|gd (y)|p (
1+ 1

d |x|2)−d
d x

) 2
p =

(∫
Rn

|v |p dγ

) 2
p

.

This completes the proof of Lemma 5. �

Proof of Theorem 1. Applied to the function ud , Inequality (1) is transformed into Inequality (8)
applied to

gd (x) = ud

(
2 y

1+ 1
d |x|2

)
∀x = (y, z) ∈Rn ×Rd−n .

Notice that the factor 2δ(p)/2, which arises from the stereographic projection and appears in (7),
plays a role in the computation of the constant Cd ,p and is taken into account in the limit as
d →+∞. Since the right-hand side uniformly converges to v(y) for any smooth and compactly
supported function v , the same conclusion holds for Theorem 1 as for Lemma 5. �

It is a natural question to ask what happens in (1) to the marginals depending only on a
finite number n of variables if p = 2 or in the case 2 < p ≤ 2∗ = 2d/(d −2). We may notice that
limd→+∞ 2d/(d − 2) = 2 and it is known, for instance from [9], that one recovers the Gaussian
logarithmic Sobolev inequality as a limit case of Sobolev’s inequality on Sd corresponding to
p = 2∗ when d → +∞. This is also true if we consider a sequence (pd )d∈N with 1 < pd < 2∗,
depending on d , if its limit is also 2, as shown next. By convention, when pd = 2, we consider the
Gaussian logarithmic Sobolev inequality instead of (2).
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Proposition 6. Let n be a positive integer and consider a function v ∈ H1(Rn ,d x) with com-
pact support. For any d ≥ n, large enough, let ud (ω) = v

(
ω1/

p
d ,ω2/

p
d , . . . ,ωn/

p
d

)
where ω =

(ω1,ω2, . . . ,ωd ) ∈Rd+1 ⊃Sd is such that |ω| = 1, as in Theorem 1. Then we have

lim
d→+∞

d

(
‖∇ud‖2

L2(Sd ,dµd )
− d

2

∫
Sd

|ud |2 log

(
|ud |2

‖ud‖2
L2(Sd )

)
dµd

)

= ‖∇v‖2
L2(Rn ,dγ) −

1

2

∫
Rn

|v |2 log

 |v |2
‖v‖2

L2(Rn ,dγ)

dγ .

If (pd )d≥3 is a sequence of real numbers such that pd ∈ (1,2)∪ (2,2∗) and limd→+∞ pd = 2, then

lim
d→+∞

d

(
‖∇ud‖2

L2(Sd ,dµd )
− d

2−pd

(
‖ud‖2

L2(Sd ,dµd )
−‖ud‖2

Lpd (Sd ,dµd )

))

= ‖∇v‖2
L2(Rn ,dγ) −

1

2

∫
Rn

|v |2 log

 |v |2
‖v‖2

L2(Rn ,dγ)

dγ .

Proof. The proof is an adaptation of the proof of Theorem 1 and, in the case pd 6= 2, relies on the
standard observation that

lim
p→2

‖v‖2
Lp (Rn ,dγ) −‖v‖2

L2(Rn ,dγ)

p −2
= 1

2

∫
Rn

|v |2 log

 |v |2
‖v‖2

L2(Rn ,dγ)

dγ .

As this computation raises no special difficulty, details are omitted. �

3. Entropy methods and nonlinear flows for Gaussian measures

In this section, we prove the result of Theorem 3 for the Gaussian measure dγ and extend it to the
slightly more general framework of a uniformly strictly log-concave measure dµ, before drawing
some consequences. Most of the results are similar to computations usually done on the sphere,
but we are not aware of the use of nonlinear flows (m 6= 1) in the context of Gaussian measures.
This approach is very natural in the perspective of spheres in the large-dimensional limit.

3.1. Gaussian interpolation inequalities: a proof by the carré du champ method

On Rn , let us consider the probability measure

dµ= Z−1 e−φd y with Z =
∫
Rn

e−φd y (10)

and redefine the Ornstein-Uhlenbeck operator by

L :=∆−∇φ ·∇ (11)

on L2(Rn ,dµ). This generalizes the case of the harmonic potential φ(y) = 1
2 |y |2 considered in the

introduction. We assume that φ satisfies the Bakry-Emery condition

Hessφ≥λ? Id a.e. (12)

for some λ? > 0. The harmonic potential corresponds to the equality case with λ? = 1. Under
Assumption (12), it is well known (see for instance [7, Section 7.6.2]) that, with λ=λ? and for any
p ∈ [1,2),

‖∇ f ‖2
L2(Rn ,dµ) ≥

λ

2−p

(
‖ f ‖2

L2(Rn ,dµ) −‖ f ‖2
Lp (Rn ,dµ)

)
∀ f ∈ H1(Rn ,dµ) (13)
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and also, by taking the limit as p → 2−, that

‖∇ f ‖2
L2(Rn ,dµ) ≥

λ

2

∫
Rn

| f |2 log

 | f |2
‖ f ‖2

L2(Rn ,dµ)

dµ ∀ f ∈ H1(Rn ,dµ) .

The classical proof by the carré du champ, as in [3–5], relies on the Ornstein-Uhlenbeck flow
∂tρ = Lρ applied to the solution with initial datum ρ(t = 0, ·) = | f |p . Here we consider a more
general strategy and compute as in the carré du champ method using the nonlinear diffusion
flow

∂ρ

∂t
= 1

m
Lρm ∀ t ≥ 0, ρ(t = 0, ·) = | f |p . (14)

There is no difficulty in proving global existence of a positive bounded solution. The case of a
non-negative solution is also covered by a standard approximation of the initial datum. In the
case of the harmonic potential, the key of the existence proof is to combine an L1-contraction
property and the Maximum Principle as in the classical theory of nonlinear diffusions: see for
instance [42, Chapter 9] for a general reference on this topic. In the case of a general potential φ,
for existence and uniqueness we refer to [19, Section 3] and to [33] for a general overview of the
topic. Concerning the t →+∞ limit, it is enough to consider initial data bounded from above and
from below by two positive constants: this property is preserved along the flow and the nonlinear
diffusion term can then be estimated using linear operators, so that the solution converges to a
unique constant determined by mass conservation. The proofs can be adapted from [17, 19] and
from the results on the sphere on the other hand: see [18] and references therein. As they present
no essential difficulty, they will be omitted. Our goal here is to understand the range of m for
which we have a monotonicity property of the deficit as in the case m = 1. Let m±(p) be defined
as in (5).

Theorem 7. Assume that n ≥ 1, p ∈ [1,2) and m ∈ [m−(p),m+(p)]. We consider the measure dµ as
in (10) such that (12) holds for some λ? > 0. If ρ > 0 solves (14) with L defined by (11) for an initial
datum ρ(t = 0, ·) = | f |p in L2/p ∩L1(Rn ,dµ), then

d

d t

(
‖∇ρ1/p‖2

L2(Rn ,dµ) −
λ?

2−p

(
‖ρ1/p‖2

L2(Rn ,dµ) −‖ρ‖2/p
L1(Rn ,dµ)

))
≤ 0 ∀ t > 0.

The result of Theorem 7 is new for m 6= 1. Theorem 3 corresponds to the special case of the
harmonic potential φ(y) = 1

2 |y |2 with v = ρ1/p in Theorem 7. The range of the admissible
parameters (m, p) is the same in Theorems 3 and 7, and shown in Fig. 2. With the additional
observation that ρ(t , ·) converges to a constant as t →+∞ so that the limit of the deficit is 0, the
monotonicity of the deficit of Theorem 7 provides us with a proof of (13). Indeed, as a monotone
non-increasing function with limit 0 as t →+∞, the deficit is non-negative for any t ≥ 0 and, as
a special case, for the deficit written for the initial datum. This, written for ρ(t = 0, ·) = | f |p , is
precisely Inequality (13).

Proof of Theorem 7. In order to do computations, a very convenient reformulation is obtained
with the substitution

wβp = ρ .

Then, w is a solution of the PDE

∂w

∂t
= w2−2β

(
L w +κ |∇w |2

w

)
(15)

for any t ≥ 0, with initial datum w(t = 0, ·) = | f |1/β, where

κ :=β (p −2)+1 and β := 2

2−p (1−m)
. (16)
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A first computation shows that
∫
Rn wβp dµ= ∫

Rn | f |p dµ is independent of t because

d

d t

∫
Rn

wβp dµ=βp
∫
Rn

wκ

(
L w +κ |∇w |2

w

)
dµ= 0.

A second useful computation goes as follows:

− 1

2β2

d

d t

∫
Rn

(∣∣∇wβ
∣∣2 + λ?

p −2
w2β

)
dµ

=
∫
Rn

(
L w + (β−1)

|∇w |2
w

− λ?w

β (p −2)

)(
L w +κ |∇w |2

w

)
dµ

=
∫
Rn

(L w)2 dµ+ (κ+β−1)
∫
Rn

(L w)
|∇w |2

w
dµ+κ (β−1)

∫
Rn

|∇w |4
w2 dµ−λ?

∫
Rn

|∇w |2 dµ .

The purely technical purpose of introducing the exponent β is to make the last line of the above
computation 2-homogeneous in w , which makes the discussion easier to read. Inserting the two
following estimates,∫

Rn
(L w)2 dµ=−

∫
Rn

∇w ·∇(L w)dµ=−
∫
Rn

∇w · (L∇w)dµ+
∫
Rn

∇w · [L ,∇] w dµ

=
∫
Rn

‖Hessw‖2 dµ+
∫
Rn

∇w · [L ,∇] w dµ

=
∫
Rn

‖Hessw‖2 dµ+
∫
Rn

Hessφ : ∇w ⊗∇w dµ

≥
∫
Rn

‖Hessw‖2 dµ+λ?
∫
Rn

|∇w |2 dµ

and ∫
Rn

(L w)
|∇w |2

w
dµ=−2

∫
Rn

Hessw :
∇w ⊗∇w

w
dµ+

∫
Rn

|∇w |4
w2 dµ ,

we obtain that
d

d t

∫
Rn

(∣∣∇wβ
∣∣2 + λ?

p −2
w2β

)
dµ≤ 0

if, for any function w , we have

Qβ[w] :=
∫
Rn

‖Hessw‖2 dµ−2(κ+β−1)
∫
Rn

Hessw :
∇w ⊗∇w

w
dµ

+ (
κ (β−1)+κ+β−1

)∫
Rn

|∇w |4
w2 dµ≥ 0.

A sufficient condition is obtained if the reduced discriminant is negative, that is, if

(κ+β−1)2 − (
κ (β−1)+κ+β−1

)≤ 0.

Altogether, this gives the condition

β−(p) ≤β≤β+(p) with β±(p) := 1±√
(p −1)(2−p)

1− (p −1)(2−p)
. (17)

See Fig. 3. Equivalently, written in terms of m, the condition is m−(p) ≤ m ≤ m+(p) with m±(p)
defined by (5). Summarizing our computations, we learn that

d

d t

(
‖∇w‖2

L2(Rn ,dµ) −
λ?

p −2

(
‖w‖2

Lp (Rn ,dµ) −‖w‖2
L2(Rn ,dµ)

))
=−2β2 Qβ[w] ≤ 0 (18)

because Qβ[w] is non-negative under Condition (17).
To make these computations rigorous, one has to justify all integrations by parts. This is by

now rather standard and can be done using the following scheme.
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(1) Let h > 0 be large enough and consider Ωh := {
x ∈Rn : φ(x) < h

}
. We can consider the

evolution equation restricted to Ωh , with no flux boundary conditions. Then apply the
carré du champ method and keep track of the boundary terms. Since Ωh is a bounded
convex domain, these terms have a sign due to Grisvard’s lemma: see for instance [29,
Lemma 5.2], [38, Proposition 4.2], [23, 31] and [33, Lemma A.3].

(2) Extend Inequality (13) written onΩh to Rd by taking the limit as h →+∞ and then argue
by density.

This completes the proof of Theorem 7. �

0.5 1.0 1.5 2.0
0.5

1.0

1.5

2.0

Figure 3. The admissible parameters p and β correspond to the grey area and are inde-
pendent of the dimension n. The boundary of the admissible set is tangent to the vertical
lines p = 1 at (β, p) = (1,1) and p = 2 at (β, p) = (1,2). This figure corresponds to Fig. 2 up to
the transformation of m 7→β= 2/

(
2−p (1−m)

)
according to (16).

Remark 8. For any p ∈ [1,2), if the condition m−(p) ≤ m ≤ m+(p) is not satisfied, then one can
find a positive initial datum such that the function v = wβ where w solves (15) with m and β

related by (16) is such that

d

d t

(
‖∇v‖2

L2(Rn ,dµ) −
d

p −2

(
‖v‖2

Lp (Rn ,dµ) −‖v‖2
L2(Rn ,dµ)

))
|t=0

> 0.

See [27] for a similar statement on the sphere and its proof.

3.2. Improved inequalities based on the carré du champ method

In the proof of Theorem 7, using only Qβ[w] ≥ 0 is a crude estimate. Let us explain how one can
obtain improved estimates by making a better use of Qβ[w] ≥ 0. Under Condition (17), we can
indeed rewrite Qβ[w] as an integral of a sum of squares,

Qβ[w] =
∫
Rn

∥∥∥∥Hessw − (κ+β−1)
∇w ⊗∇w

w

∥∥∥∥2

dµ+δ
∫
Rn

|∇w |4
w2 dµ (19)

with
δ := κ (β−1)+κ+β−1− (κ+β−1)2 = (

β−β−(p)
)(
β+(p)−β)> 0. (20)

As in [2, Theorem 2], let us consider the special case m =β= 1 of the linear flow. Let us define the
entropy and the Fisher information by

E [w] := 1

2−p

(
‖w‖2

L2(Rn ,dµ) −‖w‖2
Lp (Rn ,dµ)

)
and I [w] := ‖∇w‖2

L2(Rn ,dµ) .

Inequality (13) amounts simply to

I [w]−λ?E [w] ≥ 0.

We can now state a first improved entropy–entropy production inequality.
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Proposition 9. Let n be any positive integer. We consider the measure dµ as in (10) such that (12)
holds for some λ? > 0. For any p ∈ (1,2), let ϕ(s) := 1+ s − (1+ s)p−1. With the above notation, we
have

I [ f ] ≥ λ?

(2−p)2 ‖ f ‖2
Lp (Rn ,dµ)ϕ

(
(2−p)E [ f ]

‖ f ‖2
Lp (Rn ,dµ)

)
∀ f ∈ H1(Rn ,dµ) . (21)

Since p ∈ (1,2), the functionϕ is convex withϕ(0) = 0 andϕ′(0) = 2−p, which implies in particular
that ϕ(s) ≥ (2 − p) s for any s ≥ 0, so that Inequality (21) is stronger than (13). Inequality (21)
amounts to

‖∇ f ‖2
L2(Rn ,dµ) ≥

λ?

(2−p)2

(
‖ f ‖2

L2(Rn ,dµ) −‖ f ‖2(p−1)
L2(Rn ,dµ)

‖ f ‖2(2−p)
Lp (Rn ,dµ)

)
and can also be rewritten as

‖∇ f ‖2
L2(Rn ,dµ) −

λ?

2−p

(
‖ f ‖2

L2(Rn ,dµ) −‖ f ‖2
Lp (Rn ,dµ)

)
≥ λ?

(2−p)2

(
(p −1)‖ f ‖2

L2(Rn ,dµ) + (2−p)‖ f ‖2
Lp (Rn ,dµ) −‖ f ‖2(p−1)

L2(Rn ,dµ)
‖ f ‖2(2−p)

Lp (Rn ,dµ)

)
. (22)

We claim no originality in either Proposition 9 or Inequality (22) and refer to [2, Theorem 2] and [1,
Ineq. (3.3)] for earlier results. Also see [24, Theorem 2.1] for an improved inequality like (22) in
the case of the sphere. Let us give the main ideas of the proof for completeness. We refer to [18,
Appendix B.4] for a fully detailed estimates in the similar case of the sphere.

Sketch of a proof. With β = 1, notice that (19) holds with δ = (2− p) (p − 1). Using the Cauchy-
Schwarz inequality, we obtain(

I [w]
)2 =

(∫
Rn

|∇w |2 dµ

)2

≤
∫
Rn

|w |2 dµ
∫
Rn

|∇w |4
w2 dµ

and, with M := (∫
Rn |w |p dµ

)2/p , we can also write that∫
Rn

|w |2 dµ= (2−p)E [w]+M .

Altogether, with e(t ) := (2−p) M−1 E [w(t , ·)], if w solves (15) with β= 1, then

e′ =−2β2 (2−p)
∫
Rn

|∇w |2 dµ (23)

and we have the differential inequality

e′′+2λ? e′− (p −1)
(e′)2

1+e ≥ 0.

We claim that (2−p)e′+2λ?
(
1+e− (1+e)p−1

) ≤ 0, which follows from the observation that the
equation

y ′′+a y ′−b (y ′)2

1+ y
= 0

can be solved using the ansatz y ′ = a
b−1 ϕ(y) with ϕ(0) = 0 if

ϕ′−b ϕ

1+ s
= 1−b . (24)

It is straightforward to check that the unique solution is ϕ(s) = 1+ s − (1+ s)b. With a = 2λ? and
b= p −1, we obtain (

e′+ 2λ?
2−p

ϕ(e)

)′
≥ (p −1)

e′
1+e

(
e′+ 2λ?

2−p
ϕ(e)

)
.
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By integrating from t = 0 to +∞ using the facts that e′ ≤ 0, e′ + 2λ?
2−p e ≤ 0 and limt→+∞ e′(t ) =

limt→+∞ e(t ) = 0, we conclude that
2−p

M

(
I [w]− λ?M

(2−p)2 ϕ

(
(2−p)E [w]

M

))
=− 1

2

(
e′+ 2λ?

2−p
ϕ(e)

)
≥ 0 ∀ t ≥ 0

�

Inspired once more by the results on the sphere (see [24] and earlier references therein), it is
a very natural question to wonder if improved entropy–entropy production inequalities can be
achieved with β 6= 1. The answer goes as follows. Let us consider the function ϕβ given by

χβ(s) = (
1−b(β)

)(
1+ s − (1+ s)b(β)

)
where b(β) = δ(β)

β2

2−p

λ?

and δ(β) is defined by (20).

Proposition 10. Let n be any positive integer. We consider the measure dµ as in (10) such that (12)
holds for some λ? > 0. For any p ∈ (1,2), take β ∈ [

1,β+(p)
]
. With the same notation as in

Proposition 9 and χβ as above, we have

I [ f ] ≥ ‖ f ‖2
Lp (Rn ,dµ)χβ

(
(2−p)E [ f ]

‖ f ‖2
Lp (Rn ,dµ)

)
∀ f ∈ H1(Rn ,dµ) .

Proof. With the notation

e :=
∥∥wβ

∥∥2
L2(Rn ,dµ)∥∥wβ

∥∥2
Lp (Rn ,dµ)

and i :=
∥∥∇(

wβ
)∥∥2

L2(Rn ,dµ)∥∥wβ
∥∥2

Lp (Rn ,dµ)

,

we have now to consider the differential inequality(
i′− λ?

2−p
e
)′
≤−δβ2

∫
Rn

|∇w |4
w2 dµ ,

which directly comes from the carré du champ computation (18) with Qβ and δ defined respec-
tively in (19) and (20). The key ingredient is to replace an estimate due to Demange in the case of
the sphere for p > 2 (see [21, 22] and also [18, Lemma 15, (ii)]) by its counterpart for log-concave
measures and p ∈ (1,2). Compared to the linear case, the Cauchy-Schwarz inequality in the proof
of Proposition 9 has to be replaced by the Hölder inequalities∫

Rn
|∇w |2 dµ=

∫
Rn

( |∇w |2
w

w 1

)
dµ≤

(∫
Rn

|∇w |4
w2 dµ

) 1
2
(∫
Rn

|w |2βdµ

) 1
2β

1
β−1
2β ,

1

β2

∫
Rn

∣∣∇wβ
∣∣2 dµ=

∫
Rn

( |∇w |2
w

w2β−1 1

)
dµ≤

(∫
Rn

|∇w |4
w2 dµ

) 1
2
(∫
Rn

|w |2βdµ

) 2β−1
2β

1
1

2β ,

after observing that β≥β−(p) ≥β−(3/2) = 2/3 > 1/2, so that∫
Rn

|∇w |4
w2 dµ≥

∫
Rn |∇w |2 dµ

∫
Rn

∣∣∇wβ
∣∣2 dµ

β2
∫
Rn w2βdµ

=− ie′
β4 (1+e)

.

where the last equality is a consequence of the definition of i and (23). Hence,(
i− λ?

2−p
e
)′
≤ δ

β2

ie′
1+e .

Let us compute(
i− λ?

2−p
χ(e)

)′
=

(
i− λ?

2−p
e
)′
+ λ?

2−p

(
e−χ(e)

)′ ≤ δ

β2

e′
1+e

(
i− λ?

2−p
χ(e)

)
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on the condition that χ solves

χ′(s) = 1+ δ

β2

2−p

λ?

χ(s)

1+ s
, χ(0) = 0.

The solutionχ(s) = (1−b)ϕ(s) is such thatϕ solves (24) with b= δβ−2 (2−p)/λ?, which shows that
χ = χβ. The proof then follows from the same considerations as for Proposition 9 (also see [18,
Appendix B.4] for details). �

If φ(y) = |y |2/2 is the harmonic potential so that dµ = dγ, by testing (2) with fε(y) = 1+ ε y1

where y1 denotes the first coordinate of y = (y1, y2, . . . , yn) ∈Rn , we find that

‖∇ fε‖2
L2(Rn ,dγ) −

1

2−p

(
‖ fε‖2

L2(Rn ,dγ) −‖ fε‖2
Lp (Rn ,dγ)

)
= 1

2
(p −1)ε4 +O(ε5) as ε→ 0.

This is the standard computation for checking that λ=λ? = 1 is the optimal constant in (2). Since

I [ fε]− 1

(2−p)2 ‖ fε‖2
Lp (Rn ,dγ)ϕ

(
(2−p)E [ fε]

‖ fε‖2
Lp (Rn ,dγ)

)
= 1

2
(p −1)2 ε4 +O(ε5) as ε→ 0,

we also learn that (21) involves the optimal exponent at least in the limit as ε→ 0. After observing
that ‖∇ fε‖2

L2(Rn ,dγ)
= ε2, we may wonder whether the deficit

‖∇ f ‖2
L2(Rn ,dγ) −

1

2−p

(
‖ f ‖2

L2(Rn ,dγ) −‖ f ‖2
Lp (Rn ,dγ)

)
measures the distance in terms of ‖∇ f ‖4

L2(Rn ,dγ)
. The detailed answer is not limited to the case

µ= γ and goes as follows. For simplicity, we take β= 1 and consider ϕ(s) := 1+ s − (1+ s)p−1 as in
Proposition 9. We recall that ϕ is monotone increasing and convex on R+, such that ϕ′(0) = 2−p,
hence invertible of inverse ϕ−1 such that ψ(t ) := t − (2−p)ϕ−1(t ) is also a convex, non-negative,
monotone increasing function.

Corollary 11. Let p ∈ (1,2) and n be a positive integer. We consider the measure dµ as in (10) such
that (12) holds for some λ? > 0. With ψ as above, for any f ∈ H1(dγ) we have

‖∇ f ‖2
L2(Rn ,dµ) −

λ?

2−p

(
‖ f ‖2

L2(Rn ,dµ) −‖ f ‖2
Lp (Rn ,dµ)

)
≥ λ?

2−p
‖ f ‖2

Lp (Rn ,dµ)ψ

2−p

λ?

‖∇ f ‖2
L2(Rn ,dµ)

‖ f ‖2
Lp (Rn ,dµ)

 .

Moreover, there is some κ> 0 such that

‖∇ f ‖2
L2(Rn ,dµ) −

λ?

2−p

(
‖ f ‖2

L2(Rn ,dµ) −‖ f ‖2
Lp (Rn ,dµ)

)
≥

κ‖∇ f ‖4
L2(Rn ,dµ)

‖∇ f ‖2
L2(Rn ,dµ)

+ λ?
2−p ‖ f ‖2

L2(Rn ,dµ)

. (25)

The constant κ depends only on p and its value is estimated in the proof below.

Proof. Let M = ‖ f ‖2
Lp (Rn ,dµ). We deduce from Proposition 9 that

i := (2−p)2

λ?M
I [ f ] ≥ϕ(e) where e := (2−p)E [ f ]

‖ f ‖2
Lp (Rn ,dµ)

,

which is equivalent to −e≥−ϕ−1(i), so that

i− (2−p)e≥ i− (2−p)ϕ−1(i) =ψ(i)
and, as a consequence,

I [ f ]−λ?E [ f ] = λ?M

(2−p)2

(
i− (2−p)e

)≥ λ?M

(2−p)2 ψ(i) = λ?M

(2−p)2 ψ

(
2−p

λ?M
‖∇ f ‖2

L2(Rn ,dµ)

)
.
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Since ϕ(s) ∼ s as s →+∞, we deduce that ψ(t ) ∼ (p −1) t as t →+∞. On the other hand, since

ψ′′(t ) = (2−p)
ϕ′′(s)(
ϕ′(s)

)3 with s =ϕ−1(t ) ,

we learn that ψ′′(0) = (p −1)/(2−p) > 0 and t 7→ψ′′(t ) is non-increasing because ϕ′(s)5ψ′′′(t ) =
ϕ′(s)ϕ′′′(s)−ϕ′′(s)2 < 0. This allows us to define

κ := inf
t>0

t−2 (1+ t )ψ(t ) .

Using ψ(0) = ψ′(0) = 0, we know that κ > 0 and ψ(t ) ≥ κ t 2/(1 + t ) concludes the proof using
‖ f ‖Lp (Rn ,dµ) ≤ ‖ f ‖L2(Rn ,dµ). �

Remark 12. If φ(y) = |y |2/2 is the harmonic potential so that dµ = dγ, then λ = λ? = 1 is
the optimal constant in (2) and the results of Proposition 9 and Corollary 11 are both stability
estimates. Even in the general case of a measure dµ as in (10) such that (12) holds for someλ? > 0,
Proposition 9 and Corollary 11 provide improvements to the basic inequality with a (generically
non-optimal) constant λ?.

3.3. From the carré du champ method to Obata’s theorem

As a side result, we consider an improvement of the carré du champ method as in [36, Theo-
rem 2.1] or [26], which goes as follows. Let us consider the optimal constantλ1 > 0 in the Poincaré
inequality ∫

Rn
|∇w |2 dµ≥λ1

∫
Rn

|w − w̄ |2 dµ ∀w ∈ H1(Rn ,dµ) , (26)

where w̄ := ∫
Rn w dµ. By expanding

∫
Rn

(
L w +λ1 (w − w̄)

)2 dµ≥ 0, we obtain∫
Rn

(L w)2 dµ≥λ1

∫
Rn

|∇w |2 dµ . (27)

On the other hand, by the computation of Section 3.1 with β= p = 1, we know that

−1

2

d

d t

∫
Rn

(
|∇w |2 + λ?

p −2
w2

)
dµ=

∫
Rn

(L w)2 dµ−λ?
∫
Rn

|∇w |2 dµ=Q1[w] ≥ 0.

which proves, for instance using (18), that

λ1 ≥λ? .

This result goes back to the work of Obata and the carré du champ method is in fact very close to
the spirit of the historical proof: see [41, p. 327].

Lemma 13. Assume that n ≥ 1, p ∈ [1,2) and consider the measure dµ as in (10) such that (12)
holds for some λ? > 0. Then (13) holds with

λ= (2−p)λ1 + (p −1)λ? . (28)

As a consequence of (28), we have λ ≥ λ? with equality for the optimal value of λ in (13) if and
only if λ? =λ1 and φ(y) =λ? |y − y0|2/2 for some y0 ∈Rn .
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Proof. The carré du champ method applied as in Section 3.1 with p = 1 shows that λ1 ≥ λ?.
Coming back to the computations of Section 3.1, we can rearrange the integrals in the expression
Qβ[w] differently and get

− 1

2β2

d

d t

∫
Rn

(∣∣∇wβ
∣∣2 + λ

p −2
w2β

)
dµ

= (1−θ)
∫
Rn

(L w)2 dµ−λ
∫
Rn

|∇w |2 dµ

+θ
∫
Rn

(L w)2 dµ+ (κ+β−1)
∫
Rn

(L w)
|∇w |2

w
dµ+κ (β−1)

∫
Rn

|∇w |4
w2 dµ

= (
(1−θ)λ1 +θλ?−λ

)∫
Rn

|∇w |2 dµ

+θ
(∫
Rn

‖Hessw‖2 dµ+λ?
∫
Rn

|∇w |2 dµ

)
−2(κ+β−1)

∫
Rn

Hessw :
∇w ⊗∇w

w
dµ+ (

κ (β−1)+κ+β−1
)∫
Rn

|∇w |4
w2 dµ

where the (1−θ)λ1 factor comes from (27). With the choice of θ such that

(κ+β−1)2 −θ (
κ (β−1)+κ+β−1

)= 0,

which means θ = θ(β) with

θ(β) := (p −1)2β2

(p −2)β2 +2β−1
,

we can write that

θ

∫
Rn

‖Hessw‖2 dµ−2(κ+β−1)
∫
Rn

Hessw :
∇w ⊗∇w

w
dµ+ (

κ (β−1)+κ+β−1
)∫
Rn

|∇w |4
w2 dµ

= θ
∫
Rn

∥∥∥∥Hessw − β (p −1)

θ

∇w ⊗∇w

w

∥∥∥∥2

dµ≥ 0.

Altogether, we have shown that

d

d t

∫
Rn

(∣∣∇wβ
∣∣2 + λ

p −2
w2β

)
dµ≤ 0

if λ= (1−θ)λ1 +θλ?. Recall that ‖wβ‖Lp (Rn ,dµ) is independent of t so that the deficit functional
associated to (13) is monotone non-increasing. Also notice that θ

(
β±(p)

) = 1 for any p ∈ [1,2).
The observation that minβ∈[β−(p),β+(p)]θ(β) = θ(1) = p −1 completes the proof of (28).

With β = 1 and p = 1, the computation in the proof of Theorem 7 shows that, if the initial
datum w(t = 0, ·) is an optimal function for the Poincaré inequality (26), then

0 = d

d t

∫
Rn

(|∇w |2 −λ?w2)dµ=−2

(
Q1[w]+

∫
Rn

(
Hessφ−λ?Id

)
: ∇w ⊗∇w dµ

)
at t = 0. Here we keep all terms and in particular do not use the fact that Hessφ−λ?Id ≥ 0 a.e. in
the sense of positive matrices. Since ∇w 6= 0 a.e. and Q1[w] ≥ 0, we find that Hessφ−λ?Id = 0 a.e.
This completes the proof in the equality case λ? =λ1. �

Remark 14. The proof of Lemma 13 is reminiscent of [26, 36]. The result when λ? = λ1 points
in the direction of Obata’s theorem (also known as the Obata–Lichnerowicz theorem) and in
some sense, it is the analogue for Gaussian measures of the result of [35, p. 135] (also see for
instance [13, p. 179]) on the sphere. The case λ? = λ1 is easy to understand in dimension d = 1:
with β = 1 and p = 1, we apply the computation of the proof of Lemma 13 to a function u in
the eigenspace associated with λ1 and obtain that u′′ = 0 almost everywhere. This means that
u(y) = a y+b for some real constants a 6= 0 and b, and there is no loss of generality if we take a = 1.
Using now the eigenvalue equation L u +λ1 u = 0, we read that φ′(y) = λ1 (y −b), which means
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that φ is a harmonic potential. In higher dimensions, one has to remember that Inequality (13)
can be tensorized on product spaces: see for instance [20, 28, 34]. This is however responsible for
some technicalities, which are dealt with in greatest generality, e.g., in [30].

3.4. Improved inequalities under orthogonality conditions

Let Π1 be the L2(Rn ,dγ)orthogonal projection onto the space generated by the constants and
the coordinate functions, corresponding to the Hermite polynomials of order less or equal
than 1. The following result was recently proved in [18, Appendix A] on the basis of Nelson’s
hypercontractivity estimate in [40, Theorem 3] and its relation with Gross’ logarithmic Sobolev
inequality in [32] (also see [1, 34] for earlier results).

Proposition 15. Let n ≥ 1 and p ∈ [1,2). For any f ∈ H1(Rn ,dγ), we have

‖∇ f ‖2
L2(Rn ,dγ) −

1

p −2

(
‖ f ‖2

Lp (Rn ,dγ) −‖ f ‖2
L2(Rn ,dγ)

)
≥ 1

2
(2−p)‖∇(Id−Π1) f ‖2

L2(Rn ,dγ) .

Compared to (2), this result provides us with an improved entropy–entropy production inequali-
ties under orthogonality conditions. As noted in [18], such an improvement is not optimal. There
are other possible approaches. For instance, a finer analysis of entropy methods has been used
in [27] on the sphere, that could probably be adapted to the case of the Gaussian measure. Alter-
natively, one could use the convex interpolation of [34], with the possible advantage that the re-
sult would not degenerate in the limit as p → 2 using the recent stability result of [25, Theorem 2].

4. Stability results for the Gaussian measure in the subcritical range

The whole Section is devoted to the proof of Theorem 4. We split it into four lemmas. The key
estimate is obtained in Lemma 19.

1© Let us start with the easy case, far away from the optimizers of (2) in the sense that for some
θ > 0, we assume

‖∇ f ‖2
L2(Rn ,dγ) ≥ θ‖ f ‖2

L2(Rn ,dγ) . (29)

By homogenity of the inequalities, we can fix ‖ f ‖2
L2(Rn ,dγ)

= 1 without loss of generality.

Lemma 16. Let n ≥ 1 and θ ∈ (0,1). For any function f ∈ H1(Rn ,dγ) such that ‖ f ‖L2(Rn ,dγ) = 1 and
‖∇ f ‖2

L2(Rn ,dγ)
≥ θ, we have the estimate

‖∇ f ‖2
L2(Rn ,dγ) −

1

2−p

(
‖ f ‖2

L2(Rn ,dγ) −‖ f ‖2
Lp (Rn ,dγ)

)
≥ κ?(θ)‖∇ f ‖2

L2(Rn ,dγ)

In case (29), this already proves the result of Theorem 4 with cn,p ≤ c(1)
n,p := κ?(θ). The result of

Lemma 16 directly follows from (25), but we give a proof based on the convexity properties of the
entropy, which directly explains where the constant comes from.

Proof. From Corollary 11 with λ? = 1 and Hölder’s inequality, we obtain

‖∇ f ‖2
L2(Rn ,dγ) −

1

2−p

(
‖ f ‖2

L2(Rn ,dγ) −‖ f ‖2
Lp (Rn ,dγ)

)

≥
‖ f ‖2

Lp (Rn ,dγ)

2−p

1

2
ψ

(
(2−p)θ

)(2−p)
‖∇ f ‖2

L2(Rn ,dγ)

‖ f ‖2
Lp (Rn ,dγ)

2

≥ 1

2
(2−p)ψ

(
(2−p)θ

) ‖∇ f ‖4
L2(Rn ,dγ)

‖ f ‖2
Lp (Rn ,dγ)

≥ κ?(θ)‖∇ f ‖2
L2(Rn ,dγ)
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with κ?(θ) := 1
2 (2− p)ψ

(
(2−p)θ

)
θ because t 7→ ψ′′(t ) is non-increasing, ‖∇ f ‖2

L2(Rn ,dγ)
≥ θ and

‖ f ‖2
Lp (Rn ,dγ) ≤ ‖ f ‖2

L2(Rn ,dγ)
. �

2© From now on we work in a neighbourhood of the constants which, by homogeneity of the
inequalities, is defined as

‖∇ f ‖2
L2(Rn ,dγ) ≤ θ‖ f ‖2

L2(Rn ,dγ) .

With θ > 0 small, we claim that
∫
Rn f dγ is close to 1 if ‖ f ‖L2(Rn ,dγ) = 1.

Lemma 17. Let n ≥ 1 and θ ∈ (0,1). For any non-negative function

f ∈ H1(Rn ,dγ) such that ‖ f ‖L2(Rn ,dγ) = 1 and ‖∇ f ‖2
L2(Rn ,dγ) ≤ θ , (30)

we have the estimate p
1−θ ≤

∫
Rn

f dγ≤ 1.

Proof. With f̄ := ∫
Rn f dγ, the result follows from the Gaussian Poincaré inequality according to

1 = ‖ f ‖2
L2(Rn ,dγ) =

∫
Rn

| f − f̄ |2 dγ+ f̄ 2 ≤ ‖∇ f ‖2
L2(Rn ,dγ) + f̄ 2 ≤ θ+ f̄ 2 .

�

3© Assume that f is as in (30) and let us decompose u f (x) := f (x)/
∫
Rn f dγ as

u f (x) = 1+εx ·ν+ηr (x)

where ν ∈ Sn−1 is such that εν = ∫
Rn x u f (x)dγ with ε > 0, η is a positive number and r is a

function in H1(Rn ,dγ)∩ (Id−Π1)L2(Rn ,dγ) such that ‖∇r‖L2(Rn ,dγ) = 1 and ‖r‖L2(Rn ,dγ) ≤ 1/2 by
the Gaussian Poincaré inequality after taking into account the additional orthogonality condition∫
Rn r xi dγ= 0 for any i = 1, 2,. . . ,n.

Lemma 18. Let n ≥ 1 and θ ∈ (0,1). Let f ∈ H1(Rn ,dγ) be such that (30) holds. With the above
notation, we have

‖u f ‖2
L2(Rn ,dγ) = 1+ε2 +η2 ‖r‖2

L2(Rn ,dγ) ≤ 1+θ and ‖∇u f ‖2
L2(Rn ,dγ) = ε2 +η2 ≤ θ

1−θ
and, if η> t ε2 for some t > 0, then

‖∇u f ‖2
L2(Rn ,dγ) −

1

2−p

(
‖u f ‖2

L2(Rn ,dγ) −‖u f ‖2
Lp (Rn ,dγ)

)
≥ 1

4
(2−p)

(
η2 + t 2 ε4

1+ε2 +η2

)
.

By homogeneity, if (30) holds and η> t ε2 for some given t > 0, using Lemma 17, we obtain

‖∇ f ‖2
L2(Rn ,dγ) −

1

2−p

(
‖ f ‖2

L2(Rn ,dγ) −‖ f ‖2
Lp (Rn ,dγ)

)
≥ 1

4
(2−p) (1−θ)

‖∇(Id−Π1) f ‖2
L2(Rn ,dγ) +

t 2 ‖∇(Π1 f )‖4
L2(Rn ,dγ)

‖∇ f ‖2
L2(Rn ,dγ)

+‖ f ‖2
L2(Rn ,dγ)

 .

This case already covers the result of Theorem 4 with

cn,p ≤ c(1)
n,p := 1

4
(2−p) (1−θ)min

{
t ,1

}
. (31)

Proof. The result follows from Proposition 15 and from the chain of elementary inequalities

η2 ≥ 1

2

(
η2 + t 2 ε4)≥ 1

2

(
η2 + t 2 ε4

1+ε2 +η2

)
.

�
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4© The next part of the proof relies on a Taylor expansion of ‖u f ‖2
Lp (Rn ,dγ). With no loss of

generality, by rotational invariance, we can assume that ν = (1,0, . . . ,0) so that with Cartesian
coordinates x = (x1, x2, . . . , xn) ∈ Rn , we write u f (x) = 1+ εx1 +ηr (x). The following result is at
the core of our strategy. It heavily relies on the Gaussian logarithmic Sobolev inequality and new
estimates for the remainder terms based on the boundedness of

∫
Rn r 2 logr 2 dγ.

Lemma 19. Let n ≥ 1 and f ∈ H1(Rn ,dγ) be a non-negative function such that (30) holds. We keep
the same notation as in Lemma 18 and further assume that η≤ t ε2 for some t > 0. Then there is a
constant C > 0, depending only on n, p and t, such that

‖u f ‖2
Lp (Rn ,dγ) ≥ 1+ (p −1)

(
ε2 +η2‖r‖2

L2(Rn ,dγ)

)
+ (p −1)(2−p)

(
1

2
ε4 +ε2η

∫
Rn

x2
1 r (x)dγ

)
− C ε4

log
( 1
ε

) as ε→ 0+ .

Proof. This proof is elementary although a little bit lengthy. Several steps are similar to those
of [18, Section 4] and will be only sketched. Let us split it into three steps.

Step 1. Let us start with a list of preliminary remarks.

• Let Bε be the centred ball of radius 1/(2ε), that is,

Bε := {
x ∈Rn : 2ε |x| < 1

}
and let B c

ε =Rn \ Bε. We observe that

γ(B c
ε ) = ∣∣Sn−1∣∣∫ +∞

1/(2ε)
r n−1 e−

r 2
2 dr = cn ε

2−n e−
1

8ε2
(
1+O

(
ε2)) as ε→ 0+

with cn = 23(2−n)/2/Γ(n/2). Let ξp := supε∈(0,1/2) ε
−5

(
γ(B c

ε )
)(2−p)/2. Hence we have∫

B c
ε

|g |p dγ≤ ‖g‖p
L2(Rn ,dγ)

(
γ(B c

ε )
)(2−p)/2 ≤ ξp ‖g‖p

L2(Rn ,dγ)
ε5

for any g ∈ L2(Rn ,dγ), by Hölder’s inequality and, as a consequence,∫
Bε

|g |p dγ≤
∫
Rn

|g |p dγ≤
∫

Bε
|g |p dγ+ξp ‖g‖p

L2(Rn ,dγ)
ε5 ∀ε ∈ (0,1/2) . (32)

From now on, we assume without further notice that x ∈ Bε unless it is specified.

• An expansion in Taylor series of (1+ s)p −1−p s for s ≤ 0 shows that all terms are non-negative:

(1+ s)p ≥ 1+p s + 1

2
p (p −1) s2 ∀ s ∈ (−1,0] .

Applied to u f = 1+εx1 +ηr whenever 1+εx1 > 0 and r ≤ 0, we obtain

|u f |p = (
1+εx1 +ηr

)p = (1+εx1)p
(
1+ ηr

1+εx1

)p

≥ (1+εx1)p
(
1+p

ηr

1+εx1
+ 1

2
p (p −1)

(
ηr

1+εx1

)2)
= (1+εx1)p +p (1+εx1)p−1 ηr + 1

2
p (p −1)(1+εx1)p−2 η2 r 2 .

• Let us consider the case 1+εx1 > 0 and r > 0. The function

ρ(s) := 1

s2

(
(1+ s)p −1−p s − 1

2
p (p −1) s2

)
∀ s ≥ 0

is bounded. Let us extend ρ by 0 on (−1,0) and define

ψε,η,r (x) := (1+εx1)p−2 ρ

(
ηr (x)

1+εx1

)
.
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With this definition, using u f ≥ 0 by hypothesis, we obtain

|u f |p ≥ (
1+εx1 +ηr

)p

= (1+εx1)p +p (1+εx1)p−1 ηr + 1

2
p (p −1)(1+εx1)p−2 η2 r 2 + 1

2
p (p −1)η2 r (x)2ψε,η,r (x)

with equality whenever r ≥ 0.
As η→ 0+,ψε,η,r converges a.e. to 0 on Bε uniformly with respect to ε ∈ (0,1/2). The dominated

convergence theorem is enough to conclude that

lim
η→0+

∫
Bε

r (x)2ψε,η,r (x)dγ= 0

for a given function r , but this is not enough to conclude uniformly with respect to r . To do this,
we need more detailed estimates. Notice however that

‖ψε,η,r ‖L∞(Bε) ≤ M := 22−p ‖ρ‖L∞(R+)

where M is independent of ε, η and r .

• Since
∫

Bε
x2k

1 dγ≥ ∫
Bε

x2k+1
1 dγ= 0 and

∫
Rn x2k

1 dγ≥ ∫
Rn x2k+1

1 dγ= 0 for any k ∈N, an expansion
in Taylor series of (1+εx1)p gives∫

Rn
(1+εx1)p dγ≥

∫
Rn

(
1+ 1

2
p (p −1)ε2 x2

1 +
1

24
p (p −1)(p −2)(p −3) x4

1 ε
4
)

dγ

= 1+ 1

2
p (p −1)ε2 + 1

8
p (p −1)(p −2)(p −3)ε4 .

By applying (32) with g = 1+εx1, we obtain∫
Rn

|1+εx1|p dγ≤
∫

Bε
|1+εx1|p dγ+ξp

(
1+ε2)p/2

ε5 .

Summing up with ε2 ≤ θ, we have∫
Bε

|1+εx1|p dγ≥ 1+ 1

2
p (p −1)ε2 + 1

8
p (p −1)(p −2)(p −3)ε4 −ξp (1+θ)p/2 ε5 .

• Let us estimate ‖u f ‖p
Lp (Rn ,dγ) using∫

Rn
|u f |p dγ≥

∫
Bε

|u f |p dγ

and∫
Bε

|u f |p dγ≥
∫

Bε
|1+εx1|p dγ

+p η
∫

Bε
(1+εx1)p−1 r dγ+ 1

2
p (p −1)η2

∫
Bε

(1+εx1)p−2 r 2 dγ

+ 1

2
p (p −1)η2

∫
Bε

r (x)2ψε,η,r (x)dγ .

We obtain∫
Rn

|u f |p dγ≥ 1+ 1

2
p (p −1)ε2 + 1

8
p (p −1)(p −2)(p −3)ε4 −ξp (1+θ)p/2 ε5

+p η
∫

Bε
(1+εx1)p−1 r dγ+ 1

2
p (p −1)η2

∫
Bε

(1+εx1)p−2 r 2 dγ

+ 1

2
p (p −1)η2

∫
Bε

r (x)2ψε,η,r (x)dγ .

Step 2. We prove that η2
∫

Bε
r (x)2ψε,η,r (x)dγ is of order o

(
ε4

)
as η≤ t ε2 → 0 for a given t > 0.
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• By the logarithmic Sobolev inequality,∫
Rn

h2 logh2 dγ≤ 2
∫
Rn

|∇h|2 dγ+
∫
Rn

h2 dγ log

(∫
Rn

h2 dγ

)
,

applied to h = 1+ (r −1)+, we learn that∫
Rn

h2 logh2 dγ≤ 2
∫
Rn

|∇r |2 dγ+
(
1+

∫
Rn

r 2 dγ

)
log

(
1+

∫
Rn

r 2 dγ

)
≤ 2 log(2e) .

Let χ := 1{ηh>s0} for any s0 > 1 and consider Aε,η,r,s0 := {
x ∈ Bε : ηr (x) ≤ s0

}
. Then we have∫

Rn
h2 logh2 dγ≥

∫
Bε\Aε,η,r,s0

h2 logh2 dγ=
∫

Bε
χh2 logh2 dγ≥ log

(
s0

η

)2 ∫
Bε
χr 2 dγ

because h ≥ 1 a.e. and h > s0/η on Bε \ Aε,η,r,s0 and, as a consequence,

η2
∫

Bε\Aε,η,r,s0

r (x)2ψε,η,r (x)dγ≥− log(2e) M

log s0 + log
(

1
η

) η2 .

• Let us notice that

M = sup
s>0

|ρ(s)|
log(1+ s)

is finite. This allows us to write that

η2
∫

Aε,η,r,s0

r (x)2ψε,η,r (x)dγ≥−22−p M

∫
Aε,η,r,s0

η2 r 2 log(1+2ηr )1{r>0} dγ ,

where the restriction to the set {r > 0} comes from the fact that ψε,η,r (x) = 0 whenever r (x) ≤ 0.
Now we estimate log(1+2ηr ) by

log(1+2ηr ) ≤ log
(
1+2

p
η
)

if 0 ≤ r ≤ 1p
η

,

log(1+2ηr ) ≤ log(1+2 s0)

log
(

1
η

) logr 2 if
1p
η
≤ r ≤ s0

η
,

and conclude using
∫
Rn r 2 dγ ≤ 1 and

∫
Rn r 2 logr 2 dγ ≤ 2

∫
Rn |∇r |2 dγ = 2 by the logarithmic

Sobolev inequality that

η2
∫

Aε,η,r,s0

r (x)2ψε,η,r (x)dγ≥−22−p M η2

θ log
(
1+2

p
η
)+ 2 log(1+2 s0)

log
(

1
η

)
 .

Step 3. We compute the contribution of

p η
∫

Bε
(1+εx1)p−1 r dγ and

1

2
p (p −1)η2

∫
Bε

(1+εx1)p−2 r 2 dγ

to the expansion of
∫
Rn |u f |p dγ.

• Using (32) applied to g = |r |1/p and the orthogonality constraints on r , we obtain

p η
∫

Bε
(1+εx1)p−1 r dγ≥ p η

(∫
Rn

(1+εx1)p−1 r dγ−21−p ξp ε
5
)

≥ p ηε2
(

1

2
(p −1)(p −2)

∫
Rn

x2
1 r dγ−c1 ε

3 −21−p ξp ε
5
)

where c1 :=p
15 sups∈(−1,0)∪(0,+∞)

∣∣(1+ s)p−1 −1− (p −1) s − 1
2 (p −1)(p −2) s2

∣∣/s3

• A similar computation shows that
1

2
p (p −1)η2

∫
Bε

(1+εx1)p−2 r 2 dγ= 1

2
p (p −1)η2

(
‖r‖2

L2(Rn ,dγ) −c2 ε
)

where c2 := sups∈(−1,0)∪(0,+∞)

∣∣(1+ s)p−2 −1
∣∣/s
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Step 4. Collecting all terms, we have

∫
Rn

|u f |p dγ≥ 1+ 1

2
p (p −1)ε2 + 1

8
p (p −1)(p −2)(p −3)ε4 + 1

2
p (p −1)η2 ‖r‖2

L2(Rn ,dγ)

+ 1

2
p (p −1)(p −2)ηε2

∫
Rn

x2
1 r dγ− C

ε4

log
( 1
ε

)
for some constant C > 0 that is explicitly given in terms of t , ξp , M , M , c1 and c2. In order to

conclude, we notice that for any s >−1, d 4

d s4 (1+ s)
2
p > 0 implies that

(1+ s)
2
p ≥ 1+ 2

p
s + 1

p2 (2−p) s2 − 1

3 p3 (2−p) (4−p) s3 .

Applied to

‖u f ‖2
Lp (Rn ,dγ) =

(∫
Rn

|u f |p dγ

) 2
p =

(∫
Rn

(
1+εx1 +ηr

)p dγ

) 2
p

,

this completes the proof of Lemma 19. �

Proof of Theorem 4. The strategy of proof is similar to [18, Theorem 7]. Up to the replacement
of v by f = |v |, we can assume f ≥ 0. With

u f (x) := f (x)∫
Rn f dγ

= 1+εx1 +ηr (x)

as in Lemma 18, we first notice that the case η> t ε2 is already covered in Lemma 18. Otherwise
let us assume that η≤ t ε2 and consider the Hermite polynomial h1(x) := x2

1 −1 and decompose r
according to

r (x) :=αh1(x)+β r̃ (x)

with ‖r̃‖L2(Rn ,dγ) = 1 so that ‖r‖2
L2(Rn ,dγ)

=α2 +β2 ≤ 1/2 and
∫
Rn x2

1 r (x)dγ=α. With this notation
we have

‖∇u f ‖2
L2(Rn ,dγ) = ε2 +η2 ,

‖u f ‖2
L2(Rn ,dγ) = 1+ε2 +η2 (

α2 +β2) ,

‖u f ‖2
Lp (Rn ,dγ) ≥ 1+ (p −1)

(
ε2 +η2 (

α2 +β2))+ (p −1)(2−p)

(
1

2
ε4 +αε2η

)
− C ε4

log
( 1
ε

) ,

where the estimate of ‖u f ‖2
Lp (Rn ,dγ) comes from Lemma 19. Hence, for some λ> 0 to be fixed,

‖∇u f ‖2
L2(Rn ,dγ) −

1

2−p

(
‖u f ‖2

L2(Rn ,dγ) −‖u f ‖2
Lp (Rn ,dγ)

)
−λ

(
η2 + t 2 ε4

1+ε2 +η2

)
≥ η2 (

1−α2 −β2 −λ)+(
p −1

2
− λ t 2

1+ε2 +η2

)
ε4 + (p −1)αε2η− 1

2−p

C ε4

log
( 1
ε

)
≥

(
p −1

2
− λ t 2

1+ε2 +η2 − α2 (p −1)2

4
(
1−α2 −β2 −2λ

) )
ε4 − 1

2−p

C ε4

log
( 1
ε

)
where we applied Young’s inequality in the last line. By an appropriate choice of the parameters,
for instanceλ ∈ (0,1/16) and t > 0 such that t 2 < 8(p−1)(5−2 p)/3, we obtain a positive coefficient
in front of ε4, and the last line is non-negative if ε> 0 is taken small enough. Hence, the result with
cn,p = min

{
c(1)

n,p ,c(2)
n,p

}
with c(1)

n,p given by (31) and c(2)
n,p := (1−θ)λ. �
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