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Abstract. We prove the convexity of the set which is delimited by the free bound-

ary corresponding to a quasi-linear elliptic equation in a 2-dimensional convex do-

main. The method relies on the study of the curvature of the level lines at the

points which realize the maximum of the normal derivative at a given level, for

analytic solutions of fully nonlinear elliptic equations. The method also provides

an estimate of the gradient in terms of the minimum of the (signed) curvature of

the boundary of the domain, which is not necessarily assumed to be convex.

Résumé. Nous démontrons la convexité de l’ensemble délimité par la frontière

libre correspondant à une équation quasi-linéaire elliptique définie sur un domaine

convexe en dimension 2. La méthode repose sur l’étude de la courbure des lignes

de niveau aux points qui réalisent le maximum de la dérivée normale pour un

niveau donné, pour des solutions analytiques d’équations elliptiques complètement

non linéaires. La méthode donne aussi une estimation du gradient en fonction du

minimum de la courbure (signée) du bord du domaine, qui n’est pas nécessairement

supposé convexe.
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1 Introduction and main results

Consider a solution of the following free boundary problem

div(a(|∇u|2)∇u)=f(u) in Ω\Λ (1.1)

0=u|∂Λ <u<u|∂Ω =u0 in Ω\Λ , (1.2)

∂nu=0 on ∂Λ . (1.3)

where u0 is a given nonnegative constant, Λ is a closed subset of a bounded
domain Ω in IR2 and ∂nu is the normal (to ∂Λ) outgoing derivative of u.
This problem arises for instance from an obstacle problem (see for instance
[24]).

Theorem 1 Assume that a(0), f(0)>0 and that q 7→a(q), u 7→f(u) are
increasing functions of class C1 and C0 respectively. If Ω⊂ IR2 is convex
and if u is a solution of (1.1)-(1.2)-(1.3), then Λ is also convex.

This theorem has been proved in the special case where a and f are
constants by A. Friedman and D. Phillips [13] in two dimensions, and then
extended to any dimension by B. Kawohl [19]. Similar results were also
proved (in any dimensions) for a≡1, f ≡0 and ∂nu= const=λ>0 in place
of ∂nu=0 by L.A. Caffarelli and J. Spruck [7]. The exterior problem in
Ω=IR2\O with O convex and a≡1 has been studied for λ>0 by B. Kawohl
[22] and R.S. Hamilton [14], and for λ=0 by B. Kawohl [21]. Let us also
mention two related results on convex rings [7, 8] and, for general questions
on the convexity of the level sets, [20]. We can also quote a recent paper by
L.A. Caffarelli and J. Salazar [6] for the equation ∆u+cu=0 and results by
A. Henrot and H. Shahgholian [15, 16, 17] (which rely on a lower bound on
the gradient), but for which the extension to general quasilinear operators
has not yet be done. Concerning estimates on the curvature and the use
of the Fréchet formula, one may refer to [25] (in the case of the Laplace
operator). The results of this article were announced in [10].

We will prove Theorem 1 in a much more general framework, except
that we will deal only with analytic solutions for reasons that will be made
clear later. We will assume

∂nu=λ(K)≥0 on ∂Λ , (1.4)

where λ is a function of the curvature K of ∂Λ. Here we denote by n and τ
the normal and tangent unit vectors to a level set, so that (τ,n) is a direct
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orthonormal basis in IR2, and n= ∇u
|∇u| , if ∇u 6=0. In this case, the curvature

is defined by K = Dττu
|∇u| . We shall consider the analytic solutions of the fully

nonlinear elliptic equation

F(Dnnu,Dττu,Dnτu, |∇u|,u)=0 in Ω\Λ , (1.5)

where F is an analytic function. The vectors n and τ are well defined if
∇u 6=0. For the equation to make sense in case of a patch of zero gradient,
we therefore require the following conditions.

(A0) Compatibility condition: we assume the existence of a function F such

that

F(a,b,c,0,u)=F(a+b,ab−c2,u) ∀a,b,c,u .

(A1) Non zero gradient condition:

∀t∈ (0,u0], ∃x∈Ω\Λ, u(x)= t, ∇u(x) 6=0 .

Let us define α=(F)′Dnnu, β =(F)′Dττ u, γ =(F)′Dnτ u,

α(x)= inf
a,b∈IR

α(a,b,0, |∇u(x)|,u(x)) and β(x)= inf
a,b∈IR

β(a,b,0, |∇u(x)|,u(x)) .

(A2) Ellipticity conditions:

inf
X

α>0, inf
X

β >0, inf
X

(4αβ−γ2)≥0 ,

where X is the set of the points which realize the maximum of the gradient

on their level line:

X =







x∈Ω\Λ : |∇u(x)|= max
y∈Ω\Λ

u(y)=u(x)

|∇u(y)|







.

(A3) Condition on the free boundary: we assume that ∂Λ is analytic and

that the map K 7→λ(K) is analytic nonincreasing. Moreover if λ(K)≡0 on

∂Λ, then we assume that F(0,0,0,0,0)<0 and that the vector field n= ∇u
|∇u|

and the curvature K are continuous up to ∂Λ.

These assumptions cover the case of Equation (1.1) but also of quasi-
linear elliptic equations like the mean curvature equation

div





∇u
√

1+ |∇u|2



=f(u, |∇u|)
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as well as fully nonlinear equations like the Monge-Ampère equation

det(D2u)=f(u, |∇u|)>0 .

From now on, we assume that u is an analytic solution of Equation (1.5)
on Ω\Λ (with eventually Λ=∅).

Notations. We shall note Br(x) the ball of center x and radius r>0. For
simplicity, we will use the same notation for a curve and its image. {F =0}
is the set {x∈Ω\Λ : F (x)=0}, ∂σu=σ ·∇u the derivative of u along the
unit vector σ and Dσσu := (σ,D2uσ). Since the tangent and normal unit
vectors τ and ν depend on x, ∂τ (∂τu) 6=Dττu in general, and one has to use
the Fréchet formula

∂τn=Kτ , ∂ττ =−Kn, (1.6)

∂nn=ρτ , ∂nτ =−ρn , (1.7)

where K = 1
|∇u|Dττu is the curvature of the level line and ρ= 1

|∇u|Dnτu.

For t>0, let

Γt ={x∈Ω : u(x)= t} , m(t)=maxy∈Γt |∇u(y)| ,

and Xt ={x∈Γt : |∇u(x)|=m(t)} .

With a straightforward abuse of notations, we define

K(t) := inf
y∈Xt

Dττu

|∇u|
(y) .

The following result is the core of our method.

Theorem 2 Under Assumptions (A0)-(A1)-(A2), consider an analytic so-
lution u of Equation (1.5). With the above notations, m is continuous and
differentiable outside a countable closed set in (0,u0) such that

F(m
dm

dt
,mK,0,m,t)=0 for t∈ (0,u0) a.e. , (1.8)

dK

dt
≤−

K2

m
, (1.9)

where the inequality has to be understood in the sense of distributions.
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Remark 1 The method used in the proof of Theorem 2 has the following
features.

(i) In higher dimensions, we can formally get a similar system for the mean
curvature of the level sets and the maximal value of the gradient (see
Appendix 5.2).

(ii) In the case of a radially symmetric solution (when Ω is a ball), Inequal-
ity (1.9) becomes an equality (see Appendix 5.1). The result of Theo-
rem 2 can therefore be compared with results based on rearrangement
techniques, like the ones obtained by G. Talenti in another context [30].

(iii) In the nonradial case, we prove a refined version of (1.9):

dK

dt
≤−

K2

m
−

1

m



2

√

β

α
−
|γ|

α



·min
Xt

∣

∣

∣

∣

∂τ

(

Dττu

|∇u|

)∣

∣

∣

∣

. (1.10)

As a consequence of Theorem 2, we will prove our main result.

Theorem 3 Under Assumptions (A0)-(A1)-(A2)-(A3), if u is an analytic
(up to the fixed boundary ∂Ω) solution to the free boundary problem (1.2)-
(1.4)-(1.5) (including the case Λ=∅), then u has the following properties:

(i) There exists a constant M which only depends on F , |λ(K)|L∞(∂Λ), u0

and the minimum of the signed curvature of ∂Ω such that

‖∇u‖L∞(Ω\Λ) ≤M .

(ii) The minimum of the signed curvature of ∂Λ is bigger than the minimum
of the signed curvature of ∂Ω:

inf
∂Λ

K≥ inf
∂Ω

K .

As a consequence, if Ω is convex, each connected component of Λ is
also convex.

Remark 2 In Theorem 3, we get a global bound from below on the curva-
ture of the free boundary. Note that in [29] D.G. Schaeffer proves (using a
quasiconformal mapping) that for an obstacle problem of the type ∆u=f ,
there exists a local bound from below on the curvature of the free boundary.

Also notice that the L∞(Ω\Λ) bound is true for dimensions higher
than 2 (see Remark 1 and Appendix 5.2).
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The rest of this paper is organized as follows. We will show in Section 2 that
Theorem 1 is a consequence of Theorem 3. In Section 3, we prove Theorem 2
in a special case corresponding to the central idea of our approach, and
then in full generality using a detailed analysis of the analytic structure
of appropriate sets. With additional estimates near the free boundary, we
obtain Theorem 3 in Section 4. The appendix is devoted to the much simpler
setting of the radial case, the formal extension of our estimates to dimensions
higher than 2 and technical results on analytic sets.

2 Proof of Theorem 1

We will start with perturbations of the level of the free boundary and con-
siderations on its regularity. The method essentially goes as in [2], so we
shall simply give a sketch of the proofs. Then we will prove that Theo-
rem 1 is a consequence of Theorem 3. Before, simply notice that Equations
(1.1)-(1.2)-(1.3) are such that Assumptions (A0)-(A3) are satisfied.

2.1 A perturbation of the original problem (1.1)-(1.2)-(1.3)

Consider










div(a(|∇u|2)∇u)=f(u) in Ω\Λ
t=u|∂Λ <u<u|∂Ω =u0

∂nu=0 on ∂Λ

(2.1)

where a and f satisfy the assumptions of Theorem 1, and assume moreover
that ∂Ω and a,f are analytic.

We shall say that (2.1) has analytic solutions if ∂Λ is analytic (see for
instance [5]). Throughout this section, to emphasize the role of the level,
t, we will denote by ut the corresponding solution and use the notation Λt

instead of Λ.

Let us start with a perturbation result.

Proposition 1 If ut0 is an analytic solution to the free boundary problem
(2.1) for t= t0 <u0, then there exists an η >0 such that (2.1) has analytic
solutions for every t∈ (t0−η,t0 +η). Moreover the map t 7→∂Λt is continu-
ous (and ∂Λt is analytic).

Sketch of the proof of Proposition 1. From the assumption of Propo-
sition 1, it follows that the boundaries ∂Ω and ∂Λt are of class C∞. We can
then apply Nash-Moser’s inverse function Theorem as in [2] to prove that
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(2.1) has a solution ut for t in a neighbourhood of t0 with a smooth free
boundary ∂Λt∈C∞. We conclude with the help of the following result on
the regularity of the free boundary, due to D. Kinderlehrer and L. Nirenberg
[23]:

Lemma 1 Under the previous assumptions on the analytic problem (2.1),
if the free boundary ∂Λt is C1 and ut is C2 up to the free boundary, then
the free boundary ∂Λt is analytic. 2

Actually the perturbation result also holds in a neighborhood of u0.

Proposition 2 There exists an η >0, such that for every t in (u0−η,u0 ],
the free boundary problem (2.1) has an analytic solution. Moreover the map
t 7→∂Λt is continuous (and ∂Λt is analytic).

Sketch of the proof of Proposition 2. For t=u0, the function ut≡u0

is a solution with Λt =Ω. This problem is then degenerate in t=u0. Nev-
ertheless, as in [2], we can apply a Nash-Moser approach in this degenerate
case, which proves Proposition 2. 2

2.2 Proof of Theorem 1

The main advantage of the obstacle problem (1.1)-(1.2)-(1.3) compared to
the more general free boundary problem (1.4) is that it is known that there
exists a unique weak solution (see [28, 12]), and that this solution is bounded
in W 2,∞ (see [12, 11, 3, 1]). As a consequence of the uniqueness, the map
t 7→ut∈W 2,p is continuous for every p∈ (1,+∞). Moreover, from the non-
degeneracy lemma (see L.A. Caffarelli [4], and for instance [26]), we have
the

Lemma 2 Consider a solution of Problem (1.1)-(1.2)-(1.3). Under the as-
sumptions of Theorem 1, for every t0∈ [0,u0],

lim
t→t0

t∈[0,u0]

Λt =Λt0 (2.2)

and |∂Λt0 |=0 . (2.3)

Let us prove that t∗ defined by

t∗ =inf{t0∈(0,u0) :∀t∈[t0,u0), (1.1)-(1.2)-(1.3) has an analytic solution ut}
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is actually 0. Because of Proposition 1, t∗ is the infimum of a nonempty
set. Assume by contradiction that t∗ >0. From Theorem 3, we deduce that
inf∂Λt K≥ inf∂ΩK≥0 for t∈ (t∗,u0) and then Λt is convex: by continuity
(Lemma 2, (2.2)), Λt∗ is also convex.

1) Case Int(Λt∗)=∅ : |Λt∗ |= |∂Λt∗ |=0 from Lemma 2, (2.3). In this case

there is no free boundary, i.e. the solution ut satisfies the Euler-Lagrange
equation (1.1) of the energy

E(u)=

∫

Ω

(

1

2
A(|∇u|2)+G(u)

)

dx

without constraints, where A′ =a, G′ =f . The uniqueness of the weak so-
lution to the free boundary problem consequently implies that ut∗ =u, and
because we assumed that minΩu=0, we get t∗ =0, a contradiction.

2) Case Int(Λt∗) 6=∅ : we use the following result, due to L.A. Caffarelli [4].

Lemma 3 Under the previous assumptions on the obstacle problem (1.1)-
(1.2)-(1.3), if the coincidence set Λt is convex and if Int(Λt) 6=∅, then ∂Λt

is C1 and ut is C2 up to the free boundary ∂Λt.

Lemma 1 therefore implies that the free boundary is analytic. Finally ut∗

is an analytic solution, and Proposition 1 gives a contradition with the
definition of t∗.

This proves Theorem 1 in the context of analytic solutions. Now because
the solution is the limit of an approximating sequence of analytic solutions
of a regularized problem, the result holds as well if a and f are only of class
C1 and C0 respectively. This ends the proof of Theorem 1. 2

Remark 3 This last argument of approximation applies when existence and
uniqueness results can be proved, which is true for the obstacle problem of
Theorem 1 but is not known for more general problems (1.2)-(1.4)-(1.5).

Also notice that the convexity of the free boundary holds for any solution
which can be seen as the limit of analytic solutions of aproximating problems.
This is a method to get an existence result of solutions with convex free
boundaries (see for instance [25] in the case of the Laplace operator).

3 Proof of Theorem 2

First we shall assume that locally in t, Xt (which is the set of the points
of the level line Γt of u which realize the maximum of |∇u|) is supported
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in an analytic curve t 7→xt such that t=u(xt). The justification of such an
assumption will be given in the next subsection.

3.1 Proof of Theorem 2 in a particular case.

Let xt be a point where the maximum of the gradient is reached on a level
line Γt:











F (t) :=∂τ

(

1
2 |∇u|2

)

|x=xt
=0 ,

G(t) :=∂2
τ

(

1
2 |∇u|2

)

|x=xt
≤0 .

According to the definition of the normal and tangent unit vectors n and τ ,
we get, at x=xt,

F (t)= |∇u|Dnτu and G(t)= (∂τ |∇u|)Dnτu+ |∇u|∂τ (Dnτu) .

With the definition m(t) := |∇u(xt)|>0 by (A1), this can be rewritten as










F

m
(t)=Dnτu(xt)=0 ,

G(t)=m∂τ (Dnτu)|x=xt ≤0 .

Equation for m : deriving the identity u(xt)= t with respect to t, which can
certainly be done at least if t 7→xt is an analytic curve, we get

n ·
dxt

dt
=

1

m
,

so that mdm
dt = d

dt

(

1
2

∣

∣∇u(xt)
∣

∣

2
)

=∇u(xt) ·D2u · dxt

dt =Dnnu(xt). Using the

curvature K = Dττu
|∇u| , we may write Dττu=mK, and Equation (1.5) at x=xt

gives Equation (1.8).

Inequation for K : we compute dK
dt = 1

m∂nK +h∂τK, where h= τ · dxt

dt . To

get an expression of h, we derive F
m with respect to t:

0=
d

dt

(

F

m
(t)

)

=
1

m
∂n (Dnτu)+h∂τ (Dnτu) .

Because of the Fréchet formula (1.6) and (1.7), and using the fact that
Dnτu(xt)=0, we have















∂τK :=∂τ

(

Dττ u
|∇u|

)

= 1
|∇u|Dτττu ,

∂nK :=∂n

(

Dττu
|∇u|

)

= 1
|∇u|∂τ (Dnτu))−

(

Dττ u
|∇u|

)2
,

∂n (Dnτu)=Dnnτu .
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To evaluate Dnnτu, we derive equation (1.5) with respect to τ :

αDnnτu+βDτττu+γ∂τ (Dnτu)=0 .

If G 6=0, putting these expressions all together, we get

dK

dt
=−

K2

m
+

γ

α

(

∂τK

m

)

+
β

α
m(∂τK)2

1

G
+

G

m3
,

and an optimization on G<0 gives

dK

dt
≤−

K2

m
−

1

m



2

√

β

α
−
|γ|

α



|∂τK| . (3.1)

If G=0, then it is easy to see that ∂τK =0 and dK
dt =−K2

m . In any case,
(3.1) is true, which proves Inequality (1.9).

3.2 Proof of Theorem 2 in the general case

We will introduce analytic functions relevant to our problem and then give
the proof of Theorem 2 in this framework. Here is the technical part of the
proof, for which we shall distinguish two cases.

Let us recall that a point xt belongs to Xt if and only if u(xt)= t and
|∇u(xt)|= max

{y∈Ω:u(y)=t}
|∇u(y)|. This implies that

d

dτ
(|∇u|2/2)|x=xt =0 . (3.2)

Now let us define on {|∇u|>0} the analytic function:

F (x)=
d

dτ
(|∇u|2/2)|x

(with the notations of Subsection 3.1, F (t)=F (xt)=0). Let X =
⋃

t∈[0,u0]X
t.

From (3.2), we know that X ⊂{F =0} is an analytic set, if we define analytic

sets as sets where analytic functions vanish.

Case A: F ≡0 : this is the simplest case (see Appendix 5.1 for details).

Lemma 4 If F ≡0, then Ω is a disk and u is radially symmetric.
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Proof. If F ≡0, then |∇u|= const=m(t) on each level line Γt ={u= t}.
Let γ be a smooth curve such that u(γ(t))= t. Because here X =Ω\Λ, any
such curve can be seen as a curve t 7→xt used in the previous subsection. As
a consequence we have

F(m
dm

dt
,mK,0,m,t)=0

where K =K(γ(t)). From Assumption (A2), we deduce that K =K(t) on Γt.
Because Ω is bounded, the level lines of u are circles.

Moreover ∂nn=m−1Dnτuτ =0. This implies that if x1 ∈∂Ω and γx1 is
the integral curve of the vector field n such that u(γx1(t))= t and γx1(u0)=
x1, then d

dtn(γx1(t))=0:

γx1(t)=x1+(t−u0)n(x1) and u(γx1(t))= t .

Because this is true for every point x1 in the circle ∂Ω, we see that the
circles Γt have the same center x0. In particular the solution is radial on the
annulus Ω\Λ=B1/K(u0)(x0)\B1/K(0)(x0). 2

Case B: F 6≡0 : we begin with a statement that will be proved in Ap-
pendix 5.3.

Lemma 5 For every ǫ>0, for m(t)=sup{u=t} |∇u|, let ωǫ be defined by

ωǫ ={x∈Ω : ǫ<u(x)<u0−ǫ, |∇u(x)|>ǫ m(u(x))} .

Then there exists an open set ω which is a finite union of balls such that

{F =0}∩ωǫ ⊂ ω :=
N
⋃

i=1

Bri
(xi) ⊂ {|∇u|>0} .

Moreover the set Fω :={F =0}∩ω has the following property:

∀i∈ [1,N ], ∃ki ∈ IN, Fω ∩Bri
(xi)={xi}∪(

ki
⋃

j=1

γi
j) , (3.3)

where γi
j are analytic open curves with xi as origin such that in a neigh-

borhood of a singular point xi, either d
ds(u◦γi

j)=0 or (up to change the

parametrization) d
ds(u◦γi

j)>0. Here s is the curvilinear coordinate.
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As a consequence of the lemma we get that for any ǫ>0 small enough,
X∩{ǫ<u<u0−ǫ} is contained in Fω which has an analytic structure given
by (3.3).

We are now going to prove that (1.8) and (1.9), which have been estab-
lished in the case of an analytic curve, are also valid in the general frame-
work.

Let us assume that ǫ>0 is fixed in all what follows. Denote by γ the
generic curve defined in Lemma 5 and let {x′

i} be the set of points on
the curves γ such that d

ds(u◦γ) 6≡0 and d
ds(u◦γ)|γ(s)=x′

i
=0. Because the

curves γ and the function u are analytic, we deduce that there are only a
finite number N ′ of such points x′

i. Let G and G0 be the sets of curves γ
such that d

ds(u◦γ)>0 and u(γ)= const respectively. Then

{F =0}∩ω =G∪G0∪{xi}1≤i≤N ∪{x′
i}1≤i≤N ′ .

We can rewrite the discret set {u(xi)}1≤i≤N ∪{u(x′
i)}1≤i≤N ′ ∪{u(γ)}γ∈G0 as

an increasing finite sequence of critical values, t∗k ∈ (ǫ,u0−ǫ), k =1,2, ...M .
Let Gk be the set of curves γ∈G which range in {t∗k <u<t∗k+1}. Then on
(t∗k,t

∗
k+1) we have:

m(t)= sup
γ∈Gk

|∇u(γ(t))| .

Because each map t 7→ |∇u(γ(t))| is analytic, we deduce from Proposition 4
that this supremum is analytic except maybe on a discret set {t∗k,n}p−

k
<n<p+

k

with p−k , p+
k ∈ZZ∪{−∞}∪{+∞}, which has no accumulation point in

(t∗k,t
∗
k+1). Only t∗k and t∗k+1 are possible accumulation points. In partic-

ular there exists γtk,n
∈Gk such that

m(t)= |∇u(γtk,n
(t))| on (tk,n,tk,n+1) .

Then the proof of Theorem 2, given above in the special case where Xt is
supported in an analytic curve t 7→xt =γtk,n

(t), applies and gives the equa-
tions written in Theorem 2 for

K(t)=K(γtk,n
(t)) on (tk,n,tk,n+1) .

Although the map t 7→m(t) is continuous, the map t 7→K(t) can be discon-
tinuous in tk,n. In other words we can have K(γtk,n−1

(tk,n)) 6=K(γtk,n
(tk,n)).

Nevertheless we have the
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Lemma 6 With the above notations,

K(γtk,n
(tk,n))≤K(γtk,n−1

(tk,n)) .

We can therefore define K(tk,n) :=K(γtk,n
(tk,n)) and then (1.10) is true in

the sense of distribution on (tk,n−1,tk,n+1):

K̇ ≤−
K2

m
−

1

m

(

2

√

α

β
−

|γ|

β

)

|∂τK| , (3.4)

where ∂τK is taken on γtk,n−1
for t< tk,n and γtk,n

for t> tk,n.

Proof of Lemma 6. Let us recall that for each curve γ =γtk,n−1
and

γ =γtk,n
we have

F(m
dm

dt
,mK,0,m,t)=0 (3.5)

where m(t)= |∇u(γ(t))| and K(t)=K(γ(t)). Let m+(t)= |∇u(γtk,n
(t))| and

m−(t)= |∇u(γtk,n−1
(t))|. Then

m±(t)=m(tk,n)+ l± ·(t− tk,n)+o(|t− tk,n|) ,

where l± = dm±(t)
dt |t=tk,n

. Note that because of Assumption (A2), l+− l− has

the same sign as −K(γtk,n
(tk,n))+K(γtk,n−1

(tk,n)). Because of

m(t)=sup(m+(t),m−(t))=

{

m+(t) on (tk,n,tk,n+1)
m−(t) on (tk,n−1,tk,n)

we deduce that l+≥ l− and then K(γtk,n
(tk,n))≤K(γtk,n−1

(tk,n)) which ends
the proof of Lemma 6. 2

More generally (3.5) and (3.4) are true on (t∗k,t
∗
k+1) for K defined by

K(t)= inf
xt∈Xt

K(xt) .

We now want to prove that these equations are still true in a neighbor-
hood of a critical value t∗k. It is clear that (3.5) is true almost every-
where in (t∗k−1,t

∗
k+1), because the map t 7→m(t) is continuous. We have

to prove that (3.4) is true on (t∗k−1,t
∗
k+1) in the sense of distributions. Let

φ∈C∞
0 (t∗k−1,t

∗
k+1), φ≥0:

<K̇,φ> =−
∫ t∗

k+1

t∗
k−1

Kφ̇

13



=− lim
δ→0

{

∫ t∗
k
−δ

t∗
k−1

Kφ̇+

∫ t∗
k+1

t∗
k
+δ

Kφ̇

}

=− lim
δ→0















∫ t∗
k
−δ

t∗
k−1

−K̇φ+

∫ t∗
k+1

t∗
k
+δ

−K̇φ

+[Kφ]
t∗
k
−δ

t∗
k−1

+[Kφ]
t∗
k+1

t∗
k
+δ















≤
∫ t∗

k+1

t∗
k−1

(

−
K2

m
−

1

m

(

2

√

α

β
−

|γ|

β

)

|∂τK|

)

φ

+φ(t∗k)limsup
δ→0

(K(t∗k +δ)−K(t∗k −δ))

≤ <−
K2

m
−

1

m

(

2

√

α

β
−

|γ|

β

)

|∂τK|,φ>

because φ(t∗k)≥0 and because of the

Lemma 7 With the above notations,

limsup
δ→0

(K(t∗k +δ)−K(t∗k −δ))≤0 . (3.6)

Lemma 7 is a kind of generalization of Lemma 6 that will be proved in
Appendix 5.3.

The system (3.4)-(3.5) holds on (t∗k−1,t
∗
k+1) and then on (t+ǫ,t−ǫ).

Taking the limit ǫ→0, we end up with the proof of Theorem 2.

4 Proof of Theorem 3

The proof of Theorem 3 relies mainly in the fact that as t→0, the set Xt

accumulates in a point of ∂Λ which realizes the minimum of the curvature
of the free boundary.

Proposition 3 Under the assumptions of Theorem 3, let xt be a point such
that

u(xt)= t and |∇u(xt)|= max
u(y)=t

|∇u(y)| .

If xt→x0 as t→0, then K(xt)−→K(x0)= inf
x∈∂Λ

K(x).

14



4.1 End of the proof of Theorem 3

Property (ii) of Theorem 3 follows from Theorem 2, (1.9) and Proposition 3.
To prove (i), we first remark that because of Assumption (A2), we can
rewrite (1.8) as

d(m2)

dt
=H(m,K,t) on (0,u0) ,

where H is analytic with respect to (m,K,t)∈ [0,+∞)× IR× [0,u0] and de-
creasing with respect to K. Because of the inequality on K, it is clear that
K(t)≥ inf∂ΩK =:K0. Thus we get







d(m2)

dt
≤H(m,K0,t) a.e. on (0,u0) ,

m(0)= |λ(K)|L∞(∂Λ) .

We can then compare with the solution m0 of






d(m2
0)

dt
=H(m0,K0,t) on (0,u0) ,

m(0)= |λ(K)|L∞(∂Λ) +1 .

The uniqueness of m0 and its local existence are clear. Using the fact that
m>0 on (0,u0), it is quite classical to see that if m0≥m on (a,b)⊂⊂ (0,u0),
then m0 is defined on (a,u0) and satisfies m0≥m on (a,u0). On the other
hand by the continuity of m in t=0, we get that m0 >m on a small interval
[0,ε), which implies that m0≥m on [0,u0]. In conclusion, the solution m0

exists on [0,u0], is unique and is an upper bound for m on [0,u0]. This ends
the proof of Theorem 3.

4.2 Proof of Proposition 3

First let us recall that according to C.B. Morrey [27], the solution u is
analytic up to the free boundary ∂Λ, because ∂Λ is analytic itself. We will
now distinguish three cases.

Case λ(inf∂ΩK)>0 and λ(K) 6≡ constant on ∂Λ : according to Assump-
tion (A3) λ is assumed to be analytic nondecreasing in K. Thus
max∂Λλ(K)=λ(inf∂ΛK)>0 and by continuity, Proposition 3 is true.

Case λ= constant>0 on ∂Λ : let x0∈∂Λ and γx0(t) be the integral curve
of the vector field n such that γx0(0)=x0 and u(γx0(t))= t :

γx0(t)=x0 +
t

λ
n(x0)+O(t2) for t≥0 .

15



For t>0 close enough to 0, the map x0 7→γx0(t) is a diffeomorphism from
∂Λ onto Γt ={u= t}. Then for every x∈Γt with t>0 close to 0, there exists
a unique x0∈∂Λ such that x=γx0(t), and |∇u(γx0(t)|=λ+ t

λDnnu(x0)+
O(t2) can be inverted into

Dnnu(x0)=
λ

t
(|∇u(γx0(t)|−λ)+O(t) .

Moreover Dnτu(γx0(t))=O(t). Thus we get

F

(

λ

t
(|∇u(γx0(t)|−λ) , λK(γx0(t), 0, λ, t

)

=O(t) .

Now for t>0 small enough and xt ∈Xt, let xt
0∈∂Λ be defined by xt =γxt

0
(t) :

1

t

(

|∇u(γxt
0
(t))|−λ

)

=
1

t

(

sup
x0∈∂Λ

|∇u(γx0(t))|−λ

)

.

From Assumption (A2), we can deduce that

∀x0∈∂Λ, K(γx0(t))≥K(γxt
0
(t))+O(t) .

Up to extraction of some subsequence, we can assume that xt
0 converges to

some x0
0∈∂Λ as t→0+. Because λ>0 on ∂Λ, the continuity of the curvature

K up to the free boundary ∂Λ is automatically satisfied. We then deduce
by continuity that K(x0

0)= inf∂ΛK, which proves Proposition 3. 2

Case λ≡0 on ∂Λ : we first remark that deriving ∂nu(x)=0 on ∂Λ with
respect to the tangential to ∂Λ vector field τ , we get

Dnτu=0 on ∂Λ .

As x→x0∈∂Λ, by passing to the limit in (1.5), we get F(Dnnu(x0),0,0,0,0)=
0. Because F(0,0,0,0,0)<0, Dnnu(x0) is the unique positive root of s 7→
F(s,0,0,0,0). The function Dnnu is therefore constant on ∂Λ.

For x close to ∂Λ, we set h=d(x,∂Λ) and associate x0 to x as follows

x=γx0(h) and γx0(h)=x0 +hn(x0) .

For h small enough, the map (x0,h) 7→γx0(h) is indeed a local diffeomor-
phism. In place of n, consider the vector field n0(x)=n(x0(x)).

u(γx0(h)) =
∫ h
0 Dn0u(x0 +sn0)ds

=
∫ h
0 ds(Dn0u(x0)+sDn0n0u(x0)+

s2

2 Dn0n0n0u(x0)+O(s3))
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gives

t=
h2

2
Dn0n0u(x0)+

h3

6
Dn0n0n0u(x0)+O(h4) .

We deduce that

h= t
1
2

(

2

Dn0n0u

) 1
2

−
t

3

Dn0n0n0u

(Dn0n0u)2
+O(t

3
2 ) ,

and a computation (repeated indices are summed) gives with y =γx0(h)−x0:

|∇u(γx0(h))|2 = |∇u(x0)|
2 +2∇iuD2

iju ·yj

+ 1
2
{DijuDiku+2∇iuDijku}yjyk

+ 1
6
{6DijkuDilu+2∇iuDijklu}yjykyl +O(|y|4)

= (Dn0n0u)2h2 +(Dn0n0u)(Dn0n0n0u)h3 +O(|y|4)

=2t(Dn0n0u)2 + 4
3
t

3
2 (Dn0n0n0u)

(

2
Dn0n0u

)
1
2 +O(t2) .

Lemma 8 With the above notations,

Dn0n0n0u(x0)=−Dn0n0u(x0)

(

β

α
K(x0)+

δ

α

)

on ∂Λ where δ =F ′
|∇u| .

Combining the above computations, we get

|∇u(γx0(h))|2=2t(Dn0n0u)2−
4

3
t

3
2

(

β

α
K(x0)+

δ

α

)

(2Dn0n0u)
1
2 +O(t2) .

We see that the gradient is maximum when the curvature is minimal, which
ends the proof of Proposition 3. 2

Proof of Lemma 8. First, let us recall the following relations:

∂n0n=

(

Dτn0u

|∇u|

)

·τ , ∂n0τ =−

(

Dτn0u

|∇u|

)

·n .

To compute Dn0n0n0u, we derive Equation (1.5) with respect to the field n0 :

αDnnn0u+βDττn0u+γDn0 (Dnτu)+2J +I +L=0 ,

where
J =α(D·nu)∂n0n+β(D·τu)∂n0τ = α−β

|∇u| (Dnτu)(Dn0τ ) ,

I =γ ((Dn·u)∂n0n+(Dτ ·u)∂n0τ)=0 ,
L=F ′

|∇u| ·∂n0 (Dnu)+F ′
u ·∂n0u .

To evaluate these quantities, we use Dnτu=0 on ∂Λ and the following
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Lemma 9 With the above notations, for h=d(x,∂Λ)>0 small, then

Dτn0u= o(h) , |∇u|≥Ch

for some positive constant C, and Dnnτu=0 on ∂Λ.

As a consequence, on ∂Λ, we get

Dn0 (Dnτu)=0, J =0 , L= δDn0n0u ,
αDn0n0n0u+βDττn0u+δDn0n0u=0 .

To conplete the proof, we have to compute Dττn0u. For that purpose, let
us define the function v(x)=∂n0(x)u(x), which is analytic in a neighbour-
hood of ∂Λ and up to ∂Λ. It is easy to check that ∂n0v =Dn0n0u on Ω\Λ.
Since v =0 and |∇v|=Dn0n0u= const>0 on ∂Λ, the curvature of ∂Λ∋x0

is given by K(x0)=
Dτ0τ0v
|∇v| where τ0 =−n⊥

0 . It is also easy to check that on

∂Λ, Dτ0τ0v =Dn0τ0τ0u. Thus Dττn0u=(Dn0n0u)K on ∂Λ, which gives the
expected equality and ends the proof of Lemma 8. 2

Proof of Lemma 9. Deriving Dnnu= constant on ∂Λ with respect to τ ,
we get: Dτnnu=0 on ∂Λ. Let us remark that

d

dh
(Dτnu(γx0(h)))=Dτn0n0u−(Dτn0u)

Dnn0u

|∇u|
,

and that |∇u(γx0(h)|≥Ch because Dn0n0u= constant>0 on ∂Λ. Using the
regularity of D3u, we deduce that Dτn0u= o(h) for h>0 small, which ends
the proof of Lemma 9. 2

5 Appendix

This last section is devoted to results and extensions that have been omitted
in Section 1-4 to simplify the reading. First, we establish the expression of
(1.8) and (1.9) in the case of a ball, which is actually much easier than the
general case. The interesting point is that the inequation for the curvature
K becomes an equality. Then we give at a formal level the extension of the
system (1.8)-(1.9) to dimensions higher than 2. The estimate for the gradient
is unchanged but the one on the curvature is replaced by an estimate on the
arithmetic mean curvature, which is not sufficient to prove a convexity result
for the free boundary. A rigourous justification of the computations would
not be much more difficult than in dimension 2 but is for sure extremely
tedious, so we leave it at a formal level. The last part of this Appendix is
devoted to results on analytic sets that we use in the proof of Theorem 2.
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5.1 The radial case

This method is easy to understand in the radially symmetric case. Assume
that Ω=B(0,R0) and consider a radial solution of Equation (1.5). We define
for any t∈ (0,u0) the functions K(t) and m(t) by

t=u

(

1

K(t)

)

and m(t)=u′
(

1

K(t)

)

.

A derivation with respect to t gives K̇ =−K2

m and ṁ= u′′

m . Here ˙( ) and ( )′

respectively denote the derivatives with respect to t and r. Equation (1.5)
is equivalent to (1.8). An integration from 0 to u0 with the initial values
m(0)=λ(K(0)) and K(u0)= 1

R0
gives the result of Theorem 3. A variant of

this approach consists simply to get an upper bound by considering

M(u0,K0)≥ max
s∈[0,u0]

m0(s)≥m(t) ∀ t∈ [0,u0] , K0 =
1

R0
>0 ,

where t 7→m0(t) is the solution to F(m0ṁ0,m0K0,0,m0,t)=0 with initial
datum m0(0)=λ(K0)+1.

5.2 Higher dimensions

In this subsection, we formally extend our approach to dimensions d≥3. The
main difference is that the curvature has to be replaced by the arithmetic
mean curvature. We will justify the derivation of this system only at a
formal level by considering the generic case.

To simplify the presentation we consider a solution u of

F(Dddu,
d−1
∑

i=1

Diiu, |∇u|,u)=0 (5.1)

where Dii is defined as follows. Consider the level set Γt ={x∈Ω : u(x)=
t}⊂ IRd and (when ∇u(x) 6=0) the unit normal vector n(x)= ∇u

|∇u|(x) which

is orthogonal to the hyperplane Π=Π(x) tangent to Γt at x. For i=
1,2, ...d−1, we may diagonalize (D2u)Π =PΠ(D2u)PΠ where PΠ is the pro-
jection on Π and define τi (i=1,2, ...d−1) as the corresponding eigenvec-
tors such that (τ1,τ2, ...τd−1,τd =n) forms an orthonormal basis in IRd (the
derivative along the normal to the level hypersurface, i.e. along the di-
rection n, corresponds to the index d). The numbers λi =(τi,(D

2u)Πτi)
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are the eigenvalues of (D2u)Π and we define the off-diagonal terms µi =
(τd,(D

2u)τi)= (τi,(D
2u)τd) for i=1,2, ...d, and the curvatures Ki =

λi

|∇u|

(i=1,2, ...d−1). With the notations Diju=(τi,(D
2u)τj), the Fréchet for-

mula are (as in Section 2, d
dτi

= τi ·∇, so that two derivatives do not neces-

sarily commute and dτi

dτi
can be different from 0):

dτd

dτi
= dn

dτi
= λi

|∇u|τi =Kiτi (without summation on i=1,2, ...d−1),

dτd

dτd
= dn

dn =
∑d−1

i=1
Didu
|∇u| τi ,

and assuming from now on that Kj 6=Ki (1≤ i 6= j≤d−1),

dτi

dτd
= dτi

dn =
∑d

j=1
j 6=i

aijτj where aij =
2

µiµj

|∇u|
−D3

dij
u

|∇u|(Kj−Ki)
, aid =− µi

|∇u| ,

dτi

dτj
=
∑d

k=1
k 6=i

aijkτk aijk =
Kj(µiδkj+µkδij)−Dijku

|∇u|(Kk−Ki)
, aijd =−Kjδij for 1≤k 6=i≤d−1.

As in Section 2, we denote by xt∈Γt a point which realizes the maximum
of |∇u|2 on Γt and assume that t 7→xt is an analytic curve. By definition of
xt, d

dτi
(|∇u|2)(xt)=0 (i=1,2, ...d−1), thus proving that µi|x=xt =0. Be-

cause |∇u|2 restricted to Γt has a critical point at x=xt, we may also define
its Hessian as

d

dτi
(

d

dτj
(|∇u|2))=

d

dτj
(

d

dτi
(|∇u|2))=:H(τi,τj)≤0 ,

with H =(D2(|∇u|2))Π−2(Dddu)(D2u)Π and (D2(|∇u|2))Π =2((D2u)Π)2 +
2|∇u|(Dd··u)Π. In the following, we shall assume for simplicity that H is
actually negative definite. Let us compute d

dt(
∑d−1

i=1 Ki).

1) With notations similar to the ones of the 2-dimensional case, we have

1

δt
(xt+δt−xt)= (

1

|∇u|
+b δt)n+(~h+ ~Bδt)+O

(

(δt)2
)

where ~h=(h1,h2, ...hd−1), ~B∈Π(xt). With ~δ =xt+δt−xt,

δt=u(xt+δt)−u(xt) =~δ ·∇u+ 1
2
(~δ ·(D2u)~δ)+o(|~δ|2)

= δt+(b |∇u|+ 1
2
(~h ·(D2u)~h)+ 1

2

Dddu

|∇u|2
)(δt)2+o

(

(δt)2
)

,

and b=−
1

2
(~h ·(D2u)Π~h)−

1

2

Dddu

|∇u|3
.
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2) Using the Taylor expansion of |∇u(xt+δt)|2−|∇u(xt)|2 and maximiz-

ing it with respect to ~h, we get ~h=− 1
|∇u|(H

(−1) ◦PΠ)

(

Dd·(|∇u|2)

)

. Since

Ddj(|∇u|2)=2|∇u|Dddju, we have

~h=−2(H(−1) ◦PΠ)

(

Ddd·u

)

.

3) We compute
∑d−1

i=1 K̇i:

d−1
∑

i=1

K̇i =
d

dt
(
d−1
∑

i=1

Ki(x
t))=

1

|∇u|

d

dn
(
d−1
∑

i=1

Ki)+~h ·∇Π(
d−1
∑

i=1

Ki) .

Using the Fréchet formulas, we get, at x=xt,

dKi

dn
=

1

|∇u|
(Ddiiu−DdduKi) and

dKi

dτj
=

1

|∇u|
Diiju .

4) On one hand, let us remark that because H <0, for each i=1, ...d−1:

0≥Hii =2|∇u|
(

Ddiiu+ |∇u|K2
i −DdduKi

)

,

so that 1
|∇u|

dKi

dn ≤−
K2

i

|∇u| .

5) On the other hand, deriving Equation (5.1) with respect to τj, we obtain

αDddju+β
∑

iDiiju=0, and consequently d
dτj

(
∑d−1

i=1 Ki)=−α
β

Dddju
|∇u| and

~h ·∇Π(
d−1
∑

i=1

Ki)=2
α

β
[PΠ(Ddd·u)]H(−1)[PΠ(Ddd·u)]≤0

because H <0. Therefore

d

dt
(
d−1
∑

i=1

Ki)≤−
1

|∇u|

d−1
∑

i=1

K2
i .

In view of the free boundary problem, we may simply quote that if the
domain Ω⊂ IRd is convex, the mean curvature

∑d−1
i=1 Ki of the free boundary

at the limit of the points that maximize the gradient, is positive. Concern-
ing the estimates on the gradient, Theorem 2 could be generalized to any
dimension, thus providing an estimate taking the geometry of the domain
into account. However a rigourous justification of these estimates would
involve a tedious discussion of the various special cases (that we discarded
above by taking appropriate assumptions), similar for the methods to the
2-dimensional case, but much longer. This is why we left it here at a formal
level.
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5.3 Results on analytic sets

We will first state some general results on analytic sets and then prove
Lemma 5 and Lemma 7.

From [9] (chapter 8: Etude locale des fonctions et des ensembles analy-
tiques; Propositions 4.2.5, 7.2, 7.7 and Theorem 1.2.2) we deduce the

Theorem 4 For N ≥1, let U be an open set of IR2 and Fi(x1,x2), i=
1,2, ...N be real analytic functions of (x1,x2)∈U . We assume that F1 6≡0
and Fi(0)=0, i=1,2, ...N . Then there exists positive real number r and an
integer k such that

(

N
⋂

i=1

{Fi =0}

)

∩Br(0)={0}∪





k
⋃

j=1

γj





for a disjoint union of analytic open curves s 7→γj(s), s∈ (0,1), with

{

lims→0γj(s)=0 ,
lims→1γj(s)=xj ∈∂Br(0) .

Moreover the same property is true for every ball Br′(0) with r′ <r.

This result gives a precise description of the structure of analytic sets. In
our proof of Theorem 2, we are interested in the following special situation.
Let F1 6≡0 be an analytic function with F1(0)=0. Theorem 4 for N =1 gives
the existence of an open curve γ⊂{F1 =0} with lims→0γ(s)=0. Let F0 be
a second analytic function such that F0(0)=0 and ∇F0(0) 6=0. What can
be said on d

ds(F0 ◦γ) ? The answer to this question is given by the

Corollary 1 Consider a real analytic function F0 of the variables (x1,x2)∈
U , where U is an open set in IR2, such that F0(0)=0 and ∇F0(0) 6=0. If
γ : (0,1)→U is an analytic curve such that lims→0γ(s)=0 and γ⊂{F1 =0},
where the function F1 is analytic with F1 6≡0, then for an ǫ>0 small enough,
on the interval (0,ǫ),

(i) either d
ds(F0 ◦γ)≡0,

(ii) or ± d
ds(F0 ◦γ)>0.

The proof of this corollary takes advantage of the following classical result.
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Proposition 4 Let g and h be two analytic functions defined on the interval
(−1,1). If 0 is an accumulation point of the set {s∈ (−1,1) : f(s)= g(s)},
then f ≡ g on (−1,1).

Proof of Corollary 1. Consider an analytic function F1 defined on U such
that γ⊂{F1 =0}. Let l be the smallest integer such that γ⊂∩l

j=0{D
jF1 =0}

and γ 6⊂ {Dl+1F1 =0}, where DjF1 denotes the set of all partial derivatives
of total order j: {∂ j1

1 ∂j2
2 F1}j1+j2=j. We know that F1 6≡0, so l is finite and

there exists j1,j2≥0, j1 +j2 = l such that for F̃1 =∂ j1
1 ∂j2

2 F1 we have

F̃1 ◦γ≡0 and (∇F̃1)◦γ 6≡0 . (5.2)

Let τ be the unit vector field tangent to level lines of F0 (i.e. such that
∂τF0 =0).

Case 1: τ ·∇F̃1(0) 6=0: the curve γ is analytic in a neighbourhood of 0
and up to s=0. In particular we can chose the curvilinear abscissa s as
a parametrization up to s=0 and

d

ds
(F0 ◦γ)=

dγ

ds
·∇F0 =−|∇F0|

(

dγ

ds

)⊥

·τ

because τ =− (∇F0)⊥

|∇F0|
. We know that (dγ

ds )⊥ is colinear to ∇F̃1, and conse-
quently

d

ds
(F0 ◦γ)=±

|∇F0|

|∇F̃1|
(τ ·∇F̃1) , (5.3)

so we deduce that ± d
ds(F0 ◦γ)>0 in a neighbourhood of 0.

Case 2: τ ·∇F̃1(0)=0: if τ ·∇F̃1≡0 on U , then obviously (τ ·∇F̃1)◦γ≡0

and d
ds(F0 ◦γ)≡0. If τ ·∇F̃1 6≡0 on U , then from Theorem 4 we have

(

{F̃1 =0}∩{τ ·∇F̃1 =0}
)

∩Br(0)={0}∪(
k
⋃

j=1

γj)

for some r>0 small enough. In that case, either for any j, γj 6=γ and then
±(τ ·∇F̃1)|γ >0: as in Case 1, Equation (5.3), we get ± d

ds(F0 ◦γ)>0 in a
neighbourhood of 0, or the exists some j such that γj =γ. In that case, τ ·
∇F̃1 ◦γ≡0 on a neighborhood of 0. From (5.2) we know that (∇F̃1 ◦γ)(s) 6=0
except maybe in a decreasing sequence of points (sn)n∈IN∈ (0,1)IN. Because
the map (0,1)∋ s 7→ (∇F̃1 ◦γ)(s) is analytic, the only possible accumulation
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point of the sequence (sn)n∈IN is 0 according to Proposition 4. Away from
these points sn, we can apply the implicit function theorem which proves
that F0 ◦γ = const=Cn on (sn+1,sn). By continuity at sn, we get Cn =
Cn+1 =F0(0)=0 and consequently γ⊂{F0 =0}, d

ds(F0 ◦γ)≡0 on (0,ǫ) for
ǫ>0 small enough. 2

We are now going to prove Lemma 5 and Lemma 7 which are used in
the proof of Theorem 2.

Proof of Lemma 5. The map t 7→m(t) is continuous on [0,u0]. For every
0<ǫ′ <ǫ we have ωǫ⊂ωǫ′. Let Fωǫ ={F =0}∩ωǫ. Then Fωǫ is a compact
set included in {|∇u|>0}. At every point x0∈Fωǫ , the set {F =0} has the
property given in Theorem 4: for any x0∈Fωǫ there exists an rx0 >0, and a

finite set of curves (γx0
j )

kx0
j=1 such that

{F =0}∩Brx0
(x0)={x0}∪(

kx0
⋃

j=1

γx0
j ) .

Because Fωǫ is compact, it can be covered by a finite number, N , of balls

Fωǫ ⊂
N
⋃

i=1

Bri
(xi)=ω ,

where ri =
rxi

2 . The result of Lemma 5 is then a straightforward consequence
of Corollary 1. 2

Proof of Lemma 7. To prove (3.6), we now consider a point x0∈Xt∗
k such

that K(x0)= inf
y∈X

t∗
k
K(y). We will prove that

limsup
δ→0+

K(t∗k +δ)≤K(x0) . (5.4)

To this end, let us consider a smooth curve γ0 defined for t∈ (t∗k−η,t∗k +η) for
some small η >0, such that γ0(t

∗
k)=x0 and u(γ0(t))= t. Then by definition

of m(t), we have

1

δ

(

m(t∗k +δ)−m(t∗k)

)

≥
1

δ

(

|∇u(γ0(t
∗
k +δ))|−|∇u(γ0(t

∗
k))|

)

for δ≥0 .

(5.5)
Because of Assumption (A2), equation F(Dnnu,Dττu,Dnτu, |∇u| ,u)=0 can
now be rewritten locally near x0 as

Dnnu=H(Dττu,Dnτu, |∇u| ,u)
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where H is analytic in all the variables and (locally) decreasing in Dττu.
With the notation m0(t)= |∇u(γ0(t))|,

lim
δ→0+

1

δ

(

|∇u(γ0(t
∗
k +δ))|−|∇u(γ0(t

∗
k))|

)

= lim
δ→0+

1

δ

∫ t∗
k
+δ

t∗
k

1

m0
H(m0K(γ0(t)),Dnτu(γ0(t)),m0,t)dt

=
1

m
H(mK(x0),0,m,t∗k) for m=m(t∗k) ,

by continuity of all the quantities on the smooth curve γ0. Let us recall that
m(t)=supγ∈Gk

|∇u(γ(t))| for t∈ (t∗k,t
∗
k+1). Because we restrict our study the

case t> t∗k, close to t∗k, we only need to consider

F∗
k :={γ∈Fk : |∇u(γ(t∗k))|=m(t∗k)} .

Then locally for t> t∗k, we have m(t)=supγ∈G∗
k
|∇u(γ(t))| and for each curve

γ∈F∗
k we get similarly:

lim
δ→0+

1

δ

(

|∇u(γ(t∗k +δ))|−|∇u(γ(t∗k))|

)

=
1

m
H(mK(γ(t∗k)),0,m,t)

for m=m(t∗k). Because

1

δ

(

m(t∗k +δ)−m(t∗k)

)

= sup
γ∈G∗

k

1

δ

(

|∇u(γ(t∗k +δ))|−|∇u(γ(t∗k))|

)

and because G∗
k is finite, we have: limδ supG∗

k
=supG∗

k
limδ, which implies

lim
δ→0+

1

δ

(

m(t∗k +δ)−m(t∗k)

)

=
1

m
H(m, inf

γ∈G∗
k

K(γ(t∗k)),0,m,t∗k) form=m(t∗k) .

From (5.5) we deduce

H(m inf
γ∈G∗

k

K(γ(t∗k +δ)),0,m,t∗k)≥H(mK(x0),0,m,t∗k) ,

which gives infγ∈G∗
k
K(γ(t∗k))≤K(x0). To conclude, we remark that

limsup
δ→0+

K(t∗k +δ) = limsup
t→(t∗

k
)+

(

inf
γ∈G∗

k
,|∇u(γ(t))|=m(t)

K(γ(t))

)

≤ lim
t→(t∗

k
)+

(

inf
γ∈G∗

k

K(γ(t))

)

= inf
γ∈G∗

k

(

lim
t→(t∗

k
)+

K(γ(t))

)

= inf
γ∈G∗

k

K(γ(t∗k))

≤K(x0) ,
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which is nothing else than (5.4). Similarly we get liminfδ→0+ K(t∗k−δ)≥
K(x0), which with (5.4) implies (3.6). This ends the proof of Lemma 7. 2
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