
Monotonicity up to radially symmetric cores

of positive solutions to nonlinear elliptic

equations: local moving planes and unique

continuation in a non-Lipschitz case ?

Jean Dolbeault ∗

Ceremade (UMR CNRS no. 7534), Université Paris IX-Dauphine,
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1 Introduction

We consider solutions of the semilinear elliptic partial differential equation

∆u + f(u) = 0 , x ∈ D ⊂ R
N ,

which are nonnegative and vanishing at the boundary. In many cases, these
solutions are minimizers of an energy. This is why they are usually called
ground states. The equation, which is often called the nonlinear scalar field
equation, plays an important role in various domains of Physics, Chemistry
and Population Dynamics, and it is fundamental from the mathematical point
of view.

The purpose of this paper is to analyze the symmetry and the related mono-
tonicity question for nonlinearities that are continuous but not Lipschitz con-
tinuous. The basic tools in the proof of our theorems are a local variant of the
moving plane method and the unique continuation principle.

The moving plane method goes back to Alexandrov for the study of manifolds
with constant mean curvature [1]. It was then applied to the study of the
symmetry of positive solutions of elliptic PDEs by Serrin in [20], by Gidas, Ni
and Nirenberg in [12,13], in case of a locally Lipschitz nonlinearity or at least
a sum of Lipschitz and non decreasing functions, and then generalized: see
[17] for more complete references. For instance in [15,4,5], symmetry results
are obtained without Lipschitz property at zero, by assuming, in [5], that f
is decreasing in a neighborhood of u = 0. Also see [9,10] for results in this
direction, when the nonlinearity is not even assumed to be continuous. The
monotonicity property of f has been used in a different context by Li and Ni
[17] to overcome the lack of decay of the solutions when f ′(0) = 0. We will
use it here to obtain a result of local radial symmetry which will be defined
below.

Such a notion of symmetry has already been introduced by Brock in [2,3] using
a continuous Steiner symmetrization method. In the cases where Brock’s result
applies, our method is weaker, but on the other hand our description of how the
global symmetry breaks is more detailed. It provides monotonicity results in
unbounded domains as well, and can handle some nonlinear elliptic equations
which are not in divergence form. For instance, the case of fully nonlinear
elliptic operators with appropriate symmetries is covered. Moreover, we prove
that monotonicity also holds in directions close to the direction of symmetry,
which allows us to prove that when monotonicity holds up to ”cores“ these
cores are radially symmetric, even for domains which are not balls. As far as
we know, such results are certainly out of reach of symmetrization methods.

2



As a first step, we find what we call a γ-core, that is a subset of D on which
the function u is symmetric with respect to a hyperplane orthogonal to the
direction γ, and has some monotonicity properties. Then by choosing appro-
priate directions γ, we find a radially symmetric core, i.e. a ball on which
the solution is radially symmetric and non increasing along any radius. All
obstructions to monotonicity are shown to be due to radially symmetric cores.
Finally we show under some further regularity assumptions on f that if D
is a ball the function u is actually radially symmetric non increasing, or has
monotonicity properties in the other cases. Our proof relies on some local
unique continuation properties when the solution has a non zero gradient.
The unique continuation principle in the context of symmetry results has al-
ready been used by Lopes in [18], for vector valued minimizers of an energy.
Here we use it together with the generalization to PDEs of a trick which has
been used in [19,11] for studying the uniqueness of radially symmetric solu-
tions. We believe that this is a useful tool for symmetry methods, which has
already proved its efficiency in the 2-dimensional case, see [6].

Let us state our main results. Consider the nonlinear elliptic problem

∆u + f(u) = 0 , u > 0 in D ,

u = 0 on ∂D ,
(1)

and assume that f satisfies the assumptions:

(f1) f : R
+ → R is continuous,

(f2) For any s ∈ [0, +∞), there exists a positive constant η such that on
]s − η, s + η[∩R

+, f is either (strictly) decreasing or it is the sum of a
Lipschitz and of a non decreasing function (in the latter case, we shall say
that f is Lipschitz + increasing in a neighborhood of s in R

+).

Also assume that D is a domain in R
N with one of the two following properties

(the unit vector e1 ∈ SN−1 is given and we denote by x1 the coordinate along
this direction):

(B) Bounded case: D is x1-convex, bounded, symmetric with respect to the
hyperplane

T e1 := {x ∈ R
N : x · e1 = 0}

and has the property

∀ ε > 0 ∃ η > 0 such that ∀ λ > ε

ν ∈ SN−1, |ν − e1| < η =⇒ {x + 2(λ− x · ν) ν : x ∈ D, x · ν > λ} ⊂ D ,
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(C) Case with Cone property: there exists η > 0 such that for any λ ∈ R and
ν ∈ SN−1 such that |ν−e1| < η, the set {x ∈ D : x ·ν > λ} is bounded and

D =
⋃

ν∈SN−1, |ν−e1|<η

{ y − tν : y ∈ ∂D , t > 0 } .

Assumption (B) means that D is symmetric with respect to T e1 and that for
directions ν which are close to e1, the image of the reflection by the hyperplane
{x ∈ R

N : x · ν = λ} of the domain {x ∈ D : x · ν > λ} is contained in D
provided λ > ε. Ellipsoids are an example of such a set. Assumption (C)
essentially means that ∂D is the graph of a uniformly Lipschitz function of
x′ = (x2, x3, ... xN ) which goes to −∞ as |x′| → +∞. In order to describe our
results we introduce the following notion of local monotonicity.

Definition. A nonnegative function u is said to be monotone up to cores
on D̃ in the direction e1, where D̃ ⊂ D is a bounded subdomain, if there are
nonnegative functions ũ, u1, ..., uk defined on D̃ such that:

(i) u|D̃ = ũ +
∑k

j=1 uj,

(ii) the functions uj have support in balls Bj intersecting D̃ and they are
radially symmetric non increasing, with respect to the center of Bj, j =
1, ...k,

(iii) if Bi ∩ Bj 6= ∅, i 6= j, then either Bi ⊂ Bj and uj is constant on Bi or
Bj ⊂ Bi and ui is constant on Bj,

(iv) ũ is monotone non increasing on D̃ in the direction e1, and it is constant
on any Bj, j = 1, ...k.

Theorem 1 Assume that f satisfies (f1), (f2) and D satisfies (B) (resp. (C)).
Let u ∈ C2(D) ∩ C0(D̄) be a solution of (1). Then u is monotone up to cores
on D̃ = {x ∈ D : x · e1 ≥ 0} in the direction e1 (resp. on D̃ = D). Moreover
in case (B), with the above notations, ũ is symmetric with respect to T e1.

Actually, the result is a little bit stronger, and the monotonicity up to cores is
true in any of the entering directions in case (C), or in any of the directions ν
such that |ν − e1| < η, on the domain {x ∈ D : x · ν ≥ ε}, in case (B). Under
the following additional assumption

(f3) For any u > 0 such that f(u) = 0, lim infv→u, v>u
f(v)
v−u

> −∞,

we obtain global monotonicity and symmetry results:

Theorem 2 Assume that f satisfies (f1), (f2), (f3) and D satisfies either (B)
or (C). Let u ∈ C2(D) ∩ C0(D̄) be a solution of (1). Then u is decreasing in
any direction ν given by Conditions (B) or (C), on D̃ defined as in Theorem 1.
In case (B), u is symmetric with respect to T e1 .
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The paper is organized as follows. In Section 2, we give some definitions, de-
velop a framework for a local moving plane method and prove a crucial lemma
that allows us to obtain the cores. In Section 3 we present the main proofs
and give monotonicity and symmetry results using the unique continuation
principle. Section 4 is devoted to some extensions (weaker conditions on f ,
whole space results, fully nonlinear case). Some of the results of this paper
were announced in [7].

2 A technical lemma for local moving planes

In this section we set up the basic notation and give some definitions. Then
we state and prove a crucial technical lemma.

Consider a solution u ∈ C2(Ω) ∩ C0(Ω) of

∆u + f(u) = 0 , u ≥ u0 in Ω ,

u = u0 on ∂Ω ,

where Ω is a bounded domain in R
N .

Definition. Given γ ∈ SN−1, Ω is said to be a γ − core of u if and only if

(i) There exists a real number λΩ such that Ω and u are symmetric with
respect to the hyperplane TλΩ

:= {x ∈ R
N : x · γ = λΩ}. In other words,

for any x ∈ Ω, we have: xλΩ
:= x− 2(x · γ − λΩ) γ ∈ Ω and u(xλΩ

) := u(x),
(ii) Ω is convex in the γ − direction (or γ − convex), which means that for
any x ∈ Ω, the set {t ∈ R : (x + tγ) ∈ Ω} is an interval,

(iii) ∇u(x) · γ ≤ 0 for any x ∈ Ω such that x · γ > λΩ.

The domain Ω is said to be a radially symmetric core of u, or simply a core
of u, if it is a γ-core of u for any direction γ ∈ SN−1. We may observe that
such a core of u is a ball on which u is radially symmetric with respect to the
center of the ball and non increasing along any radius.

Remark 1 In order to prove that a given set Ω is a ball, it is sufficient to
prove that it is symmetric with respect to N independent hyperplanes corre-
sponding to N independent orthogonal directions γi ∈ SN−1, i = 1, 2, ... N
such that the angle (γi, γj) is 2π-irrational for any (i, j) with i 6= j.

In dimension N = 2, if two lines make a 2π-irrational angle θ0, then the
composition of two orthogonal reflections with respect to each of these two lines
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gives a rotation of angle ±2θ0 which is 2π-irrational too. The set {nθ0}n∈Z is
dense in S1 so that Ω is a disk.

In dimension N ≥ 3, let x0 ∈ Ω: x0 =
∑N

i=1 x0
i γi, since the {γi}i=1,2,... N

are linearly independent. Here we take the origin to be the unique point in
the intersection of the hyperplanes Tλi

associated to the directions γi. Next we
consider the affine plane Π1,N(x0) = {x ∈ R

N : x = x0+y, y ∈ span(γ1, γN)}.
By using the 2-dimensional argument given above we see that we can rotate x0

in Π1,N (x0) to obtain x1 =
∑N−1

i=1 x1
i γi. Of course |x0| = |x1|. We can repeat

this argument N − 1 times until getting xN−1 = xN−1
1 γ1, where xN−1

1 = |x0|.
Since x0 is arbitrary, Ω is a ball.

If Ω is a γi-core of u for {γi}i=1,2,... N as above, then u(x0) = u(|x0|γ1). Thus
u is radially symmetric and we shall say that Ω is a radially symmetric core
of u.

Now we set up some notational conventions. Whenever possible, given γ ∈
SN−1 we will choose a system of coordinates so that γ = e1. In that case we
write x1-core for a γ-core. Following the usual notations we consider

Tλ := {x = (x1, x
′) ∈ R× R

N−1 : x1 = λ} ,

Σλ := {x = (x1, x
′) ∈ (R× R

N−1) : x1 > λ} .

If x = (x1, x
′) ∈ R× R

N−1, then we write

xλ := (2λ− x1, x
′) and uλ(x) := u(xλ)

for any x ∈ R
N such that xλ ∈ Ω.

Let Ω be a non empty bounded domain in R
N . We say that Ω satisfies

property P if and only if the following conditions are satisfied:

(i) Ω is symmetric with respect to the hyperplane TλΩ
= {x = (x1, x

′) ∈ R×
R

N−1 : x1 = λΩ} for some λΩ ∈ R, that is, xλΩ
∈ Ω for any x ∈ R×R

N−1∩Ω,
(ii) Ω is x1-convex,
(iii) There is a constant u0 such that u|∂Ω ≡ u0 and u > u0 on Ω,
(iv) There exists an ε > 0 such that f is decreasing on [u0, u0 + ε).

Remark 2 If Ω satisfies property P, then it is an x1-core of u if and only if
uλΩ

(x) = u(x) for any x ∈ Ω, and ∂u
∂x1

(x) ≤ 0, for any x ∈ ΣλΩ
∩ Ω.

We are now in a position to state a technical lemma which is the key tool of
our approach.
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Lemma 3 Under assumptions (f1) and (f2), if Ω is a non-empty subdomain
of D satisfying property P, then there exists λ ≥ λΩ such that

∂u

∂x1
≤ 0 on Ω ∩ Σλ ,

and either λ = λΩ, or λ > λΩ and there exists x ∈ Σλ ∩ Ω such that

uλ(x) = u(x) if x ∈ Σλ ,
∂u

∂x1

(x) = 0 if x ∈ Tλ .

If λ = λΩ, the same properties hold if we replace the direction x1 by the direc-
tion −x1, so that, up to this change of coordinates, there are two possibilities:

(Case a) either λ = λΩ and uλ(x) = u(x) for any x ∈ Ω,
(Case b) or there exist u1 > u0 and u2 > u1, with u(x) ∈ (u1, u2), such that
f is locally Lipschitz + increasing on (u1, u2).

Assume that Case b holds and let (u1, u2) be the maximal interval containing
u(x) in (u0, +∞), on which f is locally Lipschitz + increasing. Then the two
following properties hold.

(i) Let C be the connected component of {x ∈ Ω : u1 < u(x) < u2} contain-
ing x. Then we have uλ(x) = u(x) for any x ∈ C,

(ii) Let C̃ be the x1-convexified of C, i.e. the set

C̃ := {x ∈ Ω : ∃ (y, z) ∈ C × C such that z − y is parallel to x1

and ∃ t ∈]0, 1[ such that x = ty + (1− t)z} ,

and Ω̃ := {x ∈ C̃ : u(x) > u2}. Then either Ω̃ = ∅ or Ω̃ satisfies property P.

Remark 3 In Case a, the set Ω is an x1-core of u. In Case b, if Ω̃ = ∅, then
C = C̃ is an x1-core of u. And if Ω̃ 6= ∅, let Ω̂ := {x ∈ Ω : u(x) > ũ0} ⊃ Ω̃,
where ũ0 := inf{u ∈ [u1, u2] : f is strictly decreasing on [u, u2]}. If u :=
maxx∈Ω̂ u(x) is such that f is decreasing on [ũ0, u], then Ω̂ is an x1-core of u.

The proof is direct: on ∂Ω̂ ⊂ C, uλ ≡ u, uλ ≥ u in Ω̂ according to Lemma 3
and since f is decreasing, −∆(uλ − u) ≤ 0, which means uλ ≤ u.

Proof of Lemma 3. The proof relies on the moving plane technique. We say
that Ω satisfies property Πλ if

wλ(x) := uλ(x)− u(x) ≥ 0 ∀ x ∈ Ω ∩ Σλ .

Let λ∗ := sup{λ ∈ R : ∃ x′ ∈ R
N−1 such that (λ, x′) ∈ Ω} ,

λ := inf{λ ∈ [λΩ, λ∗] : ∀ µ ∈ (λ, λ∗) Πµ is true } .
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We will first see that λ < λ∗. Assume by contradiction that λ = λ∗. Then
there exists an increasing sequence (λk)k∈N converging to λ∗ such that

∀ k ∈ N ∃ xk ∈ Σλk
∩ Ω wλk

(xk) < 0 .

On ∂(Σλk
∩Ω), wλk

≥ 0, so that wλk
reaches its minimum value at some point

of Σλk
∩ Ω and we may assume that xk realizes this minimum. Then we have

0 ≥ −∆wλk
(xk)=f(uλk

(xk))−f(u(xk))=f(u(xk) + wλk
(xk))−f(u(xk)) > 0 ,

for k large enough, since u0 < u(xk) < u0 + ε, a contradiction. Thus λ < λ∗.

Assume now that λ > λΩ, where λΩ is defined in part (i) of property P. We
recall that Ω is symmetric with respect to TλΩ

. Again we may find an increasing
sequence (λk)k∈N converging to λ (with λΩ < λk < λ), and a sequence of points
(xk)k∈N such that

xk ∈ Σλk
∩ Ω , wλk

(xk) = min
x∈Σλk

∩Ω
wλk

(x) < 0 .

As above, xk 6∈ u−1(U) where U is a neighborhood of u(x) in [u0, +∞) on
which f is decreasing, because −∆wλk

(xk) ≤ 0. Up to the extraction of a
subsequence, we may assume

lim
k→+∞

xk = x ∈ Ω ∩ Ωc
0 ∩ Σλ .

On the one hand we have 0 ≥ uλ(x) − u(x) = limk→+∞wλk
(xk), and on the

other hand uλ(x) ≥ u(x) because of Πλ. Note indeed that Πλ is true since
Πλ is true for any λ − λ > 0, small enough. Also note that either x ∈ Σλ, or

x ∈ Tλ. In the latter case, ∂u
∂x1

(x) = −1
2
limk→+∞

∂wλk

∂x1
(xk) = 0.

Since f is decreasing in [u0, u0 + ε) for some ε > 0 (and since u|∂Ω = u0),
again x cannot belong to ∂Ω. Then x ∈ Ω\Ω0 and f is therefore Lipschitz +
increasing in a neighborhood of u(x), which proves the properties of Case b.

If λ = λΩ, we may exchange the direction x1 and −x1. We observe that
property P is invariant under the transformation (x1, x

′) 7→ (2λΩ − x1, x
′).

Then either we find a λ 6= λΩ and we are back to the previous case, or we get
λ = λΩ, which proves that uλΩ

(x) = u(x) for any x ∈ Ω.

Since Πλ is true, the monotonicity of u with respect to x1 on Ω ∩ Σλ follows.
In fact, for any λ ∈ [λ, λ∗), for any x = (λ, x′) ∈ (Tλ ∩ Ω) ⊂ (Σλ ∩ Ω),

0 ≤
1

ε
· wλ(λ + ε, x′) → −2

∂u

∂x1
(λ, x′) as ε ↘ 0 .
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Assertion (i) is obtained, in case x ∈ Σλ as a consequence of the maximum
principle applied to wλ. Note that wλ ≥ 0 and wλ(x) = 0 with x ∈ C. When
x ∈ Tλ, assertion (i) is a consequence of Hopf’s Lemma, since in this case,
∂w

λ

∂x1
(x) = −2 ∂u

∂x1
(x) = 0.

To finish with the proof of Lemma 3, one has to check that in Case b, Ω̃
satisfies property P if it is not empty. The symmetry and the x1-convexity
follow from the definition of Ω̃, and f is decreasing on a neighborhood of u2

in [u2, +∞) again because of assumption (f2). 2

3 Unique continuation and proofs of the main results

Before proving Theorem 1 and a slightly more general result in Theorem 5,
let us state an important property of the radially symmetric cores, which is
based on a unique continuation argument. Consider

∆u + f(u) = 0 , u ≥ 0 in D ,

u = 0 on ∂D .
(2)

Lemma 4 Under Assumtion (f1), let u be a nonnegative solution of (2) which
is monotone on Σλ for some λ ∈ R. Assume that either condition (B) or
condition (C) is satisfied. If Ω ⊂ D is a radially symmetric core of u such
that Ω ∩ Σλ 6= ∅, then either Ω = D or u is constant on ∂Ω, f(u|∂Ω) = 0 and
∇u|∂Ω = 0.

As we shall see below, the only property needed to prove that the solutions
corresponding to a continuous nonlinearity f are locally symmetric is

{u(x) : x ∈ D , ∇u(x) = 0} ⊂ f−1(0) .

This has been exploited in [6] in the case of the dimension N = 2 but still
needs to be proved in higher dimensions.

Proof. For simplicity, we assume that the center of the core is x = 0. This is
easily achieved by means of a translation. Let us define

ρ := max{r > 0 : B(0, r) ⊂ D and u is radially symmetric,

non increasing in B(0, r)} .
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By non increasing, we mean, with an evident abuse of notations,

du

dr
=

x

|x|
· ∇u ≤ 0 .

We will prove that either B(0, ρ) = D or du
dr

(ρ) = 0. In this last case, for any
x ∈ ∂B(0, ρ) ∩ Σλ,

∇u(x) =
du

dr
(ρ)

x

ρ
= 0 .

By definition of the cores, we know that du
dr
≤ 0 for any r ∈ (0, ρ), so that

d2u
dr2 (ρ) ≥ 0. If d2u

dr2 (ρ) > 0, we immediately get a contradiction with the mono-
tonicity property of u in Σλ. Thus

∆u(x) =
(

d2u

dr2
+

N − 1

r

du

dr

)

|r=ρ

= 0 ,

and then f(u(x)) = 0. From now on, assume that du
dr

(ρ) 6= 0, which actually
means du

dr
(ρ) < 0.

If D∩ ∂B(0, ρ) 6= ∅, then B(0, ρ) = D. Otherwise, du
dr

(ρ) < 0 would contradict

the condition u ≥ 0 in D. In fact, since u is radially symmetric in B(0, ρ),
u|∂B(0,ρ) = 0.

If ∂D ∩ ∂B(0, ρ) = ∅, then there exists a sequence of points (xk)k∈N of D such
that (|xk|)k∈N is decreasing and converges to ρ and such that u(xk) 6= u(Rkxk),
where Rk is the reflection with respect to some hyperplane containing the
origin and defined by a direction νk close to e1. Without loss of generality,
we may assume that xk → x for some x ∈ ∂B(0, ρ), and νk → ν for some
ν ∈ SN−1. Thus Rk → R, where R is the reflection with respect to the
hyperplane defined by ν.

For notational convenience, we can perform a rotation such that x = ρ·e1. The
monotonicity with respect to e1 is true at least locally because ∇u(x) 6= 0:
since the rest of the argument is local, we do not have to take care of the
geometrical restrictions corresponding to assumptions (B) or (C). For some
σ > 0 small enough, we have then ∂u

∂x1
(x) < 0 for any x ∈ B(x, σ). If we denote

u(x) = u(Rx), we have that u provides another solution of

∆u + f(u) = 0 , ∀ x ∈ B(0, ρ) ∪ B(x, σ)

such that u 6≡ u in B(x, σ). We observe that, taking σ smaller if necessary,
∂u
∂x1

(x) < 0 for any x ∈ B(x, σ).
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Here we shall use a local argument which involves a local change of coordinates.
This transformation is the extension to N ≥ 2 of the one used in [6] in the
case N = 2. By the Implicit Function Theorem, there exists a neighborhood
V of (u(x), 0) ∈ R× R

N−1 and two functions v and v of class C2 such that

t = u(v(t, x′), x′) and t = u(v(t, x′), x′) ∀ (t, x′) ∈ V ,

with ∂v
∂t
6= 0 and ∂v

∂t
6= 0 in V. After some computations, we find that the

function v satisfies in V the quasilinear equation



1 +
N
∑

i=2

(

∂v

∂xi

)2




∂2v

∂t2
− 2

∂v

∂t

N
∑

i=2

∂v

∂xi

∂2v

∂xi∂t
+

(

∂v

∂t

)2 N
∑

i=2

∂2v

∂x2
i

=

(

∂v

∂t

)3

f(t) .

A similar equation is satisfied by the function v. It is easy to see that these
equations are elliptic in V.

We may now consider the function z(t, x′) = v(t, x′) − v(t, x′) that satisfies
in V the equation

a
∂2z

∂t2
− 2

∂v

∂t

N
∑

i=2

∂v

∂xi

∂2z

∂xi∂t
+

(

∂v

∂t

)2 N
∑

i=2

∂2z

∂x2
i

b1
∂z

∂t
+

N
∑

i=2

bi

∂z

∂xi

= 0 ,

where the coefficients a and bi are given by

a(t, x′)= 1 +
N
∑

i=2

(

∂v

∂xi

)2

,

b1(t, x
′)=−2

N
∑

i=2

(

∂v

∂xi

∂2v

∂xi∂t

)

+
(

∂v

∂t
+

∂v

∂t

)( N
∑

i=2

∂2v

∂x2
i

)

−f(t)
{

(

∂v

∂t

)2

+

(

∂v

∂t
·
∂v

∂t

)

+

(

∂v

∂t

)2}

,

bi(t, x
′)=

∂2v

∂t2

(

∂v

∂xi

+
∂v

∂xi

)

− 2
∂2v

∂xi∂t
·
∂v

∂t
, i = 2, 3, ... N .

We observe that the coefficients of the second order term are all of class C1,
while the bi’s are of class C0. Thus the equation satisfied by z has the unique
continuation property, see [14] for instance.

We conclude that since u and u coincide on the open set B(0, ρ)∩B(x, σ), the
functions v and v coincide in the corresponding open set. Therefore u ≡ u in
B(x, σ), a contradiction. 2
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Now we can state a more refined version of Theorem 1, under a weaker as-
sumption: we do not assume the strict positivity of u anymore.

Theorem 5 Assume that f satisfies (f1) and (f2). Let u ∈ C2(D) ∩ C0(D̄)
be a solution of (2). If condition (B) is satisfied, there exists a finite number
N of balls Bi, i ∈ I = {1, 2, ... N}, contained in D such that there exists at
least one i0 ∈ I satisfying

(i) for any j ∈ I \ {i0}, if Bj ∩ Bi0 6= ∅, then Bi0 ⊂ Bj,
(ii) u|Bi0

is radially symmetric and decreasing along any radius of Bi0,
(iii) if N > 1, the C2 function defined on D by

ũ = u in D\Bi0

ũ = u|∂Bi0
= Const on ∂Bi0

is still a solution of (2).

In case (iii), we can then iterate and apply again the above result to ũ with
the set of N − 1 balls Bi, i ∈ I \ {i0}.

In case of assumption (C), the same result is true except that N might be
infinite. However, for any λ ∈ R, I(λ) := {j ∈ N : Bj ∩Σλ 6= ∅} is finite and
the same result as above applies to u|D(λ) where D(λ) = (D∩Σλ)∪(∪j∈I(λ)Bj).

On D \ (∪j∈IBj ∩ Σ0) in case (B), on D(λ) \ (∪j∈I(λ)Bj ∩ Σλ) for any λ ∈ R

in case (C), u is monotone non increasing.

Proof of Theorem 5. We first obtain an x1-core, and then a radially symmet-
ric core, which can be removed by the procedure described in the statement
of Theorem 5. By iteration and since the possible number of cores is finite in
case (B), locally finite in case (C), we prove the theorem using Lemma 4.

First step : Obtaining an x1-core

Let u be a solution of equation (2) and define η(u) := sup{η ≥ 0 : on
(u−η, u+η), u is either decreasing or Lipschitz + increasing}, η := inf{η(v) :
v ∈ [0, maxx∈D u(x)]}. If f satisfies (f2), then η > 0.

With the notations of Section 2, define

λ := inf{λ > 0 : wλ(x) ≥ 0 ∀ x ∈ D ∩ Σλ} .

For the same reasons as in Lemma 3 if f is decreasing on [0, ε) for some ε > 0,
or because of the standard moving plane method (see [12]) if f is Lipschitz +

12



increasing on [0, ε) for some ε > 0, D ∩ Σλ is non empty. If f is decreasing on
[0, ε), we take Ω = D∩Σλ. If not, let us consider Ω = {x ∈ D∩Σλ : u(x) > u∗},
where u∗ = inf{u > 0 : f is not Lipschitz + increasing on (u, u + ε) for any
ε > 0 }. To prove that in both cases Ω satisfies property P of Lemma 3, we
have more or less to repeat the arguments of the proof of Lemma 3.

Of course, if u∗ > maxD u(x), the usual methods apply and the conclusions of
Theorem 5 hold. The symmetry uλ ≡ u at λ = 0 is proved if 0 = λ := inf{λ >
0 : uλ ≥ u in D ∩ Σλ} in case of assumption (B) and if the property also
holds after changing the direction x1 to −x1. The monotonicity property is
also proved if λ = −∞ in case (C). Assume that λ > 0 in case of assumption
(B), up to a change in the coordinate direction x1, and λ > −∞ in case (C):
there exists a sequence (λk)k∈N with λk < λ, limk→+∞ λk = λ, and a sequence
(xk)k∈N such that

uλk
(xk)− u(xk) = min

x∈Σλk
∩D

(

uλk
(x)− u(x)

)

< 0 .

After the extraction of a subsequence, we can define x := limk→+∞ xk. Then
f has to be Lipschitz + increasing on (u(x)− η, u(x) + η) for the same reason
as in Lemma 3.

Exactly as in Lemma 3, uλ ≡ u on the connected component of {x ∈ D :
u1 < u(x) < u2} where (u1, u2) is the maximal interval on which u is Lipschitz
+ increasing and such that u(x) ∈ (u1, u2). Moreover, by construction of λ,
∂u
∂x1

≤ 0 on Ω ∩ Σλ, we have that Ω satisfies property P.

We may now apply Lemma 3 to Ω = Ω1 and iterate n times to find an x1-
core, n being at most the integer part of (η)−1 ·maxx∈D∩Σ

λ
u(x). Here Σλ is the

domain corresponding to the λ obtained at the first iteration. In the following,
with the notations of Lemma 3, we note Ωk+1 = Ω̃k for 1 ≤ k ≤ n.

Second step : Obtaining a radially symmetric core

If Ωn is the last non-empty x1-core given by the iteration procedure of Step 1,
we may notice that u is constant on ∂Ωn and strictly bigger than u|∂Ωn

in Ωn: u
reaches its maximum in Ωn at some interior point x. According to assumption
(f2), two cases are possible: either there exists some u ∈ (u|∂Ωn

, u(x)] such that
f is Lipschitz + increasing on ]u− η, u + η), or not.

In the first case, by construction of Ωn, u|∂Ωn
< u−η ≤ u(x)−η. In the second

case, we may use the set Ω̂n defined as in Remark 3: u(x) > u|∂Ω̂n
+η. In both

cases, the method shows the existence of an x1-core ω such that u reaches its
maximum at some interior point x and u(x) = maxx∈ω u(x) > u|∂ω + η. Let
M = ‖∇u‖L∞(D). Then B(x, r) ⊂ ω with r = η/M . The number N of the

13



connected components which are x1-cores is therefore finite and bounded by
N ≤ C (M/η)N for some constant C which depends on the volume of D ∩Σλ

(where λ was defined in the first step of the proof).

Let us take (N − 1)N + 1 directions γi ∈ SN−1, i = 1, 2, ... (N − 1)N + 1,
satisfying the conditions defined by assumptions (B) or (C), such that the
angle (γi, γj) is 2π-irrational for any (i, j) with i 6= j, and such that any
subfamily of N such unit vectors generates R

N . Then, applying the method of
the first two steps successively to each of these directions (for each i, choose
the direction x1 as the one of γi), we find at least one core ω which is symmetric
with respect to at least N directions. According to Remark 1, ω is a radially
symmetric core of u: u is radially symmetric with respect to the center x of ω
and (x− x) · ∇u(x) ≤ 0 for any x ∈ ω.

Note that in case (B), the maximum of the core obtained by iterating Lemma 3
can be arbitrarily close to the hyperplane T e1 . We have to choose a direction ν
close enough to e1 so that it can be reached by moving hyperplanes along the
direction ν.

Third step : Removing a radially symmetric core.

According to Lemma 4, on the boundary of a radially symmetric core satisfying
the conditions of Lemma 4, ∇u has to be equal to 0 and the value of u is that
of a zero of f . Thus it is possible to apply the procedure described in the
statement of the theorem. The function ũ is also a solution of ∆u + f(u) = 0.
Since there are only finitely many cores, Theorem 5 is proved by repeating the
procedure as many times as the number of cores. 2

Remark 4 The assumption u > 0 in Theorem 1 has been replaced by the
weaker assumption u ≥ 0 in Theorem 5. In this case any connected component
of the support which is strictly included in D is a ball on which u is radially
symmetric and decreasing up to cores. Note that this is possible only if f is
not Lipschitz + increasing on a neighborhood of u = 0+. Otherwise, we would
get a contradiction with Hopf’s lemma.

With this remark, the proof of Theorem 1 is straightforward.

Proof of Theorem 2. We have to prove that the solution is radially sym-
metric under assumption (f3): there exists a constant C > 0 such that for

v − u(x) > 0 small enough, f(v)
v−u(x)

> −C, and Hopf’s applied to −∆(u −

u(x)) + C(u− u(x)) > 0 in B((ρ− ε) x
|x|

, ε) at x for ε > 0, small enough, is in

contradiction with: ∇u(x) = x
|x|

du
dr

(ρ) = 0.

14



If B(0, ρ) is a radially symmetric core of u, the only possibility is therefore
that u|∂B(0,ρ) = 0. Thus B(0, ρ) = D, which ends the proof of Theorem 2 if D
is a ball. Otherwise, we obtain a contradiction with the assumption u > 0 by
considering ∂B(0, ρ) ∩D. 2

Remark 5 When D is a ball, the solution in Theorem 5 is locally radially
symmetric, with a finite number of cores: there exists a finite partition in
balls and annuli on which the solution is radially symmetric and decreasing,
and complementary domains on which the solution is constant. Because of
Condition (f2), the number of possible cores is finite (Step 2 of the proof of
Theorem 5).

If u > 0 is a solution of (2), which is not radially symmetric, there exists
therefore a ρ ∈ (0, 1) such that u is radially symmetric in the annulus {x ∈
R

N : ρ < |x| < 1} and 0 = d2u
dr2 (ρ) = du

dr
(ρ) = f(u(ρ)). We can now notice

that if assumption (f3) is replaced by

(f3’) For any u > 0 such that f(u) = 0, lim infv→u, v<u
f(v)
v−u

> −∞,

there exists a constant C > 0 such that for u(ρ) − v > 0 small enough,
f(v)

u(ρ)−v
> −C. Then Hopf’s Lemma applied to −∆(u(ρ)−u)−C(u(ρ)−u) < 0

in B((ρ+ε) x
|x|

, ε) at x, for any x ∈ B(0, 1) such that |x| = ρ and ε > 0 small

enough, is in contradiction with ∇u(x) = x
|x|
· du

dr
(ρ) = 0.

Under assumption (B) or (C), either (f3) or (f3’) are sufficient to prove that
a solution which is locally radially symmetric has a global radial symmetry or
at least a monotonicity property. This global radial symmetry / monotonicity
property is also probably true even without assumption (f2). See [6] for a proof
in dimension N = 2.

4 Further results

We will not try to give the most general possible results, but just quote some
remarks and directions in which our results can be extended.

4.1 Cores can only “go up”

To start with, we may notice that our local symmetry results hold for non-
negative solutions of (2) and the solutions may eventually be identically equal
to 0 on a non empty subdomain of D. We may also notice that on a radially
symmetric core, the minimum of the function is reached on the boundary of
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the core. One may therefore wonder why a nonnegative solution of (1) when
D is, for instance, a ball cannot have cores on which the solution reaches its
minimum inside the core (if we forget the nonnegativity condition, such solu-
tions are easy to build). The answer is given by the following result which has
been announced in [7].

Proposition 6 Assume that f satisfies (f1). Let u be a solution of (1) on the
unit ball B(0, 1) which is radially symmetric up to cores. Assume that N ≥ 2.
With the same notations as in Theorem 5, if Bi ∩ Bj 6= ∅ =⇒ Bi ⊂ Bj (u is
radially symmetric on Bi) and if u = minx∈Bi

u(x)<minx∈∂Bi
u(x), then u<0.

Proof. Consider u+ and u− two solutions of d2u
dr2 +N−1

r
· du
dr

′
+f(u(r)) = 0 defined

respectively on the intervals I− =]r−1 , r−0 ) and I+ =]r+
0 , r+

1 ) (with 0 < r−1 <
r−0 ≤ r+

0 < r+
1 ), such that u(r±0 ) = a, du±

dr
(r±0 ) = 0, u±(r) < a where a > 0

is chosen in order that f(a) = 0. The functions u− and u+ are respectively
increasing on I− and decreasing on I+, at least as long as du±

dr
does not vanish.

According to the method introduced by L.A. Peletier and J. Serrin in [19], it is
possible to extend these solutions uniquely if du±

dr
6= 0. Eventually, decreasing

r−1 and increasing r+
1 , we may assume that I− and I+ are the maximal intervals

in R
+ on which the property is satisfied. Then for any r ∈ I−, du−

dr
(r) = 0 is

impossible unless u−(r) < infs∈I+ u+(s). The functions r±(t) are indeed such

that t = u±(r±(t)) are solutions of (r±)′′

((r±)′)3
= f(t)+(N −1) 1

r±(r±)′
. Multiplying

by (r±)′(t) and integrating between u+(r) and a, we obtain for any r ∈ I+

0 ≤
1

2

(

du+

dr
(r)
)2

=

a
∫

u+(r)

f(s) ds + (N − 1)

a
∫

u+(r)

ds

r+(s) (r+)′(s)

<

a
∫

u+(r)

f(s) ds + (N − 1)

a
∫

u+(r)

ds

r−(s) (r−)′(s)

=
1

2

(

du−

dr
(r−(u+(r)))

)2

,

since (r+)′ < 0 < (r−)′. This computation is still valid if du−

dr
(r−0 ) > 0,

du+

dr
(r+

0 ) = 0 and one can easily extend the argument to the case where du+

dr
≤ 0

takes the value 0 in I+ if we define r+ by r+(t) = inf{s > r+
0 : u+(s) = t}.

Without loss of generality, we may assume that Bi is the unique core of u (if
not, apply the procedure defined in Theorem 5). Up to a translation, we can
then identify u+ and u− with ũ and u|Bi

respectively and get 0 = u+(1) >
u−(0) = u. 2

In case N = 1, the above proof shows that u−(r) = u+(r0 − r) for r0 =
(r+

0 +r−0 )/2. It is however possible to decompose u in such a way that all cores
“go up”. Details are left to the reader.
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4.2 Without overlapping

In assumption (f2), the condition that the range of u on which f is locally
either Lipschitz + increasing, or decreasing, is open means that there is always
an overlapping of these conditions. This is actually crucial to prove that the
number of cores is finite, in any bounded subdomain in D.

However, it is clear at least in the case of a ball (see [3,6]) that the right
condition to avoid the existence of cores is assumption (f3) on the regularity
of f in a neighborhood of u whenever f(u) = 0, u > 0. Thus the overlapping
is unnecessary to obtain symmetry results, as we shall see on the following
example. For simplicity, assume that N = 2 and replace (f2) and (f3) by the
assumption

(f2’) There exists an a > 0 such that f is decreasing in [0, a], f is locally
Lipschitz + increasing on [a,∞) and f(a) < 0.

This condition could of course be extended to each point a such that f(a) <
0, f is decreasing on a neighborhood of a− and Lipschitz + increasing on
a neighborhood of a+, and even also to each point b such that f(b) > 0,
f is decreasing on a neighborhood of b+ and Lipschitz + increasing on a
neighborhood of b−, as soon as one controls the number of possible cores.
However a statement with such assumptions would be unnecessarily technical.
For simplicity again, we shall consider the case of a ball B = B(0, 1). Note
that controlling the number of cores is important in our method but does not
seem to be required in the continuous rearrangements approach, in the case
of a ball [3].

Proposition 7 Let N = 2. Assume that f satisfies (f1) and (f2’) and consider
a solution u ∈ C2(B)∩C0(B̄) of (1) on the unit ball D = B. Then u is radially
symmetric and du

dr
(r) < 0 for any r ∈ (0, 1).

Proof. We proceed exactly as in the proof of Lemma 3 with Ω = B. Assume
that limk→∞ λk =: λ > λΩ and consider x ∈ B such that u(x) ≥ a, x is
the limit of xk ∈ Σλk

such that wλk
(xk) < 0, ∇wλk

(xk) = 0: wλ(x) = 0 and
∇wλ(x) = 0. If u(x) > a, the proof goes as before. The only case one has to
consider is the case u(x) = a, x ∈ ∂ω, ω := u−1(a, +∞) ∩ Σλ 6= ∅. Note that
the number of possible cores is finite because at a maximum, −∆u = f(u) > 0,
so that we can give an estimate of N using the Lipschitz norm of u.

We may first notice that on ω either wλ ≡ 0 or wλ > 0 by the maximum
principle. Assume that wλ is positive and let us look for a contradiction. We
will distinguish two cases, depending whether x ∈ Σλ (Case (1)) or x ∈ Tλ

(Case (2)).
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Case (1) : We have to prove that ω satisfies an interior sphere condition at x.

a) If ∇u(x) 6= 0, ∂ω is locally of class C2 in a neighborhood of x ∈ ω∩∂B(x̃, ε)
for some ball B(x̃, ε) ⊂ ω, and u(x) > a for any x ∈ B(x̃, ε). According
for instance to [12], Hopf’s lemma applied to wλ > 0 in ω at x provides:
∇wλ(x) · (x̃− x) < 0, a contradiction with ∇wλ(x) = 0.

b) Assume that ∇u(x) = 0. The monotonicity of x1 7→ u(x1, x
′) gives:

∂2u

∂x1∂x2

(x) =
∂2u

∂x2
1

(x) = 0

because of the following Taylor development:

u(x)− a =
∑

i,j=1,2
(i,j)6=(1,1)

∂2u

∂xi∂xj

(x) · (x− x)i(x− x)j + o(|x− x|2) .

Since −∂2u
∂x2

2
(x) = −∆u(x) = f(a) < 0, ω again satisfies an interior sphere

condition at x. For the same reason as in case a), we get a contradiction.

Case (2) : Assume now that x ∈ Tλ. Because of the definition of x,

∂u

∂x1
(x) = −

1

2
lim

k→+∞
e1 · ∇wλk

(xk) = 0 .

If ∂u
∂x2

6= 0, we may apply Serrin’s lemma, see [12,20].

Lemma 8 Let O be a domain in R
N and assume that near x ∈ O, the bound-

ary of O consists of two transversally intersecting hypersurfaces ρ = 0 and
σ = 0. Suppose that ρ, σ > 0 in O. Let w > 0 be a function in C2(O) with
w > 0 in O, w(x) = 0, satisfying the differential inequality −∆w− c(x) w ≥ 0
for some function c in L∞(O). Assume that

∑N
i=1

∂ρ
∂xi

(x) · ∂σ
∂xi

(x) = 0 and

D
(

∑N
i=1

∂ρ
∂xi

· ∂σ
∂xi

)

(x) = 0 for any derivative tangent at x to the submanifold

{ρ = 0}∩{σ = 0}. Then for any direction s which enters O at x transversally
to both hypersurfaces, ∂w

∂s
> 0 and ∂2w

∂s2 > 0.

This is clearly in contradiction with ∇wλ(x) = 0.

If ∂u
∂x2

= 0, using again that −∆u(x) = f(a) < 0, we may still find a cone O
of summit x such that on ω ∩O, wλ > 0, and as above we get a contradiction
with Serrin’s lemma. 2
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4.3 Whole space results

In the case the domain D is the whole space R
N , the method can still be

adapted as soon as the moving plane technique can be started from ∞ in
any direction. One of the main features of the local moving plane method we
develop in this paper is that we do not need to assume a strict positivity of wλ

as soon as f is decreasing in a neighborhood of 0 and can therefore handle in
a unified framework the positive solutions as well as the nonnegative solutions
that are compactly supported.

Theorem 9 Assume f satisfies (f1)-(f2). Let u be a C2 nonnegative solution
of (1) satisfying lim|x|→+∞ u(x) = 0. Then u is radially symmetric up to cores.
If it is compactly supported, the support of u is a union of balls with disjoint
interiors.

The assertion on the support is a consequence of Proposition 6. Of course,
with a further assumption on the positive critical levels of f , we may get a
strict monotonicity on each component of the support.

Corollaire 10 Assume f satisfies (f1)-(f3). Let u be a C2 nonnegative solu-
tion of (1) satisfying lim|x|→+∞ u(x) = 0. Then any connected component of
{x ∈ R

N : u(x) > 0} is a ball (or R
N), and u restricted to each of these

components is radially symmetric and decreasing.

A further assumption on the regularity of f at 0 would provide the result that
the solution has to be radially symmetric, positive and decreasing with respect
to some point in R

N .

4.4 Fully nonlinear case

It is possible to generalize the results given in Sections 1-3 for the Laplacian
to more general fully nonlinear elliptic equations of the type

F
(

u,
∂u

∂xi

,
∂2u

∂xi∂xj

)

= 0 with i, j = 1, 2, ... N , (3)

when F is only continuous with respect to u, even in the case where the
highest order part of the operator cannot be written in divergence form. Since
quasilinear and fully nonlinear elliptic equations are out of the general scope
of this paper, we shall simply refer to [8] for an up to date list of references
and further comments on the connection of the issue of the symmetry of the
solutions with their assumed regularity.
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Under the assumptions, which are directly inspired from [16,17], consider

F : R
+ × R

N × R
N×N → R

(s, p, Q) 7→ F (s, p, Q)

with the following properties:

(F1) F is continuous and C1 with respect to Q = (Qij)i,j=1,2,... N ,
(F2) F is either Lipschitz + increasing in s, or has the following strict decay
property

F (u + w, p, Q + R) > F (u, p, Q)

for any N × N nonnegative symmetric matrix R and any w < 0, provided
(w, R) 6= (0, 0),

(F3) For any (s, p, Q) such that F (s, p, Q) = 0, there exists a neighborhood
of (s, p, Q) in R

+ × R
N × R

N×N on which F is Lipschitz + increasing with
respect to s,

(F4) For any ξ ∈ R
N , Fpipj

(s, p, Q)ξiξj ≥ λ(s, p, Q)|ξ|2 for some λ(s, p, Q)
which is uniformly positive.

(F5) F has the following symmetry property with respect to e1:

F (s, (−p1, p2, ... pN), Q̃) = F (s, p, Q) ,

Q̃ = (Q11,−Q12,−Q13, ... −Q1N ,−Q21, Q22, Q23, ... Q2N , ...

−QN1, QN2, ... QNN ) ,

as well as for any direction γ ∈ SN−1 such that |γ − e1| < ε for some given
ε > 0.

Theorem 11 Assume that f and D respectively satisfy (F1)-(F5) and (B).
Let u ∈ C2(D)∩C0(D̄) be a positive solution of (3) such that u|∂D = 0. Then

u is monotone non increasing up to cores on D̃ = {x ∈ D : x · e1 ≥ 0} in the
direction e1.

Of course, a similar monotonicity result holds for unbounded domains. Note
that assumption (F5) as in [16] is quite restrictive (see [6] for an example).
The proofs go exactly as for the Laplacian, but present purely computational
technicalities that are unessential and will not be presented here. The main
point is that one has to make sure that the local inversion theorem (unique
continuation argument in the proof of Theorem 2) preserves the ellipticity of
the operator.
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4.5 The |x| dependent case

Imposing a dependence in |x| is easy and we can for instance state the following
result. Consider in Case (B)

∆u + f(|x|, u) = 0, u > 0 in D , (4)

u = 0 on ∂D. (5)

Theorem 12 Under the same assumptions as in Theorem 1, provided these
assumptions on f are uniform in x, if D satisfies condition (B) and if f is
monotone non increasing in |x|, then the same results hold for any solution of
(4)-(5). If moreover f(|x|, u) is decreasing in |x|, then no cores may exist.

Actually, to obtain the nonexistence of cores, it is sufficient to ask that f(|x|, u)
is decreasing in |x| for any u such that f is not decreasing or constant in u. In
that case, by Lemma 3, u would be symmetric with respect to some hyperplane
Tλ in the range u1 < u(x) < u2, in contradiction with the fact that

0 = ∆uλ + f(uλ, |xλ|) = ∆u + f(u, |xλ|) > ∆u + f(u, |x|) = 0 ,

except if λ = 0.

The only difficulty that may occur is the case λ = λΩ in Lemma 3, which can
be solved by noticing first that if Ω = D, then λΩ = 0 and then by applying
the iteration method of the proof of Theorem 5 with care. Details are left to
the reader. 2

References

[1] A.D. Alexandrov, A characteristic property of the spheres, Ann. Mat. Pura
Appl. 58 (1962) 303-354.

[2] F. Brock, Continuous Steiner symmetrization, Math. Nach. 172 (1995) 25-48.

[3] F. Brock, Continuous rearrangements and symmetry of solutions of elliptic
problems, Proc. Indian Acad. Sci. Math. Sci. 110 (2000) 157-204.
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