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The classical Onofri inequality in the two-dimensional sphere assumes a natural form in the plane when transformed via

stereographic projection. We establish an optimal version of a generalization of this inequality in the d-dimensional

Euclidean space for any d ≥ 2, by considering the endpoint of a family of optimal Gagliardo-Nirenberg interpolation

inequalities. Unlike the two-dimensional case, this extension involves a rather unexpected Sobolev-Orlicz norm, as well

as a probability measure no longer related to stereographic projection.
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1 Introduction and main result

The Onofri inequality as stated in [18] asserts that

log
(∫

S2
ev dσ2

)
−
∫

S2
v dσ2 ≤

1
4
‖∇v‖2L2(S2,dσ2) (1)

for any function v ∈ H1(S2, dσ2). Here dσ2 denotes the standard surface measure on the two-dimensional unit
sphere S2 ⊂ R3, up to a normalization factor 1

4π so that
∫

S2 1 dσ2 = 1.

Using stereographic projection from S2 onto R2, that is defining u by

u(x) = v(y) with y = (y1, y2, y3) , y1 =
2x1

1 + |x|2
, y2 =

2x2

1 + |x|2
, y3 =

1− |x|2

1 + |x|2

for any x = (x1, x2) ∈ R2, then (1) can be reformulated into the Euclidean Onofri inequality, namely

log
(∫

R2
eu dµ2

)
−
∫

R2
u dµ2 ≤

1
16π

‖∇u‖2L2(R2,dx) (2)

for any u ∈ L1(R2, dµ2) such that ∇u ∈ L2(R2, dx), where

dµ2(x) :=
dx

π (1 + |x|2)2

is again a probability measure.

The purpose of this note is to obtain an (optimal) extension of inequality (2) to any space dimension. There
is a vast literature on Onofri’s inequality, and we shall only mention a few works relevant to our main result
below. Onofri’s inequality with a non-optimal constant was first established by J. Moser in [17], a work prior to
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that of E. Onofri, [18]. For this reason, the inequality is sometimes called the Moser-Onofri inequality. We also
point out that Onofri’s paper is based on an earlier result of T. Aubin, [2]. We refer the interested reader to [14]
for a recent account on the Moser-Onofri inequality. The inequality has an interesting version in the cylinder
R× S1, see [12], which is however out of the scope of the present work.

In this note, we will establish that the Euclidean version of Onofri’s inequality (2) can be extended to an
arbitrary dimension d ≥ 3 in the following manner. Let us consider the probability measure

dµd(x) :=
d

|Sd−1|
dx(

1 + |x|
d
d−1

)d .
Let us denote

Rd(X,Y ) := |X + Y |d − |X|d − d |X|d−2X · Y , (X,Y ) ∈ Rd × Rd ,
which is a polynomial if d is even. We define

Hd(x, p) := Rd

(
−d |x|

− d−2
d−1

1+|x|
d
d−1

x, d−1
d p

)
, (x, p) ∈ Rd × Rd ,

and

Qd[u] :=

∫
Rd Hd(x,∇u) dx

log
(∫

Rd e
u dµd

)
−
∫

Rd u dµd
.

The following is our main result.

Theorem 1.1. With the above notation, for any smooth compactly supported function u, we have

log
(∫

Rd
eu dµd

)
−
∫

Rd
u dµd ≤ αd

∫
Rd

Hd(x,∇u) dx . (3)

The optimal constant αd is explicit and given by

αd =
d1−d Γ(d/2)

2 (d− 1)πd/2
.

Small multiples of the function
v(x) = − d x · e

|x|
d−2
d−1

(
1 + |x|

d
d−1

) (4)

for a unit vector e are approximate extremals of (3) in the sense that

lim
ε→0
Qd[ε v] =

1
αd

.

A rather unexpected feature of inequality (3) when compared with Onofri’s inequality (2), is that it involves
an inhomogeneous Sobolev-Orlicz type norm. As we will see below, as a by-product of the proof we obtain a
new Poincaré inequality in entire space, (7) below, of which the function v defined by (4) is an extremal.

Example 1.2. If d = 2,
∫

Rd H2(x,∇u) dx = 1
4

∫
R2 |∇u|2 dx and we recover Onofri’s inequality (3) as in [11], with

optimal constant 1/α2 = 4π. On the other hand, if for instance d = 4, we find that H4(x,∇u) is a fourth order
polynomial in the partial derivatives of u, since R4(X,Y ) = 4 (X · Y )2 + |Y |2(|Y |2 + 4X · Y + 2 |X|2).

Extensions of inequality (2) to higher dimensions were already obtained long ago. Inequality (1) was
generalized to the d-dimensional sphere in [3, 5], where natural conformally invariant, non-local generalizations
of the Laplacian were used. Those operators are of different nature than the ones in Theorem 1.1. Indeed, no
clear connection through, for instance, stereographic projection is present. See also [16, 15] in which bounded
domains are considered.

Inequality (3) determines a natural Sobolev space in which it holds. Indeed, a classical completion argument
with respect to a norm corresponding to the integrals defined in both sides of the inequality determines a space
on which the inequality still holds. This space can be identified with the set of all functions u ∈ L1(Rd, dµd)
such that the distribution ∇u is a square integrable function. To avoid technicalities, computations will only be
done for smooth, compactly supported functions.

Our strategy is to consider the Euclidean inequality of Theorem 1.1 as the endpoint of a family of optimal
interpolation inequalities discovered in [7] and then extended in [8]. These inequalities can be stated as follows.
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Theorem 1.3. Let p ∈ (1, d], a > 1 such that a ≤ p (d−1)
d−p if p < d, and b = p a−1

p−1 . There exists a positive constant
Cp,a such that, for any function f ∈ La(Rd, dx) with ∇f ∈ Lp(Rd, dx), we have

‖f‖Lb(Rd) ≤ Cp,a ‖∇f‖θLp(Rd) ‖f‖
1−θ
La(Rd)

with θ = (a−p) d
(a−1) (d p−(d−p) a) (5)

if a > p. A similar inequality also holds if a < p, namely

‖f‖La(Rd) ≤ Cp,a ‖∇f‖θLp(Rd) ‖f‖
1−θ
Lb(Rd)

with θ = (p−a) d
a (d (p−a)+p (a−1)) .

In both cases, equality holds for any function taking the form

f(x) = A
(

1 +B |x− x0|
p
p−1

)− p−1
a−p

+
∀x ∈ Rd

for some (A, B, x0) ∈ R× R× Rd, where B has the sign of a− p.

While in [8], only the case p < d was considered, the proof there actually applies to also cover the case p = d,
for any a ∈ (1,∞).

For a = p, inequality (5) degenerates into an equality. By substracting it to the inequality, dividing by a− p
and taking the limit as a→ p+, we obtain an optimal Euclidean Lp-Sobolev logarithmic inequality which goes
as follows. Assume that 1 < p ≤ d. Then for any u ∈W1,p(Rd) with

∫
Rd |u|

p dx = 1 we have

∫
Rd
|u|p log |u|p dx ≤ d

p
log
[
βp,d

∫
Rd
|∇u|p dx

]
, where βp,d :=

p

d

(
p− 1
e

)p−1 1
π
p
2

 Γ
“
d
2 +1

”
Γ

„
d
p−1
p +1

«

p
d

is the optimal constant. Equality holds if and only if for some σ > 0 and x0 ∈ Rd

u(x) =

[
1

2π
d
2

p

p− 1
Γ
(
d
2

)
Γ
(
d p−1

p

) ( p
σ

)d p−1
p

] 1
p

e−
1
σ |x−x0|

p
p−1 ∀ x ∈ Rd .

This inequality has been established in [9] when p < d and in general in [13]; see also [6, 10].

When p < d, the endpoint a = p (d−1)
d−p corresponds to the usual optimal Sobolev inequality, for which the

extremal functions were already known from the celebrated papers by T. Aubin and G. Talenti, [1, 20]. See
also [4, 19] for earlier related computations, which provided the value of some of the best constants.

When p = d, Theorem 1.1 will also be obtained by passing to a limit, namely as a→ +∞. In this way,
the d-dmensional Onofri inequality corresponds to nothing but a natural extension of the optimal Sobolev’s
inequality. In dimension d = 2, with p = 2, a = q + 1 > 2 and b = 2 q, it has been recently observed in [11] that

1 ≤ lim
q→∞

C2,q+1

‖∇fq‖
q−1
2 q

L2(R2) ‖fq‖
q+1
2 q

Lq+1(R2)

‖fq‖L2q(R2)
=
e

1
16π

R
R2 |∇u|2 dx∫

R2 eu dµ2

if fq = (1 + |x|2)−
1
q−1 (1 + u

2 q ) and
∫

R2 u dµ2 = 0. In that sense, Onofri’s inequality in dimension d = 2 replaces
Sobolev’s inequality in higher dimensions as an endpoint of the family of Gagliardo-Nirenberg inequalities

‖f‖L2q(Rd) ≤ C2,q+1 ‖∇f‖θL2(Rd) ‖f‖
1−θ
Lq+1(Rd)

with θ = q−1
q

d
d+2−q (d−2) . In dimension d ≥ 3, we will see below that (3) can also be seen as an endpoint of (5).

2 Proof of Theorem 1.1

Assume that u ∈ D(Rd) is such that
∫

Rd u dµd = 0 and let

fa := Fa
(
1 + d−1

d a u
)
,

where Fa is defined by

Fa(x) =
(

1 + |x|
d
d−1

)− d−1
a−d ∀x ∈ Rd . (6)
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From Theorem 1.3, Inequality (5), we know that

1 ≤ lim
a→+∞

Cd,a
‖∇fa‖θLd(Rd) ‖fa‖

1−θ
La(Rd)

‖fa‖Lb(Rd)

if p = d. Our goal is to identify the right hand side in terms of u. We recall that b = d (a−1)
d−1 and θ = a−d

d (a−1) .
Using the fact that Fa is an optimal function, we can then rewrite (5) with f = fa as

∫
Rd |fa|

d (a−1)
d−1 dx∫

Rd |Fa|
d (a−1)
d−1 dx

≤

( ∫
Rd |∇fa|

d dx∫
Rd |∇Fa|d dx

) a−d
d (d−1) ∫

Rd |fa|
a dx∫

Rd |Fa|a dx

and observe that:

(i) lima→+∞
∫

Rd |Fa|
d (a−1)
d−1 dx =

∫
Rd
(
1 + |x|

d
d−1
)−d

dx = 1
d |S

d−1| and

lim
a→+∞

∫
Rd
|fa|

d (a−1)
d−1 dx = lim

a→+∞

∫
Rd
F
d (a−1)
d−1

a (1 + d−1
d a u)

d (a−1)
d−1 dx =

∫
Rd

eu(
1 + |x|

d
d−1

)d dx ,
so that

lim
a→+∞

∫
Rd |fa|

d (a−1)
d−1 dx∫

Rd |Fa|
d (a−1)
d−1 dx

=
∫

Rd
eu dµd .

(ii) As a→ +∞, ∫
Rd
|Fa|a dx ≈

2 a πd/2

d2 Γ(d/2)
, lim

a→+∞

∫
Rd
|fa|a dx =∞ ,

and

lim
a→+∞

∫
Rd |fa|

a dx∫
Rd |Fa|a dx

= 1 .

(iii) Finally, as a→ +∞, we also find that( ∫
Rd |∇fa|

d dx∫
Rd |∇Fa|d dx

) a−d
d (d−1)

≈
(

1 + d (d−1)
a αd

∫
Rd

Hd(x,∇u) dx
) a−d
d (d−1)

≈ exp
(
αd

∫
Rd

Hd(x,∇u) dx
)
.

Here and above `1(a) ≈ `2(a) means that lima→+∞ `1(a)/`2(a) = 1. Fact (iii) requires some computations which
we make explicit next. First of all, we have∫

Rd
|∇Fa|d dx =

2 dd−2 πd/2

Γ(d/2)
a1−d .

With Xa :=
(
1 + d−1

d a u
)
∇Fa and Ya := d−1

d a Fa∇u, we can write, using the definition of Rd, that

|∇fa|d = |∇Fa|d
(
1 + d−1

d a u
)d

+ Fa |∇Fa|d−2∇Fa · ∇
(
1 + d−1

d a u
)d

+ Rd(Xa, Ya) .

Consider the second term of the right hand side and integrate by parts. A straightforward computation shows
that∫

Rd
Fa |∇Fa|d−2∇Fa · ∇

(
1 + d−1

d a u
)d
dx = −

∫
Rd
|∇Fa|d

(
1 + d−1

d a u
)d
dx−

∫
Rd
Fa ∆dFa

(
1 + d−1

d a u
)d
dx

where ∆pFa = ∇ · (|∇Fa|p−2∇Fa) is computed for p = d. Collecting terms, we get∫
Rd
|∇fa|d dx = −

∫
Rd
Fa ∆dFa

(
1 + d−1

d a u
)d
dx+

∫
Rd

Rd(Xa, Ya) dx .

We may next observe that

a∇Fa(x) = − d a
a−d |x|

− d−2
d−1 x

(
1 + |x|

d
d−1

)− a−1
a−d

+
→ − d |x|

− d−2
d−1 x

1 + |x|
d
d−1

a.e. as a→ +∞ ,
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while a∇
(
1 + d−1

d a u
)

= d−1
d ∇u, so that both Xa =

(
1 + d−1

d a u
)
∇Fa and Ya = d−1

d a Fa∇u in Rd(Xa, Ya) are of
the order of 1/a. By homogeneity, it follows that

ad Rd(Xa, Ya)→ Rd

(
−d |x|

− d−2
d−1

1+|x|
d
d−1

x, d−1
d ∇u

)
= Hd(x,∇u) as a→ +∞ ,

by definition of Hd. Hence we have established the fact that∫
Rd
|∇fa|d dx = −

∫
Rd
Fa ∆dFa

(
1 + d−1

d a u
)d
dx+

∫
Rd

Rd(Xa, Ya) dx

= −
∫

Rd
Fa ∆dFa

(
1 + d d−1

d a u+ o(a−1)
)
dx+ a−d

∫
Rd

Hd(x,∇u) dx

Next we can observe that −
∫

Rd Fa ∆dFa dx =
∫

Rd |∇Fa|
d dx, while − lima→+∞ ad−1 Fa ∆dFa = dd−1 |Sd−1|µd,

so that

−
∫

Rd
Fa ∆dFa u dx = a1−d dd−1 |Sd−1|

∫
Rd
u dµd + o(a1−d) = o(a1−d) as a→ +∞

by the assumption that
∫

Rd u dµd = 0. Altogether, this means that

( ∫
Rd |∇fa|

d dx∫
Rd |∇Fa|d dx

) a−d
d (d−1)

≈
(

1 +

∫
Rd Hd(x,∇u) dx
ad
∫

Rd |∇Fa|d dx

) a−d
d (d−1)

≈
(

1 + d (d−1)
a αd

∫
Rd

Hd(x,∇u) dx
) a−d
d (d−1)

as a→ +∞, which concludes the proof of (iii).

Before proving the optimality of the constant αd, let us state an intermediate result which of interest in
itself. Let us assume that d ≥ 2 and define Qd as

Qd(X,Y ) := 2 lim
ε→0

ε−2 Rd(X, ε Y ) =
d2

dt2
|X + t Y |d∣∣t=0

= d |X|d−4
[
(d− 2) (X · Y )2 + |X|2 |Y |2

]
.

We also define

Gd(x, p) := Qd

(
−d |x|

− d−2
d−1

1+|x|
d
d−1

x, d−1
d p

)
, (x, p) ∈ Rd × Rd .

Corollary 2.1. With αd as in Theorem 1.1, we have∫
Rd
|v − v|2 dµd ≤ αd

∫
Rd

Gd(x,∇v) dx with v =
∫

Rd
v dµd , (7)

for any v ∈ L1(Rd, dµd) such that ∇v ∈ L2(Rd, dx).

This inequality is a Poincaré inequality, which is remarkable. Indeed, if we prove that the optimal constant in (7)
is equal to αd, then αd is also optimal in Theorem 1.1, Inequality (3). We will see below that this is the case.

Proof of Corollary 2.1. Inequality (7) is a straightforward consequence of (3), written with u replaced by ε v. In
the limit ε→ 0, both sides of the inequality are of order ε2. Details are left to the reader.

To conclude the proof of Theorem 1.1, let us check that there is a nontrivial function v which achieves
equality in (7). Since Fa is optimal for (3), we can write that

log
(∫

Rd
|Fa|

d (a−1)
d−1 dx

)
= log Cd,a + a−d

d (d−1) log
(∫

Rd
|∇Fa|d dx

)
+ log

(∫
Rd
|Fa|a dx

)
.

However, equality also holds true if we replace Fa by Fa,ε with Fa,ε(x) := Fa(x+ ε e), for an arbitrary given
e ∈ Sd−1, and it is clear that one can differentiate twice with respect to ε at ε = 0. Hence, for any a > d, we
have

d (a−1)
d−1

(
d (a−1)
d−1 − 1

) ∫
Rd |Fa|

d (a−1)
d−1 |va|2 dx∫

Rd |Fa|
d (a−1)
d−1 dx

= a−d
d (d−1)

∫
Rd Qd(Xa,

d−1
d Ya) dx∫

Rd |∇Fa|d dx
+ a (a− 1)

∫
Rd |Fa|

a |va|2 dx∫
Rd |Fa|a dx

(8)



6 del Pino, M., and Dolbeault, J.

with Xa = ∇Fa, Ya = d
d−1 Fa∇va and va := e · ∇ logFa, that is

va(x) = − d

a− d
x · e

|x|
d−2
d−1

(
1 + |x|

d
d−1

) .
Hence, if φ is a radial function, we may notice that

∫
Rd φ va dx = 0 and

lim
a→+∞

a2

∫
Rd
φ |va|2 dx = d2

∫
Rd
φ(x)

|x|
2
d−1−2 (x · e)2(
1 + |x|

d
d−1

)2 dx = d

∫
Rd
φ(x)

|x|
2
d−1(

1 + |x|
d
d−1

)2 dx .

Since
∫

Rd |Fa|
d (a−1)
d−1 dx = o

(∫
Rd |Fa|

a dx
)
, the last term in (8) is negligible compared to the other ones. Passing

to the limit as a→ +∞, with v := lima→+∞ a va, we find that v is given by (4) and(
d
d−1

)2
∫

Rd
|v|2 dµd = αd

∫
Rd

Qd
(
− d |x|−

d−2
d−1

1+|x|
d
d−1

x, d−1
d Y

)
dx

where Y := d−1
d ∇v and where we have used the fact that

d (d− 1)αd lim
a→+∞

ad
∫

Rd
|∇Fa|d dx = 1 .

Since the function Qd is quadratic, we obtain that(
d
d−1

)2 ∫
Rd
|v|2 dµd = αd

∫
Rd

Gd(x, d
d−1 ∇v) dx = αd

(
d
d−1

)2 ∫
Rd

Gd(x,∇v) dx ,

which corresponds precisely to equality in (7) since v given by (4) is such that v = 0.

Equality in (3) is achieved by constants. The optimality of αd amounts to establish that in the inequality

Qd[u] ≥ 1
αd

,

equality can be achieved along a minimizing sequence. Notice that

Qd[u] =

∫
Rd Hd(x,∇u) dx
log
(∫

Rd e
u dµd

) if
∫

Rd
u dµd = 0 ,

The reader is invited to check that limε→0Qd[ε v] = 1
αd

. In dimension d = 2, v is an eigenfunction associated to
the eigenvalue problem: −∆ v = λ1vµ2, corresponding to the lowest positive eigenvalue, λ1. The generalization
to higher dimensions is given by (4). Notice that the function v is an eigenfunction of the linear form associated
to Gd, in the space L2(Rd, dµd). This concludes the proof of Theorem 1.1.

Whether there are non-trivial optimal functions, that is, whether there exists a non-constant function u
such that Qd[u] = 1

αd
, is an open question. At least the proof of Theorem 1.1 shows that there is a loss of

compactness in the sense that the limit of ε v, i.e. 0, is not an admissible function for Qd.
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