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ABSTRACT. On the two-dimensional Euclidean space, we study a spinorial analogue of

the Caffarelli-Kohn-Nirenberg inequality involving weighted gradient norms. This (SCKN)

inequality is equivalent to a spinorial Gagliardo-Nirenberg type interpolation inequality

on a cylinder as well as to an interpolation inequality involving Aharonov-Bohm mag-

netic fields, which was analyzed in a paper of 2020. We examine the symmetry properties

of optimal functions by linearizing the associated functional around radial minimizers.

We prove that the stability of the linearized problem is equivalent to the positivity of a

2× 2 matrix-valued differential operator. We study the positivity issue via a combina-

tion of analytical arguments and numerical computations. In particular, our results pro-

vide numerical evidence that the region of symmetry breaking extends beyond what was

previously known, while the threshold of the known symmetry region is linearly stable.

Altogether, we obtain refined estimates of the phase transition between symmetry and

symmetry breaking. Our results also put in evidence striking differences with the three-

dimensional (SCKN) inequality that was recently investigated.

1. INTRODUCTION

With~σ := (σ1,σ2)T where σ1 and σ2 denote the first two of the three Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

let us consider the spinorial Caffarelli-Kohn-Nirenberg inequality
ˆ
R2

|~σ ·∇ϕ|2
|x|2α d x ≥Cα,p

(ˆ
R2

|ϕ|p
|x|βp

d x

) 2
p

(SCKN)

for spinor valued functionsϕ :R2 →C2. Here Cα,p denotes the best possible constant and
the parameters α ∈R\Z, β and p are such that

β<α≤β+1 and p = 2

β−α .

The inequality holds for smooth compactly supported spinors and, by density, for any
spinor in the natural Sobolev space associated with (SCKN). Via a suitable Emden-Fowler
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type coordinate transformation the inequality transforms into a logarithmic Caffarelli-
Kohn-Nirenberg inequality for spinor valued functions φ ∈ H1(R×S1,C2):
ˆ
R

ˆ
S1

(∣∣∂sφ(s,θ)
∣∣2 + ∣∣(α− iσ3∂θ)φ(s,θ)

∣∣2
)

d s dθ ≥Cα,p

(ˆ
R

ˆ
S1

|φ(s,θ)|p d s dθ

) 2
p

,

(SCKNlog)
where σ3 is the third Pauli matrix and θ is the angular variable. As can be seen by visual
inspection, all functionals appearing in the inequality are invariant under rotations of
the coordinate system around the origin. It is therefore intuitive to expect the optimal
functions of the inequality to exhibit the same invariance.

The scalar, real valued version of (SCKN) reads asˆ
Rd

|∇u|2
|x|2a d x ≥Ca,b,d

(ˆ
Rd

|u|p
|x|bp

d x

)2/p

(CKN)

where d ≥ 2 is an integer, a, b ∈ R satisfy a ≤ b ≤ a+ 1, b > a if d = 2 and, to ensure
scale invariance, p = (2d)/

(
d − 2− 2(b− a)

)
. Inequality (CKN) is known as a Caffarelli-

Kohn-Nirenberg inequality. This inequality goes back to [12, 4]. A central issue for (CKN)
has been the study of the symmetry of the optimal functions with, among many other
contributions, the results of [5, 10, 7]. In dimension d = 2, optimal functions are radial if
and only if

b≥ bFS(a) := a− ap
1+a2

.

For complex valued functions, for instance in the presence of magnetic fields, and for
spinors, which are fundamental for applications in quantum mechanics, there are very
few results on symmetry. Obviously, symmetrization methods cannot apply directly. In
presence of a constant magnetic field, Avron, Herbst and Simon in [1] proved that the
ground state of the hydrogenic atom has cylindrical symmetry and Erdös in [9] estab-
lished a Faber-Krahn inequality for the Schrödinger operator: assuming a homogeneous
Dirichlet boundary condition, the disk yields the smallest ground state energy among do-
mains of equal area. Bonheure, Nys and van Schaftingen [3] showed symmetry in some
nonlinear variational problems involving a small constant magnetic field. Another in-
stance of a sharp functional inequality for non-scalar objects (vector fields and spinor
fields) is the sharp criterion for zero modes of the Dirac equation in presence of a mag-
netic field obtained in [11]: the optimizers have the structure that we would like to derive
in (SCKN). In the case of an Aharonov-Bohm magnetic field, some interpolation inequal-
ities can be reduced to (CKN), which gives rise to the partial symmetry and symmetry
breaking results of [6]. As we shall see later, this problem is in some cases equivalent
to (SCKN). Taking advantage of this equivalence, we will numerically refine the estimates
of [2]. The counterpart of (SCKN) in dimension d = 3 was recently studied in [6] and in-
volves a more complicated notion of symmetry than simple radial symmetry. Although
several results are directly adapted from [6], qualitative results in dimension d = 2 signif-
icantly differ.
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Definitions. In order to state our results, we have to give a definition of symmetry adapted
to (SCKN). We shall say that a spinor φ= (ϕ1,ϕ2)T : R+× [0,2π) → C2 is symmetric if and
only if there exists a k ∈Z such that

(r,θ) 7→
(

e i kθϕ1(r,θ)
e−i kθϕ2(r,θ)

)
is independent of θ. Equivalently, a spinor is symmetric if and only if it is a pure eigen-
state to the angular momentum operator −iσ3∂θ. With this definition, we shall say that
there is symmetry if equality in (SCKN) is achieved by a symmetric spinor, and symmetry
breaking if this is not the case.

Reduction of the parameter space. For symmetry versus symmetry breaking issues, the
parameter space of (α, p) ∈ R× (2,∞) can be reduced to (0,1/2)× (2,∞) and the search
for a radial symmetric minimizer. To see this, first notice that transforming a function to
its complex conjugate φ→φ transforms the (SCKNlog) for (α, p) into the one for (−α, p).
Secondly, for a k ∈ Z the transformation φ→ e i kθφ transforms the (SCKNlog) for (α, p)
into the one for (α+k, p).

Interpolation inequalities for Aharonov–Bohm magnetic fields. Let Cα,p be the best con-
stant in the (SCKN) inequality. Assume that C AB

α,p is the best constant in the inequality
ˆ
R2

|(−i∇−αA)ψ|2 d x ≥C AB
α,p

(ˆ
R2

|ψ|p
|x|2 d x

)2/p

(AB)

for some parameters α and p, where

A(x) = 1

|x|2
(

x2

−x1

)
is the Aharonov–Bohm vector potential. This inequality valid for all sufficiently regular
complex-valued functions ψ on R2. The constant C AB

α,p was studied by Bonheure, Dol-
beault, Esteban, Laptev and Loss in [2, Case λ= 0].

Theorem 1. Let (α, p) ∈ (0,1/2)× (2,+∞). Inequality (SCKN) is equivalent to (AB) and

Cα,p =C AB
α,p .

Moreover, optimizers are related by φ#(s,θ) =ψ#(s,θ)χ0 for some constant spinor χ0 ∈ C2.
As a consequence, there is symmetry in (SCKN) and φ# does not depend on θ if and only if
there is symmetry in (AB) and ψ# does not depend on θ.

As a consequence of Theorem 1 and [2], we have the following result for (SCKN).

Corollary 2. The following holds:

(1) For every α ∈ (0,1/2) and p > 2, Cα,p is positive, Inequality (SCKN) admits an opti-
mizer, and limα→0+ Cα,p = 0.
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(2) There exists a region S ⊂ (0,1/2)× (2,∞):

S ⊆
{

(α, p) : p < 2

|α|
√

1−3α2

}
where all optimizers of (SCKN) are radially symmetric.

(3) There exists a region B ⊂ (0,1/2)× (2,∞):

B ⊆
{

(α, p) : 8

(√
p4 −α2(p −2)2(p +2)(3p −2)+2

)
<α2(p −2)3(p +2)+4p(p +4)

}
where symmetry breaking occurs for (SCKN).

(4) There exists a function p 7→ α(p) : (2,∞) → (0,1/2) such that symmetry holds if
α ∈ (

0,α(p)
]

and there is symmetry breaking if α ∈ (
α(p),1/2

)
.

(5) Denote by φ∗ the optimizer of (SCKNlog) among all radially symmetric functions.
The linear stability of (SCKNlog) around it is equivalent to the condition, that the
operator A acting on H1(R)×H1(R) and defined by

A :=
(

(−∂2
x + (1+α)2 − p

2 |φ∗|p−2) −p−2
2 |φ∗|p−2

−p−2
2 |φ∗|p−2 (−∂2

x + (1−α)2 − p
2 |φ∗|p−2)

)
(1)

is positive semi-definite.

These properties are straightforward consequences of Theorem 1 except for (5) which is
new. See Theorem 5 below for details. The results on symmetry and symmetry breaking
regions are illustrated in Figure 1.

Summary of the numerical results. The operator A defined by (1) can be represented as
an infinite dimensional matrix M in a Gegenbauer polynomial basis. Via a finite dimen-
sional truncation of the matrix M and a numerical computation of the lowest eigenvalue
of this truncation, we were able to obtain the following numerical results:

• The threshold between linear instability and linear instability lies strictly between
the established regions of symmetry and symmetry breaking.

• The symmetry breaking region is larger than established in [2].

Beyond Theorem 1, these results are the main contribution of the current paper. See
Figures 2 and 2 for illustration of typical computations and Figure 5 for a more detailed
analysis of the values of lowest eigenvalue.

This paper is organized as follows. Section 2 is devoted to the proof of Theorem 1. In
Section 3 we consider linear instability results, prove that it implies symmetry breaking
and establish Result (5) of Corollary 2. Section 4 is intended to a characterization of the
spectrum of A given by (1) using a matrix in a Gegenbauer polynomial basis. Building
upon this result, we explain the method for our numerical results in Section 5 and discuss
its robustness and some further results.
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2. FROM 2D-SPINOR TO AHARONOV–BOHM

This section is devoted to the proof of our main analytical result.

Proof of Theorem 1. We divide the proof in three steps.

• Step 1. Let us denote by C scalar
α,p the best constant in the inequality

ˆ
R2

|(∂1 + i∂2)ψ|2
|x|2α d x ≥C scalar

α,β

(ˆ
R2

|ψ|p
|x|βp

d x

)2/p

,

for scalar (that is, C-valued) fields on R2. We claim that

Cα,p =C scalar
α,p .

We write φ= (ϕ1,ϕ2)T with scalar fields ϕ1 and ϕ2. By definition of the Pauli matrices,
we have ˆ

R2

|σ ·∇φ|2
|x|2α d x =

ˆ
R2

|(∂1 + i∂2)ϕ1|2 +|(∂1 − i∂2)ϕ2|2
|x|2α d x

Noting that |(∂1 − i∂2)ϕ2| = |(∂1 + i∂2)ϕ2|, we find thatˆ
R2

|σ ·∇φ|2
|x|2α d x ≥C scalar

α,β

((ˆ
R2

|ϕ1|p
|x|βp

d x

)2/p

+
(ˆ

R2

|ϕ2|p
|x|βp

d x

)2/p
)

.

By the triangle inequality in Lp/2, we have(ˆ
R2

|ϕ1|p
|x|βp

d x

)2/p

+
(ˆ

R2

|ϕ2|p
|x|βp

d x

)2/p

≥
(ˆ

R2

(|ϕ1|2 +|ϕ2|2)p/2

|x|βp
d x

)2/p

=
(ˆ

R2

|φ|p
|x|βp

d x

)2/p

.

This proves that Cα,β ≥ C scalar
α,β . The reverse inequality is trivial. Equality in the triangle

inequality implies that φ for Cα,p are necessarily of the form

φ=ψχ0 .

where χ0 ∈ C2 is a constant spinor. Since optimizers achieve equality everywhere, this
shows that optimizers φ for Cα,p are necessarily of that form where ψ is an optimizer for
C scalar
α,p .

• Step 2. For a spinor field ψ on R2 in the natural Sobolev space associated to (SCKN) we
introduce an Emden Fowler coordinate transfomation and define a transformed spinor
field φ ∈ H1(R×S1, C2) by

ψ(r cosθ,r sinθ) = rαφ(lnr,θ) .

Then, taking the relation between α,β and p into account,ˆ
R2

|ψ|p
|x|βp

d x =
Ï
R×S1

|φ|p d s dθ .

Moreover, ˆ
R2

|(∂1 + i∂2)ψ|2
|x|2α d x =

Ï
R×S1

|∂sφ+αφ− i∂θφ|2 d s dθ .
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We claim that the right side is equal toÏ
R×S1

(|∂sφ|2 +|(−i∂θ+α)φ|2)d s dθ .

To see this, we expand

|∂sφ+αφ− i∂θφ|2 = |∂sφ|2 +|(−i∂θ+α)φ|2 +2Re〈∂sφ, (−i∂θ+α)φ〉C2 .

We need to show that the integral of the mixed term vanishes for all φ ∈ H1(R×S1, C2).
First, we observe that

Re

ˆ
R

〈∂sφ, φ〉C2 d s = 1

2
Re

ˆ
R

∂s(|φ|2)d s = 0.

Next, by integrating by parts twice (once in s and once in θ), we findÏ
R×S1

〈∂sφ, ∂θφ〉C2 d s dθ =
Ï
R×S1

〈∂θφ, ∂sφ〉C2 d s dθ .

Multiplying by −i and taking the real part gives

Re
Ï
R×S1

〈∂sφ, (−i∂θφ)〉C2 d s dθ = Re
Ï
R×S1

〈(−i∂θφ), ∂sφ〉C2 d s dθ

=−Re
Ï
R×S1

〈∂sφ, (−i∂θφ)〉C2 d s dθ .

Thus, also the second mixed term vanishes.
To summarize, we have shown that the C scalar

α,β is the best constant in the spinorial in-
equality Ï

R×S1

(|∂sφ|2 +|(−i∂θ+α)φ|2)d s dθ ≥Cα,β

(Ï
R×S1

|φ|p d s dθ

)2/p

.

• Step 3. We finally show that the Aharonov–Bohm inequality can be brought into the
same form as the inequality at the end of the previous step. This follows by similar com-
putations as in the previous step. We assume that ψ and φ̃ are related by

ψ(r cosθ,r sinθ) = φ̃(lnr,θ) .

Then ˆ
R2

|(−i∇−αA)ψ|2 d x =
Ï
R×S1

(|∂sφ̃|2 +|(−i∂θ+α)φ̃|2)d s dθ

and ˆ
R2

|ψ|p
|x|2 d x =

Ï
R×S1

|φ̃|2 d s dθ .

This completes the proof of the equivalence. �
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3. LINEAR INSTABILITY REGION

By considering linear perturbations of the optimizer of (SCKN) restricted to symmetric
spinors as, e.g., in [10], we prove symmetry breaking if we can find a negative eigenvalue.
Let us start with the inequality restricted to symmetric spinors.

Lemma 3 (Optimizer among Radially Symmetric Functions). The optimal function for
(SCKNlog) among all symmetric functionsφ ∈ H1(R×S1,C2) is given up to a multiplicative
constant and translation by

φ∗(s) :=
(

pα2

2

) 1
p−2

·
(
cosh

(
p −2

2
αs

))− 2
p−2 ·χ

where χ ∈C2 is a constant unit spinor. Furthermore, the optimal constant among radially
symmetric functions in H1(R×S1,C2) is given by

(2π)
p
2 −1C∗

α,p = ‖φ∗(s)‖p−2
Lp (R).

Since the set of radially symmetric functions is a subset smaller than the whole set it triv-
ially holds that Cα,p ≤C∗

α,p . Furthermore, the absolute value of φ∗

ϕ∗(s) := |φ∗(s)| =
(

pα2

2

) 1
p−2

·
(
cosh

(
p −2

2
αs

))− 2
p−2

is the unique (up to translations) solution to the non linear Schrödinger type one dimen-
sional differential equation

−∂2
sϕ∗(s)+α2ϕ∗(s)−ϕ∗(s)p−1 = 0.

Proof. The proof goes back to Nagy [15]. An accessible introduction taylored to our use
case can be found in [6, Appendix A]. �

The deficit functional with the optimal radial constant for functions φ ∈ H1(R×S1,C2)
is defined as

F [φ] :=
ˆ
R

ˆ
S1

∣∣∂sφ(s,θ)
∣∣2 + ∣∣(α− iσ3∂θ)φ(s,θ)

∣∣2 d sdθ︸ ︷︷ ︸
=:A [φ]

−C∗
α,p

(ˆ
R

ˆ
S1

|φ(s,θ)|p d sdθ

) 2
p

︸ ︷︷ ︸
=:D[φ]

.

The quadratic form of the linearized problem for a ϕ ∈ H1(R×S1,C2) is defined as

Q[ϕ] := lim
ε→0

1

ε2

(
F [φ∗+εϕ]−F [φ∗]

)
.

By Taylor expansion up until second order in ε we report that

Q[ϕ] = ∥∥∂sϕ
∥∥2

L2(R×S1) +
∥∥(−iσ3∂θ+α)ϕ

∥∥2
L2(R×S1)

−
[Ï

R×S1
|φ∗|p−2|ϕ|2d sdϑ+ (p −2)

Ï
R×S1

|φ∗|p−4|Re(〈φ∗,ϕ〉)|2d sdϑ

− p −2∥∥φ∗
∥∥p

Lp (R×S1)

(Ï
R×S1

|φ∗|p−2 Re(〈φ∗,ϕ〉)d sdϑ

)2 ]
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using the normalized measure dϑ on the circle in all norms. If we obtain for some spinor
ϕ ∈ H1(R×S1,C2) that Q[ϕ] < 0, we shall say that the linearized problem linearly is un-
stable around the radially symmetric optimizer.

Lemma 4. If the linearized problem linearly is unstable around the radially symmetric
optimizer, then the optimal function of (SCKNlog) is not radially symmetric.

Proof. Since φ∗ is the radial optimizer, we know by definition that F [φ∗] = 0. By our
assumption of linear instability we can find a small ε> 0 such that

F [φ∗+εϕ]−F [φ∗]︸ ︷︷ ︸
=0

=A [φ∗+εϕ]−C∗
α,p ·D[φ∗+εϕ] < 0.

Since φ∗+ εϕ ∈ H1(R×S1,C2), the (SCKNlog) holds, which yields a contradiction. The
optimal constant must therefore be smaller than the optimal radial constant. Hence, the
radial optimizer cannot be the global optimizer. �

A goal is to identify the whole region in parameter space (α, p) for which the quadratic
form Q is not positive semi-definite, i.e., to characterize explicitly the region of linear
instability for Q. For this we establish the following result:

Theorem 5. The parameter region (α, p) of linear instability of Q is equivalent to the pa-
rameter region (α, p) for which the operator A defined by (1) is not positive semi-definite.

Sketch of the Proof. The proof relies on an L2 spherical harmonics decomposition. One
can show, that the only relevant directions for linear instability is the contribution of
the spin-up component with angular momentum equal to 1 and the contribution of the
spin-up component with angular momentum equal to −1. The result then follows from
a variational argument. �

We use the following two test functions to test for linear instability and therefore to
obtain symmetry breaking regions:

• φ1(s,θ) =ϕ1(s) ·
(
0
1

)
• φ2(s,θ) =ϕ2(s) ·

(p
1− t 2

t

)
.

Transformed back into nonradial functions φ ∈ H1(R×S1,C2) they correspond to the fol-
lowing:

• φ1(s,θ) =ϕ1(s) ·
(
e−iθ

0

)
• φ2(s,θ) =ϕ2(s) ·

(
t ·e iθ+

p
1− t 2 ·e−iθ

0

)
for a t ∈ [0,1] which will be optimzed over

later.

The above two test functions are only informed guesses for the direction ϕ in which the
quadratic form Q is the lowest. They do not seem to be optimal. In both cases i = 1,2,
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FIGURE 1. Symmetry (green, established in [2]) and symmetry breaking (red,
blue) regions in the (α, p) representation, α ∈ (0,1/2) , p ∈ (2,∞). The range in
which symmetry versus symmetry breaking is not decided is the tiny white gap
shown in the enlargement (right) corresponding to the black rectangle (left). It is
known from [2] that there exists one seperating function α(p) seperating the two
regions. No regularity for this function is known. The red and blue regions corre-
spond to the two different Ansätze used to test the linearized problem. The black
line seemingly bounding the blue region is the region of linear instability given
in [2] uses a different Ansatz for the linearized problem, which is apparently equiv-
alent to ours.

the quadratic form associated to A takes the form 〈φi , Aφi 〉L2(R,C2) = 〈ϕi ,Piϕi 〉L2(R,C) for a
one dimensional Pöschl-Teller operator Pi , for which the lowest eigenvalue is explicitly
known (see for example p.74 of [13] or [14]). For i = 1 we chooseϕi (s) to be the eigenfunc-
tion to the lowest eigenvalue of the corresponding Pöschl-Teller operator P1 and obtain
as a condition for the non-negativity of the lowest eigenvalue

p ≤
p

9α2 −14α+5−α+1

α
.

The region of symmetry breaking established in this way is colored in red in Figure 1. For
i = 2 we take ϕ2(s) to be the eigenfunction to the lowest eigenvalue of the corresponding
Pöschl-Teller operator P2. This operator and therefore also the eigenfunction and the
corresponding eigenvalue are now dependent on t . As a condition on the positivity of
the lowest eigenvalue we obtain:

1

16

(
2α+

√
α2

(
4 p2 +8 p (p −2) t

√
1− t 2 + (p −2)2

)
−αp

)2

≤α2 +α(
4 t 2 −2

)+1.

One can now plot the curves corresponding to different values of t ∈ [0,1]. The region
of symmetry breaking obtained in this way are colored in blue in 1. In [2] the authors
establish symmetry breaking via a visually, but perhaps not essentially different Ansatz.
The threshold from their paper seems to be the envelope of the blue region. The thresh-
old is plotted in Figure 1 as the black line at the interface between the blue and white
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region. The numerics suggest the conjecture, that the Ansatz used in [2] to obtain linear
instability is essentially equivalent to the Ansatz φ2 used above to obtain the blue region.

4. REFORMULATION IN A GEGENBAUER POLYNOMIAL BASIS

The goal of this section is to lay the theoretical groundwork to make the question of
positive semi-definiteness of A defined in 5 amenable to numerical analysis. We find
two avenues of approach to a numerical spectral analysis of A. One would be a Birmann-
Schwinger approach as done for example in [8]. We are currently implementing this. The
second one relies on reformulating the differential operator A as an infinite dimensional
matrix in a basis of special functions. For this we use Gegenbauer polynomials as follows:
The differential operator A from Theorem 5 can be identified with a 2× 2 block matrix

M =
(

M1 M2

M3 M4

)
where Mi ∈RN0×N0 . First define the numbers:

η1
k := 1

2(k +λ)

(
(k +1)(k +2λ))

2(k +1+λ)
+ (k −1+2λ)k

2(k −1+λ)

)
,

η2
k := (k +1)(k +2)

4(k +λ)(k +1+λ)
,

η0
k := (k −1+2λ)(k −2+2λ)

4(k +λ)(k −1+λ)
.

Define the following matrices (infinite dimensional) written in the Gegenbauer poly-
nomial basis

(
Cλ

k (z)
)

k∈N0
(using the definitions λ= n−3

2 and n := 2 p
p−2 ) :

G :=


1−η1

0 0 −η0
2 0 . . .

0 1−η1
1 0 −η0

3 0 . . .
−η2

0 0 1−η1
2 0 −η0

4 0 . . .
0 −η2

1 0 1−η1
3 0 −η0

5 0 . . .
...

. . . . . . 0
. . . 0

. . . 0 . . .

= (1− z2) ,

A :=


0 0 2λ 0 2λ 0 . . .
0 1 0 (2+2λ) 0 (2+2λ) . . .

0 0 2 0 (4+2λ) 0 (4+2λ)
. . .

0
... 0

. . . 0
. . . 0

. . .

= z
d

d z
,

the diagonalized ultraspherical operator for parameter λ

B := diag(k(k +2λ)) =


0 0 0 0 . . .
0 (1+2λ) 0 0 . . .
0 0 2(2+2λ) 0 . . .
0 0 0 3(3+2λ) 0 . . .
...

...
. . . . . . . . . . . .

 ,
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and

N := diag

(
π21−2λΓ(k +2λ)

k !(k +λ)(Γ(λ))2

)
.

Then we use the Gegenbauer polynomial decomposition ϕ1(s)
id= ~w1 and ϕ2(s)

id= ~w2 to
write M as a blockmatrix in the basis (~w1, ~w2)T as

M :=
(

pα2

2

) n−4
2 pα

(p −2)

(
N 0
0 N

)[(
(p −2)α

2

)2 (
G(B +2A) 0

0 G(B +2A)

)
+

(
(1+2α)1 0

0 (1−2α)1

)
+ pα2

4

(
(2−p)G (2−p)G
(2−p)G (2−p)G

)]
.

Theorem 6. With the above notation, if there is some |w〉 = (~w1, ~w2)T such that

〈w |M |w〉`2(N2
0) < 0

then (SCKN) is linear instable.

Proof. Recall that the function ϕ∗(s) :=
(

pα2

2

) 1
p−2

(
cosh

(
p−2

2 αs
))− 2

p−2
solves

−∂2
sϕ∗+α2ϕ∗ =ϕp−1

∗ . (2)

Now define for ϕ ∈ H1(R) the function u such that ϕ= u ·ϕ∗. An expansion of the square
then shows thatˆ

R

|ϕ′|2 d s =
ˆ
R

|ϕ∗ u′+ϕ′
∗ u|2 d s =

ˆ
R

|u′|2 dµ2 +
ˆ
R

(
u2)′ ϕ∗ϕ′

∗ d s +
ˆ
R

|u|2 (
ϕ′
∗
)2 d s .

Define the measure
dµk := |ϕ∗|k d s .

Then, using an integration by parts, we obtainˆ
R

|ϕ′|2 d s =
ˆ
R

|u′|2 dµ2 −
ˆ
R

|u|2ϕ∗ϕ′′
∗ d s

and, using (2) and
´
R
|ϕ|2 d s = ´

R
|u|2 dµ2,ˆ

R

|ϕ′|2 d s +α2
ˆ
R

|ϕ|2 d s =
ˆ
R

|u′|2 dµ2 +
ˆ
R

|u|2 dµp .

which we obtained by using
´
R
|ϕ|p d s = ´

R
|u|p dµp .

We now want to utilize a change of variables. The change of variables is defined as

s 7→ z(s) = tanh

(
p −2

2
αs

)
.

It is tailored such that

1− z(s)2 = 1(
cosh

(
p−2

2 αs
))2 = 2

pα2
|ϕ∗(s)|p−2 .
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Define the number n := 2 p
p−2 which is in (2, ∞). Thereafter, consider the transformed

function w
(
z(s)

)= u(s). By calculation obtain the following relation:

d z(s)

d s
= (p −2)α

2

(
cosh

(
p −2

2
αs

))−2

= (p −2)α

2

2

pα2
|ϕ∗(s)|p−2 = (p −2)α

2
(1− z(s)2) .

Using this relation in the change of variables, we obtain the following transformed inte-
grals

pα

(p −2)

(
pα2

2

) n−2
2
ˆ +1

−1
|w(z)|2 (

1− z2) n−2
2 d z =

ˆ
R

|u(x)|2 dµp ,

pα

(p −2)

(
pα2

2

) n−2
2
ˆ +1

−1
|w(z)|p (

1− z2) n−2
2 d z =

ˆ
R

|u(x)|p dµp ,

pα

(p −2)

(
pα2

2

) n−4
2
ˆ +1

−1
|w(z)|2 (

1− z2) n−4
2 d z =

ˆ
R

|u(x)|2 dµ2 ,

(p −2)

pα

(
pα2

2

) n
2
ˆ +1

−1
|w ′(z)|2 (

1− z2) n
2 d z =

ˆ
R

|u′(x)|2 dµ2 .

Now for a φ(s) = (ϕ1,ϕ2)T , we are interested in the quadratic form 〈φ, Aφ〉L2(R×C2)

pα

(p −2)

(
pα2

2

) n−4
2
ˆ 1

2

[(
(p −2)α

2

)2 〈(
w ′

1(z)
w ′

2(z)

)
,

(
w ′

1(z)
w ′

2(z)

)〉
C2

(1− z2)
n
2

+ pα2

2

〈(
w1(z)
w2(z)

)
,

(
1− 1

2

(
p (p −2)

(p −2) p

))(
w1(z)
w2(z)

)〉
C2

(1− z2)
n−2

2

+
〈(

w1(z)
w2(z)

)
,

(
(1+2α) 0

0 (1−2α)

)(
w1(z)
w2(z)

)〉
C2

(1− z2)
n−4

2

]
d z

Now we consider the summands one by one. If one writes the transfomed functions
wi in a Gegenbauer polynomial basis as an ~wi ∈ `2(N0) vector, then the above quadratic
form can be written as 〈 ~wi , M ~wi 〉`2(N0) for a matrix

M =
(

M1 M2

M3 M4

)
where Mi ∈ RN0×N0 . The goal is to show the claim above holds and to compute this ma-
trix M . The Gegenbauer polynomial basis used is the one for parameter λ = (n − 3)/2.
We will follow the unsual convention in calling these polynomials Cλ

k (z) for k ∈N0. Fur-

thermore, for k < 0 we will use the convention that Cλ
k (z) = 0 to make case distinctions

obsolete. Notice that n > 2 implies λ > −1/2 which ensures the existence of the Gegen-
bauer polynomials. The polynomials are orthogonal with respect to the L2([−1,1],C,dµ)
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scalar product with weight dµ(z) = (1− z2)
n−4

2 d z. They are eigenfunctions to the ultras-
pherical operator

L(n−3)/2 :=−(1− z2)
d 2

d z2
+ (n −2)z

d

d z

with eigenvalues λk = k(k +n −3) for the C
n−3

2
k (z). Therefore it holds thatˆ +1

−1
|w ′|2 (

1− z2) n
2 d z = 〈w,L(n−3)/2w〉L2([−1,1],C,dµ) +2

ˆ +1

2
(1− z2)

n−4
2 w z

d

d z
w(z) d z .

Now turn the attention to the z d
d z using classical identities [16, (15) and (16)], specifically

identity :

z
d

d z
Cλ

k (z)
(15)= k Cλ

k (z)+ d

d z
Cλ

k−1(z)

(16)= k Cλ
k (z)+ (k +n −5)Cλ

k−2(z)+ z
d

d z
Cλ

k−2(z)

...
...

...

= k Cλ
k (z)+ ∑

j∈N0, j<k, j+k is even
(2 j +n −3)Cλ

j (z)

As another operator to be expressed in the Gegenbauer polynomial basis, let us consider
z2 Cλ

k (z). We want to express the operator z2 in our Gegenbauer basis by using [16, (19)]:

z Cλ
k (z) = 1

2(k +λ)

(
(k +1)Cλ

k+1(z)+ (k −1+2λ)Cλ
k−1(z)

)
.

By using the recurrence relation twice, we obtain:

z2 Cλ
k (z) = η2

k Cλ
k+2(z)+η1

k Cλ
k (z)+η0

k Cλ
k−2(z) .

The result then follows by collecting of all terms. �

5. NUMERICAL METHOD AND RESULTS

The method used to do the numerics goes as follows. As in Section 4, the operator A
is written as a 2×2 block matrix M with each block corresponding to an infinite dimen-
sional matrix. Each block is now truncated into its uppermost N×N -block. This is a finite
dimensional truncation of the whole infinite dimensional matrix. The finite dimensional
truncation takes into account only the contributions from the first N Gegenbauer poly-
nomials. The lowest eigenvalue of this truncated matrix is then computed via standard
sparse linear algebra solvers from the python SciPy Sparse Linear Algebra library. We per-
formed this computation for values (α, p) in the parameter space for which the p is larger
than the p∗(α) for which symmetry of the optimizing functions was established by [2].

The assumption needed for our numerics to obtain relevant results is, that the upper
component (and respectively the lower component) of the lowest eigenfunction to M
can be well approximated by the first N Gegenbauer polynomials. Unsurprisingly, the
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FIGURE 2. Sign structure of the lowest eigenvalue to the truncated linearized
problem in a part of the unknown region for N = 40. The blue region and every-
thing upwards of these lines is known to have non-symmetric minimizers. Every-
thing lower than the green line is the region where [2] established symmetry of
the minimizers.

numerically calculated lowest eigenfunction is radially symmetric and radially decreas-
ing (see Figure 4). This can be analytically shown via a simple rearrangement inequality
sinceφ∗ is radially symmetric and radially decreasing. The numerically computed lowest
eigenfunction puts mass on both the upper component and the lower component.
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FIGURE 3. Sign structure of the lowest eigenvalue to the truncated linearized
problem in a part of the unknown region for N = 171. The blue region and every-
thing upwards of these lines is known to have non-symmetric minimizers. Every-
thing lower than the green line is the region where [2] established symmetry of
the minimizers.

Furthermore, it seems to put mass only on the first ten or so even Gegenbauer polyno-
mials, even when we put N as high as 170. We can take this as some numerical evidence,
that our approximation is not significantly losing essential features. See Figures 2 and 3.
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FIGURE 4. Numerically computed eigenvector corresponding to the lowest
eigenvalue for A in s ∈ R coordinates for N = 40, p = 7.169717715437374, α =
0.2511705685618729. The radial decreasing symmetry is clearly visible.

FIGURE 5. Sign structure of the lowest eigenvalue to the truncated linearized
problem in a part of the unknown region for N = 20. Everything to the left of
the green surface is the region where [2] established symmetry of the minimizers.
The computations for the lowest p for a given α lie on that surface. The figure
indicates a second order phase transition at the threshold between linear stability
and instability.
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[9] L. ERDŐS, Rayleigh-type isoperimetric inequality with a homogeneous magnetic field, Calculus of Vari-

ations and Partial Differential Equations, 4 (1996), pp. 283–292.

[10] V. FELLI AND M. SCHNEIDER, Perturbation results of critical elliptic equations of Caffarelli-Kohn-

Nirenberg type, J. Differential Equations, 191 (2003), pp. 121–142.

[11] R. L. FRANK AND M. LOSS, A sharp criterion for zero modes of the dirac equation, Journal of the Euro-

pean Mathematical Society, (2024).

[12] V. P. IL’IN, Some integral inequalities and their applications in the theory of differentiable functions of

several variables, Mat. Sb. (N.S.), 54 (96) (1961), pp. 331–380.

[13] L. D. LANDAU AND E. LIFSCHITZ, Quantum Mechanics. Non-relativistic theory., Third edition. Trans-

lated from the russian by J.B. Sykes and J.S. Bell. Pergamon, New York, 1977.

[14] G. PÖSCHL AND E. TELLER, Bemerkungen zur Quantenmechanik des anharmonischen Oszillators,

Zeitschrift für Physik A Hadrons and Nuclei, 83 (1933), pp. 143–151.

[15] B. V. SZ. NAGY, Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung, Acta Univ.

Szeged. Sect. Sci. Math., 10 (1941), pp. 64–74.

[16] E. W. WEISSTEIN, Gegenbauer polynomial, From MathWorld–A Wolfram Web Resource.

https://mathworld.wolfram.com/GegenbauerPolynomial.html, 2025.

https://creativecommons.org/licenses/by/4.0/legalcode
https://mathworld.wolfram.com/GegenbauerPolynomial.html


18 J. DOLBEAULT, R.L. FRANK, AND J. WEIXLER

(Jean Dolbeault) CEREMADE (CNRS UMR N◦ 7534), PSL UNIVERSITY, UNIVERSITÉ PARIS-DAUPHINE,

PLACE DE LATTRE DE TASSIGNY, 75775 PARIS 16, FRANCE

Email address: dolbeaul@ceremade.dauphine.fr

(Rupert L. Frank) MATHEMATISCHES INSTITUT, LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN, THE-

RESIENSTR. 39, 80333 MÜNCHEN, GERMANY, AND MUNICH CENTER FOR QUANTUM SCIENCE AND TECH-

NOLOGY, SCHELLINGSTR. 4, 80799 MÜNCHEN, GERMANY, AND MATHEMATICS 253-37, CALTECH, PASADE-

NA, CA 91125, USA

Email address: r.frank@lmu.de

(Jonte Weixler) CEREMADE (CNRS UMR N◦ 7534), PSL UNIVERSITY, UNIVERSITÉ PARIS-DAUPHINE,

PLACE DE LATTRE DE TASSIGNY, 75775 PARIS 16, FRANCE

Email address: jonteweixler@t-online.de


	1. Introduction
	2. From 2D-spinor to Aharonov–Bohm
	3. Linear Instability Region
	4. Reformulation in a Gegenbauer Polynomial Basis
	5. Numerical method and results
	References

