DIFFUSION AND KINETIC TRANSPORT WITH VERY WEAK
CONFINEMENT

EMERIC BOUIN*

CEREMADE (CNRS UMR n° 7534), PSL university
Université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris 16, France

JEAN DOLBEAULT

CEREMADE (CNRS UMR n° 7534), PSL university
Université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris 16, France

CHRISTIAN SCHMEISER

Fakultat fiir Mathematik, Universitdt Wien
Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

ABSTRACT. This paper is devoted to Fokker-Planck and linear kinetic equa-
tions with very weak confinement corresponding to a potential with an at
most logarithmic growth and no integrable stationary state. Our goal is to
understand how to measure the decay rates when the diffusion wins over the
confinement although the potential diverges at infinity. When there is no con-
finement potential, it is possible to rely on Fourier analysis and mode-by-mode
estimates for the kinetic equations. Here we develop an alternative approach
based on moment estimates and Caffarelli-Kohn-Nirenberg inequalities of Nash
type for diffusion and kinetic equations.

1. Introduction. This paper addresses the large time behavior of the solutions
to the macroscopic Fokker-Planck equation and to kinetic equations with Fokker-
Planck or scattering collision operators.

The first part of this paper deals with the macroscopic Fokker-Planck equation

% = Agu+ Vs (VoVu) = Vo (7Y V, (¥ u)) (1)

where # € R? d > 3, and V is a potential such that e~V ¢ L'(RY), that is,
e~V dx is an unbounded invariant measure. There are various reasons to consider
only dimensions larger than 3, among which the use of the Hardy inequality. In
some cases, the dimension d = 2 is also covered as a limit case, while estimates in
dimension d = 1 are of different nature and will not be considered in this paper for
sake of simplicity. We shall investigate the two following examples

Vi(z) =~ loglz| and Va(z) =~ log(z)
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with v < d and () := /1 + |z|? for any 2 € R%. These two potentials share the
same asymptotic behavior as || — co. The potential V; is invariant under scalings,
whereas V5 is smooth at the origin. In both cases, the only integrable equilibrium
state is 0. Thus, if the initial datum ug is such that ug € L!(R?), we expect that
the solution to (1) converges to 0 as t — +o00. When v > 0, the potential V is very
weakly confining in the sense that, even if it eventually slows down the decay rate, it
is not strong enough to produce a stationary state of finite mass: the diffusion wins
over the drift. Our goal to establish the rate of convergence in suitable norms. We
shall use the notation ||-[|, := [|||» (4, in case of Lebesgue’s measure and specify
the measure otherwise.

Theorem 1.1. Assume that either d > 3, v < (d—2)/2 and V =V, or V =V,
ord =2,v<0and V = V,. Then any solution u of (1) with initial datum
ug € LY NL%(RY) satisfies, for all t > 0,

4/d
21 uolly

luoll , 4 2
202 with ci= 5 min {1, 1- TJQ} CNash 4/d "
l[uolly

Jutesll < e

(2)

Here Cnasn denotes the optimal constant in Nash’s inequality [24, 11]
244 4
lulls™ < Cxasn [lull{ [ Vull}  VueL'n HY(RY). (3)

Note that the rate of decay is independent of v and we recover the classical estimate
due to J. Nash when V = 0 (here v = 0). The proof of Theorem 1.1 and further
considerations on optimality are collected in Section 2.1. Our method involves the
computation of AV. In dimension d = 2, V = V; would produce a singularity
(which could be handled by an appropriate regularization procedure). In dimension
d=1, V§/(z) = (1 —2%)/(1 + 22)? has no definite sign and would require new
estimates, which are not covered by our result.

Theorem 1.1 does not cover the interval (d —2)/2 < v < d. This range is covered
by employing the natural setting of L2 (ev) and by requiring additional moment
bounds.

Theorem 1.2. Letd > 1, v <d, V=V, or V =V,, and up € LY NL*(e"). If
v > 0, let us assume that |||a:|ku0H1 < oo for some k > max{2,v/2}. Then any
solution of (1) with initial datum ug satisfies

2 2 —d=x
VE2 0, ult N svan < lolZagovan (14 ct) 5
The constant ¢ depends on d, v, k, |[uollz2 (v gz)s [[wollys and ||z *uol], -

The proof of Theorem 1.2 is done in Section 2.2. Although this is a side result,
let us notice that the case in which the potential contributes to the decay, i.e., when
v < 0, is also covered in Theorem 1.2. The scale invariance of (1) with V = 1}
can be exploited to obtain intermediate asymptotics in self-similar variables. Let
us define
Cx

——|z|Vex 77|m|2
(1+2t)d’T”| | p( 2(1+2t))’ @

The following result on intermediate asymptotics allows us to identify the leading
order term of the solution of (1) as t — +o0. It is the strongest of our results on (1)
but initial data need to have a sufficient decay as |z| — oo.

Uy (t, ) =
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Theorem 1.3. Let d > 1, v € (0,d) and V = Vy. If for some constant K > 1, the
function ug is such that

VezeR?, 0< ug(x) < K ue(0,x)

where ¢, is chosen such that ||us||1 = ||uoll1 then the solution w of (1) with initial
datum ug satisfies

1 a3 (03)
V=0, Jult) -t < Ko luollf (55)

for any p € [1,+00), where ¢, := % (1 - %) + ﬁ min {2, ﬁ}.

More detailed results will be stated in Section 2.3. Let us quote some relevant
papers for (1). In the case without potential, the decay rates of the heat equation
is known for more than a century and goes back to [16]. Standard techniques use
the Fourier transform, Green kernel estimates and integral representations: see for
instance [15]. There are many other parabolic methods which provide decay rates
and will not be reviewed here like, for instance, the Maximum Principle, Harnack
inequalities and the parabolic regularity theory: see for instance [28].

In his celebrated paper [24], J. Nash was able to reduce the question of the decay
rates for the heat equation to (3): see [8] for detailed comments on the optimality
of such a method. Entropy methods have raised a considerable interest in the recent
years, but the most classical approach based on the so-called carré du champ method
applies to (1) only for potentials V' with some convexity properties and a sufficient
growth at infinity: typically, if V(x) = |z|%, then o > 1 is required for obtaining
a Poincaré inequality and the rate of convergence to a unique stationary solution
is then exponential, when measured in the appropriate norms; see [4] for a general
overview. An interesting family of weakly confining potentials is made of functions V'
with an intermediate growth, such that e~V is integrable but lim;| o V ()/|z| = 0:
all solutions of (1) are attracted by a unique stationary solution, but the rate is
expected to be algebraic rather than exponential. A typical example is V(z) = |x|“
with o € (0,1). The underlying functional inequality is a weak Poincaré inequality:
see [26, 21], and [3] for related Lyapunov type methods ¢ la Meyn and Tweedie
or [6] for recent spectral considerations. We refer to [2] and [30, 31, 32] for further
considerations on, respectively, weighted Nash inequalities and spectral properties
of the diffusion operator. This problem has also attracted attention in the physics
literature (see [1] and the references therein for a list of interesting examples).

The second part of this paper is devoted to kinetic equations involving a degen-
erate diffusion operator acting only on the velocity variable or scattering operators,
for very weak potentials like V1 or V5. Various hypocoercivity methods have been
developed over the years in, e.g., [17, 18, 23, 29, 13], in order to prove exponen-
tial rates in appropriate norms, in presence of a strongly confining potential. In
that case, the growth of the potential at infinity has to be fast enough not only
to guarantee the existence of a stationary solution but also to provide macroscopic
coercivity properties which typically amount to a Poincaré inequality. A popular
simplification is to assume that the position variable is limited to a compact set,
for example a torus. Such results are the counterpart in kinetic theory of diffusions
covered by the carré du champ method, as emphasized in [5].

Recently, hypocoercivity methods have been extended in [7] to the case without
any external potential by replacing the Poincaré inequality by Nash type estimates.
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The sub-exponential regime or the regime with weak confinement, i.e., of a poten-
tial V' such that a weak Poincaré inequality holds, has also been studied in [10, 19].
What we will study next is the range of very weak potentials V', which have a growth
at infinity which is below the range of weak Poincaré inequalities, but are still such
that lim|; o V(z) = 4o00. This regime is the counterpart at kinetic level of the
results of Theorems 1.1, 1.2 and 1.3. As in the case of (1) when ~ > 0, the drift is
opposed to the diffusion, but it is not strong enough to prevent that the solution
locally vanishes.

Let us consider the kinetic equation
Of+v-Vof =V, V-V,f=Lf (5)
where Lf is one of the two following collision operators:
(a) a Fokker-Planck operator

Lf = Vo (M9, (M7 ) ),

(b) a scattering collision operator

Lf = [ o) (F0) MO) = £ M) '
R
We consider the case of a global equilibrium of the form
V(z,v) e RTxRY, M(z,v) = M(v)e V®  where M(v)= (277)7% e~z vl

We shall say that the gaussian function M (v) is the local equilibrium and assume
that the scattering rate o(v,v') satisfies

(H1) 1<o(v,v') <7, VYov,v €R?, forsome 7>1,
(H2) / (o(v,v') —o(v',v)) M(v))dv' =0 VveR™.
Rd

Notice that M ¢ L*(RYxR?) if V = Vi or V = V3, so that the space L? (M~ 'dz dv)
is defined with respect to an unbounded measure. As in the case of (1), the
only integrable equilibrium state is 0. Thus, if the initial datum fy is such that
fo € LY(dz dv), we expect that the solution to (5) converges to 0 locally as t — +o00
and look for the rate of convergence in suitable norms.

When V' = 0, the optimal rate of convergence of a solution f of (5) with initial
datum fy is known. In [7], it has been proved that there exists a constant C' > 0

such that
JL ot duscasot [ nPan vizo,
Re x R4 Rd x R4

where dyu = M ~! dx dv and by factorization, the result is extended with same rate
for an arbitrary ¢ > d to the measure (v)’dzdv if fo € L2(R? x R?, (v)¢dz dv) N
L2 (RY, (v)¢dv; L' (R, dz)). Our main result on (5) is a decay rate in the presence
of a very weak potential. It is an extension of the results of Theorem 1.2 to the
framework of kinetic equations.

Theorem 1.4. Let d > 1, V = V, with v € [0,d) and k > max{2,v/2}. We
assume that (H1)—(H2) hold and consider a solution f of (5) with initial datum
fo € LA(M™Ydx dv) such that [[qa, pa(x)* fodzdv + [[ou, ga [0]* fodzdv < +o0.
Then there exists C > 0 such that

Vi Z Oa ”f(tv N ')Hiz(/\/l*ldmdv) S C(l + t)_T
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Standard methods of kinetic theory can be used to establish the existence of
solutions of (5) when V' = V5. We will not give details here. At formal level, similar
results can be expected when V' = V; but the singularity at z = 0 raises difficulties
which are definitely out of the scope of this paper.

The expression of the constant C' is explicit. However, due to the method, we
cannot claim optimality in the estimate of Theorem 1.4, but at least the asymptotic
rate is expected to be optimal by consistency with the diffusion limit, as it is the
case when V = 0, studied in [7]. The strategy of the proof and further relevant
references will be detailed in Section 3.

2. Decay estimates for the macroscopic Fokker-Planck equation. In this
section, we establish decay rates for (1) and discuss the optimal range of the pa-
rameters.

2.1. Decay in L%(R?). We prove Theorem 1.1. By testing (1) with u, we obtain

d
—/ u2dx:—2/ |Vu|2daz+/ AV |ul* dx,
dt Jra Rd R4

with either V =V; or V = V5 and

d—2 d—2 27
——— and AV +

EE =TT Y i ey

For v < 0, with the restriction that V = V5 if d = 2, we deduce

AVi(x) =~

4/d 2+44/d
Jula™

d 2 2 2
g lullz < =2[IVull; < = 7

ash

[[uolly

from Nash’s inequality (3). Integration completes the proof of (2). For the case
0 <~ < (d—2)/2 we use the following Hardy-Nash inequalities.

Lemma 2.1. Letd >3 and § < (d — 2)2/4 Then

[ ||2+d < Cs <|vu||2 5/ dm) lul|#  VueL'n HY(RY), (6)

||
with .
5 \-
Cs = CNash (1 - @14772)2) .
Let additionally n < (d*> —4)/4. Then, for any u e LN HY(RY),
2

u 4
ol <oy (100l =0 [ Sde—n [ )l @

—1
Cs.y = Chash (min{l — 1 %}) .

The proof of Lemma 2.1 is given in Appendix C. We use Lemma 2.1 with § =
v (d —2)/2 and with n = v (for V' = V4), and proceed as for v < 0 to complete the
proof of Theorem 1.1. O

with

Remark 2.2. The condition § < (d—2)?/4 in Lemma 2.1 is optimal for (6) and (7).
If d > 3, the restriction on «y in Theorem 1.1 is also optimal. Let d > 3, v > (d—2)/2
and V = Vj or V = Va. Then there exists u € L' N H!(R%) such that |jul|, = 1 and

—2/ |Vu|2da:—|—/ AV |ul*dz > 0.
R R
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In the case V = Vi, it is indeed enough to observe that (d — 2)?/4 is the optimal
constant in Hardy’s inequality (see Appendix C). The case V' = V; follows from the
case V = Vj by an appropriate scaling.

2.2. Decay in L?(e" dx). By testing (1) with ue", we obtain

ld 2,V -V V|2
5T Rdue dac:—/Rde |V (ue¥)|" du. (8)
In the case V = Vi, we have " = |z|7 and (8) takes the form

1d
Yo,2 — _ Y Yo ) |2
5 t/d|:c| u”dr = /d|x| |V(|x| u)| dr .

We first prove Theorem 1.2 for v < 0. With v < 0 and a = djl_g%,y, the inequality

2(1—a)

/Rd || u? dzx < C (/Rd [~ [V (zwu)?da:)a (/Rd Jul da:) (9)

follows from the Caffarelli-Kohn-Nirenberg inequalities (see Appendix A, Ineq. (26)
applied with k = 0 to v = |2|7u). The conservation of the L' norm of u gives

d i

__a_

G [ el do < 27007 Yol 775 ([ ol de

dt R4 Rd
The conclusion of Theorem 1.2 follows by integration. An analogous argument
based on the inhomogeneous Caffarelli-Kohn-Nirenberg inequality

[eer <[ wwrare) ([ me)

applies to the case v < 0, V =V, (see Appendix B, Ineq. (31) applied with & = 0
and v = (x)Yu) if v < 2(d — 2). A minor modification (based on Appendix B,
Ineq. (30)) allows us to deal with the remaining cases.

Without additional assumptions, it is not possible to expect a similar result for
v > 0. Let us explain why. In the case V =V and with v = |z|7u, let us consider
the quotient

(fga |2) 7 (90 d)” (Jy o]~ fol d)*

Jga lz]77 02 da
As a consequence of (9), Q[v] is bounded from below by a positive constant if v < 0
and a = (d —7)/(d — v+ 2). Let us consider the case v > 0.

Lemma 2.3. Letd > 1,y € (0,d) and a = (d—)/(d—~+2). Then there ezists a se-
quence (U )nen of smooth, compactly supported functions such that lim Qfv,] = 0.
n—oo

Q] =

Proof. Let us take a smooth function v and consider v, (z) = v(z + ne) for some
e € S471. Then Q[v,] = O (n=(1=7). With v > 0, we know that a is in the range
0 <a<1ifandonly if v € (0,d). O

For the proof of Theorem 1.2 in the case 0 < v < d, V = Vi, we start by
estimating the growth of the moment

Mi(t) = /R el Fuda
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which evolves according to
M;, :k(d+k—277)/ u|z|k72dx§k(d+kf2—'y)M0%M;7%,
Rd
where we have used Holder’s inequality and My(t) = Mo(0) = |lugl|;. Integration
gives
2/k 2/k ) /2
Mi(t) < (M0 +2(d+ k-2 — ) Mg/*t) .

If v € (0,d) and a = d_‘i%f_gjw by inserting the Caffarelli-Kohn-Nirenberg inequal-

ity (26) (see Appendix A) applied to v = |z|7u, that is

a 2(1—a)
|x|m2dx§c< [t |V<|x|vu>|2dx> < / |x‘“u|dx) ,
R4 R4 R4

in (8), we observe that the function z = [, u® |z|” dz solves

dz _ 14 52— 4
—<-2(c! TR My (t) 2R
=209 k(?)
and, after integration,

d+2k—~

1__ 26 —=a
40§z@)0+a<@+bﬂ dwhv_g)

with a and b depend only on the quantities entering into the constant ¢ of Theo-
rem 1.2. Let @ = 2k/(d + 2k — ) and observe that

Tra((+60)" 7 —1)> 1 +et)? vixo,
((1+00)

if ¢ = b min {a,a’ =9}, Our estimate becomes

2(t) < 2(0) (1 +a ((1 +bt) 0 - 1))_k/9
<201+ ct) " — L) (14 et)

In the case V = V5 we can adopt the same strategy, based on a moment now defined
as

My(t) = /Rd (x)*u dz

and on the inhomogeneous Caffarelli-Kohn-Nirenberg inequality

/Rd (x)"u? dx < K (/Rd ()~ [V ((z)u)|? dx>a M2

d+ 2k — v

ith a= 120" 7
B VA

(see Appendix B, Ineq. (31) applied to v = (x)7u) if v < 2(d — 2). Again a minor
modification (based on Appendix B, Ineq. (30)) allows us to deal with the remaining
cases. This completes the proof of Theorem 1.2. O



8 EMERIC BOUIN AND JEAN DOLBEAULT AND CHRISTIAN SCHMEISER

2.3. Decay in self-similar variables and intermediate asymptotics.
We prove Theorem 1.3. With the parabolic change of variables
x

—d/2
u(t,x) = (1428 0(r,8), =14 log(1+21), Ezﬁa (10)
which preserves mass and initial data, (1) is changed into
0
87:}' =Av+ Ve (vVe®), (11)

where

() =V (") + 5 €7
We investigate the long-time behavior of solutions of (1) by considering quasi-
equilibria

0u(7,€) 1= M(7) e *0) | (12)
of (11) with an appropriately chosen M (7).

For the scale invariant case V' = V7, the potential ®1(7,&) = v(log [£|+7) + 1 |¢[?

in (11) can be replaced by the time independent potential ¢1(x) =~ log || + 3[£[2.
With M(7) = ¢, €77, time independent equilibria

Ve (€) = e ¢ e 12, (13)
are available. For the second case V' = V, with potential
Dy(7,€) := F log (14> [¢*) + 5 ¢,
we shall use
Va7, €) 1=y (72 4 [g2) T eIel 2 (14)
so that v, o is asymptotically equivalent to v, 1 as 7 — oo.
If a quasi-equilibrium of the form (12) satisfies
o,
or

which holds for both examples (13) and (14) if 4 > 0, then v, is obviously a super-
solution of (11), thus proving the following result on uniform decay estimates.

>0,

Proposition 2.4. Let v € (0,d) and u(t,x) be a solution of (1) with initial datum
such that, for some constant c, > 0,

2\ —7/2 7@ d
0 <u(0,2) < ¢ (0 + |z]?) exp 5 VzeR?,

witho =04V =V ando=1 iV =Vs. Then
|z

Cx 2\ —7/2

C(1+21)
For 0 < v < d, we obtain a pointwise decay: the attracting potential is too weak
for confinement (no stationary state can exist, at least among L'(R%) solutions)
but it slows down the decay compared to solutions of the heat equation (that is,
solutions corresponding to V' = 0).
The result of Proposition 2.4 is also true for v < 0 if V= V;. In that case, a
repulsive potential with v < 0 accelerates the pointwise decay, but does not change
the uniform decay rate as t — 400 because

r2 e \7/2
- AN Y
vVt >0, maxr exp( 4t> <2|7|t> . (15)

) VeeR?, t>0.
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In order to obtain an estimate in L2 (evdo:), let us state a result on a Poincaré
inequality. We introduce the notations

Do (&) =2 1¢7+ % log (o + I€]?) ,

5 v,0

szz/ e P @ de and  du,, =255 e P de.
Rd

Lemma 2.5. Assume thatd > 1, v € (0,d) and o € RT. With the above notations,
there is a positive constant A, , such that

[ vl o =2 [ o=
R4 R4

VYw e HY(RY, du, ») such that @ = / wdpy s . (16)
R4

Moreover, for any v € (0,d), minge[o,1) Ay,c > 0.

Proof. Let us consider a potential ¢» on R?. We assume that v is a measurable
function such that

. fRd (|Cf|2 T/J|f|2) d¢
f = lim inf c >0,
feD(BL)\{0} fRd |f|2 dé

r—4o0

where BS := {z € R? : |z| > r} and D(B) denotes the space of smooth functions
on R? with compact support in BS. According to Persson’s result [25, Theorem 2.1],
either the lower end of the continuous spectrum of the Schrédinger operator — A+
is £ < 400, or £ = 400 and — A + ¢ has pure discrete spectrum and A, , is the
lowest positive eigenvalue.

With the change of unknown function w = fe®v=/2, the problem of the best
constant in (16) is transformed into the Schrodinger eigenvalue problem for the
potential ¢ = i VO, .| — %Aq)%m whose kernel is generated by e~®v</2, from
which we deduce the existence of a constant A, , > 0 because { = 400 in that
case. O

In the special case o = 0, it is possible to compute A, ¢ as follows.

Lemma 2.6. Ifd > 1 and v € (0,d), then A0 = min {2, ﬁ .

Proof. Since p. o is radially symmetric, we can use a decomposition in spherical
harmonics in order to compute A, o. The equality case is achieved either by a non-
constant radial function, or by a function w(z) = x1 f(|z|), where w solves the
eigenvalue problem

- M;}) V- (pyo0Vw) = Aw.
In the first case, the problem is solved by w(x) = |z|?> —d +~ and A\ = 2, while in
the second case the problem is solved by f =1 and A =d/(d — 7). O

An interesting consequence of Lemma 2.6 is a result of intermediate asymptotics,
which allows us to identify the leading order term of the solution of (1) as t — +o0.

Corollary 2.7. Assume thatd > 1, v € (0,d) and V = Vi. With the above nota-
tions, if u solves (1) with an initial datum ug € LY (R?) such that (u*(O,ac))_1 ug €
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LY (R?), with u, defined by (4), and if we choose c, in (4) such that ||u.(0,-)|1 =
llwoll1, then

/ (u(t,a:) — u*(t,a:)) dr < (1+ 2t)*)‘%°/ (u(O,x) — u*(O,x)) .
Rd

Uy (8, ) R ux (0, )

Proof. By definition of u,, we have

/Rd Us1 S = /Rd”(O?f)dE = /R wo det .

Then, using the Poincaré inequality (16) and Lemma 2.6, we know that

d
— [ (w—wv1)%e” df:_Q/ ’VE(G%(U—UH)HZ@*% dg
dT Rd ’ R4 ’
<—2Xp / (v— vl’*)Q e de
Rd
from which we deduce that

/ (v —v1.)% e dE < e™? ’\%“T/ (u(0,2) —v1 )% e du.
R4

Rd
This concludes the proof using the parabolic change of variables (10). O

Proof of Theorem 1.3. A Cauchy-Schwarz inequality shows that

(/]Rd [u(t 2) — us (£, 2)] dx>2 < /Rd u (t, ) dx/R (u(t, 2) —u.(t,z))” dzx

Uy (t, )

—Ay.0 wn da (U(O,IE)fu*(O,.’E))2 -
< (1+42¢) /Rd od /]Rd 0 (0.) dx .

The Holder interpolation inequality

1 1_1

Jult, ) = st ), < flult, ) =t )T ult, ) = uelts )l
combined with the results of Proposition 2.4 and Corollary 2.7 concludes the proof
after taking (15) and the expression of A, ¢ stated in Lemma 2.6 into account. U

3. Decay estimate for the kinetic equation with weak confinement. In
this section, we prove Theorem 1.4 by revisiting the L? approach of [13] in the
spirit of [7]. However, no mode-by-mode analysis is applicable here due to the
confining potential and the standard Nash inequality has to be replaced by a suitable
Caffarelli-Kohn-Nirenberg inequality, which requires moment estimates. The main
difference with [7] is to rely on the moments, as was already done in the proof of
Theorem 1.2.

3.1. Notations and elementary computations. On the space L2(M~ldz dv),
we define the scalar product

(f,9) Z//WXRdfgevalda:dv

and the norm || f] = (f,f}l/Q. Let M be the orthogonal projection operator on
Ker(L) given by Mf := M p[f], where p[f] := [pa f(v)dv, and T be the transport
operator such that Tf =v-V,f -V, V.-V, f. We assume that

M(v)=(27)"2¢ 2 WP vy e RY.
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Let us use the notation u[f] := e" p[f] and observe that
TNf=Me Vv -Voulf], (TN)*f=-MV,-p[vf],
(TM*(TN)f = =M V- (7" Vaulf])

where the last identity follows from [, M(v)v ® vdv = Id. To build a suitable
Lyapunov functional, as in [12, 13, 7] we introduce the operator A defined by

A= (Id 4 (TR)*(TM)) ' (TN)*.
As in [13] we define the Lyapunov functional H by
1
HIf) = A2 + < (AF. 1)

and obtain by a direct computation that

d
SHIf] = - DI
with
D[f] :==— (Lf,f)+e (ATOf,Nf) +e (AT(Id — M) £, 1 f)

— e (TA(ld =M f, f) —e (AL(d =) f,00f)y . (17)

where we have used that (Af,Lf) =0 and AN = 0. The latter being a consequence
of the identity MTI = 0, that has been called the “diffusive macroscopic limit”

in [13]. For the first term in D[f], we rely on the microscopic coercivity estimate
(see [13])
— (LS f) = A [I(d =) £

The second term (AT f,MNf) is expected to control ||[IIf]|?. In Section 3.2, the
remaining terms will be estimated to show that for e small enough D[f] controls
[l(1d — M) f]|?> + (ATOf,Nf). As in Section 2.2, estimates on moments are needed,
which will be established in Section 3.3 and used in Section 3.4 to show a Nash
type estimate and to complete the proof of Theorem 1.4 by relating the entropy
dissipation D[f] to H[f] and by solving the resulting differential inequality.

3.2. Proof of the Lyapunov functional property of H[f]. Let us define the
notations

(u1,u2)y ::/ upuge "V dr and ||ull} = (u,u),
R4
associated with the norm L?(e~" dz). Unless it is specified, V means V.

Lemma 3.1. With the above notations, we have

IAf]l < % [(1d =) £, (ITAF < [I(d =) f]]
and
(TA(d =) £, /)] < 1(1d = ) £

Proof. We already know from [13, Lemma 1] that the operator TA is bounded. Let
us give a short proof for completeness. The equation Af = g is equivalent to

(MM f =g+ (TM*(TM)g. (18)



12 EMERIC BOUIN AND JEAN DOLBEAULT AND CHRISTIAN SCHMEISER
Multiplying (18) by g M~'e", we get that
gl + ITAgl* = (£, TNg) = ((Id — M) f,TNg)
< [[(d =M {[Tg[| < % I(1d = M F1* + [ TNg|*
from which we deduce that ||Af]| = |lg]] < %H(Id —M)f|l. Since A = MA, be-

cause (18) can be rewritten as g = MT2Mg—MTf using (TN)* = — NT, we also have
that TAf = TMg and obtain that || TAf|| = || TMg| < ||(1d — M) f]|.

By taking into account the expression of T, Equation (18) amounts to g = Ng =
w M e™V where w solves

w—Lw+V,-7=0
and j = [p,v fdr = [z, v (ld—1)fdz. Hence
(TA(ld =) f,h) = / (v-Vew)hde = (TA(ld =) f, (Id = MA) .
Rd

This applies to f = h, so that

(TA(Id = M), f) = (TA(d = ) f, (1d = M) f) < | (1d = M) f*.
O

The term (ATNf,I1f) is the one which gives the macroscopic decay rate. Let
w(f] be such that (Id + (TI'I)*(TI'I))_ll'If =w M e~V. Then w solves

w— Lw =u[f] where Lw:=e" V. (e7V Vuw). (19)

Lemma 3.2. With the above notations, if u = u[f] and w = w[f] solves (19), we
have

(AT, 117) = [ Vol + 2wl < 2 ullf
Proof. Let w be a solution of (19). Since
ATIf = (Id+ (TR)*(TM))~ (TN)*(TN) N f
— (id+ (TN)Y*(TM)) " (Id + (TM)* TN — 1d) Nf
—Nf—(Id+ (TN)*(TN) "' Nf=Nf-—wMe",

we obtain that

ATAf = (u —w)Me V.
Using (19) and integrating on R? after multiplying by Nf = u M e~", we obtain
that

(AT L) = (uyu —w)y = (w — Lw, —Lw)y, = ||Vl + [|Lw]]F -
On the other hand, we can also write that
<ATr|f7 Hf> = <u7u - w>V = - <u7 ,C’LU)V
and obtain that
1
[Vwlf} + [[Lwl[f = = (u, Lw)y, < [ullv [|Lwlly < 1 lull3 + [[£owlf5
using the Cauchy-Schwarz inequality. As a consequence, we obtain that
1
IVolls, < 7 lully and [[Lwlly < [ullv,

which concludes the proof. O
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Lemma 3.3. With the above notations, if uw = u[f] and w solves (19), we have
|[Hess(w)||? < max{1, v} (ATMf,TIf) .
Proof. The operator L = A — VV -V is such that

d
£, V]w = L(Vw) — V(Lw) = (c(%) — 2 w)) = Hess(V) - Vu
and it is self-adjoint on L2(e" dz) so that
<£w1,w2>v = — <VUJ1,VUJ2>V = <’LU1,£U)2>V

for any wy; and wy. Applied first with w; = w and wy = Lw and then with
wy, = wy = Vw, this shows that

|Lw|} = — (Vw, VLw), = — (Vw, LVw)y, + [ Vw-[L,V]we "V dx
R4
= ||Hess(w)||3 + Hess(V) : (Vw @ Vw)e " dz
[[Hess(w)][y, (V)= ( )
Rd
where |[Hess(w)[|3 =[5 [Hess(w)?e™V dz = Zj,j:l Jga (%)26_‘/ dz. In the
case V = Vs, we deduce from

rv. oy 5o o Ti%
Or;0x;  (x)2 ' (x)?

Hess(V) — v1Id.

that

Hence

max{1, v} (ATNf,IIf) > || Lw|? + max{1, v} || Vw]|?
> |[Hess(w)l[} = [Vwll} +max{1, v} |Vl
which concludes the proof. O
Lemma 3.4. With the above notations and with m., := 3max{1, v}, we have
[(AT(1d =) £.1)] < my (ATTLTLYY |(0d = M) £

Proof. Assume that u = u[f] and w solves (19). Using g = (Id + (Tﬂ)*(Tﬂ))_lf
so that (Id 4+ (TM)*(TM)) g = f means g — (Lw) M e~V = f, let us compute

(AT(d =M f,Nf)y =(T(d =M f, A Nf) = (T(ld — M) f, TMNg)

= —<(|d—|'|)f,T2I'Ig> = —/RdXRd\/MU(X)v(Id\/MH)f : Hess(w) dzx dv
=— Vv — 1% td=ms ess(w) dx dv
_ /RdXRd\/M( © v 1) S Hoss(u)dedv,

where we use that T is antisymmetric, and the fact that TNg = (v - V,w) M e™V
if Mg =wM eV, so that T?Mg = (v Qv : Hess(w)) M e™V. We conclude using a
Cauchy-Schwarz inequality, Lemma 3.2 and Lemma 3.3. O

In order to have unified notations, we adopt the convention that @ = 1/ V2if L
is the Fokker-Planck operator.
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Lemma 3.5. With the above notations, we have
(AL(id — )£ T1f) < V2 (ATAS I [[(1d = M) £
Proof. We use duality to write
(AL(Id = ) £, I1f) = (L(ld — M) f, h)
where h = A*f = (TM)g and g = (Id + (Tl’l)*(TI’I))flf so that
(Id+ (TM)*(TM)) g = f

and h = (v Vw) M e~V. Here w solves (19) with u = u[f].
e If L is the Fokker-Planck operator, then fRd vLfdv=—j so that

[(AL(d =) f, ) =[G, Vw)o| < il [Vwllv -

We know from Lemma 3.2 that | Vw||y < (AT, Hf>1/2. The estimate on j = |j|e
where e € S¥71, goes as follows: by computing

|j|:‘/Rdvfdv /Rdv(ld—l_l)fdv
g/ ((ld—n)fol/Q) (|v~e|M1/2) dv
R4

1
2
< (/ |Id—|'|)f]2M_1dv/ |v-e|2Mdv)
R4 R4

:( ;|d—n)f|2M1dv>2 ,
Rd

we know that
||jeVH2v:/ |j|2evdxs// 1 — M)f|> M~ e daedo = [[(1d — N |2
R4 R4 x R4

e If L is the scattering operator, then
2

!
%—% dv'| dv

S dv’

M M
A I P L
Lo L dudd <4 M~1d

- vdv <47 Rdf v

MM
Rd

Loa-msE <7 [ 5
VAT VAT

352/ M
Rd Rd
< 52 / MM
R4 xR4
and ||h[| = ||(v- Vw) M e~V | = || Vw2 so that
(AL(Id — M) f, f) < V27 (ATOLIAHY? |[(1d — M) £

Notice that for a nonnegative function f, we have the improved bounds ||L(Id—TT)|| <
7 [(1d — M) f|| and (AL(Id — ) f,T1f) < & (ATf, T2 || (1d = ) f]]. B

2
dv

Finally, we apply the results of Lemmas 3.1, 3.4, 3.5 to the right hand side of (17):

Lemma 3.6. With the above notations, we have

DIf] > A (l(1d = M) f||* + (AT £, I1f))
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with

Ae 1= 3 ()\m — \/()\m —2e)2 42 (mv + \/55)2 )
and A > 0, if € > 0 is small enough.

The functional H[f] is a Lyapunov function in the sense that D[f] > 0 and the
equation D[f] = 0 has a unique solution f = 0.

Proof. The above mentioned Lemmas imply
DIf] > (Am — &) I(1d = M) f[|* + € (ATNf,T1f)
— e (my+v27) (d = M)f| (ATIF T
The Lyapunov function property is a consequence of (19) and Lemma 3.2. O

3.3. Moment estimates. Let us consider the case V = V; and define the k"
order moments in x and v by

Ji(t) = [@)* (&) and Ki(t) = [[[o]* £t ) |-
Our goal is to prove estimates on J; and K. Notice that Jo = Ko = || foll1 (rd xRre)
is constant if f solves (5).

Lemma 3.7. Letd > 1, v € (0,d), k € N with k > 2, V =V, and assume that
f € C(RT, LA(M~'dz dv)) is a nonnegative solution of (5) with initial datum fo
such that ff]RdXRd (x)* fodx dv < +00 and ff]RdXRd |v|¥ fodxdv < +00. There exist
constants Cs, ..., Cy such that

Jt)<Co (1407 and K,(t)<C, Vt>0, (=2,...k. (20)

Proof. We present the proof for a Fokker-Planck operator, the case of a scattering
operator follows the same steps. A direct computation shows that

ey, // ‘”” ”|| =2 f(t,z,0) dudo+ C(0+d—2) Kyog — (K.
dt RixRd (T)?

A bound Cy for Ky, £ € N, follows after observing that

//d . |ZU>12)| |2 f(t,z,v)dedo < Kp_q < KS/Z Kzl_l/z
RIXR

and Ky _o < Kg/é KI}_Z/Z using Holder’s inequality twice.
Next, let us compute

@—6// 2x-vf(t,z,v)dedv =: (L,
Rded

dL
=t // )2 ] fdedv+ (0 —2) // )4 (x - 0)? fd do
Rded Rded
—'y// () 2| fdodv — Ly
R xR4

§(€—1)// ()2 w2 fdedv— Ly, (21)
Re xR9
U 1/5 =2, k.

an

Note that, again by Holder’s inequality, |L,| < J,
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We prove the bound on Jy(¢) by induction. If ¢ = 2, (21) implies Lo(t) <
max {L5(0),C2} and, thus, Jo(t) < C3 (1 +t), up to a redefinition of Cs.
Now let £ > 2 and assume that
Jo-1(t) < Cp1 (1 +1)
We use Hoélder’s inequality once more for the right hand side of (21):

dLy = e =2 A7 L
WS(E*I)J‘_lK‘ *LZS(671)04'_102’(4_1)(1+t)2 — Ly,

2(0—1)
which implies

-1
2 .

£
Le<C (14t
and one more integration with respect to ¢ establishes the estimate for J, in (20),
up to an eventual redefinition of Cy. O

Lemma 3.8. Letd > 1,y € (0,d), k € Nwithk > 2,V =V, and assume that f €
C(RT, LA M~ tdz dv)) is a nonnegative solution of (5) with initial datum fo such
that [[oa ga(®)* fodz dv < +00 and [[gu, ga|v]F fodzdv < +o00. Let w = w(f] be
determined by (19) in terms of uw = u[f]. Then there exists a positive constant Cy,
such that

OSMk(t)::/ w(z)* TV de < Cp 1+ )2 V0.
Rd

Proof. The solution w of (19) is positive by the maximum principle. In what follows
we use the definition of M, for arbitrary integers ¢ and note that for ¢ < 0,

MgSM@Z/ we_de:/ we™V dx = || folr- (22)
R4 R
Multiplication of (19) by ()*~7 and integration over R? gives
My=t(l—-2+d—y)Mg2—(l—=2—7)Me_s+Jo, (23)
where J; has been estimated in Lemma 3.7. Then, with £ = 2 and (22), we ob-
tain Ms(t) < Co (1 + ¢). This implies by the Hélder inequality that M;(t) <
Mo Ms(t) < Cy(1+t)2. For 2 < £ < k the estimate My(t) < Cp (1 + t)*/?
follows recursively from (23). O
3.4. Decay estimate for the kinetic equation (proof of Theorem 1.4).
Lemma 3.9. Letd > 1, v € (0,d), k > max{2,v/2}, V = V4 and assume that
f € C(RT, LA (M~ 'dz dv)) is a nonnegative solution of (5) with initial datum fo
such that fflede (x)* fodx dv < +o00 and fflede [v|¥ fodxdv < +o00. Assume the
above notations, in particular with My, defined as in Lemma 3.8, with the constant K
from (30) (cf. Appendiz B), and with a = %. Then
ITIF|? < 2 (ATNE T+ MECT (ATNE T =2 @ (ATNF L) s My) V> 0.
Proof. If u = u[f] and w solves (19), we recall that
(ATOfILf) = [Vl + [ L
by Lemma 3.2. From (19), we also deduce that
1/2
[l = (u,w = Lw)y, < ully (Jwlf; +2 Vol + | Lwlf) "
By inequality (31) of Appendix B, we have that

2(l—a
wl|? < K Vw3 M0~
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if v < 2(d —2) (otherwise, one has to use ineq. (30) of Appendix B: details are left
to the reader). Combining these inequalities gives

2(1—
lulfy < K[IVwlli M0 + [ Vwlfy + (ATOFIL)
which, noting that ||ILf|| = |lu||v, implies the result. O

As a consequence of Lemmas 3.1, 3.6, 3.9 and of the properties of ® we have

HIf = 5 IFIP +< (AF. f)

= 1J2rg||f||2 < 1—56 (1(1d = TD) £||> + @ ((ATNf, ILf) 5 My))
= 1JQFE‘P(||(|0|—H)f||2+(ATI‘If,r[f%]\/[k) < 1;E¢(D)Eﬂ;Mk> 7

implying, with Lemma 3.8,

dH[f]

Tl = o< -re (12+€H[f];0k(1 +t)k/2) .

The decay of H[f] can be estimated by the solution z of the corresponding ODE
problem

%_7 -1 2 . k/2 _
=0 (ng,ck(ut) . 2(0) = H[fo].-

By the properties of ® it is obvious that z(¢) — 0 monotonically as ¢ — 400, which
implies that the same is true for %. Therefore, there exists ty > 0 such that, in the
rewritten ODE
2 dz 2(1—a) k(1— 1 dz . 2z
-——+KkC 1kt (=22 —
PRPTIEC (1+1) A dt l1+¢’
the first term is smaller than the second for ¢ > tj, implying the differential inequal-
ity

d
d% < w21 ROV o g >

with an appropriately defined positive constant k. Integration and estimation as in

Section 2.2 give
1+k(1—1/a)

y—d
zt) < C(1+4t) 7« =C(1+¢) =2 ,
thus completing the proof of Theorem 1.4.
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Appendix A. Homogeneous Caffarelli-Kohn-Nirenberg inequalities of Nash
type.

A.1. The general Caffarelli-Kohn-Nirenberg inequalities. The main result
of [9] goes as follows. Assume that d > 1 is an integer, p > 1, ¢ > 1, r > 0,
0<a<1 and

1 Oy 1 B* 1 Vx

-+—>0, -4+—/>0, —-4+-=>0,

P * d q + d r + d

1 Y 1 a*—l 1 6*
iz 11— g
r+d a(p+ 7 )+( a)(q+d)

and, with o such that v, = ao + (1 — a)B,,

0<a,—0c if a>0.

Assume moreover that

1 —1 1
ao—o<1 if a>0 and L4t 1 Px
p q d

d

Then there exists a positive constant C such that the inequality
l1—a
2 ll, < C [l|z|* Volly [[l* o], (24)

holds for any v € C§°(R?).

These interpolation inequalities are known in the literature as the Caffarelli-
Kohn-Nirenberg inequalities according to [9] but were introduced earlier by V.P. I’in
in [20]. Next we specialize Ineq. (24) to various cases of Nash type corresponding
togqg=1.

A.2. Weighted Nash type inequalities. We consider special cases correspond-
ingtor=p=2and ¢=1.

e Ineq. (24) with o, = 8/2, B« = 5/2, and v, = /2 can be written under the
condition 8 > —d as

a 2(1—a)
/x|Bv2dx<C(/ |x|ﬁ|w2dx> (/ x|5/2|v|dx>
R4 R4 R4

with a = (25)

d+2°
We can indeed check that o, — o = 0 for any 5 < 0 and %—&-0‘7* > 0, %—&—%* > 0,
and 1 + 2= > 0 if and only if 3 > —d.

e Ineq. (24) with ay = — /2, B = k — v and 7, = — /2 can be written as

a 2(1—a)
/x|—w2dxgc(/ x|_7VU|2dx> (/ |x|k_711dx)
Rd Rd R4

o d+2k —~
Cd+2+2k—v

under the condition v < d and k > ~/2. We can indeed check that o, — o =
255;_7“{ > 0. In that case, we have o, — 0 < 1 for any v < 0 and the conditions

% + % >0, % + % > 0, and % + L > 0 are always satisfied.

with (26)
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A.3. A weighted Nash inequality on balls. We adapt the proof of E. Carlen
and M. Loss in [11] to the case of homogeneous weights. The interest of this com-
putation is two fold: it gives an independent proof of (26) and relates the optimal
constant in the inequality with a spectral problem; it is also a preparation for a
proof of a weighted Nash inequality with inhomogeneous weights, that we shall es-
tablish in Appendix B. Here we use Hardy type inequalities, or related expansions
of a square which involve |x|~2 weights, and for this reason we require that d > 3.
With g = |z|~7/% v, (26) is equivalent to

2 a
/dexSC / |Vg|2dac—1(2d—7—4)/ g—Qdac
Rd R4 4 Ra |
2(1—a)
([ las)
Rd

Without loss of generality, we can assume that the function g is nonnegative and ra-
dial, by spherically non-increasing rearrangements if 0 < vy < 2(d—2) and k > /2.
From now on, we will only consider nonnegative, radial, non-increasing functions g
and the corresponding functions v(z) = |z|/2g(z). For any R > 0, let

gr=glp, and wvg(x)=|z|"%gr(z).
We observe that g — gr is supported in R? \ Bg and

g—9r < g(R) <ggr:= Jra 9r |22 da _ Jga vr 2| da
o o [s,, lxlF=7/2 dzx [, |2]F=72 dx

because g is radial non-increasing, so that
_ 2
/ [0 —vgl* 2|7 dz = |lg — grll;
Rd

syR/ 19— gl dr < Gp R%—’“/ v — vl |2 de,
Rd R4
i.e.,

Jpa VR lz|F~Vdx

— gz de < RT’“/ — M dy 27
JL ool e < R R [ o el (20

fRd VR \m\k77 dx
Sy, [P

/ |’UR‘2 |CE|_'Yd:U :/ |UR— 5R|x|k|2 |x|_7d.%'+”l‘)%/ |$‘2k_7dx.
R4 Rd Br

On the other hand, let us define vg := and observe that

From elementary variational techniques as in [14], one can prove the existence of a
positive constant A (which also depends on k) for which

1
/ w2 2|7 da < *R/ Vwl |z|~ de Y € H(Bn, o]~ dz)
Br >‘1 Br

such that / wlzF Y dr=0. (28)
Br
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Note that the weight in the constraint is not |z|~7, which is unusual. We infer from
the definition of v that this inequality is equivalent to

(Jao vr |2[* 7 da)®
fBR |z|2k =7 dx

1 ~
/d |’UR|2|x‘*7dx < )\—R/ |V1}— kg |l‘|k72x|2 2|~ dz +
R 1 /Br

With A; := Al, a simple scaling shows that A¥ = A\; R=2. On the other hand, we
can use the estimate

\Vv—kﬁRmﬁ_%dgg20VM2+k2ﬁﬂﬂﬂ”4O
to obtain

(Jio v 2]+ dr)®
fBR |z|2k= dx

/ lvg|? |z| ™Y dr < R? A/ |Vo|? |z|™7 dz + B (29)
R Bg

with A = )\% and B=1+ % k? A. Notice that we need v < d + 2k — 2 here,

which is the case for v < 2 min{d — 1, k} if d > 3.
Let us come back to [, v? [z|~7 dz. By definition of vz, we know that

/v2|m|_7dx:/ |UR|2|x\_7dx+/ lv —vg|* 2|77 d.
Rd Rd Rd

After summing (27) and (29), we arrive at

k—’yd 2
/ v? || Tdr < R*A |Vo|? |z| Y dz + B (fRd YR |l‘2|k7 x)
R Br [5,, [x[?=7 da

R2~F
+T/2/ VR |z|k77dx/ |v — vg| |z dx
fBR |$| v dl’ Rd Rd

and notice that

k*’yd 2 2k
, UR [T z Rz - -
B (fRd | 2|k—7d ) + k—v/2 ¢ / VR ‘$|k ”/dx/ [v—vg] |$|k T dx

fBR ‘LL‘| z IBR ‘{ZZ| T R R

k‘—’yd lek
VR |T X
S/ vg |z|F77 dx BfRd R|2]|€7 + i_ 7 / |v — vg||z|"~7 da

R [5,, lz[?=7 da [5,, [2lF7/2 dz Jga

2 J_k
B R>

< k=vq ,
< (/Rdvh:l a:) max{fBR w257 da” [, JalF) dsr:}

2
= (/ v|z|FY dx) C RY—4=2k
Rd

using k > 0 and v < v, for some numerical constant C' which depends only on d,
k and ~y. Collecting terms, we have found that

2
/ v |z| "7 dr < RQA/ |Vo|? |x| ™ dox + BC RV~ (/ v |z|FY da:) .
R Br Rd

We can summarize our observations as follows.

Proposition A.1. Let d > 3, v € (0,d) and v < 2 ifd = 3, k > ~/2 and
a = %. If C denotes the optimal constant in (26), then (28) holds with a
constant )\f” = A\ R™2 for any R > 0, where \; is a positive constant such that

M < kCYVe for some explicit positive constant k depending only on vy and d.
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The numerical value of k£ can be explicitly computed from the expression of C
and from the coefficients that arise from the optimization with respect to R > 0.

Appendix B. Inhomogeneous Caffarelli-Kohn-Nirenberg inequalities of
Nash type. Our goal is to establish an extension of (26) adapted to the inhomo-
geneous case. Here weights are not singular at * = 0, the condition d > 3 still
appears, due to constraints on 7 induced by symmetrization, but we can give an-
other argument in order to cover the cases d = 1 and d = 2 (and also the case d = 3
and v € [2,3)).

Theorem B.1. Ifd > 3, v €
such that, for any v € HY(R?, (z)~7

2 20—
\% d
/ 02 (x)7dx < (/ <x>k77 |U|dx> H f]Rd| v () 332 . (30)
R4 R (f]Rd (T)*=7 |v| d:c)
The function H is such that H(X) < KX for some optimal constant K > 0,
where a = % ifd >3 and v < 2(d — 2). Otherwise, if 2(d —2) <y <d
(which is possible only if d = 3) or d < 2, then H(X) < K (X*+ X°) where

b=1- 25 (d+2k+2—7)""

Notice that, unless d < 2 or d = 3 and v € [2,3), the result of Theorem B.1 is
the inequality

()" "2de < K[ [ (z)77|Vo|? da ' (x)5=7 |v| dw Q(H). (31)
Rd R R

Proof. As in the homogeneous case, if v < 2(d — 2), we rely on the method of
E. Carlen and M. Loss in [11]. The computations are similar to the ones of Propo-
sition A.1 except that |x| has to be replaced by (z). With g = (2)~7/2v, (31) is
equivalent to

/g2dx§/C</ |Vg\2dzf%(2df’y—4)/ g (x) 2 dx
Rd R4 R?

e [ tar) ([ lar)”

Without loss of generality, we assume that the function g is nonnegative, radial by
spherically non-increasing rearrangements, and nonnegative, if 0 < v < 2(d — 2).
Let v(z) = (z)?/2g(z) and

(0,d) and k > ~/2, then there exists a function H
dz) such that (x)*~7v € L}(RY, dz), we have

1—a)

gr:=9glp, and wvg(z)= <x>7/293(x)
for any R > 0. We observe that g — gr is supported in R?\ Bx and

 Jragr (x)F=7/2 dx  Jpavr (@) da
fBR (x)k=7/2 dx fBR (x)k=7/2 dx

because g is radial non-increasing, so that

_ 2
[ o= vl @) do = o = gl

g—9gr <g(R) <gr:

<an [ lo- gnlde =g (B [ |0 vnl (@) da,
R4 Rd
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that is,

vp ()Y dx 5
/]Rd lv —vp|* (x) 7 dx < W (R)z =% /]Rd |v —vg|(x)" Y dx. (32)
Br

On the other hand, using

/Rd lvgl? (x) ™7 dx = /Rd |vr — Ur (x>’f|2 (z) ™7 dx—f—ﬁ]%z/ ()25 dp

Br

k—~ d
where vg := Mﬁix ,
fBR<z> —Vdx

we deduce from the weighted Poincaré inequality

1
/ Wl ) dr < s [Vl ) de
Br 1 Br

Yw € H'(Bg) such that / w () dx =0
Br

and from the definition of v that

2
_ 1 - 2 (Jga VR ()" dz)
z) Vdr < v V(z)* 7d R
/Rd lop|? ()7 dx < NF BR| v+ 0 V{(z)*|” (x) "7 dx + fBR<$>2k_7 o
(33)
By definition of vy, we also know that

/v2<x>*7dx:/ \vR\z(xf“’d:EJr/ |v —vgp|* (x) "7 da.
Rd R Rd

V(z)*|? (z) "7 dx
After summing (32) and (33), with c(R) := % Jop[V@"| (@) , we arrive at

AR fBR (z)2k =7 dx

- 2 . (Jpa vR ()7 dm)2
/]Rd v? (z) "V dx < Y - |Vo|? (2) 77 dz + c(R) D}BR<$>%77 T

+<R>g_k/ VR (x)k_wdx/ |v — vg| (x)*7 da
fBR<.’£>k7’Y/2d£B R4 Rd

<a(R) /BR |Vl ()™ dz + b(R) (/Rd v (z)F dz>2

where a and b are two positive continuous functions on (0, +o00) defined by

2 R R)z—F
a(R) = i and b(R) = max { - <;§2k>_7 T Ex;km dx}

and such that limg_,o, RYb(R) € (0,400), limg_ 4o R7*77b(R) € (0,+00),
limp 100 R72a(R) = 2/)\; where )\; is the optimal constant in Proposition A.1
while limp_,o, R~%a(R) = 2/ is related with Nash’s inequality as in [11] and such
that

1
/ |w]? dz < f/ |Vw|*dz Yw e H'Y(B;) such that / wdr =0.
Bl >\ Bl Bl
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In order to prove (30), we can use the homogeneity of the inequality and assume
that [o. () 70?de = 1. What we shown so far is that

YR>0, 1< (/R ()= |vdx)2 (a(R) X + b(R))

where X = [0, (x) ™7 Vo2 da/( [ga (x)* =7 |v] dx)Q. With the choice R = X ~(1=)/2,
we get that there exists a constant K > 0 such that a(R) X + b(R) < KX®. This
proves (31) with I < K.

To cover the cases d < 2 or d = 3 and v € [2,3), another argument can be given,
which relies on the IMS truncation method (see for instance [22, 27]), which goes as
follows. Assume that x is a smooth function such that 0 < x < 1, with support in
the ball By, such that (1—x?) is supported in R*\ By and « := ||[Vx[?/ (1 — x?)||
is finite. Here Bg denotes the centered ball of radius R. We define xr(z) = x1(z/R)
and to a given function v, we associate the functions

vir:=xrv and vy pr:=/1—x%v.

With these definitions, we have

Vxr|?
[v]* = [o,r|* + |va,r]* and |V = [Vuy g|* + [Vug,r|* + |1 XX|2 [v|?.
— AR

We observe that [Vxg|?/ (1 —x%) = O (R72). Let us denote by Cp the Poincaré
constant in the inequality

/B |w|2dx§Cp/B |Vw|?dr Yw € Hy(Bs)

and apply it to = +— vy r(R ) so that

2(x) ™V dx,

/ vy, g|? () dz < (1 +41~22)”/2 R? cp/ Vo1 g
Rd R4

using the fact that (1 + 41122)77/2 <{x)~7 <1 on Bag.
Now let us consider vq g, which is supported outside of the ball Br. We deduce
from (26) that

/ lva, R
]Rd

o) Vo < [ Joanllol 7 de
R

a 2(1—a)
gc(/ |wz,32|x|—wx> (/ x|k_7|v2,R|daz>
R R
2
<87 [ 1Vosl ol ot 05 ([ o oan)
R4 Rd

where the last inequality holds for any S > 0, for some explicit constant C, and
equality holds for an optimal value of S > 0. For any = € R? such that |z| > R, we
notice that

()™ < 2| < (14 R (@),
z|FT < (1+ R_2)W4 ()= for any k> /2.
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Hence

/ lva, R
]Rd

2
< (14 R_Q)'Y/2 (SQ/ Vg g|* (2) ™" dx + C S7~472k (/ (x)F=7 |y da:) > .
R4 Rd
Here we choose S such that

(1+4R2)"? R2Ccp = 1+ R2)"? 2.

Notice that S ~ R't7/2 if either R — 04 or R — 400. Collecting terms, we have
found that

R4 Rd Rd

< 5?2 (1 + R—z)’v/2 </ |VU1,R|2 (x) ™V dx —l—/ |V02’R\2 ()™ dx)
Rd R

2(x) "V dx

2
+ O §y—d-2k (1 + R—2)"//2 (/ <x>k—'y |v] dx)
Rd
<S*(1+ R*2)”/2/ |Vol? (x) ™7 dx
Rd

40§k (14 p72)? (/

Rd

2

()7 |v] d:c) .

Altogether, we have to estimate [o, |v|? () ™7 d (fga (z)*77 [v] da:)_2 in terms of
F(S):=S*(1+R ) X+ (1+ R

where X =[5, [Vo|? ()77 da ([ga (2)*77 Jv| dz) 2 R = £(5) S¥ O+ where f is
a uniformly positive, bounded function and S > 0 that we can freely choose.
(i) In the regime as R — 400, the optimal S is proportional to X—(1=a)/2 and
incidentally, this corresponds to X — 0: F(s) ~ X,
(ii) In the intermediate regime corresponding to a finite R > 0, we also find that
F(s) ~ X for the optimal choice of S.
(iii) In the regime as R — 0, the optimal S is proportional to X ~(1=0)/2/ X — oo
and by optimizing
F(S) ~ 8772 X 4+ C §1~4 254
we obtain that F(S) ~ X® with b =1~ 45 (d+2k+2—7)""
This completes the proof. O

Appendix C. Hardy-Nash inequalities.

C.1. Proof of Lemma 2.1. We start with the proof of (7) by first showing a
Hardy type inequality. For some a € R to be fixed later, we compute

og/
R

2
axr

T+ 22"

2,2
:/ |Vu|2dx—|—oz2/ LUde+oz/ V(u2)~%dx.
o ke (1+ [2]) R T+ 7]

Vu+
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We deduce that

2,2 2 2,2
/ |Vu|2dx—|—a2/ Lu2dac—ozd/ u72dx+2a/ Luzdx >0,
R Rt (1+[z[?) re L+ ] Rt (1+[z[?)

so that, by writing |z[? = (1 + [z|*) — 1, we obtain
2 2
a0
TH T ko (L+ [P)
Concerning the second term, we choose the optimal value oo = (d — 2)/2 in (34),
producing the optimal upper bound for §. It is now straightforward to show

Va2 +a(a—d+2)/
R

Vul—s [ e [
ul|, — T3 4x — 1 T g2 4T
27 faa T+ TaP? we (1+[af?)?
> min {1 - A5, 1- 72 |Vul} |

whence the proof of (7) is completed by an application of Nash’s inequality (3).
The result (6) is shown analogously by using the standard Hardy inequality

IVull2 = < (d - 2)2/ >0 (35)
24 re |2 T
instead of (34). This completes the proof of Lemma 2.1. O

C.2. Hardy-Nash vs. Caffarelli-Kohn-Nirenberg inequalities. The values
for C5; and Cs,, given in Lemma 2.1 cannot be expected to be optimal, since the
Hardy and Nash inequalities used in the proof have different optimizing functions.
Here we shall present an alternative proof of (6), showing that the optimal value
for Cs can be given in terms of the optimal constant of an appropriately chosen
Calffarelli-Kohn-Nirenberg inequality of Nash type.

We start by rewriting (25) with optimal constant C = Cckn as

1+2 >
2|8 T ooltd 21,18 8/2 gy |
[v|* |=|” dz < Cok |Vl |z|” dz |v||z|P/dx )
R4 R R

which holds for § > — d. A straightforward computation shows that with the change
of variables v(x) = |x|~#/2 u(x), this is equivalent to (6) with § = —5%2/4 — B (d —

2)/2. Thus, the choice § = 2 —d+ /(d—2)? —46 > —d amounts to (6) with

optimal constant Cs5 = Cé}zl\{d.
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