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ABSTRACT. We consider a linear symmetric operator in a Hilbert space that is neither

bounded from above nor from below, admits a block decomposition corresponding to

an orthogonal splitting of the Hilbert space and has a variational gap property associated

with the block decomposition. A typical example is the minimal Dirac-Coulomb operator

defined on C∞
c (R3 \{0},C4). In this paper we define a distinguished self-adjoint extension

with a spectral gap and characterize its eigenvalues in that gap by a variational min-max

principle. This has been done in the past under technical conditions. Here we use a

different, geometric strategy, to achieve that by making only minimal assumptions. Our

result applied to the Dirac-Coulomb-like Hamitonians covers sign-changing potentials

as well as molecules with an arbitrary number of nuclei having atomic numbers less than

or equal to 137.

1. INTRODUCTION AND MAIN RESULT

The three-dimensional Dirac-Coulomb operator is DV = D+V where D =−i α ·∇+β
is the linear Dirac operator (see [22] for more detail), and V is the Coulomb operator
− ν

|x| (ν > 0) or, more generally, the convolution of − 1
|x| with an extended charge density.

Usually, one first defines D−ν/|x| on the so-called minimal domain C∞
c (R3 \ {0},C4). The

resulting minimal operator is symmetric but not closed in the Hilbert space L2(R3,C4).
It is essentially self-adjoint when ν lies in the interval (0,

p
3/2], in other words it has a

unique self-adjoint extension, that turns out to be its closure. For larger constants ν, one
must define a distinguished, physically relevant, self-adjoint extension and this can be
done when ν≤ 1. The essential spectrum of this extension is R \ (−1,1), which is neither
bounded from above nor from below. In atomic physics, its eigenvalues in the gap (−1,1)
are interpreted as discrete electronic energy levels.

Important contributions to the construction of distinguished self-adjoint realisations
of minimal Dirac-Coulomb operators were made in the 1970’s, see e.g. [20, 26, 27, 28, 16,
17, 12, 11]. In these papers, general classes of potentials V are considered, but in the case
V =−ν/|x| one always assumes that ν is smaller than 1.

Reliable computations of the discrete electronic energy levels in the spectral gap (−1,1)
are a central issue in Relativistic Quantum Chemistry. For this purpose, Talman [21] and
Datta-Devaiah [1] proposed a min-max principle involving Rayleigh quotients and the
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decomposition of 4-spinors into their so-called large and small 2-components. An ab-
stract version of this min-max principle is concerned with a self-adjoint operator A de-
fined in a Hilbert space H and satisfying a variational gap condition, to be specified
later, related to a block decomposition under an orthogonal splitting

H =H +⊕H −. (1)

Such an abstract principle was proved for the first time in [10], but its hypotheses were
rather restrictive and the application to the distinguished self-adjoint realization of DV

only gave Talman’s principle for bounded electric potentials. In [2], thanks to another
approach, this limitation was overcome and the unbounded potential −ν/|x| was dealt
with for ν ∈ (0,

p
3/2]. The articles [3, 4, 5, 14, 15, 6, 19, 7] followed and the full range

ν ∈ (0,1] is now covered.

Using some of the tools of [2], Esteban and Loss [8, 9] proposed a new strategy to build
a distinguished, Friedrichs-like, self-adjoint extension of an abstract symmetric operator
with variational gap and applied it to the minimal Dirac-Coulomb operator, with ν ∈
(0,1] . In [6, 7], connections were established between this new approach and the earlier
constructions, for Dirac-Coulomb operators with general electric potentials V .

Some important closability and domain invariance issues had been overlooked in the
arguments of [2] and [8, 9]. In [19] these issues are clarified and the self-adjoint exten-
sion problem considered in [8, 9] is connected to the min-max principle for eigenvalues
of self-adjoint operators studied in [2]. The abstract results in [19] have many important
applications, but some examples are not covered yet, due to an essential self-adjointness
assumption made on one of the blocks. In [2, Erratum], we present another way of cor-
recting the arguments of [2] thanks to a geometric viewpoint. In the present work, by
adopting this viewpoint, we are able to completely relax the essential self-adjointness
assumption of [19]. Additionally, our variational gap assumption is more general, as it
covers a class of multi-center Dirac-Coulomb Hamiltonians in which the lower min-max
levels fall below the threshold of the continuous spectrum (see e.g. [6] for a study of such
operators): we shall use the image that some eigenvalues dive into the negative contin-
uum.

Before going into the detail of our assumptions and results, let us start by briefly re-
calling the standard Friedrichs extension theorem and its proof. If a linear symmetric
operator A in a Hilbert space H is bounded from below, i.e., if

m := inf
x∈Dom(A)\{0}

(x, A x)

‖x‖2
>−∞ ,

then A has a natural self-adjoint extension AF , which is called the Friedrichs extension
and defined as follows (see e.g. [18] for more details). The quadratic form qA(x) = (x, A x)
is closable in H . Assume that q A denotes its closure and p A(·, ·) its polar form. Take
E >−m. By the Riesz isomorphism theorem, for each f ∈ H , there is a unique u f ∈
Dom( q A) such that p A (v,u f )+E (v,u f ) = (v, f ) for all v ∈ Dom( q A). Note that u f is also
the unique minimizer, in Dom( q A), of the functional I f (u) := 1

2

(
q A(u)+E ‖u‖2

)− (u, f ).
The map f 7→ u f is linear, bounded and self-adjoint for (·, ·). Its inverse is AF +E idH and
one easily checks that AF does not depend on E : in fact, AF is just the restriction of A∗ to
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Dom( q A)∩Dom(A∗). An important property of the Friedrichs extension is that its eigen-
values below its essential spectrum, if they exist, can be characterized by the Rayleigh-
Ritz principle. In the special case of the Laplacian in a bounded domain Ω of Rd with
smooth boundary, A = −∆ : C∞

c (Ω) → L2(Ω), one has Dom( q A) = H 1
0 (Ω) and the con-

struction of AF corresponds to the weak formulation in H 1
0 (Ω) of the Dirichlet problem:

−∆u = f inΩ, u = 0 on ∂Ω. In other words, u f is the unique function in H 1
0 (Ω) such that

for all v ∈ H 1
0 (Ω),

∫
Ω∇u f · ∇v d x = ∫

Ω f v d x. So AF is the self-adjoint realization of the
Dirichlet Laplacian. By regularity theory, we learn that Dom(AF ) = H 2(Ω)∩H 1

0 (Ω).

The statement of our main result requires some definitions and notations. We consider
a Hilbert space H with scalar product (·, ·) and associated norm ‖ · ‖. When the sum of
two subspaces V , W of H is direct in the algebraic sense, we use the notation V +̇W . We
reserve the notation V ⊕W to topological sums. Let F be a dense subspace of H and let
A : Dom(A) = F →H be a symmetric operator, i.e. an operator such that (A x, y) = (x, A y)
for any x, y ∈ F . Let H =H+⊕H− be the orthogonal splitting of H as in (1) and note

Λ± : H →H±

the associated projectors. We make the following assumptions:

F+ =Λ+F and F− =Λ−F are subspaces of F (H1)

and

a := sup
x−∈F−\{0}

(x−, A x−)

‖x−‖2
<+∞ . (H2)

We also make the variational gap assumption that

for some k0 ≥ 1, we have λk0 > a (H3)

where the min-max levels λk are defined by

λk := inf
V subspace of F+

dimV =k

sup
x∈(V ⊕F−)\{0}

(x, A x)

‖x‖2
, ∀k ≥ 1. (2)

We shall use the more precise notation (H3)k0 for our variational gap assumption when-
ever we need to specify the value of k0 := min

{
k ≥ 1 : λk > a

}
.

The construction of a distinguished self-adjoint extension of A is based on two clos-
able quadratic forms. The first quadratic form is defined by

B(x−) =−(A x−, x−) ∀x− ∈ F− . (3)

As a consequence of Assumption (H2) and of the symmetry of −Λ−A|F− , B is bounded
from below and closable in H−. Therefore, we can consider the Friedrichs extension
B : Dom(B) ⊂ H− → H− of −Λ−A|F− and, for any parameter E > a, the operator LE :
F+ → Dom(B) ⊂F (B) ⊂H− such that

LE x+ := (B +E)−1Λ−A x+ . (4)

On the subspace of H defined by

ΓE := {
x++LE x+ : x+ ∈ F+

}⊂ F+⊕Dom(B) , (5)
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we also consider the second quadratic form

QE (x++LE x+) := (
x+, (A−E) x+

)+ (
LE x+, (B +E)LE x+

)
. (6)

Denoting by ΓE the closure of ΓE in H , QE is densely defined in the Hilbert space ΓE .
Further details on this quadratic form are given in Section 2. Our main result is as follows.

Theorem 1. Let A be a symmetric operator on the Hilbert space H . Assume (H1)-(H2)-
(H3) and take E > a. With the above notations, the quadratic forms B and QE are bounded
from below, B is closable in H−, QE is closable in ΓE and they satisfy

Dom
(

QE

)∩Dom
(
B

)= {
0
}

.

The operator A admits a unique self-adjoint extension Ã such that

Dom
(

Ã
)⊂ Dom

(
QE

)+̇Dom
(
B

)
.

The domain of this extension is

Dom
(

Ã
)= Dom(A∗)∩ (

Dom
(

QE

)+̇Dom
(
B

))
and it does not depend on E.

Writing
b := inf

(
σess(Ã)∩ (a,+∞)

)
,

one has λk ≤ b for all k ≥ 1, hence a < b. In addition, the levels λk satisfying a <λk < b are
all the eigenvalues – counted with multiplicity – of Ã in the spectral gap (a,b).

Theorem 1 deserves some comments.

• The abstract min-max version of Talman’s principle stated in [2] and corrected in [2,
Erratum] is similar to the second part of Theorem 1. An earlier work on the subject, [10],
and also [13, 25], imply Talman’s principle for the Dirac operator only with a bounded
potential. Even in [2], the application to Dirac-Coulomb operators is valid only when
the subspace of smooth compactly supported wave functions is a core, and this imposes
the constraint ν ≤ p

3/2 for point-like atomic nuclei. The rigorous justification of Tal-
man’s min-max principle in the domain

p
3/2 < ν ≤ 1 was done in the series of later

works [14, 15, 6, 19]. In all those works, one assumes that k0 = 1, which amounts to
assumption (H3)1. The abstract min-max principle for eigenvalues in the case k0 ≥ 2 was
first considered in [5], but in that paper (H2) was replaced by a much more restrictive
assumption. Allowing k0 ≥ 2 can be important in some applications: see Section 6.

• Compared with [9, 19], another novelty is that we do not assume that the operator
−Λ−A|F− is self-adjoint or essentially self-adjoint in H− . As pointed out in [19], essen-
tial self-adjointness of −Λ−A|F− holds in many important situations. However there are
also interesting examples for which it does not hold. An application to Dirac-Coulomb
operators in which the essential adjointness of −Λ−A|F− does not hold true is described
in Section 6. Let us give a simpler example.

Example 1. On the domain F := (
C∞

c (Ω,R)
)2, consider the operator

A

(
u
v

)
:=

(−∆u
∆v

)
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taking values in H = (
L2(Ω,R)

)2
, where Ω is a bounded open subset of Rd with smooth

boundary. In this case one takes

Λ+
(
u
v

)
=

(
u
0

)
, Λ−

(
u
v

)
=

(
0
v

)
and (H1) holds. If λ(Ω) > 0 is the smallest eigenvalue of the Dirichlet Laplacian on Ω, we
can take a =−λ(Ω) in (H2) and we have λ1 =λ(Ω) > a, so Theorem 1 can be applied (with
k0 = 1). But −Λ−A|Λ−F is the Laplacian defined on the minimal domain C∞

c (Ω,R) , and it
is well-known that this operator is not essentially self-adjoint in L2(Ω,R) .

This paper is organized as follows. In Section 2, we introduce a number of mathe-
matical objects and state some preliminary results which explain the role of QE in Theo-
rem (1). For simplicity, we first consider the case k0 = 1. The self-adjoint extension Ã of A
is constructed in Section 3 and the abstract version of Talman’s principle for its eigenval-
ues is proved in Section 4. The case k0 ≥ 2 of Theorem 1 will be dealt with in Section 5.
Section 6 is devoted to Dirac-Coulomb operators with charge configurations that are not
covered by earlier results.

2. FUNCTIONAL SET-UP AND PRELIMINARY RESULTS

In order to prove Theorem 1 we need to introduce a number of mathematical objects.

In the whole paper, H is a Hilbert space with scalar product (·, ·) and associated norm
‖ ·‖. If T : Dom(T ) ⊂H →H is a linear operator, we define the corresponding norm by

‖x‖Dom(T ) :=
√
‖x‖2 +‖T x‖2 , ∀x ∈ Dom(T ) .

Recall that the fact that the quadratic form B defined by (3) is bounded from below
and closable in H− is just a consequence of Assumption (H2) and of the symmetry of
−Λ−A|F− . Of course Dom

(
B

)
is dense in H− since it contains F− . Let B : Dom(B) ⊂

H− → H− be the corresponding Friedrichs extension of the operator −Λ−A|F− . The

form-domain F (B) of B is precisely Dom
(
B

)
. The subspace F− is dense in F (B) for

the norm ‖ · ‖F (B), i.e., (B +E)1/2F− is dense in H− for any E > a, but we cannot say that
(B+E)F− is dense in H−, since we do not assume that −Λ−A|F− is essentially self-adjoint.

Given x+ ∈ F+ and E > a, let ϕE ,x+ : F− →R be defined by

ϕE ,x+(y−) := (
x++ y−, (A−E) (x++ y−)

)
, ∀ y− ∈ F− ,

and recall that LE is, according to (4), a well-defined operator on F+ taking values in
Dom(B) ⊂F (B) ⊂H−. In the sequel we will systematically take the condition

E > a

for granted. The heuristics is that ϕE ,x+(y−) = (x, A x)−E ‖x‖2 if x = x++ y− with x+ ∈ F+
and y− ∈ F−, so that, if y− is a critical point of (x, A x)/‖x‖2, then y− = LE x+. Let us make
this idea precise.

Lemma 2. For each x+ ∈ F+ and y− ∈ F−,

ϕE ,x+(y−) = (
x+, (A−E) x+

)+ (
LE x+, (B +E)LE x+

)− (
y−−LE x+, (B +E) (y−−LE x+)

)
.
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Proof. With z− := y−−LE x+ ∈ Dom(B), we obtain

ϕE ,x+(y−) = (
x+, (A−E) x+

)+2Re(A x+, y−)− (
y−, (B +E) y−

)
= (

x+, (A−E) x+
)+2Re

(
LE x+, (B +E) y−

)− (
y−, (B +E) y−

)
= (

x+, (A−E) x+
)+ (

LE x+, (B +E)LE x+
)

+Re
(
LE x+, (B +E) z−

)−Re
(
z−, (B +E) y−

)
= (

x+, (A−E) x+
)+ (

LE x+, (B +E)LE x+
)− (

z−, (B +E) z−
)

,

which completes the proof. �

Recall that in (5) we defined the graph ΓE of LE as

ΓE := {
x++LE x+ : x+ ∈ F+

}⊂ F+⊕Dom(B) ,

and that ΓE denotes its closure in H . As noticed in the proof of [19, Lemma 5],

ΓE ∩H− ⊂ (
(A−E)(F−)

)⊥ . (7)

The subspaceΛ−(A−E)(F−) of H− is not necessarily dense in H− since we do not assume
that Λ−A|F−

is essentially self-adjoint. For this reason, we cannot infer from (7) that ΓE ∩
H− = {0}. In other words, we do not know whether the operator LE is closable or not. This
is why we have to resort to a geometric viewpoint in which the linear subspace ΓE replaces
the possibly nonexistent closure of LE . Here is the main difference between the present work
and [19].

On ΓE we recall that the quadratic form is defined, according to (6), by

QE (x++LE x+) = (
x+, (A−E) x+

)+ (
LE x+, (B +E)LE x+

)=ϕE ,x+(LE x+) .

In the earlier works [2] and [19], QE is seen as a quadratic form on F+. For our argument,
it is essential to define it on ΓE : as we shall see, this will allow us to close it in ΓE .

Now, since F− is dense in F (B) for ‖ ·‖F (B), there is a sequence {yn}n in F− such that

lim
n→+∞

(
yn −LE x+, (B +E) (yn −LE x+)

)= 0.

Hence Lemma 2 tells us that

QE (x++LE x+) = sup
y−∈F−

ϕE ,x+(y−) .

Estimates on the variations of ‖x++LE x+‖ and QE (x++LE x+) as functions of E are useful.
The same statement can be found in [2, Lemma 2.1] and [19, Lemma 7], so we refer to
these works for a proof.

Lemma 3. Assume that (H1)-(H2) of Theorem 1 are satisfied. Then, for all a < E < E ′ and
for all x+ ∈ F+, we have

‖x++LE ′x+‖ ≤ ‖x++LE x+‖ ≤ E ′−a

E −a
‖x++LE ′x+‖ (8)

and

(E ′−E)‖x++LE ′x+‖2 ≤QE
(
x++LE x+

)−QE ′
(
x++LE ′x+

)≤ (E ′−E)‖x++LE x+‖2 . (9)
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Moreover, for any E > a :

λ1 > E if and only if QE (x++LE x+) > 0, ∀x+ ∈ F+ \ {0} ,

λ1 ≥ E if and only if QE (x++LE x+) ≥ 0, ∀x+ ∈ F+ .

As a consequence, we have λ1 > a if and only if

(iii’) For any E > a , QE (x++LE x+) ≥ 0, ∀x+ ∈ F+ .

For the sake of simplicity, up to the end of the current section, as well as in Sections 3
and 4, we impose the condition

λ1 > a , (10)

i.e., we assume that (H3)1, that is, (H3) with k0 = 1, holds. See Section 5 for necessary
changes to be done in the case k0 ≥ 2. For any E > a , let

κE := 1+max
{
0,(E −λ1)

}(
E −a

λ1 −a

)2

. (11)

Then, from the above Lemma, one easily sees that QE +κE‖ ·‖2 ≥ ‖·‖2 on ΓE and we may
define a new norm

NE :=
√

QE +κE ‖ ·‖2

on that space. Obviously, NE ≥ ‖ · ‖ on ΓE . Note that formulas (8) and (9) imply that,
for a < E < E ′, ΓE and ΓE ′ are isomorphic for the norm ‖ · ‖, as well as for the norms NE

and N ′
E . A detailed statement is as follows.

Corollary 4. Under conditions (H1), (H2) and (H3)1, for E, E ′ ∈ (a,∞) , the map iE ,E ′ :
x++LE x+ 7→ x++LE ′x+ is an isomorphism between ΓE and ΓE ′ for the norm ‖ · ‖, which
can be uniquely extended to an isomorphism between ΓE and ΓE ′ . Moreover there are two
positive constants c(E ,E ′) and C (E ,E ′) such that

c(E ,E ′)NE (x++LE x+) ≤NE ′(x++LE ′x+) ≤C (E ,E ′)NE (x++LE x+) , ∀x+ ∈ F+ , (12)

so iE ,E ′ is also an isomorphism for the norms NE and N ′
E .

Now, for x ∈ ΓE we may write QE (x) = (x,SE x), where

SE :=ΠE
(
Λ+(A−E)Λ++Λ−(B +E)Λ−

)
|ΓE

and ΠE : H → ΓE is the orthogonal projector on ΓE . The operator SE is the analogue in
our abstract context of the Schur complement of a block matrix. It is clearly symmetric,
and we have seen that QE is bounded from below, so QE is closable in ΓE . If GE denotes
the domain of its closure QE , P E the polar form of QE and TE the Friedrichs extension
of SE in ΓE . The space GE , endowed with the norm

NE :=
√

QE +κE ‖ ·‖2 ,

is complete. This space depends on E , since it is a subspace of ΓE , but (12) implies that,
for every E , E ′ > a, the map iE ,E ′ is the restriction toΓE of a unique isomorphism between
the two normed spaces

(
GE ,N E

)
and

(
GE ′ ,N E ′

)
. We have

ΓE ⊂ Dom(TE ) ⊂GE ⊂ ΓE ⊂H ,
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ΓE is dense in ΓE for ‖ · ‖ and ΓE is dense in GE for the norm N E . But we cannot say that
ΓE is dense in Dom(TE ) for ‖ ·‖Dom(TE ) since SE is not always essentially self-adjoint.

While we may have ΓE ∩H− 6= {0}, the following property holds.

Lemma 5. Under conditions (H1), (H2), (H3)1 and with the above notations,

ΓE ∩F (B) = {0} .

Proof. Notice that from (7),

ΓE ∩F (B) = (
ΓE ∩H−

)∩Dom
(
(B +E)1/2)

⊂ (
(B +E)(F−)

)⊥∩Dom
(
(B +E)1/2)= (B +E)−1/2

((
B +E)1/2F−

)⊥)
= {0} ,

since (B +E)1/2F− is dense in H− and (B +E)1/2 is into. �

Summarizing the observations of Section 2, we learn that

Proposition 6. Let A be a symmetric operator on the Hilbert space H . Assume (H1)-(H2)-
(H3) and take E > a. With the above notations, if (10) holds, then the quadratic forms
B and QE are bounded from below, B is closable in H− , QE is closable in ΓE and their
closures satisfy Dom

(
QE

)∩Dom
(
B

)= {
0
}
.

3. THE EXISTENCE OF A DISTINGUISHED SELF-ADJOINT EXTENSION

In this section, we continue with the proof of Theorem 1 in the case k0 = 1 by proving
the following proposition.

Proposition 7. Under the assumptions of Theorem 1, if (10) holds, then the operator A
admits a unique self-adjoint extension Ã such that Dom

(
Ã

) ⊂ Dom
(

QE

)+̇Dom
(
B

)
. Its

domain is Dom
(

Ã
) = Dom(A∗)∩ (

Dom
(

QE

)+̇Dom
(
B

))
and this subspace does not de-

pend on E.

3.1. Self-adjoint extension. We define an extension of A as follows. For any E > a, on
the subspace

Dom
(

Ã
)

:= (
GE +̇F (B)

)∩Dom
(

A∗)
, (13)

let us define
Ã x := A∗x , ∀x ∈ Dom

(
Ã

)
. (14)

This defines a self-adjoint extension of A because

F ⊂ (
ΓE +̇Dom(B)

)∩Dom
(

A∗)⊂ D
(

Ã
)

and A∗
|F = A .

We have to prove that Ã does not depend on E , that is, the subspace Dom
(

Ã
)

is inde-
pendent of E . Note that GE +̇F (B) is an algebraic direct sum, but the corresponding
projectors are not necessarily continuous. We now prove

Lemma 8. Assume that the conditions (H1), (H2) and (H3)1 hold. Let x, u ∈ GE and z−,
v− ∈F (B) be such that X = x + z− ∈ Dom (A∗). Then, with U = u + v−, we have(

(A∗−E)X ,U
)= P E (x,u)− (

(B +E)1/2z−, (B +E)1/2v−
)

(15)
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for any E > a. As a consequence, Ã is symmetric.

Proof. If x, u are in F , formula (15) is already proved (see Lemma 2). If X = x + z− and
U = u + v− satisfy the assumptions of the lemma, by density of ΓE in GE , and by density
of F− in F (B), there are sequences {Xn}n , {Un}n in F such that, with

xn :=Λ+Xn +LEΛ+Xn , zn :=Λ−Xn −LEΛ+Xn ,

un :=Λ+Un +LEΛ+Un , vn :=Λ−Un −LEΛ+Un ,

we have

lim
n→+∞QE (x −xn) = lim

n→+∞QE (u −un) = 0,

lim
n→+∞

(
(B +E)1/2(z−− zn), (B +E)1/2(z−− zn)

)= 0,

lim
n→+∞

(
(B +E)1/2(v−− vn), (B +E)1/2(v−− vn)

)= 0.

As a consequence,
lim

n→+∞‖X −Xn‖ = lim
n→+∞‖U −Un‖ = 0.

For m, n ∈N, (Xn ,Un) satisfy the identity (15). Since
(
(A∗−E)Xm ,Un

)= (
Xm , (A −E)Un

)
and

(
X , (A −E)Un

) = (
(A∗ −E)X ,Un

)
, passing to the limit as m → +∞ for each n, we

see that (X ,Un) satisfies (15). Then, passing to the limit as n →+∞, we find that (X ,U )
satisfies (15). �

Let us now prove that the domain of Ã does not depend on E . This immediately follows
from formula (13) and from the next lemma:

Lemma 9. Assume that the conditions (H1), (H2) and (H3)1 hold. Let E, E ′ > a, E ′ 6= E.
Then

GE +̇F (B) ⊂GE ′ +̇F (B) . (16)

Proof. If x + z− ∈GE +̇F (B), there exists a sequence yn ∈ F+ such that

yn →Λ+x , LE yn →Λ−x , yn +LE yn → x .

Then, y := limn→+∞(yn +LE ′ yn) ∈ ΓE ′ and

(LE −LE ′)yn + z− = (E ′−E) (B +E)−1LE ′ yn + z− ∈ Dom(B +E)+F (B) ⊂F (B) .

We need only to prove that y ∈GE ′ . This is a consequence of Lemma 3. �

What remains to be done is to show that for any E > a , Ã −E is a bijection. In fact we
are able to prove this for any E in the variational gap (a,λ1) .

Let f ∈ H . We look for X = x + z− in Dom(A∗) with x ∈ GE = F (TE ) and z− ∈ F (B),
such that (A∗−E)X = f . Thanks to Lemma 8, we can reformulate this problem as follows:

Find (x, z−) ∈GE +̇F (B) such that{
P E (x,u) = ( f ,u) , ∀u ∈GE ,(
(B +E)1/2z−, (B +E)1/2v−

)=−( f , v−) , ∀v− ∈F (B) .
(P f )
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Indeed, Lemma 8 guarantees that any solution of (A∗−E)X = f lying in D
(

Ã
)

must sat-
isfy (P f ). Conversely, if (x, z−) ∈ GE ×F (B) satisfies (P f ), then, by Lemma 8, for any
U ∈ F ,

(X , (A−E)U ) = (
X , (A∗−E)U

)= P E (x,Λ+U +LEΛ+U )

− (
(B +E)1/2z−, (B +E)1/2(Λ−U −LEΛ+U )

)= ( f ,U ) ,

so that X ∈ Dom(A∗) and (A∗−E)X = f .

Finally, since we assumed that E ∈ (a,λ1) , P E is a scalar product endowing GE with a
Hilbert space structure, so the Riesz isomorphism theorem tells us that the first equation
in (P f ) has a unique solution u ∈ GE . Similarly, since E > a, the second equation has a
unique solution z− ∈F (B). This proves that Ã is a self-adjoint operator.

Remark 10. Recalling thatΠE (resp. Λ−) is the orthogonal projector on ΓE (resp. H−), the
solution of the system of weak equations (P f ) can be expressed in terms of these projectors
and of the Friedrichs extensions TE and B :{

x = T −1
E ◦ΠE ( f ) ,

z− =−(B +E)−1 ◦Λ−( f ) .

This shows that x is in Dom (TE ) and that z− belongs to Dom(B). As a consequence, the
domain of Ã may also be written as

Dom
(

Ã
)= (

Dom (TE ) +̇Dom(B)
)∩Dom

(
A∗)

. (17)

The extension Ã is thus built. Its uniqueness among those whose domain is con-
tained in GE +̇F (B) is almost trivial. Indeed, for any other self-adjoint extension Â, we
must have Dom(Â) ⊂ Dom(A∗), hence, if Dom(Â) ⊂GE +̇F (B), then Dom(Â) ⊂ Dom

(
Ã

)
,

which automatically implies Â = Ã since both operators are self-adjoint. This completes
the proof of Proposition 7.

Remark 11. In [19], it is proved that the extension Ã is unique among the self-adjoint ex-
tensions whose domain is included inΛ+GE ⊕H−, assuming that the operator −Λ−A|F− is
essentially self-adjoint. Coming back to Example 1, let us show that without this assump-
tion, such a uniqueness result does not hold in general.

With the notations and assumptions of this example, one easily checks that F (B) =
{0}×H 1

0 (Ω) , GE = H 1
0 (Ω,R)×{0}, and, if∆(D) denotes the Dirichlet Laplacian with domain

H 2 ∩H 1
0 (Ω,R) , one has

Ã =
(−∆(D) 0

0 ∆(D)

)
.

But since ∆ : C∞
c (Ω,R) → L2(Ω,R) is not essentially self-adjoint, there are infinitely many

other self-adjoint extensions of A with domain included inΛ+GE ⊕ H−. An example is

Ã =
(−∆(D) 0

0 ∆(N )

)
with ∆(N ) the self-adjoint extension of ∆ associated with the Neumann boundary condi-
tion ∇v ·n = 0 .
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3.2. Variational interpretation. As a side remark, we give an interpretation of the self-
adjoint extension Ã that generalizes the Rayleigh- Ritz principle for semibounded oper-
ators mentioned in the introduction. Assuming that E ∈ (a,λ1) and given f ∈ H , let us
consider the inf-sup level

inf
x+∈F+

sup
y−∈F−

{
1
2

(
x++ y−, (A−E) (x++ y−)

)− ( f , x++ y−)
}

.

Of course, in general, this inf-sup is not attained in F+⊕F−, but enlarging this space one
can transform it into a min-max:

inf
x+∈F+

sup
z−∈D(B)

{
1
2

(
(x+, (A−E) x+)+ (LE x+, (B +E)LE x+)

)
− ( f , x++LE x+)− 1

2 (z−, (B +E) z−)− ( f , z−)
}

= inf
x+∈F+

{
1
2

(
(x+, (A−E) x+)+ (LE x+, (B +E)LE x+)

)− ( f , x++LE x+)
}

− inf
z−∈Dom(B)

{
1
2 (z−, (B +E) z−)+ ( f , z−)

}
= min

x∈GE

{
1
2 QE (x)− ( f , x)

}
− min

z−∈F (B)

{
1
2

(
(B +E)1/2z−, (B +E)1/2z−

)+ ( f , z−)
}

.

Each of these last two convex minimization problems has a unique solution, and the
system of Euler-Lagrange equations solved by the two minimizers is just (P f ), so their

sum is X = (
Ã−E

)−1
f .

4. THE MIN-MAX PRINCIPLE

In this section, we establish the min-max principle for the eigenvalues of Ã in the case
k0 = 1. Even if our assumptions are weaker and our formalism slightly different, the ar-
guments of this section are essentially the same as in [2, § 2], up to some missing details,
and the more complete proof of [19, § 2.6].

Proposition 12. Under assumptions of Theorem 1, if (10) holds, then for k ≥ k0 the num-
bers λk lie in the interval (a,b] and those λk satisfying λk < b are all the eigenvalues of Ã
in the spectral gap (a,b), counted with multiplicity.

If assumptions (H1) and (H2) hold, to each E > a we may associate the sequence of the
min-max levels

`k (E) := inf
V subspace of ΓE

dimV = k

sup
x∈V \{0}

QE (x)

‖x‖2
. (18)

We may also define the (possibly infinite) multiplicity numbers

mk (E) := card
{

k ′ ≥ 1 : `
k′ (E) = `k (E)

}
≥ 1. (19)

The next lemma gives a direct relation between the min-max levels `k (E) of QE and the
min-max levels λk of A defined by (2). This result and its proof can be found in [2,
Lemma 2.2] and in [19, Lemma 11]. The assumptions in these papers are stronger, but
the proof in our case is very similar and rather straightforward, and actually an easy direct
consequence of Lemma 3, so we omit it.
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Lemma 13. Under assumptions (H1) and (H2), for any k ≥ 1 and any λ > a such that
λ 6= λk , the signs of λk −λ and `k (λ) are the same. If, in addition, λk > a , then λk is the
unique solution in (a,+∞) of the nonlinear equation

`k (λ) = 0. (20)

In other words, 0 is the k th min-max level for the Rayleigh-Ritz quotients of Qλk , and this
determines λk in a unique way. As a consequence, mk (·) defined by (19) is such that

mk (λk ) = card
{

k ′ ≥ 1 : λk ′ =λk

}
.

Now, under assumptions (H1), (H2) and (H3)1 one should recall that ΓE is dense in GE

for the norm NE , so that (18) is equivalent to

`k (E) = inf
V subspace of GE

dimV = k

sup
x∈V \{0}

QE (x)

‖x‖2
, ∀k ≥ 1 (21)

Then, by the classical Rayleigh-Ritz principle, we have `k (E) ≤ infσess(TE ) and, in the
case `k (E) < infσess(TE ), `k (E) is an eigenvalue of TE with multiplicity mk (E).

Since we have a relation between the spectrum of TE and the min-max levels `k (E),
what remains to be done in order to end the proof of Theorem 1 is to find a relation
between the spectra of TE and Ã. In order to do so, we need some informations on the
continuity of the decomposition of X ∈ Dom

(
Ã

)
as a sum X = x + z− , x ∈ Dom(TE ) , z− ∈

Dom(B) . We already mentioned that this decomposition is not necessarily continuous
for the ‖ ·‖ norm, but we have the following result.

Lemma 14. Under assumptions (H1), (H2) and (H3)1, for any E > a , the two projections

πE : X ∈ Dom
(

Ã
) 7→ x ∈ Dom(TE ) and π′

E : X ∈ Dom
(

Ã
) 7→ z− ∈ Dom(B) ,

uniquely defined by the condition X = x + z− , are continuous for the norms ‖X ‖Dom(Ã) ,
‖x‖Dom(TE ) and ‖z−‖Dom(B) . More precisely, there is a positive constant CE such that

‖π′
E (X )‖Dom(B) ≤CE ‖Λ−(Ã−E)X ‖ and ‖πE (X )‖Dom(TE ) ≤CE ‖X ‖Dom(Ã) .

Moreover the constant CE remains uniformly bounded when E stays away from a and ∞ .

Proof. In the arguments below the constant CE changes value from line to line but we
keep the same notation for sake of simplicity. We use the weak formulation (P f ) of the
equation (Ã −E)X = f introduced in Section 3. In that section, f was given, X was un-
known and it was assumed that E ∈ (a,λ1) in order to make sure that (P f ) has a unique
solution X . But we use (P f ) differently here. We take E > a , X ∈ Dom

(
Ã

)
and we de-

fine x := πE (X ) , z− := π′
E (X ) , f := (Ã −E)X . Then (P f ) must hold. Looking at the sec-

ond equation of this system, we infer an estimate of the form ‖z−‖Dom(B) ≤ CE ‖Λ− f ‖ ,
hence the continuity of π′

E . Since ‖ · ‖Dom(B) ≥ ‖ · ‖ and x = X − z− , the estimate on z−
implies in turn the estimate ‖x‖ ≤ CE ‖X ‖Dom(Ã) . Combining this information with the
first equation in (P f ) we finally get the estimate ‖x‖Dom(TE ) ≤CE ‖X ‖Dom(Ã) , so πE is also
continuous. �
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Remark 15. In the sequel, we do not use all the informations contained in Lemma 14: we
only need the weaker estimates ‖π′

E (X )‖ ≤CE ‖Λ−(Ã−E)X ‖ and ‖πE (X )‖ ≤CE ‖X ‖Dom(Ã) .

We are now ready to prove the following result:

Proposition 16. Under assumptions (H1), (H2) and (H3)1, let E > a and m ∈N∗ be such
that for any δ> 0 , Rank

(
1(−δ,δ)(TE )

)≥ m . Then for any ε> 0 , Rank
(
1(E−ε,E+ε)

(
Ã

))≥ m .

Proof. For δ > 0 let Xδ be a subspace of R
(
1(−δ,δ)(TE )

)
of dimension m . Then we have

Xδ ⊂ Dom(TE ) ⊂GE . Using Lemmas 8 and 14 we find that for all x ∈Xδ and y ∈ Dom
(

Ã
)

,

|(x, (Ã−E)y)| = |PE (x,πE (y))| = |(TE x,πE (y))| ≤ δ‖x‖‖πE (y)‖ ≤CE δ‖x‖‖y‖Dom(Ã) .

Assume by contradiction that for some ε0 > 0, Rank
(
1(E−ε0,E+ε0)

(
Ã

)) ≤ m − 1. Then for
each δ> 0 there is xδ in Xδ such that ‖xδ‖ = 1 and 1(E−ε0,E+ε0)

(
Ã

)
xδ = 0. So there is yδ ∈

Dom
(

Ã
)

such that (Ã−E)yδ = xδ and ‖yδ‖ ≤ ε−1
0 . We thus get

(
xδ,

(
Ã−E

)
yδ

)= ‖xδ‖2 = 1
and CE‖xδ‖‖yδ‖Dom(Ã) is bounded independently of δ. So, taking δ small enough we

obtain
∣∣(xδ,

(
Ã −E

)
yδ

)∣∣ > CE δ‖xδ‖‖yδ‖Dom(Ã) and this is absurd. We have thus proved
the Proposition by contradiction. �

The converse of Proposition 16 is also true:

Proposition 17. Under assumptions (H1), (H2) and (H3)1, let E > a and m ∈N∗ be such
that for any ε> 0 , Rank

(
1(E−ε,E+ε)

(
Ã

))≥ m . Then for all δ> 0 , Rank
(
1(−δ,δ)(TE )

)≥ m .

Proof. For ε> 0, let Yε be a subspace of R(1(E−ε,E+ε)
(

Ã
)
) of dimension m . Then we have

Yε ⊂ Dom
(

Ã
)⊂ Dom(TE )+̇Dom(B). Using Lemma 8 we find that for all x ∈ Dom(TE ) and

Y ∈Yε , ∣∣(TE x,πE (Y )
)∣∣= ∣∣PE

(
x,πE (Y )

)∣∣= ∣∣(x,
(

Ã−E
)
Y

)∣∣≤ ε‖x‖‖Y ‖ .

Moreover for any Y ∈Yε , from Lemma 14 one has∥∥π′
E (Y )

∥∥≤CE
∥∥Λ−

(
Ã−E

)
Y

∥∥≤CE ε‖y‖ .

So, imposing ε ≤ 1
2CE

and using the triangular inequality, we get the estimate ‖Y ‖ ≤
2‖πE (Y )‖ for any Y ∈ Yε . As a consequence, the subspace Vε := πE (Yε) ⊂ Dom(TE ) is
m-dimensional and for all x ∈ Dom(TE ) and y ∈Vε , one has

|(TE x, y)| ≤ 2ε‖x‖‖y‖ .

To end the proof of the Proposition, let us assume by contradiction that there exists
δ0 > 0 such that Rank

(
1(−δ0,δ0)(TE )

) ≤ m −1. Then for each small ε there is yε in Vε such
that ‖yε ‖ = 1 and 1(−δ0,δ0)(TE )yε = 0. So there is xε ∈ Dom(TE ) such that TE xε = yε and
‖xε‖ ≤ δ−1

0 . We thus get (TE xε, yε) = ‖yε ‖2 = 1 and ‖xε ‖‖yε ‖ ≤ δ−1
0 . So, taking ε small

enough we get |(xε, (Ã−E)yε)| > 2ε‖xε ‖‖yε ‖ and this is absurd. We have thus proved the
Proposition by contradiction. �

Combining Lemma 13 with Propositions 16 and 17 completes the proof of Proposition 12.
ä
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5. END OF THE PROOF OF THE MAIN RESULT

With Propositions 6, 7 and 12, the proof of Theorem 1 is complete if k0 = 1 in as-
sumption (H3). In the more general case k0 ≥ 1, one can define the Friedrichs exten-
sion B exactly as before, as well as the operator LE , its graph ΓE and the quadratic form
QE (x) = (x,SE x) with SE = ΠE (Λ+(A−E)Λ++Λ−(B +E)Λ−)|ΓE

, ΠE : H → ΓE being the

orthogonal projector on ΓE .

Lemma 2 still holds, as well as the inequalities (8) and (9) of Lemma 3. But of course,
when k0 ≥ 2 there is no value of E > a such that QE ≥ 0. However we have the following
result:

Lemma 18. Under assumptions (H1), (H2) and (H3), for any E > a , there is κE > 0 such
that QE +κE ‖ ·‖2 ≥ ‖·‖2 on ΓE .

Proof. Note that formula (11) for κE given for k0 = 1, does not work for λ1 = a . We thus
need a new argument when k0 ≥ 2. Fortunately, as in the case k0 = 1, we just have to find
a constant κE for any E > a : then the inequalities (8) and (9) will immediately imply its
existence for any E > a . We take E ∈ (a,λk0 ) . Since λk0−1 = a < E , by Lemma 13 we have
`k0−1(E) ∈ [−∞,0) . So there is a (k0 −1)-dimensional subspace W of ΓE such that

`′ := sup
w∈W \{0}

QE (w)

‖w‖2
∈ (−∞,0) .

Let C := sup
{‖SE w‖ : w ∈ W , ‖w‖ ≤ 1

}
. This constant is finite, since W is finite-dimen-

sional. We now consider an arbitrary vector x in ΓE and we look for a lower bound on
QE (x) . We distinguish two cases.

• First case: x ∈W . Then QE (x) = (x,SE x) ≥−C‖x‖2 .

• Second case: x ∉ W . Then the vector space span{x}⊕W has dimension k0 . Since we
have λk0 > E > a , by Lemma 13 we obtain `k0 (E) > 0, so there is a vector w0 ∈ W such
that QE (x +w0) ≥ 0. Then we have

QE (x) =QE (x +w0)−2Re(x,SE w0)−QE (w0) ≥−2C ‖x‖‖w0‖+|`′|‖w0‖2 ≥−C 2

|`′| ‖x‖2 .

So in all cases, if we choose κE = 1+max
{
C ,C 2/|`′|} , we get QE (x)+κE ‖x‖2 ≥ ‖x‖2 . This

ends the proof of the lemma. �

Now, using Lemma 18, we can construct NE , GE , QE , N E and Ã exactly as in the
case k0 = 1. Then Corollary 4 and Lemmas 5, 8, 9 remain true under the more general
hypothesis (H3)k0 instead of (H3)1, and their proofs are unchanged.

When E ∈ (a,λk0 ) , the problem (P f ) defined in Section 3.1 has a unique solution
(u, z−) ∈ GE ×F (B) , as in the case k0 = 1. For the existence and uniqueness of z− sat-
isfying the second equation in (P f ), the argument is exactly the same: one appeals to

the Riesz isomorphism theorem. But when k0 ≥ 2, QE is no longer positive definite, so
we cannot use the Riesz isomorphism theorem for the existence and uniqueness of u.
Instead, we recall that from Lemma 13, `k0−1(E) < 0 and `k0 (E) > 0. By the Rayleigh-Ritz
principle, σ(TE )∩(

`k0−1(E),`k0 (E)
)

is empty, so TE is an isomorphism between Dom(TE )



DISTINGUISHED SELF-ADJOINT EXTENSION AND EIGENVALUES OF OPERATORS WITH GAPS 15

andΓE that extends to an isomorphism between GE and its topological dual. This implies
the existence and uniqueness of u satisfying the first equation in (P f ). The other argu-
ments in Section 3.1 are unchanged. Note, however, that the variational interpretation
of (P f ) given in Section 3.2 is no longer valid when k0 ≥ 2, but it was just a side remark
that plays no role in the proof of Theorem 1. So the first part of this theorem is proved for
any value of k0 .

In Section 4, all statements remain true if one replaces assumption (H3)1 by the more
general assumption (H3)k0 with k0 ≥ 1, and their proof is unchanged. The only difference
is that the conditionλk > a appearing in Lemma 13 is only true for k ≥ k0 instead of k ≥ 1.
This completes the proof of Theorem 1 when k0 ≥ 2.

6. APPLICATIONS TO DIRAC-COULOMB OPERATORS

Let us consider the Dirac-Coulomb operator in dimension 3 given by

A =−i α∇+β+V

and start by the case of a point-like nucleus corresponding to the potential V (x) =−ν/|x| .
Using Talman’s splitting Λ+(ψ) = (φ,0) , Λ−(ψ) = (0,χ) of four-spinors ψ= (φ,χ) into up-
per and lower two-spinors, thanks to Theorem 1 with k0 = 1 we can define a distinguished
self-adjoint extension of A with minimal domain C∞

c (R3 \{0},C4) for any 0 ≤ ν≤ 1 and we
can also characterize all the eigenvalues of this extension in the spectral gap (−1,1) by
the min-max principle (2). This is not a new result: see [2, 8, 6, 19], where it was also
noted that V can be replaced by more general attractive potentials which are bounded
from below by −1/|x| near the origin.

A more delicate situation arises when

V (x) =−ν1

|x| +
ν2

|x −x0|
with x0 6= 0, 0 < ν1 ≤ 1 with

3

4
< ν2 ≤ 2

π
2 + 2

π

.

In such a case, Talman’s decomposition in upper and lower spinors cannot be used: as-
sumption (H2) does not hold. Instead, as projectors we choose

Λ± = 1R±(−i α∇+β) ,

and as domain F we take the Schwartz class S (R3,C4), so that (H1) is satisfied. By the
upper bound on ν2, it follows from an inequality of Tix [24] that the Brown-Ravenhall
operator −Λ−

(
A + 1−ν2

)
|Λ−F

is non-negative so that (H2) holds with a = −1+ν2. On
the other hand, since ν1 ≤ 1, [2, inequality (36)] implies that λ1 ≥ 0, so (H3)1 holds as
well and thus, Theorem 1 can be applied with k0 = 1. But as shown in [23, Corollary 3],
−Λ−A|Λ−F is not essentially self-adjoint, since ν2 > 3/4, so one cannot use the abstract
result of [19].

Interesting cases of application of Theorem 1 with k0 ≥ 2 are Dirac operators perturbed
by an attractive electrostatic potential V (x) =−∑

i
νi

|x−xi | generated by several nuclei, each
having at most Zi protons with Zi ≤ Z∗ ≈ 137.04 so that νi = Zi /Z∗ < 1. If the total num-
ber of protons

∑
i Zi is larger than 137, a finite number N of eigenvalues of the distin-

guished extension in the spectral gap (−1,1) can dive in the negative continuum when
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the nuclei get sufficiently close. If this happens, the N first min-max levels λk (with Tal-
man’s splitting for instance) become equal to a =−1 and one has to take k0 = N +1 (see
the recent work [7] for more details).
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