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1. Introduction

The first eigenvalue λV,1 of a Schrödinger operator −∆ + V can
be estimated using Sobolev’s inequalities, [24, 22, 11]. In some re-
cent papers, [2, 25, 5], a precise connection has been given between
the optimal estimates of λV,1 in terms of a norm of V , and the opti-
mal constants in some related Gagliardo-Nirenberg inequalities. Such
inequalities admit optimal functions, see [26, 5]. In the case of or-
thonormal and sub-orthonormal systems, interpolation inequalities of
Gagliardo-Nirenberg type provide information on optimal constants in
inequalities, see [16, 15, 9, 8], which can be extended to Lieb-Thirring
type inequalities, [14]. We refer to [5] for references in this direction
and precise statements concerning the relation between optimal con-
stants in these two families of inequalities, in the case of the euclidean
space Rd.

Conversely, the knowledge of Lieb-Thirring inequalities can be re-
phrased into interpolation inequalities for mixed states, which are infi-
nite systems of orthogonal functions with occupation numbers, see [5].
It is well known that an equivalent formulation holds in terms of op-
erators. In this paper we rewrite and extend these interpolation in-
equalities for trace-class self-adjoint operators and focus on the case of
a bounded domain Ω ⊂ Rd. We also study, at the level of operators,
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the compactness properties of the corresponding embeddings, which
somehow extend the well known properties of Sobolev’s embeddings to
trace-class self-adjoint operators.

An important source of motivation for us is the paper by Markowich,
Rein and Wolansky, [18], which was devoted to the analysis of the
stability of the Schrödinger-Poisson system. It involves in a crucial way
some functionals which are a key tool of our approach, and that we will
call free energy functionals because of their interpretation in physics.
In [18], the authors refer to such functionals as Casimir functionals,
for historical reasons in mechanics, see for example [28].

During the last few years, various results based on free energy func-
tionals, which are sometimes also called generalized entropy function-
als, have been achieved in the theory of partial differential equations.
We can for instance quote nonlinear stability results for fluid and kinetic
equations, see for instance [28, 12, 13, 21], studies of the qualitative
behavior of the solutions of kinetic and diffusion equations, including
large time asymptotics and diffusion limits, see for example [1, 4, 6],
and applications to free boundary problems: [7], or quantum mechan-
ics: [17, 18]. At a formal level, these various functionals are all more
or less the same object, but the precise connection among them is still
being studied at the moment from a mathematical point of view.

Minimizing the free energy functional for a given potential is equi-
valent to proving Lieb-Thirring inequalities, while the optimization on
the potential provides interpolation inequalities. Such questions have
been only tangentially studied in [18], since in this paper the poten-
tial is an electrostatic Poisson potential with homogeneous Dirichlet
boundary conditions and therefore always positive. Here we work in a
much more general setting which physically could correspond to exter-
nal potentials with a singularity (for instance created by doping charged
impurities in a semi-conductor) and our first task is therefore to bound
from below the free energy functional, that is to establish adapted
Lieb-Thirring inequalities. Our second step consists in reformulating
these inequalities in terms of Gagliardo-Nirenberg type interpolation
inequalities for operators, and to study the compactness properties of
the corresponding embeddings. Afterwards, the minimization proce-
dure becomes more or less trivial, thus giving for almost no work the
existence of minimizers, including the case of non-linear models involv-
ing, for instance, a Poisson coupling.

This paper is organized as follows. Section 2 is devoted to definitions
and preliminary results. In Subsection 2.1 we present the operator set-
ting, that is the Sobolev-like cone H1

+, an appropriate set of positive
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trace-class operators acting on L2(Ω). Basic properties of these cones
are given in Proposition 2.1 and a regularity result concerning the den-
sity functions associated to H1

+ is established in Proposition 2.2. In
Subsection 2.2 we define a set of trace-class operators having the form
F (−∆). To this class belong the operators generated by the Boltz-
mann distribution and the Fermi-Dirac statistics, see Example 2.4. In
Subsection 2.2 we also introduce the free energy functional FV,β(L), for
every L ∈ H1

+.
In Section 3 we present our main results. In Subsection 3.1 we start

by recovering Lieb-Thirring and Gagliardo-Nirenberg inequalities, as
obtained in [5], but in the language of operators and for the case of a
bounded domain, in Theorem 3.1 and 3.2 respectively. The key esti-
mate here is a convexity inequality obtained in Lemma 3.1. In Subsec-
tion 3.2 we prove Proposition 3.2 which is crucial for dealing with non-
positive potentials. Then in Subsection 3.3 we prove Theorem 3.3 which
is the anounced extension of Lieb-Thirring and Gagliardo-Nirenberg in-
equalities, the first of our main results. Finally in Subsection 3.4 we
prove our second main result, in Theorem 3.4 and Corollary 3.4, on
compactness properties of the space H1

+.
As a simple consequence, in Section 4, we obtain the existence of

minimizers in several cases of interest in quantum mechanics. Some
additional references for applications in quantum mechanics are given
at the end of this paper.

2. Definitions and preliminary results

Along the paper we shall assume that Ω is a bounded domain in Rd,
d ∈ N. Even though all our results will be proved under this assump-
tion on Ω, most results also hold if Ω is unbounded and appropriate
assumptions are made. These assumption whould involve the eigen-
values of the Laplacian with Dirichlet boundary condition and/or the
behavior of the external potential. By convention, N denotes the set of
positive integers only.

2.1. The operators setting. We denote by L = L(L2(Ω)) the space
of bounded linear operators acting on L2(Ω). We denote by I∞ and S∞
the subspaces of L respectively made of compact and compact self-
adjoint operators.

We shall deal with elements of the space of trace-class operators,

I1 ≡
{
L ∈ I∞ :

∑
i∈N

∣∣〈χi, Lχi〉L2(Ω)

∣∣ <∞
}
,
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which is a subspace of the space of Hilbert-Schmidt operators,

I2 ≡
{
L ∈ I∞ :

∑
i∈N

∣∣〈χi, |L|2 χi〉L2(Ω)

∣∣ <∞
}
,

where {χi}i∈N is any complete orthonormal system in L2(Ω). The trace
of an operator L ∈ I1 is given by

Tr [L] ≡
∑
i∈N

〈
χi, Lχi

〉
L2(Ω)

.

For the basic properties of I1, I2 and the spaces Sq (see definition
below), we refer the reader to [19, 20]. We just recall a couple of
important facts. The space I2 is a Hilbert space when equipped with
the product 〈L,R〉2 ≡ Tr [R∗L]; the corresponding norm is denoted
by ‖ · ‖2. It is also well known that an operator L ∈ L belongs to the
Hilbert-Schmidt space if and only if there is a function KL ∈ L2(Ω×Ω),
the kernel of L, such that

‖L‖2
2 =

∫ ∫
Ω×Ω

|KL(x, y)|2 dx dy

(Lη)(x) =

∫
Ω

KL(x, y) η(y) dy for x ∈ Ω a.e. , ∀ η ∈ L2(Ω) .

Remark 2.1. From now on we only deal with self-adjoint operators.
For L ∈ S∞ we denote by {νi(L)}i∈N, or simply {νi}i∈N if there is no
ambiguity, the sequence of eigenvalues of L counted with multiplicity
(which is well defined by the Hilbert-Schmidt theorem). We adopt the
convention that {νi}i∈N is ordered in a way such that {|νi|}i∈N is non-
increasing, and if both ν and −ν are eigenvalues, −|ν| comes first. We
will denote by {ψi(L)}i∈N, or simply {ψi}i∈N if there is no ambiguity,
an associated L2(Ω)-complete orthonormal system of eigenfunctions.

We also consider the Banach space

Sq ≡
{
L ∈ S∞ : ‖L‖q ≡

(∑
i∈N

|νi|q
)1/q

<∞
}
,

where q ∈ [1,∞), which is the closure of the space of finite rank self-
adjoint operators with respect to the norm ‖ · ‖q. It can be proved
that the two given definitions of ‖L‖2 coincide. If 1 ≤ q ≤ ∞ and
q−1 + r−1 = 1, then

‖AB‖1 ≤ ‖A‖q ‖B‖r, ∀ A ∈ Sq , B ∈ Sr .
It is also well known that for L ∈ S1 the function ρL given by

ρL(x) ≡
∑
i∈N

νi |ψi(x)|2, x ∈ Ω a.e. , (2.1)
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is in L1(Ω) and does not depend on the special choice of the complete
orthonormal sequence {ψi}i∈N. If, additionally, L is a non-negative
operator, ρL is also non-negative and it is called the density function
associated to L. Such a definition is consistent with the density oper-
ator formalism in quantum mechanics.

Definition 2.1. An operator L ∈ S1 is in the Sobolev-like cone H1 if
{ψi(L)}i∈N ⊂ H1

0(Ω) and

〈〈L〉〉2 ≡
∑
i∈N

|νi| · ‖ψi‖2
H1

0(Ω) <∞ . (2.2)

The following proposition collects some basic facts:

Proposition 2.1. The Sobolev-like cone H1 of trace-class operators
satisfies the following properties:

i) Given L ∈ H1, 〈〈L〉〉2 depends only on L and not on the partic-
ular basis of eigenfunctions of L.

ii) H1 is a cone in the sense that for every L ∈ H1 and for all
α ∈ R, αL ∈ H1.

iii) For every L ∈ H1 and α ∈ R
〈〈αL〉〉2 = |α|〈〈L〉〉2 ,

and 〈〈αL〉〉2 = 0 if and only if L = 0 or α = 0.
iv) There exists a constant c2 = c2(Ω) such that

‖L‖1 ≤ c2 〈〈L〉〉2, ∀ L ∈ H1 . (2.3)

Property (iii) justifies the denomination of cone. We define the
kinetic energy functional on the positive cone of positive operators
H1

+ ≡ {L ∈ H1 : L ≥ 0}, as

K(L) ≡
∑
i∈N

νi

∫
Ω

|∇ψi(x)|2 dx , L ∈ H1
+ .

We shall simply say that K(L) is the kinetic energy of L .

Remark 2.2. We may extend the definitions given before to a more
general situation. Given l ∈ N and p ∈ [1,∞[, we say that an operator
L ∈ S1 is in the Sobolev-like cone W l,p if {ψi(L)}i∈N ⊂ W1,p

0 (Ω) ∩
Wl,p(Ω) and ∑

i∈N

|νi| · ‖ψi‖pW l,p(Ω)
<∞ .

We observe that the above term may be basis-dependent, but we could
still define a notion similar to 〈〈·〉〉2 by taking the infimum on all possible
bases. Many properties of usual Sobolev spaces can be adapted to W l,p
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sets of operators. For instance, W l2,p ⊂ W l1,p if l1 ≤ l2 and W l,q ⊂ W l,p

if 1 ≤ p < q < ∞. Although some of our results can be extended to
these cones, for simplicity we will not go further in this direction.

The following result, which is a short version of Theorem 3.4, says
that the embedding H1

+ ⊂ I1 equipped with K is compact and plays a
role similar to the embedding H1

0 (Ω) ↪→L2(Ω) .

Theorem 2.1. Let {Ln}n∈N be a sequence in H1
+ such that {K(Ln)}n∈N

is bounded. Then, up to a subsequence, {Ln}n∈N converges in trace
norm ‖ · ‖1 to some L in H1

+.

Exactly as for the embedding H1
0(Ω) ↪→ L2(Ω), some interpolation

inequalities are associated with this compactness result. These inequal-
ities are presented in Theorem 3.2, thus generalizing to self-adjoint
trace-class operators the usual Gagliardo-Nirenberg inequalities.

The Sobolev-like cones H1 and H1
+ are analogues of H1

0(Ω) and
H1

0,+(Ω) = {u ∈ H1
0(Ω) : u ≥ 0} at the level of self-adjoint com-

pact operators. This results in integrability properties for the function
ρL(x) =

∑
i∈N νi |ψi(x)|2, defined in (2.1), which are the counterpart of

Sobolev’s embeddings.

Proposition 2.2. For any L ∈ H1, the function ρL belongs to the
space W1,r(Ω) ∩ Lq(Ω) with r and q in the following ranges:

i) for all q ∈ [1,∞] and r ∈ [1, 2] if d = 1,
ii) for all q ∈ [1,∞[ and r ∈ [1, 2] if d = 2,
iii) for all q ∈ [1, d/(d− 2)] and r ∈ [1, d/(d− 1)] if d ≥ 3.

Proof. Assume that d ≥ 3 and r ∈ [1, d/(d − 1)]. Using the convexity
of s 7→ |s|r, Hölder’s and Sobolev’s inequalities, we obtain∫

Ω

|∇ρL|r dx ≤ 2r
∫

Ω

(∑
i∈N

|νi ψi∇ψi|
)r
dx

≤
(
2
∑
j∈N

|νj|
)r ∫

Ω

∑
i∈N

(
|νi|P

j∈N |νj |

)
|ψi|r|∇ψi|r dx

≤ 2r
(∑
j∈N

|νj|
)r−1∑

i∈N

|νi|
(∫

Ω

|∇ψi|2
) r

2
(∫

Ω

|ψi|
2r

2−r

)1− r
2

≤ 2r srr ‖L‖r−1
1 K(L)

where sr is the optimal constant in Sobolev’s embedding H1
0 (Ω) ↪→

L
2r

2−r (Ω) found by Aubin and Talenti. Thus, from (2.3) we find

‖∇ρL‖Lr(Ω) ≤ 2 sr ‖L‖
1− 1

r
1 K

1
r (L) ≤ 2 sr c

1− 1
r

2 K(L)
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where c2 = c2(Ω, 2) is the Poincaré constant. Therefore, by the critical
Sobolev embedding, we finally have

‖ρL‖Ld/(d−2)(Ω) ≤ sd/(d−1) ‖∇ρL‖Ld/(d−1)(Ω) ≤ 2 s2
d/(d−1) c

1− 1
r

2 K(L) <∞ .

The cases d = 1, 2 follow similarly from the Sobolev inequalities,
with the corresponding restrictions on q and r. �

2.2. Operators of the form F(−∆) and Free Energy functionals.
We recall that Ω ⊂ Rd is assumed to be bounded. For a potential
V = V (x) defined on Ω and a positive number α > 0, we consider the
following condition:

(Vα) The Schrödinger operator −α∆ + V , with Dirichlet boundary
conditions, has a sequence of eigenelements

{(λαV,i, φαV,i)}i∈N ⊂ R× H1
0(Ω) (2.4)

such that {φαV,i}i∈N is a complete orthonormal system in L2(Ω)
and λαV,i →∞ as i→∞ .

When V and α satisfies (Vα), we shall say that a function F : R →
R ∪ {∞} is of Casimir class CαV if it is convex and∑

i∈N

F (λαV,i) is finite.

It is clear that CαV is a convex cone, that is, it is convex and stable
under addition and multiplication by a positive constant. When α = 1
we consider condition (V1) and we shall simply write λV,i, φV,i and CV
instead of λ1

V,i, φ
1
V,i and C1

V , respectively.

Example 2.1. The properties of the Laplacian with homogeneous
Dirichlet boundary conditions are well known (see e.g. [3, Theorem
IX.31]). This corresponds to V = 0 and α = 1 in Condition (Vα). We
notice that if V is a potential which is bounded from below, say by a
constant λ, the eigenvalues λV,i satisfy λV,i ≥ λ0,i + λ, for all i ∈ N,
and therefore the sequence {λV,i}i∈N diverges, since {λ0,i}i∈N diverges.

The Spectral Theorem, see for instance [19, Theorem VIII.5] allows
us to define the trace-class operator F (−α∆ + V ) for each F ∈ CαV ,
whenever α ∈ R+ and V verifies (Vα). In this case, it follows that the
spectrum σ(−α∆ + V ) ≡ {λαV,i : i ∈ N} is contained in Dom(F ) ≡
{s ∈ R : F (s) <∞}.

Example 2.2. Let γ > γd ≡ d/2. Then, as we shall see below,∑
i∈N

(λ0,i)
−γ <∞ , (2.5)
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so that the function

F (s) =

{
s−γ if s ≥ 0 ,

+∞ if s < 0 ,

belongs to the Casimir class C0 and therefore (−∆)−γ is a trace-class
operator.

Example 2.3. More generally, let F : R → R ∪ {+∞} be a non-
increasing convex function which is non-negative and such that for any
s ≥ 0 large,

F (s) ≤ C

(1 + s)ε+d/2
,

for some constants C, ε > 0. Then heuristically we have that F (λ0,i)
is summable and can be estimated by

∑
k∈N F (k) · #A(k), for d ≥ 3,

where A(k) ≡ {i ∈ N : k < λ0,i ≤ k + 1}. Using Weyl’s estimate [27],
#A(k) grows like kd/2−1 for large k, it follows that F (k)·#A(k) behaves
like k−1−ε as k → ∞. Consequently

∑
i∈N F (λ0,i) is finite and then F

belongs to the Casimir class C0.

Example 2.4. Assume f : R → R is a Casimir function (see [18]),
that is a function that satisfies the following properties:

i) There exists s1 ∈ [−∞,∞) such that f(s) = ∞ for any s ∈
(−∞, s1).

ii) f is continuous on (s1,∞).
iii) There exists s2 ∈ (s1,∞] such that f(s) > 0 for any s ∈ (s1, s2)

and f(s) = 0 for any s ≥ s2 .
iv) f is strictly decreasing on (s1, s2) .
v) If s2 = ∞, there exists two positive constants ε and C such

that for any s ≥ 0, large,

f(s) ≤ C

(1 + s)ε+1+d/2
.

Then the function

F (s) =

∫ ∞

s

f(t) dt (2.6)

falls in the class of functions of the Example 2.3. Under these conditions
f(−∆) is also a trace-class operator if one requires ε > 1, see [18].
The function of Example 2.2, the Fermi-Dirac statistics defined by
f(s) =

∫
Rd

dv

α+es+|v|2/2
and the Boltzmann distribution f(s) = e−αs,

where α > 0, are Casimir functions.

We continue by introducing the entropy functionals, which can be
generated by elements in the class CαV .
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Definition 2.2. Given L ∈ H1
+ and a convex function β : R → R ∪

{+∞} such that β(0) = 0, we shall call the value

Eβ(L) ≡ Tr [β(L)] =
∑
i∈N

β(νi(L))

the β-entropy of L provided Eβ(L) ∈ (−∞,∞]. In this case we say
that β is an entropy seed. Additionally, if V ∈ L1

loc(Ω) and L ∈ H1
+

are such that ρLV ∈ L1(Ω), then we shall define the (V, β)-free energy
of L by

FV,β(L) ≡ Eβ(L) +K(L) + PV (L), (2.7)

where

PV (L) ≡ Tr [V L] =

∫
Ω

V (x)ρL(x)dx

shall be referred to as the V -potential energy of L.

We shall say that an entropy seed β is generated by the convex
function F if

β(s) = F ∗(−s) , s ∈ R ,

where for a convex function θ : R → R∪{+∞} such that θ 6≡ +∞, we
denote by θ∗ the Legendre-Fenchel transform of θ, that is the function
defined by

θ∗(ν) ≡ sup
λ∈R

{νλ− θ(λ)} ∀ ν ∈ R . (2.8)

Example 2.5. Let γ > γd ≡ d/2 and

βm(s) =

{
∞ if s < 0 ,

− cm sm if s ≥ 0 ,

where cm = (1 − m)m−1m−m and m = γ
γ+1

∈
(

d
d+2

, 1
)
. The entropy

seed βm is generated by the function F of Example 2.2.

The V -potential energy functional is bounded from below in H1
+ if

and only if V is non-negative. To be precise, we can make the following
observation.

Proposition 2.3. Let V be a potential and assume that A ⊆ H1
+ is

such that αA ⊆ A, for all α > 0. Then

inf
L∈A

PV (L) ≥ C (2.9)

for some constant C ∈ R if and only if

inf
L∈A

PV (L) = 0 , (2.10)

which is equivalent to V ≥ 0 a.e.
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Proof. If we assume (2.9) and there is L ∈ A such that 0>PV (L)>C,
then it should also be true that

0 > PV (αL) = αPV (L) > C ∀ α > 0 ,

but this is impossible for α > |C|/|PV (L)| . Then, as limα→0P(αL) =
0, we have (2.10). Next, assuming (2.10) we see that V ≥ 0 a.e., since
in the contrary we can find L such that PV (L) < 0. Finally, if V ≥ 0
a.e., then (2.9) follows with C = 0. �

3. Main results

3.1. Lieb-Thirring and Gagliardo-Nirenberg inequalities (I).
In this subsection we interpret the results obtained in [5] in terms of
the operator formalism and we adapt those results originally written
in Rd to our context, a bounded domain Ω ⊂ Rd.

Following the setting defined in [5], we let g be a non-negative func-
tion on R+ such that∫ ∞

0

g(t)
(
1 + t−d/2

) dt

t
<∞ (3.1)

and consider F and G such that

F (s) =

∫ ∞

0

e−t s g(t)
dt

t
, G(s) =

∫ ∞

0

e−t s (4π t)−d/2 g(t)
dt

t
. (3.2)

Observe that F,G : R → R ∪ {+∞} are convex non-increasing func-
tions. By considering a bounded domain Ω instead of Rd we obtain the
following adaptation of Theorem 3 in [5].

Theorem 3.1. Let V ∈ L1
loc(Ω) be a potential bounded from below.

Assume moreover that G(V ) is in L1(Ω), with F and G given by (3.2)
and g satisfying (3.1). Then we have∑

i∈N

F (λV,i) = Tr [F (−∆ + V )] ≤
∫

Ω

G(V (x)) dx .

Recall that λαV,i has been defined in (2.4). A proof of this theorem is
easily achieved using [5, Th. 3] with an appropriate increasing sequence
of potentials {Vn}, so that its limit is +∞ outside Ω, and V in Ω. Notice
that [5, Th. 3] can be recovered by taking larger and larger sets Ω.

Remark 3.1. Having in mind Example 2.1, under the hypotheses of
Theorem 3.1, the function F given by (3.2), is convex and satisfies∑

i∈N F (λV,i) <∞, so that F belongs to the Casimir class CV .

Theorem 3.1 is well illustrated with the following examples.
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Example 3.1. If V ∈ L1
loc(Ω) is a non-negative potential such that

V
d
2
−γ is in L1(Ω) and F is the function given in Example 2.2, then

Theorem 3.1 takes the following special form

Tr
[
(−∆ + V )−γ

]
=
∑
i∈N

(λV,i)
−γ ≤

Γ(γ − d
2
)

(4π)d/2 Γ(γ)

∫
Ω

V
d
2
−γ dx .

See Theorem 1 in [5].

Example 3.2. If V ∈ L1
loc(Ω) is bounded from below and such that

e−V ∈ L1(Ω) and F (s) = e−s for any s ∈ R, then G(s) = (4π)−d/2 e−s

and Theorem 3.1 takes the following special form

Tr
[
e−∆+V

]
=
∑
i∈N

e−λV,i ≤ 1

(4π)d/2

∫
Ω

e−V dx .

See Theorem 3 in [5].

We will now extend the above results to a potential that may be un-
bounded from below and obtain some Gagliardo-Nirenberg inequalities
in the context of the operator formalism. We also bring Theorem 15
in [5], which is stated at the level of mixed states and for the whole
space Rd, to the level of operators and for a bounded domain Ω ⊂ Rd.

Theorem 3.2. Let V be a potential verifying (V1). Let β be an entropy
seed generated by F in the Casimir class CV , and G a strictly convex
function with with F and G related by (3.1) and (3.2). Then

Tr [F (−∆ + V )] ≤
∫

Ω

G(V (x)) dx . (3.3)

If τ is such that G(s) = τ ∗(−s) for any s ∈ R, where τ and τ ∗ are
related according to (2.8), then for any L ∈ H1

+, we have

K(L) + Eβ(L) ≥
∫

Ω

τ(ρL) dx .

In order to prove Theorem 3.2, we first need to know that FV,β is
bounded from below.

Lemma 3.1. Let V be a potential verifying (V1) and let β be an entropy
seed generated by F ∈ CV . Then,

FV,β(L) ≥ −Tr [F (−∆ + V )] , ∀ L ∈ H1
+ . (3.4)

Remark 3.2. Before proving Lemma 3.1, let us observe that a similar
result was stated in Lemma 3 of [18], in the context of mixed states
for the case of a non-negative Poisson coupling V ∈ H1

0(Ω). There
the function F was obtained through (2.6) by a Casimir function as in
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Example 2.4, and d = 3. However, in the proof the authors use [18,
Lemma 2] which is valid for functions ψ ∈ H1

0(Ω) ∪ H2(Ω) . Our result
is stated for functions ψ ∈ H1

0(Ω) and F ∈ CV , for an arbitrary d ∈ N
and for any V verifying (V1), not only for a nonnegative potential or a
potential given by a Poisson coupling, hence slightly generalizing the
results of [18].

Proof of Lemma 3.1. Let ψ ∈ H1
0(Ω) such that ‖ψ‖L2(Ω) = 1 . Then

there exists a sequence {αi}i∈N ⊂ R such that ψ =
∑

i∈N αi φV,i and∑
i∈N α

2
i = 1 . By convexity of F , we obtain

F
(∫

Ω

|∇ψ|2 dx+

∫
Ω

V |ψ|2 dx
)

= F
(∑
i∈N

α2
i λV,i

)
≤
∑
i∈N

α2
i F (λV,i) =

〈
ψ, F (−∆ + V )ψ

〉
L2(Ω)

. (3.5)

Observe that if ψ is an eigenfunction of −∆ + V then this inequality
becomes an equality.

Since β is given by β(s) = F ∗(−s) for all s ∈ R, we get

β(ν) + ν λ ≥ −F (λ) ∀ ν, λ ∈ R . (3.6)

Using (3.6) and (3.5) and substituting νi for ν,
∫

Ω
|∇ψi|2 + V |ψi|2 dx

for λ and by adding over i ∈ N, we get

Eβ(L) +K(L) + PV (L) =
∑
i∈N

[
β(νi) + νi

∫
Ω

(
|∇ψi|2 + V |ψi|2

)
dx
]

≥ −
∑
i∈N

F
(∫

Ω

|∇ψi|2 dx+

∫
Ω

V |ψi|2 dx
)

≥ −
∑
i∈N

〈
ψi, F (−∆ + V )ψi

〉
L2(Ω)

= −Tr [F (−∆ + V )] ,

which is the desired lower bound. Here {ψi} is an orthonormal basis
of L2(Ω) of eigenfunctions of L, with eigenvalues {νi}. �

Proof of Theorem 3.2. Using (3.3), (3.4) and using the fact that

τ(s) ≡ −
[(
G ◦ (G′)−1

)
(−s) + s (G′)−1(−s)

]
,

we follow the steps as in the proof of Theorem 15 in [5]. We observe
that, with no restriction, the potential can be taken bounded from
below, and not only positive. Shifting g by the corresponding constant,
the inequality follows. Since the inequality is independent of the lower
bound, we can then extend the result to unbounded potentials. Of
course, in many cases, one side or both sides of Inequality (3.3) might
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then be infinite, when the potential for instance takes negative values.
�

This theorem provides interesting insights in the following two typi-
cal examples.

Example 3.3. We continue the case of Examples 2.2 and 2.5. Here

we have G(s) = C(γ) s
d
2
−γ for s ≥ 0, extended as +∞ to the interval

(−∞, 0). Writing q = 2γ−d
2(γ+1)−d ∈ (0, 1), Theorem 3.2 takes the following

special form

K(L) + κ(γ)

∫
Ω

ρqL dx ≥ cm Tr [Lm] , ∀L ∈ H1
+ , (3.7)

where κ(γ) ≡ (C(γ))1−q [( q
q−1

)1−q + ( q
q−1

)−q] .

Example 3.4. Consider the convex function β defined as

β(s) =


s log s− s if s > 0 ,

0 if s = 0 ,

+∞ if s < 0 .

which is generated by the function F (s) = e−s. If G(s) = (4π)−d/2 e−s,
for any s ∈ R, then Theorem 3.2 shows that for L ∈ H1

+,

K(L) + Tr [L logL] ≥
∫

Ω

ρL log ρL dx+
d

2
log(4π)

∫
Ω

ρL dx .

3.2. Coercivity Estimates. Our first result in this subsection shows
that the free energy functional has coercivity properties, which are
direct consequences of Lemma 3.1.

Proposition 3.1. Let α > 0 and V a potential verifying (Vα). Assume
that β is an entropy seed generated by F in the Casimir class CαV . Then
for any L ∈ H1

+ we have

Eβ(L) + αK(L) + PV (L) ≥ −Tr [F (−α∆ + V )] .

Moreover, if α = 1− ε with ε ∈ (0, 1], then for any L ∈ H1
+ we have

FV,β(L) ≥ εK(L)− Tr [F (−(1− ε) ∆ + V )] . (3.8)

Definition 3.1. We say that the Schrödinger operator −∆ + V on
H1

0(Ω) is ε-coercive for some ε ∈ (0, 1] if and only if

λ
(1−ε)
V,1 = sup{µ ∈ R : −(1− ε) ∆ + V ≥ µ} > −∞ . (3.9)
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For λ ≤ λ
(1−ε)
V,i we now define the free energy functional Fλ

V,β : H1
+ →

R ∪ {∞} as

Fλ
V,β(L) ≡ FV,β(L)− λ ‖L‖1 (3.10)

where FV,β(L) is defined by (2.7).
The ε-coercivity means that

−∆ + V − λ
(1−ε)
V,1 ≥ −ε∆,

in the sense of operators with Dirichlet boundary conditions, that is in
H1

0(Ω). We also observe that Condition (3.9) for ε = 1 means that V
is bounded from below while λ1

V,1 = 0 means that V is non-negative.
We have the following

Proposition 3.2. Let ε ∈ (0, 1] and V a potential such that −∆ + V
is ε-coercive. Let β be an entropy seed generated by a function F . If

F belongs to the Casimir class Cε/20 , then for any λ ≤ λ
(1−ε)
V,1 and any

L ∈ H1
+ we have that

Fλ
V,β(L) ≥ −Tr

[
F
(
−ε

2
∆
)]

+
ε

2
K(L) . (3.11)

If F ∈ C1−ε
V−λ, then for any λ ≤ λ

(1−ε)
V,1 and any L ∈ H1

+ we have that

Fλ
V,β(L) ≥ −Tr [F (−(1− ε)∆ + V − λ)] . (3.12)

Proof. Let L ∈ H1
+ and write

Fλ
V,β(L) =

{
Eβ(L)+

ε

2
K(L)}+ε

2
K(L)+{(1−ε)K(L)+PV (L)−λ ‖L‖1

}
.

(3.13)

If F ∈ Cε/20 , then from Proposition 3.1 we have that

Eβ(L) +
ε

2
K(L) ≥ −Tr

[
F
(
−ε

2
∆
)]

. (3.14)

On the other hand, from (3.9) it follows that

(1− ε)K(L) + PV (L)− λ ‖L‖1

=
∑
i∈N

νi

∫
Ω

(
(1− ε) |∇ψi|2 + (V − λ) |ψi|2

)
dx ≥ 0 , (3.15)

which together with (3.13) and (3.14) proves (3.11).
Inequality (3.12) also comes as a direct consequence of Proposi-

tion 3.1. �

As an easy consequence of Proposition 3.2 we have the following
useful corollary.
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Corollary 3.3. Let ε ∈ (0, 1] and V be a potential such that −∆ + V
is ε-coercive. Let β be an entropy seed generated by a function F in

Cε/20 ∩ C1−ε
V−λ and λ ≤ λ

(1−ε)
V,1 . If {Lσ}σ∈Σ is a family in H1

+ such that

{Fλ
V,β(Lσ)}σ∈Σ is bounded, then the families {‖Lσ‖1}σ∈Σ, {K(Lσ)}σ∈Σ,

{Eβ(Lσ)}σ∈Σ and {PV (Lσ)}σ∈Σ are also bounded.

Proof. As follows from (3.14) and (3.15) in the proof of Proposition 3.2,
it is clear that the boundedness of Fλ

V,β(Lσ) implies the boundedness
from above of (1 − ε)K(Lσ) + PV (Lσ) − λ ‖Lσ‖1 and of Eβ. Then we
obtain the boundedness from above of K(Lσ) and therefore that of
‖Lσ‖1, by (2.3). Now the boundedness of PV (Lσ) follows. �

3.3. Lieb-Thirring and Gagliardo-Nirenberg inequalities (II).
We shall see in this subsection that for a potential V verifying (3.9)
for some ε ∈ (0, 1], a Lieb-Thirring inequality holds and therefore an
interpolation inequality can also be established. For the convenience
of the reader, we recall that according to (3.10),

Fλ
V,β(L) = Tr [ β(L) + (−∆ + V − λ)L ] .

The aim of this section is to prove the following result.

Theorem 3.3. Let ε ∈ (0, 1] and V a potential such that −∆ + V is
ε-coercive. Let F and G be defined by (3.2), with g satisfying (3.1).
We assume that the entropy seeds β and G are generated by F and τ ,
respectively. Then, for any non-negative potential W and any L ∈ H1

+,
we have that

Fλ
V+W,β(L) ≥ −ε−d/2

∫
Ω

G(W ) dx , (3.16)

and, moreover

Fλ
V,β(L) ≥ ε−

d
2

∫
Ω

τ
(
ε

d
2 ρL(x)

)
dx . (3.17)

To start with, we use a change of scale to rewrite Theorem 3.1 with
−∆ replaced by −ε∆.

Lemma 3.2. Let W be a non-negative potential, ε ∈ (0, 1], and F
and G be defined by (3.2), with g satisfying (3.1). We denote by β the
entropy seed generated by F . Then, for any L ∈ H1

+,

Eβ(L)− εK(L) + PW (L) ≥ − ε−
d
2

∫
Ω

G(W ) dx . (3.18)

Proof. Let us consider an operator L ∈ H1
+. Then we consider the

scaling ψεi (x) = εd/4ψi(
√
ε x), W ε(x) = W (

√
ε x) for any x ∈ ε−1/2 Ω
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and denote by Lε the operator associated to L after the scaling, that is,

Lεη =
∑
i∈N

νi〈ψεi | η〉L2(ε−1/2 Ω)ψ
ε
i , η ∈ L2(ε−1/2 Ω) .

Now observe that

Eβ(L)− εK(L) + PW (L) = Eβ(Lε)− εK(Lε) + PW ε(Lε)

since for all i ∈ N it verifies that∫
Ω

(
ε |∇ψi|2 +W |ψi|2

)
dx =

∫
ε−1/2 Ω

(
|∇ψεi |2 +W ε |ψεi |2

)
dx .

Therefore, applying Theorem 3.1 to Lε we find

Eβ(Lε)− εK(Lε) + PW ε(Lε) ≥ −Tr [F (−ε∆ +W ε)]

≥ −
∫
ε−1/2 Ω

G(W ε) dx .

The conclusion then holds by undoing the change of variables. �

Proof of Theorem 3.3. Since −∆ + V is ε-coercive, Lemma 3.2 shows
that

Fλ
V+W,β(L) = {(1− ε)K(L) + PV−λ(L)}+ {E(L)− εK(L) + PW (L)}

≥ − ε−
d
2

∫
Ω

G(W ) dx .

Then we can rearrange this estimate as

Fλ
V,β(L) ≥ −

∫
Ω

(
ρLW + ε−

d
2 G(W )

)
dx .

Optimizing on W as in the proof of [5, Th. 15], we get

−
∫

Ω

(
ρLW + ε−

d
2 G(W )

)
dx ≥ ε−

d
2

∫
Ω

τ
(
ε

d
2 ρL(x)

)
dx ,

which completes the proof of Theorem 3.3. �

3.4. Compactness results. Theorem 3.2 is the analogous at opera-
tors level of the embedding H1

0(Ω) ↪→ L2(Ω) . Similarly, a compactness
result can be proved.

Theorem 3.4. Consider d ≥ 2, and assume that m ∈ (d/(d + 2), 1).
Let {Ln}n∈N be a sequence in H1

+ such that

K∞ ≡ sup
n∈N

K(Ln) <∞ ,

for some constant K∞ > 0. Then {‖Ln‖1}n∈N is bounded and

sup
n∈N

∑
i∈N

|νni |m <∞ .
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Moreover, up to a subsequence, limn→∞ ν
n
i = ν̄i, for all i ∈ N, and the

following properties hold:

i) If ν̄i 6= 0 for all i ∈ N, then, up to a subsequence,

lim
n→∞

∑
i∈N

|νni |m =
∑
i∈N

|ν̄i|m .

ii) For any m′ ∈ (m, 1], up to a subsequence,

lim
n→∞

∑
i∈N

|νni |m
′
=
∑
i∈N

|ν̄i|m
′
.

iii) Up to a subsequence, {Ln}n∈N converges in trace norm ‖ · ‖1 to
some operator L̄ ∈ H1

+, whose eigenvalues are {ν̄ni }i∈N.

Proof. For each n ∈ N, let us denote by {νni }i∈N and {ψni }i∈N the se-
quence of eigenvalues and a sequence of orthonormalized eigenfunctions
of Ln, respectively. By (2.3), supn∈N ‖Ln‖1 <∞. For i ∈ N, n ∈ N, let

En
i ≡

∫
Ω

|∇ψni (x)|2 dx .

The uniform bound on ‖Ln‖1 follows from Proposition 2.2. The uni-
form bound of

∑
i∈N |νni |m comes from (3.7) and Hölder’s inequality.

Up to the extraction of a subsequence, νi converges to some ν̄i for any
i ∈ N.

Proof of i) Assume first that ν̄i 6= 0 for any i ∈ N. Then, for each
i ∈ N, the sequence {En

i }n∈N is bounded and, consequently, there is a
function ψ̄i ∈ H1

0 (Ω) for which, up to a subsequence,

lim
n→∞

ψni = ψ̄i in L2(Ω) .

It is clear that {ψ̄i}i∈N is orthonormal in L2(Ω). Recall that, counting
multiplicity, |ν̄1| ≥ |ν̄2| ≥ ... We denote by PN : L2(Ω) → FN the
orthogonal projection operator over

FN ≡ span{ψ̄i : 1 ≤ i ≤ N − 1}
and let QN ≡ Id − PN be the projection operator onto F⊥N .

Next we claim that for all ε > 0, there exists N ∈ N such that
∞∑
i=N

|νni |m ≤ ε ∀ n ∈ N . (3.19)

This can be proved as follows. First, using (2.5), we choose N ∈ N
such that (

∞∑
`=N

(λ0,`)
−γ

)m/γ

≤ ε

2
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where γ = m
1−m , and {λ0,i}i∈N and {φ0,i}i∈N are chosen as in (2.4).

Consider for each n ∈ N the expansion

ψni =
∞∑
k=1

αni,k φ0,k n ∈ N ,

where αni,k ≡
〈
ψni , φ0,k

〉
L2(Ω)

. According to the reverse Hölder inequal-

ity, which states that for any p ∈ (0, 1), q ∈ (−∞, 0) such that 1
p
+ 1
q

= 1,

∑
i∈N

ai bi ≥

(∑
i∈N

api

)1/p(∑
i∈N

bqi

)1/q

∀ {ai}i∈N, {bi}i∈N ∈ (R+)N,

applied for p = m = γ/(γ + 1), q = −γ, ai = |νni | and bi = En
i , we get,

for all N ∈ N, that(
∞∑
i=N

|νni |m
)1/m

≤ K∞

(
∞∑
i=N

(En
i )−γ

)1/γ

.

Next we find N ∈ N large enough so that

‖PN(φ0,`)‖L2(Ω) ≥ 1− 1

2
εγ/m ` = 1, 2, ...N − 1 ,

or, which is equivalent,

‖QN(φ0,`)‖L2(Ω) ≤
1

2
εγ/m, ` = 1, 2, ...N − 1 .

Then, there is n0 ∈ N large enough so that,
∞∑
i=N

(αni,`)
2 ≤ εγ/m ∀ n ≥ n0 , ` = 1, 2, ..., N − 1 .

Using En
i =

∑∞
`=1 λ0,` (α

n
i,`)

2 and
∑∞

`=1(α
n
i,`)

2 = 1, by concavity of
s 7→ s−γ we have

(En
i )−γ ≤

∞∑
`=1

(αni,`)
2 (λ0,`)

−γ.

Hence, collecting the above estimates, we obtain
∞∑
i=N

(En
i )−γ ≤

∞∑
i=N

∞∑
`=1

(αni,`)
2 (λ0,`)

−γ =
M−1∑
`=1

∞∑
i=N

· · ·+
∞∑
`=M

∞∑
i=N

· · ·

≤ M − 1

λγ1

∞∑
i=N

(αni,`)
2 +

∞∑
l=M

εγ/m

λγ0,l

≤ c εγ/m ,

for some constant c > 0. This completes the proof of Claim (3.19).
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Since {‖Ln‖1}n∈N is uniformly bounded with respect to n ∈ N,∑
i∈N

|ν̄i| <∞ .

For any η ∈ L2(Ω), by the Cauchy-Schwarz and the triangle inequality,∥∥∥∥∥∑
i∈N

〈
η, ψ̄i

〉
L2(Ω)

ν̄i ψ̄i

∥∥∥∥∥
L2(Ω)

≤ ‖η‖L2(Ω)

∑
i∈N

|ν̄i| <∞ .

Hence, the operator defined by

L̄η =
∑
i∈N

ν̄i 〈ψ̄i| η〉L2(Ω)ψ̄i , η ∈ L2(Ω) ,

is in S1. Let us prove now that {Ln}n∈N converges to L̄ in S1. Given
N ∈ N, denote by P n

N : L2(Ω) → F n
N the orthogonal projection onto

F n
N = span{ψni : 1 ≤ i ≤ N − 1} and by Qn

N = I − P n
N the projection

onto (F n
N)⊥:

‖Ln−L‖1 ≤ ‖(Ln−L)PN‖1+‖LnQn
N‖1+‖LQN ‖1+‖Ln (Qn

N−QN)‖1 .

The first term converges to zero, because of the strong convergence of
the first N − 1 eigenvalues and eigenfunctions in R and L2(Ω) respec-
tively. From (3.19) we have that the second and third terms are small
if N ∈ N is large enough, independent of n ∈ N, since(∑

i∈N

|νi|n
)m

≤ C2

∑
i∈N

|νni |m < ε .

The constant C2 appears because of
∑

i∈N |νni | . Now we have that

‖Ln(Qn
N −QN)‖1 ≤ ‖Ln‖1 · ‖Qn

N −QN‖

which converges to zero as n→∞, since Qn
N−QN = P n

N−PN converges
to zero for the same reasons as the first term.

Proof of ii) Assume now that supn∈N
∑

i∈N |νni |m = C1 is finite, so
that using the monotonicity of {|νni |m}i∈N, for any m′ > m and any
N ∈ N,

∞∑
i=N

|νni |m
′ ≤ (νnN)m

′−m
∞∑
i=N

|νni |m ≤ |νnN |m
′−mC1 .

If ν̄i = 0 for all i ∈ N, then

lim
n→∞

∑
i∈N

|νni |m
′ ≤ lim

n→∞
|νnN |m

′−mC1 = 0 .
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From here on, taking m′ = 1 and arguing as before we obtain that
{Ln}n∈N converges to 0 in S1. The general case, i.e., when there is
i0 ∈ N such that |ν̄i0| > 0, follows from similar arguments.

Proof of iii) The convergence of the kernels KLn to the kernel of the
limit operator L follows from ii) with m′ = 1 and from the strong
convergence of ψni to ψ̄i in L2(Ω).

Finally let us see that the limit operator L̄ actually belongs to H1
+.

In fact, given a fixed N ∈ N, we have that

lim inf
n→∞

∑
i∈N

νni

∫
Ω

|∇ψni (x)|2 dx ≥ lim inf
n→∞

N∑
i=1

νni

∫
Ω

|∇ψni (x)|2 dx

≥
N∑
i=1

ν̄i

∫
Ω

|∇ψ̄i(x)|2 dx ,

whence, since N is arbitrary, we get

lim inf
n→∞

K(Ln) ≥ K(L̄) , (3.20)

so that L̄ ∈ H1
+ .

�

The following result is a direct consequence of Theorem 3.4 and
Corollary 3.3.

Corollary 3.4. Consider d ≥ 2. Take ε ∈ (0, 1] and let V be a potential
such that the Schrödinger operator −∆ + V is ε-coercive. Let β be an

entropy seed generated by F ∈ Cε/20 ∩ C1−ε
V−λ and λ ≤ λ

(1−ε)
V,1 . If {Ln}n∈N

is a sequence in H1
+ such that {Fλ

V,β(Ln)}n∈N is bounded, where Fλ
V,β is

given in (3.10), then {Ln}n∈N, up to a subsequence, converges in trace
norm ‖ · ‖1 to some positive operator L ∈ S1. Moreover, ρLn converges
to ρL in Lq(Ω), for any q ∈ [1,∞] if d = 1, q ∈ [1,∞) if d = 2 and
q ∈ [1, d/(d− 2)] if d ≥ 3.

4. Applications

In this section we present three applications of the results discussed
in this paper. The three cases correspond to minimization problems
arising in Quantum Mechanics.

4.1. Minimization of the free energy functional. Consider first
the free energy functional Fλ

V,β defined in H1
+ by (3.10).
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Theorem 4.1. Let V a potential verifying (V1) and such that −∆+V

is ε-coercive for some ε ∈ (0, 1]. Take λ ≤ λ
(1−ε)
V,1 . Let β be an entropy

seed generated by F ∈ Cε/20 ∩C1−ε
V−λ . Then there exists a unique L∞ ∈ H1

+

such that
Fλ
V,β(L∞) = inf

L∈H1
+

Fλ
V,β(L) ,

provided one of the following conditions is satisfied:

i) if d = 1, V ∈ Lq(Ω), for some q ∈ [1,∞],
ii) if d = 2, V ∈ Lq(Ω), for some q ∈]1,∞],
iii) if d ≥ 3, V ∈ Lq(Ω), for some q ∈ [d

2
,∞].

Proof. By Proposition 3.2, the functional Fλ
V,β is bounded from below.

Let {Ln}n∈N ⊂ H1
+ be a minimizing sequence, that is

lim
n−→∞

Fλ
V,β(Ln) = inf

L∈H1
+

Fλ
V,β(L) .

Then the sequences

{‖Ln‖1}n∈N, {K(Ln)}n∈N, {Eβ(Ln)}n∈N and {PV (Ln)}n∈N

are bounded according to Corollary 3.3. Now Theorem 3.4 provides
the existence of L∞ ∈ H1

+ such that, up to a subsequence, {Ln}n∈N
converges to L∞ in trace norm ‖ · ‖1 so that, in particular,

lim
n−→∞

‖Ln‖1 = ‖L∞‖1 .

In order to study the entropy term we consider the space `1 with the
usual norm. Consider the set

A+ ≡ {µ = {µi}i∈N ∈ `1 :
∑
i∈N

β(µi) ≥ A} ,

where A ≡ infn∈N Eβ(Ln). Both the function D : A+ → R defined by

D(µ) ≡
∑
i∈N

β(µi) ∀ µ = {µi}i∈N ∈ A+ ,

and the set A+ are convex. Thus D is weakly lower semi-continuous, so
that lim infn→∞D(νn) ≥ D(ν0), where νn = {νni }i∈N and ν0 = {ν̄i}i∈N.
This amounts to say that

lim inf
n→∞

Eβ(Ln) ≥ Eβ(L∞) .

For the kinetic energy term we have (3.20). As for the potential energy,
we obtain

lim
n→∞

PV (Ln) = PV (L∞)

using Proposition 2.2. Therefore L∞ is a minimizer for Fλ
V,β.



22 J. DOLBEAULT, P. FELMER, AND J. MAYORGA

At this point we relate this minimization problem with the one stud-
ied in [5]. For this purpose we denote by S the set of non-increasing
sequences {νi}i∈N ⊂ R+ converging to zero, such that

∑
i∈N β(νi) is

absolutely convergent and let

X ≡ {(ν, ψ) ∈ S ×
(
H1

0(Ω)
)N

:
〈
ψi, ψj

〉
L2(Ω)

= δij, ∀ i, j ∈ N}

be the space of mixed states. Then we define an associated free energy
functional acting on mixed states as

Fλ
V,β[ν, ψ] ≡

∑
i∈N

[
β(νi) + νi

∫
Ω

(
|∇ψi|2 + (V − λ)|ψi|2

)
dx

]
.

We observe that the function F is given by

F (s) = β ◦ (β′)−1(−s)− s (β′)−1(−s) .

As a consequence of Theorem 4.1, the problem

min
(ν,ψ)∈X

Fλ
V,β[ν, ψ] . (4.1)

has a solution (ν, ψ) ∈ X given by νi = νi(L∞) and ψi = ψi(L∞).
The minimizer of (4.1) is unique, up to the choice of a basis for

non-simple eigenvalues, as proved in [5]. As a consequence, the mini-
mization problem at the level of operators

min
L∈H1

+

Fλ
V,β(L)

has a unique minimizer L∞ ∈ H1
+ . �

Remark 4.1. In the Heisenberg formalism we see that the solution to
the minimization problem given by Theorem 4.1 is a stationary solution
to the Heisenberg equation

[−∆ + V − λ, Lλ] = 0 ,

where the commutator operator is given by [L,R] = LR−RL . More-
over, since a solution of (4.1) is given by

(ν̄, ψ̄) = {(ν̄i, ψ̄i)}i∈N ∈ X ,

where

ν̄i = (β′)−1(λ− λV,i) ,

and ψ̄i is an eigenfunction of −∆+V −λ associated to λV,i, the operator
L∞ can actually be written as

L∞ = (β′)−1(∆− V + λ) .
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4.2. Free energy involving a non-linear but local function of
the density function. Consider the free energy functional given by

Fλ,g
V,β(L) ≡ Fλ

V,β + G(L) ∀ L ∈ H1
+ ,

where

G(L) =

∫
Ω

g(ρL(x)) dx

and g is some real function, which is not necessarily convex. Using an
argument similar to that in the proof of Theorem 4.1, we can obtain
the following result.

Theorem 4.2. Let V a potential verifying (V1) and such that −∆+V

is ε-coercive for some ε ∈ (0, 1]. Take λ ≤ λ
(1−ε)
V,1 . Let β be an entropy

seed generated by F ∈ Cε/20 . Let g ∈ C([0,∞)) be such that for non-
negative constants c1, c2

c1 ≤ g(s) ≤ c2s
q ∀ s ≥ 0 , (4.2)

where

i) q ∈ [1,∞) if d = 1 or d = 2,
ii) q ∈ [1, d/(d− 2)] if d ≥ 3.

If F ∈ C1−ε
V−λ, then there exists L∞ ∈ H1

+ such that

Fλ,g
V,β(L∞) = inf

L∈H1
+

Fλ,g
V,β(L) .

Proof. It is similar to the one of Theorem 4.1. We use condition (4.2)
to show via Fatou’s lemma that

G(L∞) ≤ lim inf
n−→∞

G(Ln) ,

where {Ln}n∈N ⊂ H1
+ is a minimizing sequence for Fλ,g

V,β . �

Remark 4.2. If g ∈ C1([0,∞)), L∞ is a fixed point of the map Y :
H1

+ −→ H1
+ given by

Y (L) = (β′)−1 (−(−∆ + V ) + λ− g′ ◦ ρL) .

4.3. Stationary states for the Hartree problem with tempera-
ture. Consider a Heisenberg equation with a Poisson coupling, namely

i ∂tL(t) = [−∆ + V (t, ·), L(t)] t ≥ 0 ,

−∆V (t, x) = ρL(t)(x) x ∈ Ω , t ≥ 0 ,

L(0) = L̃

(4.3)

where L(t), the density operator of the system, is a positive trace-
class operator acting on L2(Ω). This system is known as the Hartree
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evolution system, or Schrödinger-Poisson system in the mixed states
formulation, and a large literature has been devoted to its study, which
goes far beyond the scope of this paper. We refer to [18] for further
references. We restrict our study to the case of homogeneous Dirichlet
boundary conditions, V = 0 on ∂Ω. The stationary states of (4.3) are
then solutions of {

[−∆ + V, L] = 0 ,

−∆V = ρL .
(4.4)

Stationary states of (4.3) can be obtained through the minimization
of the free energy

Fβ(L) = Eβ(L) +K(L) + P(L) , ∀ L ∈ H1
+ ,

where

P(L) =
1

2

∫
Ω

VLρL dx =
1

2

∫
Ω

|∇VL|2 dx

is the Poisson potential energy of L ∈ H1
+. Since we minimize the

free energy Fβ and not only the energy K + P , the solutions we find
correspond to the so-called Hartree problem with temperature. By
virtue of Proposition 2.2 we have, for d ≤ 4, that ρL is in L2(Ω), for
any L ∈ H1

+, so that the Poisson potential VL ∈ H1
0(Ω), is well defined

as the solution of {
−∆V = ρL in Ω ,

V = 0 on ∂Ω .

Using Proposition 2.2 we get the following result, whose proof easily
follows by using the regularity machinery provided for instance in [10].

Proposition 4.1. Assume that d ≤ 4. Let L ∈ H1
+. If d = 1 or d = 2,

then VL ∈ C0(Ω). Moreover, VL ∈ W1,p
0 (Ω) ∩ Lq(Ω) for any q ∈ [1,∞)

and for any p ∈ [1,∞) if d = 3, and for any p ∈ [1, 4] if d = 4. If
additionally ∂Ω is of class C2, then VL ∈ W2,r(Ω) ∩ C0,1/2(Ω) for any
r ∈ [1, 3/2] if d = 3, and VL ∈ W2,r(Ω) for any r ∈ [1, 4/3] if d = 4.

We have the following

Theorem 4.3. Assume that d ≤ 4. Let β be an entropy seed generated
by F ∈ C0. Then there exists LF ∈ H1

+ such that

Fβ(LF ) ≤ Fβ(L) ∀ L ∈ H1
+ .

Moreover if β is of class C1 in the interior of its support, then

LF = (β′)−1(∆− VLF
)

is the unique minimizer of Fβ and solves (4.4) as well.
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Proof. The proof follows the same lines as the one for Theorem 4.1.
The argument changes only to reach limn→∞P(Ln) = P(LF ), but this
still follows from Proposition 2.2. �

Let us notice that if β is non-negative then the minimizer in Theo-
rem 4.3 is LF = 0. However, the result also applies to functions β for
which {β < 0} 6= ∅ as it is the case of the one defined in Example 3.4,
or if we replace β by β − λ for some constant λ > β′(0) (see below).

Remark 4.3. The case of an attracting Poisson coupling, that is when
the potential is given by

+∆V = ρL in Ω ,

can be dealt with the same methods although it makes less sense from
the point of view of physics. Some additional work is necessary to
establish spectral properties of ∆ + VL .

Finally we present a result for stationary states having a prescribed
total charge, which brings to the level of operators a result obtained
by Markowich, Rein and Wolansky in [18, Th. 2]. There the authors
consider the case of F generated by a Casimir function, as in Exam-
ple 2.4, with d = 3, and work at the level of mixed states requiring
that the eigenstates ψi to belong to H1

0(Ω) ∩ H2(Ω). In our setting we
need ψi ∈ H1

0(Ω), F ∈ C0, and d ≤ 4.

Proposition 4.2. Assume that d ≤ 4. Let Λ > 0 and F be a non-
negative non-increasing C1-function in the Casimir class C0 such that
F ′ ∈ C0 and, for every µ > 1,

F (s) ≥ −µ s+ C , s ≤ 0 ,

for some C = C(µ) ∈ R. Then the functional defined by

Φ(V, λ) =
1

2

∫
Ω

|∇V |2 + Tr [F (−∆ + V − λ)] + λΛ ,

for λ ∈ R and H1
0(Ω) 3 V ≥ 0, is continuous, strictly convex, and

coercive. In particular, there exists a unique minimizer (VF , λF ) of Φ.
Moreover, the operator

LF ≡ −F ′(−∆ + VF − λF )

is in H1
+ with ‖L‖1 = Tr [L] = Λ and, (LF , VF ) is a solution of (4.4).

Mathematically, the free energy is changed only by an integral term
−λ
∫

Ω
ρL dx, where λ is the Lagrange multiplier associated to the mass

constraint. The entropy seed β is now changed into ν 7→ β(ν) − λ ν,
which results in the fact that the set {ν ∈ R : ν 7→ β(ν)− λ ν < 0} is
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automatically non-empty. Because of the compactness property, the
mass constraint will be verified when passing to the limit in the mini-
mizing sequence.

Remark 4.4. With almost no work, we may add an external poten-
tial which takes negative values and eventually has singularities, of
Coulomb type, for instance. This situation is highly relevant from a
physics point of view, for the modelization of atomic and molecular sys-
tems, without temperature, see for instance [23] and references therein,
or with temperature, see [17]. In such a case, the appropriate model is
rather the Hartree-Fock system than the Hartree system.
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and Centro de Modelamiento Matemático, UMI 2807 CNRS-UChile
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