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Abstract

This paper is devoted to improvements of Sobolev and Onofri inequalities.
The additional terms involve the dual counterparts, i.e. Hardy-Littlewood-
Sobolev type inequalities. The Onofri inequality is achieved as a limit case
of Sobolev type inequalities. Then we focus our attention on the constants
in our improved Sobolev inequalities, that can be estimated by completion
of the square methods. Our estimates rely on nonlinear flows and spectral
problems based on a linearization around optimal Aubin-Talenti functions.
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1. Introduction

E. Carlen, J.A. Carrillo and M. Loss noticed in [12] that Hardy-Littlewood-
Sobolev inequalities in dimension d ≥ 3 can be deduced from some special
Gagliardo-Nirenberg inequalities using a fast diffusion equation. Sobolev’s
inequalities and Hardy-Littlewood-Sobolev inequalities are dual. A funda-
mental reference for this issue is E.H. Lieb’s paper [37]. This duality has also
been investigated using a fast diffusion flow in [22]. Although [12] has moti-
vated [22], the two approaches are so far unrelated. Actually [22] is closely
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connected with the approach by Legendre’s duality developed in [37]. We
shall take advantage of this fact in the present paper and also use of the flow
introduced in [22].

For any d ≥ 3, the space D1,2(Rd) is defined as the completion of smooth
solutions with compact support w.r.t. the norm

w 7→ ‖w‖ :=
(
‖∇w‖2

L2(Rd) + ‖w‖2
L2∗ (Rd)

)1/2

,

where 2∗ := 2 d
d−2

. The Sobolev inequality in Rd is

Sd ‖∇u‖2
L2(Rd) − ‖u‖

2
L2∗ (Rd) ≥ 0 ∀u ∈ D1,2(Rd) , (1)

where the best constant, or Aubin-Talenti constant, is given by

Sd =
1

π d (d− 2)

(
Γ(d)

Γ( d2)

) 2
d

(see Appendix A for details). The optimal Hardy-Littlewood-Sobolev in-
equality

Sd ‖v‖2

L
2 d
d+2 (Rd)

−
∫

Rd
v (−∆)−1 v dx ≥ 0 ∀ v ∈ L

2 d
d+2 (Rd) (2)

involves the same best constant Sd, as a result of the duality method of [37].
When d ≥ 5, using a well chosen flow, it has been established in [22] that the
l.h.s. in (1) is actually bounded from below by the l.h.s. in (2), multiplied by
some positive proportionality constant. In our first result, we will remove the
technical restriction d ≥ 5 and cover all dimensions d ≥ 3. An elementary use
of the duality method – in fact a simple completion of the square method –
provides a simple upper bound on the optimal proportionality constant in
any dimension.

Theorem 1. For any d ≥ 3, if q = d+2
d−2

the inequality

Sd ‖uq‖2

L
2 d
d+2 (Rd)

−
∫

Rd
uq (−∆)−1 uq dx

≤ Cd ‖u‖
8
d−2

L2∗ (Rd)

[
Sd ‖∇u‖2

L2(Rd) − ‖u‖
2
L2∗ (Rd)

]
(3)
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holds for any u ∈ D1,2(Rd) where the optimal proportionality constant Cd is
such that

d

d+ 4
Sd ≤ Cd < Sd .

Inequality (3) is obtained with Cd replaced by Sd by expanding a well
chosen square in Section 2. The lower bound on Cd follows from an expansion
of both sides of the inequality around the Aubin-Talenti functions, which are
optimal for Sobolev and Hardy-Littlewood-Sobolev inequalities (see Section 2
for more details), and spectral estimates that will be studied in Section 3:
see Corollary 6. The computation based on the flow as was done in [22] can
be optimized to get an improved inequality compared to (3), far from the
Aubin-Talenti functions: see Theorem 9 in Section 4. As a consequence, we
also prove the strict inequality Cd < Sd.

In dimension d = 2, consider the probability measure dµ defined by

dµ(x) := µ(x) dx with µ(x) :=
1

π (1 + |x|2)2
∀ x ∈ R2.

The Euclidean version of Onofri’s inequality [39]

1

16 π

∫
R2

|∇f |2 dx− log

(∫
R2

e f dµ

)
+

∫
R2

f dµ ≥ 0 ∀ f ∈ D(R2) (4)

plays the role of Sobolev’s inequality in higher dimensions. Here the in-
equality is written for smooth and compactly supported functions in D(R2),
but can be extended to the appropriate Orlicz space which corresponds to
functions such that both sides of the inequality are finite.

This inequality is dual of the logarithmic Hardy-Littlewood-Sobolev in-
equality that can be written as follows: for any g ∈ L1

+(R2) with M =∫
R2 g dx, such that g log g, (1 + log |x|2) g ∈ L1(R2), we have∫

R2

g log
( g
M

)
dx− 4π

M

∫
R2

g (−∆)−1 g dx+M (1 + log π) ≥ 0 (5)

with ∫
R2

g (−∆)−1 g dx = − 1

2 π

∫
R2×R2

g(x) g(y) log |x− y| dx dy .

Then, in dimension d = 2, we have an analogue of Theorem 1, which goes as
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follows.

Theorem 2. The inequality∫
R2

g log
( g
M

)
dx− 4 π

M

∫
R2

g (−∆)−1 g dx+M (1 + log π)

≤M

[
1

16 π
‖∇f‖2

L2(R2) +

∫
R2

f dµ− logM

]
(6)

holds for any function f ∈ D(R2) such that M =
∫

R2 e
f dµ and g = ef µ.

Using for instance [2] or [13, Lemma 2] (also see [38, chapter 3–4]), it is
known that optimality is achieved in (1), (2), (4) or (5) when the problem
is reduced to radially symmetric functions. However, no such result applies
when considering a difference of the terms in two such inequalities, like in (3)
or (6). Optimality therefore requires a special treatment. In Section 2, we
shall use the completion of the square method to establish the inequalities
(without optimality) under an assumption of radial symmetry in case of
Theorem 2. For radial functions, Theorem 1 can indeed be written with d > 2
considered as a real parameter and Theorem 2 corresponds, in this setting,
to the limit case as d → 2+. To handle the general case (without radial
symmetry assumption), a more general setting is required. In Section 5,
we extend the results established for Sobolev inequalities to weighted spaces
and obtain an improved version of the Caffarelli-Kohn-Nirenberg inequalities
(see Theorem 15). Playing with weights is equivalent to varying d or taking
limits with respect to d, except that no symmetry assumption is required.
This allows to complete the proof of Theorem 2.

Technical results regarding the computation of the constants, a weighted
Poincaré inequality and the stereographic projection, the extension of the
flow method of [22] to the case of the dimensions d = 3 and d = 4, and sym-
metry results for Caffarelli-Kohn-Nirenberg inequalities have been collected
in various appendices.

At this point, we emphasize that Theorems 15 and 16, which are used as
intermediate steps in the proof of Theorem 2 are slightly more general than,
respectively, Theorems 1 and 2, except for the issue of the optimal value of
the proportionality constant, which has not been studied. It is likely that
the method used for Sobolev’s inequality can be adapted, but since weights
break the translation invariance, some care should be given to this question,
which is of independent interest and known to raise a number of difficulties
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of its own (see for instance [24]). The question of a lower estimate of the
proportionality constant in (6) in connection with a larger family of Onofri
type inequalities is currently being studied, see [34].

Let us conclude this introduction by a brief review of the literature. To
establish the inequalities, our approach is based on a completion of the square
method which accounts for duality issues. Linearization (spectral estimates)
and estimates based on a nonlinear flow are used for optimality issues. Al-
though some of these methods have been widely used in the literature, for
instance in the context of Hardy inequalities (see [8] and references therein),
it seems that they have not been fully exploited yet in the case of the func-
tional inequalities considered in this paper. The main tool in [22] is a flow of
fast diffusion type, which has been considered earlier in [21]. In dimension
d = 2, we may refer to various papers (see for instance [17, 18, 19]) in con-
nection with Ricci’s flow for properties of the solutions of the corresponding
evolution equation.

Many papers have been devoted to the asymptotic behaviour near extinc-
tion of the solutions of nonlinear flows, in bounded domains (see for instance
[4, 32, 41, 7]) or in the whole space (see [36, 40, 33] and references therein).
In particular, the Cauchy-Schwarz inequality has been repeatedly used, for
instance in [4, 41], and turns out to be a key tool in the main result of [22],
as well as the solution with separation of variables, which is related to the
Aubin-Talenti optimal function for (1).

Getting improved versions of Sobolev’s inequality is a question which has
attracted lots of attention. See [9] in the bounded domain case and [10] for
an earlier related paper. However, in [9], H. Brezis and E. Lieb also raised the
question of measuring the distance to the manifold of optimal functions in
the case of the Euclidean space. A few years later, G. Bianchi and H. Egnell
gave an answer in [6] using the concentration-compactness method, with no
explicit value of the constant. Since then, considerable efforts have been
devoted to obtain quantitative improvements of Sobolev’s inequality. On the
whole Euclidean space, nice estimates based on rearrangements have been
obtained in [16] and we refer to [15] for an interesting review of various
related results. The method there is in some sense constructive, but it hard
to figure what is the practical value of the constant. As in [22] our approach
involves much weaker notions of distances to optimal functions, but on the
other hand offers clear-cut estimates. Moreover, it provides an interesting
way of obtaining global estimates based on a linearization around Aubin-
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Talenti optimal functions.

2. A completion of the square and consequences

Before proving the main results of this paper, let us explain in which
sense Sobolev’s inequality and the Hardy-Littlewood-Sobolev inequality, or
Onofri’s inequality and the logarithmic Hardy-Littlewood-Sobolev inequality,
for instance, are dual inequalities.

To a convex functional F , we may associate the functional F ∗ defined by
Legendre’s duality as

F ∗[v] := sup

(∫
Rd
u v dx− F [u]

)
.

For instance, to F1[u] = 1
2
‖u‖2

Lp(Rd)
defined on Lp(Rd), we henceforth as-

sociate F ∗1 [v] = 1
2
‖v‖2

Lq(Rd)
on Lq(Rd) where p and q are Hölder conjugate

exponents: 1/p + 1/q = 1. The supremum can be taken for instance on
all functions in Lp(Rd), or, by density, on the smaller space of the functions
u ∈ Lp(Rd) such that ∇u ∈ L2(Rd). Similarly, to F2[u] = 1

2
Sd ‖∇u‖2

L2(Rd)
,

we associate F ∗2 [v] = 1
2
S−1
d

∫
Rd v (−∆)−1 v dx where (−∆)−1 v = Gd ∗ v

with Gd(x) = 1
d−2
|Sd−1|−1 |x|2−d, when d ≥ 3, and G2(x) = − 1

2π
log |x|.

As a straightforward consequence of Legendre’s duality, if we have a func-
tional inequality of the form F1[u] ≤ F2[u], then we have the dual inequality
F ∗1 [v] ≥ F ∗2 [v]. In this sense, (1) and (2) are dual of each other, as it has
been noticed in [37]. Also notice that Inequality (2) is a consequence of
Inequality (1).

In this paper, we go one step further and establish that

F ∗1 [u]− F ∗2 [u] ≤ C (F2[u]− F1[u]) (7)

for some positive constant C, at least under some normalization condition
(or up to a multiplicative term which is required for simple homogeneity
reasons). Such an inequality has been established in [22, Theorem 1.2] when
d ≥ 5. Here we extend it to any d ≥ 3 and get and improved value for the
constant C.

It turns out that the proof can be reduced to the completion of a square.
Let us explain how the method applies in case of Theorem 1, and how The-
orem 2 can be seen as a limit of Theorem 1 in case of radial functions.

6



Proof of Theorem 1, part 1: the completion of a square.
Integrations by parts show that∫

Rd
|∇(−∆)−1 v|2 dx =

∫
Rd
v (−∆)−1 v dx

and, if v = uq with q = d+2
d−2

,∫
Rd
∇u · ∇(−∆)−1 v dx =

∫
Rd
u v dx =

∫
Rd
u2∗ dx .

Hence the expansion of the square

0 ≤
∫

Rd

∣∣∣∣Sd ‖u‖ 4
d−2

L2∗ (Rd)
∇u−∇(−∆)−1 v

∣∣∣∣2 dx
shows that

0 ≤ Sd ‖u‖
8
d−2

L2∗ (Rd)

[
Sd ‖∇u‖2

L2(Rd) − ‖u‖
2
L2∗ (Rd)

]
−
[
Sd ‖uq‖2

L
2 d
d+2 (Rd)

−
∫

Rd
uq (−∆)−1 uq dx

]
.

Equality is achieved if and only if

Sd ‖u‖
4
d−2

L2∗ (Rd)
u = (−∆)−1 v = (−∆)−1 uq ,

that is, if and only if u solves

−∆u =
1

Sd
‖u‖−

4
d−2

L2∗ (Rd)
uq ,

which means that u is an Aubin-Talenti function, optimal for (1). This
completes the proof of Theorem 1, up to the optimality of the proportionality
constant, for which we know that

Cd = C Sd with C ≤ 1 . (8)

Incidentally, this also proves that v is optimal for (2).

As a first step towards the proof of Theorem 2, let us start with a result
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for radial functions. If d is a positive integer, we can define

sd := Sd |Sd−1|
2
d

and get

sd =
4

d (d− 2)

(
Γ
(
d+1

2

)
√
π Γ
(
d
2

)) 2
d

. (9)

Using this last expression allows us to consider d as a real parameter.

Lemma 3. Assume that d ∈ R and d > 2. Then

0 ≤ sd

(∫ ∞
0

u
2 d
d−2 rd−1 dr

)1+ 2
d

−
∫ ∞

0

u
d+2
d−2

(
(−∆)−1u

d+2
d−2

)
rd−1 dr

≤ cd

(∫ ∞
0

u
2 d
d−2 rd−1 dr

) 4
d

[
sd

∫ ∞
0

|u′|2 rd−1 dr −
(∫ ∞

0

u
2 d
d−2 rd−1 dr

) d−2
d

]

holds for any radial function u ∈ D1,2(Rd) with optimal constant cd ≤ sd.

Here we use the notation (−∆)−1 v = w to express the fact that w is the
solution to w′′ + d−1

r
w′ + v = 0, that is,

(−∆)−1 v (r) =

∫ ∞
r

s1−d
∫ s

0

v(t) td−1 dt ds ∀ r > 0 . (10)

Proof. In the case of a radially symmetric function u, and with the stan-
dard abuse of notations that amounts to identify u(x) with u(r), r = |x|,
Inequality (1) can be written as

sd

∫ ∞
0

|u′|2 rd−1 dr ≥
(∫ ∞

0

|u|
2 d
d−2 rd−1 dr

)1− 2
d

. (11)

However, if u is considered as a function of one real variable r, then the
inequality also holds for any real parameter d ∈ (2,∞) and is equivalent to
the one-dimensional Gagliardo-Nirenberg inequality

sd

(∫
R
|w′|2 dt+ 1

4
(d− 2)2

∫
R
|w|2 dt

)
≥
(∫

R
|w|

2 d
d−2 dt

)1− 2
d

8



as can be shown using the Emden-Fowler transformation

u(r) = (2 r)−
d−2
2 w(t) , t = − log r . (12)

The corresponding optimal function is, up to a multiplication by a constant,
given by

w?(t) = (cosh t)−
d−2
2 ∀ t ∈ R ,

which solves the Euler-Lagrange equation

− (p− 2)2w′′ + 4w − 2 p |w|p−2w = 0 .

for any real number d > 2 and the optimal function for (11) is

u?(r) = (2 r)−
d−2
2 w?(− log r) =

(
1 + r2

)− d−2
2

up to translations, multiplication by a constant and scalings. This estab-
lishes (9). See Appendix A for details on the computation of sd. The reader
is in particular invited to check that the expression of sd is consistent with
the one of Sd given in the introduction.

Next we apply Legendre’s transform to (11) and get a Hardy-Littlewood-
Sobolev inequality that reads∫ ∞

0

v (−∆)−1 v rd−1 dr ≤ sd

(∫ ∞
0

v
2 d
d+2 rd−1 dr

)1+ d
2

(13)

for any d > 2. Inequality (13) holds on the functional space which is obtained
by completion of the space of smooth compactly supported radial functions
with respect to the norm defined by the r.h.s. in (13). Inequality (13) is the
first inequality of Lemma 3.

Finally, we apply the completion of the square method. By expanding

0 ≤
∫ ∞

0

∣∣ a u′ − ((−∆)−1v
)′ ∣∣2 rd−1 dr

with a = sd
(∫∞

0
u

2 d
d−2 rd−1 dr

) 2
d

and v = u
d−2
d+2 , we establish the second in-

equality of Lemma 3 (with optimal constant cd ≤ sd).

Now let us turn our attention to the case d = 2 and to Theorem 2. Using
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the fact that d in Lemma 3 is a real parameter, we can simply consider the
limit of the inequalities as d→ 2+.

Corollary 4. For any function f ∈ L1(R+; r dr) such that f ′ ∈ L2(R+; r dr)
and M =

∫∞
0
ef (1 + r2)−2 2 r dr, we have the inequality

0 ≤
∫ ∞

0

ef log

(
ef

M (1 + r2)2

)
2 r dr

(1 + r2)2

− 2

M

∫ ∞
0

ef

(1 + r2)2
(−∆)−1

(
ef

(1 + r2)2

)
2 r dr + M

≤M

[
1

8

∫ ∞
0

|f ′|2 r dr +

∫ ∞
0

f
2 r dr

(1 + r2)2
− log

(∫ ∞
0

ef
2 r dr

(1 + r2)2

)]
. (14)

Here again (−∆)−1 is defined by (10), but it coincides with the inverse of
−∆ acting on radial functions.

Proof. We may pass to the limit in (11) written in terms of

u(r) = u?(r)
(
1 + d−2

2 d
f
)

to get the radial version of Onofri’s inequality for f . By expanding the
expression of |u′|2 we get

u′2 = u′2? +
d− 2

d
u′? (u? f)′ +

(
d− 2

2 d

)2

(u′? f + u? f
′)

2
.

Using the fact that limd→2+(d− 2) sd = 1,

sd =
1

d− 2
+

1

2
− 1

2
log 2 + o(1) as d→ 2+ ,

and

lim
d→2+

1

d− 2

∫ ∞
0

|u′?|2 rd−1 dr = 1 ,

1

d− 2

∫ ∞
0

|u′?|2 rd−1 dr − 1 ∼ −1

2
(d− 2) ,

lim
d→2+

1

d− 2

∫ ∞
0

u′? (u? f)′ rd−1 dr =

∫ ∞
0

f
2 r dr

(1 + r2)2
,
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lim
d→2+

1

4 d2

∫ ∞
0

|f ′|2 u2
? r

d−1 dr =
1

16

∫ ∞
0

|f ′|2 r dr ,

and finally

lim
d→2+

∫ ∞
0

|u? (1 + d−2
2 d

f)|
2 d
d−2 rd−1 dr =

∫ ∞
0

ef
r dr

(1 + r2)2
,

so that, as d→ 2+,(∫ ∞
0

|u? (1 + d−2
2 d

f)|
2 d
d−2 rd−1 dr

) d−2
d

− 1 ∼ d− 2

2
log

(∫ ∞
0

ef
r dr

(1 + r2)2

)
.

By keeping only the highest order terms, which are of the order of (d − 2),
and passing to the limit as d→ 2+ in (11), we obtain that

1

8

∫ ∞
0

|f ′|2 r dr +

∫ ∞
0

f
2 r dr

(1 + r2)2
≥ log

(∫ ∞
0

ef
2 r dr

(1 + r2)2

)
,

which is Onofri’s inequality written for radial functions.
Similarly, we can pass to the limit as d→ 2+ in (13). Let v be a compactly

supported smooth radial function, considered as a function of r ∈ [0,∞) and
let us compute the limit as d→ 2+ of

h(d) :=

(∫ ∞
0

v
2 d
d+2 rd−1 dr

)1+ 2
d

− 1

sd

∫ ∞
0

v kd[v] rd−1 dr

where kd[v] := (−∆)−1 v is given by (10) for any d ≥ 2. If d > 2, since

(2− d)

∫ ∞
0

v(r) kd[v](r) rd−1 dr

= (2− d)

∫ ∞
0

v(r) rd−1

∫ ∞
r

s1−d
∫ s

0

v(t) td−1 dt ds dr

= (2− d)

∫ ∞
0

r1−d
(∫ r

0

v(t) td−1 dt

)2

dr

= − 2

∫ ∞
0

r v(r)

∫ r

0

v(t) td−1 dt dr

11



we see that limd→2+ h(d) = 0 since

2

∫ ∞
0

r v(r)

∫ r

0

v(t) t dt dr =

(∫ ∞
0

r v(r) dr

)2

.

Let us compute the O(d−2) term. With the above expression, it is now easy
to check that

lim
d→2+

h(d)

d− 2

=
1

2

∫ ∞
0

v r dr

∫ ∞
0

v log

(
v∫∞

0
v r dr

)
r dr − log 2− 1

2

(∫ ∞
0

r v(r) dr

)2

+ 2

∫ ∞
0

v r dr

∫ ∞
0

v(r) r log r dr − 2

∫ ∞
0

r v(r)

∫ r

0

v(t) t log t dt dr

=
1

2

∫ ∞
0

v r dr

∫ ∞
0

v log

(
v∫∞

0
v r dr

)
r dr − log 2− 1

2

(∫ ∞
0

r v(r) dr

)2

+ 2

∫ ∞
0

v r dr

∫ ∞
r

v(t) t log t dt

since 1
(d−2) sd

∼ 1 + d−2
2

(log 2 − 1). A computation corresponding to d = 2
similar to the one done above for d > 2 shows that, when d = 2,∫ ∞

0

v k2[v] r dr =

∫ ∞
0

v(r) r

∫ ∞
r

1

s

∫ s

0

v(t) t dt ds dr

=

∫ ∞
0

1

r

(∫ r

0

v(t) t dt

)2

dr

= − 2

∫ ∞
0

r log r v(r)

∫ r

0

v(t) t dt dr ,

thus proving that

lim
d→2+

h(d)

d− 2
=

1

2

∫ ∞
0

v r dr

∫ ∞
0

v log

(
v∫∞

0
v r dr

)
r dr −

∫ ∞
0

v k2[v] rd−1 dr

− 1

2
(log 2− 1)

(∫ ∞
0

r v(r) dr

)2

.
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Now let us consider as above the limit

u
d+2
d−2 = (1 + r2)−

d+2
2 (1 + d−2

2 d
f)

d+2
d−2 → (1 + r2)−2 ef =: g

as d→ 2. This concludes the proof of Corollary 4 by passing to the limit in
the inequalities of Lemma 3 and taking v = g.

Proof of Theorem 2: a passage to the limit in the radial case. If we consider
g as a function on R2 3 x with r = |x|, this means that

lim
d→2+

h(d)

d− 2
=

1

2

∫
R2

g dx

∫
R2

g log

(
g∫

R2 g dx

)
dx− 2 π

∫
R2

g (−∆)−1 g dx

+
1

2
(1 + log π)

(∫
R2

g dx

)2

which precisely corresponds to the terms involved in (5), up to a factor
1
2
M = 1

2

∫
R2 g dx. The proof in the non-radial case will be provided at the

end of Section 5.

3. Linearization

In the previous section, we have proved that the optimal constant Cd in (3)
is such that Cd ≤ Sd. Let us prove that Cd ≥ d

d+4
Sd using a special sequence

of test functions. Let F and G be the positive integral quantities associated
with, respectively, the Sobolev and Hardy-Littlewood-Sobolev inequalities:

F [u] := Sd ‖∇u‖2
L2(Rd) − ‖u‖

2
L2∗ (Rd) ,

G[v] := Sd ‖v‖2

L
2 d
d+2 (Rd)

−
∫

Rd
v (−∆)−1 v dx .

Since that, for the Aubin-Talenti extremal function u?, we have F [u?] =
G[uq?] = 0, so that u? gives a case of equality for (3), a natural question to
ask is whether the infimum of F [u]/G[uq], under an appropriate normalization
of ‖u‖L2∗ (Rd), is achieved as a perturbation of the u?.

Recall that u? is the Aubin-Talenti extremal function

u?(x) := (1 + |x|2)−
d−2
2 ∀x ∈ Rd .

13



With a slight abuse of notations, we use the same notation as in Section 2.
We may notice that u? solves

−∆u? = d (d− 2)u
d+2
d−2
?

which allows to compute the optimal Sobolev constant as

Sd =
1

d (d− 2)

(∫
Rd
u2∗

? dx

)− 2
d

(15)

using (12). See Appendix A for details. This shows that

1

Sd
F [u] = ‖∇u‖2

L2(Rd) − d (d− 2)

(∫
Rd
u2∗ dx

)1− 2
d
(∫

Rd
u2∗

? dx

) 2
d

.

The goal of this section is to perform a linearization. By expanding F [uε]
with uε = u? + ε f , for some f such that

∫
Rd

f u?
(1+|x|2)2

dx = 0 at order two in
terms of ε, we get that

1

Sd
F [uε] = ε2 F[f ] + o(ε2)

where

F[f ] :=

∫
Rd
|∇f |2 dx− d (d+ 2)

∫
Rd

|f |2

(1 + |x|2)2
dx .

According to Lemma 17 (see Appendix B), we know that

F[f ] ≥ 4 (d+ 2)

∫
Rd

|f |2

(1 + |x|2)2
dx

for any f ∈ D1,2(Rd) such that∫
Rd

f fi
(1 + |x|2)2

dx = 0 ∀ i = 0 , 1 , 2 , . . . d+ 1 , (16)

where

f0 := u? , fi(x) =
xi

1 + |x|2
u?(x) and fd+1(x) :=

1− |x|2

1 + |x|2
u?(x) .

14



Notice for later use that

−∆f0 = d (d− 2)
f0

(1 + |x|2)2

and

−∆fi = d (d+ 2)
fi

(1 + |x|2)2
∀ i = 1 , 2 , . . . d+ 1 .

Also notice that ∫
Rd

fi fj
(1 + |x|2)2

dx = 0

for any i, j = 0, 1, . . . d+ 1, j 6= i.
Similarly, we can consider the functional G as given above, associated with

the Hardy-Littlewood-Sobolev inequality, and whose minimum G[v?] = 0 is
achieved by v? := uq?, q = d+2

d−2
. Consistently with the above computations,

let vε := (u? + ε f)q = v?
(
1 + ε f

u?

)q
where f is such that

∫
Rd

f f0
(1+|x|2)2

dx = 0.

By expanding G[vε] at order two in terms of ε, we get that

G[vε] = ε2

(
d+ 2

d− 2

)2

G[f ] + o(ε2)

where

G[f ] :=
1

d (d+ 2)

∫
Rd

|f |2

(1 + |x|2)2
dx

−
∫

Rd

f

(1 + |x|2)2
(−∆)−1

(
f

(1 + |x|2)2

)
dx .

Lemma 5. Ker(F) = Ker(G).

It is straightforward to check that the kernel is generated by fi with i = 1,
2, . . . d, d + 1. Details are left to the reader. Next, by Legendre duality we
find that

1

2

∫
Rd

|g|2

(1 + |x|2)2
dx = sup

f

(∫
Rd

f g

(1 + |x|2)2
dx− 1

2

∫
Rd

|f |2

(1 + |x|2)2
dx

)
,

15



1

2

∫
Rd

g

(1 + |x|2)2
(−∆)−1

(
g

(1 + |x|2)2

)
dx

= sup
f

(∫
Rd

f g

(1 + |x|2)2
dx− 1

2

∫
Rd
|∇f |2 dx

)
.

Here the supremum is taken for all f satisfying the orthogonality condi-
tions (16). It is then straightforward to see that duality holds if g is restricted
to functions satisfying (16) as well. Consider indeed an optimal function f
subject to (16). There are Lagrange multipliers µi ∈ R such that

g − f −
d+1∑
i=0

µi fi = 0

and after multiplying by f (1 + |x|2)−2, an integration shows that∫
Rd

f g

(1 + |x|2)2
dx =

∫
Rd

|f |2

(1 + |x|2)2
dx

using the fact that f satisfies (16). On the other hand, if g satisfies (16),
after multiplying by g (1 + |x|2)−2, an integration gives∫

Rd

|g|2

(1 + |x|2)2
dx =

∫
Rd

f g

(1 + |x|2)2
dx ,

which establishes the first identity of duality. As for the second identity, the
optimal function satisfies the Euler-Lagrange equation

g

(1 + |x|2)2
+ ∆ f =

d+1∑
i=0

µi
fi

(1 + |x|2)2

for some Lagrange multipliers that we again denote by µi. By multiplying
by f and (−∆)−1

(
g (1 + |x|2)−2

)
, we find that∫

Rd

f g

(1 + |x|2)2
dx =

∫
Rd
|∇f |2 dx∫

Rd

g

(1 + |x|2)2
(−∆)−1

(
g

(1 + |x|2)2

)
dx =

∫
Rd

f g

(1 + |x|2)2
dx

16



where we have used the fact that∫
Rd

fi
(1 + |x|2)2

(−∆)−1

(
g

(1 + |x|2)2

)
dx

=

∫
Rd

g

(1 + |x|2)2
(−∆)−1

(
fi

(1 + |x|2)2

)
dx = 0

because (−∆)−1
(
fi (1 + |x|2)−2

)
is proportional to fi. As a straightforward

consequence, the dual form of Lemma 17 then reads as follows.

Corollary 6. For any g satisfying the orthogonality conditions (16), we have∫
Rd

g

(1 + |x|2)2
(−∆)−1

(
g

(1 + |x|2)2

)
dx ≤ 1

(d+ 2) (d+ 4)

∫
Rd

g2

(1 + |x|2)2
dx .

Moreover, if f obeys to (16), then we have

4

d (d+ 2) (d+ 4)

∫
Rd

f 2

(1 + |x|2)2
dx ≤ G[f ] ≤ 1

d (d+ 2)2 (d+ 4)
F[f ]

and equalities are achieved in L2(Rd, (1 + |x|2)−2 dx).

Proof. The first inequality follows from the above considerations on duality
and the second one from the definition of G, using

4

d (d+ 2) (d+ 4)
=

1

d (d+ 2)
− 1

(d+ 2) (d+ 4)
.

To establish the last inequality, we can decompose f on (fk)k, the stereo-
graphic projection of the spherical harmonics associated to eigenvalues λk =
k (k+d−1) with k ≥ 2, so as to meet condition (16). See Appendix B for more
details. The corresponding eigenvalues for the Laplacian operator on the Eu-
clidean space are µk = 4λk + d (d − 2), so that −∆fk = µk fk (1 + |x|2)−2,
with ‖fk‖L2(Rd, (1+|x|2)−2 dx) = 1. By writing f =

∑
k≥2 ak fk we have

F[f ] =
∑
k≥2

ck , with ck := a2
k (µk − µ1) ,

G[f ] =
∑
k≥2

dk , with dk := a2
k

(
1

µ1

− 1

µk

)
,

17



with ck = µ1 µk dk ≤ µ1 µ2 dk since (µk)k is increasing in k. This yields

F[f ]

G[f ]
≤ µ1 µ2 = d (d+ 2)2 (d+ 4) ,

with equality for f = f2.

As a consequence of Corollary 6 and (15), we have found that

1

C
:=

Sd
Cd

= inf
G[uq ] 6=0

‖u‖
8
d−2

L2∗ (Rd)
SdF [u]

G[uq]
≤ 1

d2 (d+ 2)2
inf
f

F[f ]

G[f ]
=
d+ 4

d
, (17)

where the last infimum is taken on the set of all non-trivial functions in
L2(Rd, (1+|x|2)−2 dx) satisfying (16). This establishes the lower bound in (3).

Remark 7. One may hope to get a better estimate by considering the case
f ∈ Ker(F) = Ker(G) and expanding F and G to the fourth order in ε but, in-
terestingly, this yields exactly the same lower bound on Cd as the linearization
shown above.

4. Improved inequalities and nonlinear flows

In Section 3, the basic strategy was based on the completion of a square.
The initial approach for the improvement of Sobolev inequalities in [22] was
based on a fast diffusion flow. Let us give some details and explain how even
better results can be obtained using a combination of the two approaches.

Let us start with a summary of the method of [22]. It will be convenient
to define the functionals

Jd[v] :=

∫
Rd
v

2 d
d+2 dx and Hd[v] :=

∫
Rd
v (−∆)−1v dx− Sd ‖v‖2

L
2 d
d+2 (Rd)

.

Consider a positive solution v of the fast diffusion equation

∂v

∂t
= ∆vm t > 0 , x ∈ Rd , m =

d− 2

d+ 2
(18)

and define the functions

J(t) := Jd[v(t, ·)] and H(t) := Hd[v(t, ·)] .

18



We shall denote by J0 and H0 the corresponding initial values. Elementary
computations show that

J′ = − (m+ 1) ‖∇vm‖2
L2(Rd) ≤ −

m+ 1

Sd
J1− 2

d = − 2 d

d+ 2

1

Sd
J1− 2

d , (19)

where the inequality is a consequence of Sobolev’s inequality. Hence v has a
finite extinction time T > 0 and since

J(t)
2
d ≤ J

2
d
0 −

4

d+ 2

t

Sd
,

we find that

T ≤ d+ 2

4
Sd J

2
d
0 .

We notice that H is nonpositive because of the Hardy-Littlewood-Sobolev
inequality and by applying the flow of (18), we get that

1

2
J−

2
d H′ = Sd ‖∇u‖2

L2(Rd) − ‖u‖
2
L2∗ (Rd) with u = v

d−2
d+2 .

The right hand side is nonnegative because of Sobolev’s inequality. One more
derivation with respect to t gives that

H′′ =
J′

J
H′ − 4m Sd J

2
d K (20)

where K :=
∫

Rd v
m−1 |(−∆)vm − Λ v|2 dx and Λ := −d+2

2 d
J′

J
. This identity

makes sense in dimension d ≥ 5, because, close to the extinction time, v
behaves like the Aubin-Talenti functions. The reader is invited to check that
all terms are finite when expanding the square in K and can refer to [22] for
more details. It turns out that the following estimate is also true if d = 3 or
d = 4.

Lemma 8. Assume that d ≥ 3. With above notations, we have

H′′

H′
≤ J′

J
.

The main idea is that even if each of the above integrals is infinite, there
are cancellations in low dimensions. To clarify this computation, it is much
easier to get rid of the time-dependence corresponding to the solution with

19



separation of variables and use the inverse stereographic projection to recast
the problem on the sphere. The sketch of the proof of this lemma will be
given in Appendix C.

A straightforward consequence is the fact that

H′′

H′
≤ −κ with κ :=

2 d

d+ 2

J
− 2
d

0

Sd

where the last inequality is a consequence of (19). Two integrations with
respect to t show that

−H0 ≤
1

κ
H′0 (1− e−κT ) ≤ 1

2
C Sd J

2
d
0 H′0 with C =

d+ 2

d
(1− e−d/2) ,

which is the main result of [22] (when d ≥ 5), namely

−H0 ≤ C Sd J
4
d
0

[
Sd ‖∇u0‖2

L2(Rd) − ‖u0‖2
L2∗ (Rd)

]
with u0 = v

d−2
d+2

0 .

Since this inequality holds for any initial datum u0 = u, we have indeed
shown that

− Hd[v] ≤ C Sd Jd[v]
4
d

[
Sd ‖∇u‖2

L2(Rd) − ‖u‖
2
L2∗ (Rd)

]
∀u ∈ D1,2(Rd) , v = u

d+2
d−2 .

It is straightforward to check that our result of Theorem 1 is an improvement,
not only because the restriction d ≥ 5 is removed, but also because the
inequality holds with d

d+4
≤ C < 1 < d+2

d
(1 − e−d/2). In other words, the

result of Theorem 1 is equivalent to

− H0 ≤
1

2
C Sd J

2
d
0 H′0 with C =

d

d+ 4
. (21)

Up to now, we have not established yet the fact that C < 1. This is what we
are now going to do.

Now let us reinject in the flow method described above our improved

20



inequality of Theorem 1, which can also be written as

C Sd J
4
d

[
d+ 2

2 d
Sd J′ + J1− 2

d

]
− H ≤ 0 (22)

if v is still a positive solution of (18). From Lemma 8, we deduce that

H′ ≤ κ0 J with κ0 :=
H′0
J0

.

Since t 7→ J(t) is monotone decreasing, there exists a function Y such that

H(t) = −Y(J(t)) ∀ t ∈ [0, T ) .

Differentiating with respect to t, we find that

−Y′(J) J′ = H′ ≤ κ0 J

and, by inserting this expression in (22), we arrive at

C

(
− d+ 2

2 d
κ0 S2

d

J1+ 4
d

Y′
+ Sd J1+ 2

d

)
+ Y ≤ 0 .

Summarizing, we end up by considering the differential inequality

Y′
(
C Sd s

1+ 2
d + Y

)
≤ d+ 2

2 d
C κ0 S2

d s
1+ 4

d , Y(0) = 0 , Y(J0) = −H0 (23)

on the interval [0, J0] 3 s. It is then possible to obtain estimates as follows.
On the one hand we know that

Y′ ≤ d+ 2

2 d
κ0 Sd s

2
d

and, hence,

Y(s) ≤ 1

2
κ0 Sd s

1+ 2
d ∀ s ∈ [0, J0] .

On the other hand, after integrating by parts on the interval [0, J0], we get

1

2
H2

0 − C Sd J
1+ 2

d
0 H0 ≤

1

4
C κ0 S2

d J
2+ 4

d
0 +

d+ 2

d
C Sd

∫ J0

0

s
2
d Y(s) ds .
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Using the above estimate, we find that

d+ 2

d
Sd

∫ J0

0

s
2
d Y(s) ds ≤ 1

4
J

2+ 4
d

0 ,

and finally
1

2
H2

0 − C Sd J
1+ 2

d
0 H0 ≤

1

2
Cκ0 S2

d J
2+ 4

d
0 .

This is a strict improvement of (21) when C = 1 since (21) is then equivalent
to

− Sd J
1+ 2

d
0 H0 ≤

1

2
Cκ0 S2

d J
2+ 4

d
0 .

However, it is a strict improvement of (21) if C < 1 only when |H0| = −H0

is large enough (we will come back to this point in Remarks 10 and 11).
Altogether, we have shown an improved inequality that can be stated as
follows.

Theorem 9. Assume that d ≥ 3. Then we have

0 ≤ Hd[v] + Sd Jd[v]1+ 2
d ϕ
(
Jd[v]

2
d
−1
[
Sd ‖∇u‖2

L2(Rd) − ‖u‖
2
L2∗ (Rd)

])
∀u ∈ D1,2(Rd) , v = u

d+2
d−2

where ϕ(x) :=
√
C2 + 2 C x− C for any x ≥ 0.

Proof. We have shown that y2+ 2 C y−C κ0 ≤ 0 with y = −H0/(Sd J
1+ 2

d
0 ) ≥ 0.

This proves that y ≤
√
C2 + Cκ0 − C, which proves that

−H0 ≤ Sd J
1+ 2

d
0

(√
C2 + C κ0 − C

)
after recalling that

1

2
κ0 =

H′0
J0

= Jd[v0]
2
d
−1
[
Sd ‖∇u0‖2

L2(Rd) − ‖u0‖2
L2∗ (Rd)

]
.

Remark 10. We may observe that x 7→ x − ϕ(x) is a convex nonnegative
function which is equal to 0 if and only if x = 0. Moreover, we have

ϕ(x) ≤ x ∀x ≥ 0
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with equality if and only if x = 0. However, one can notice that

ϕ(x) ≤ C x ⇐⇒ x ≥ 2
1− C
C

.

Remark 11. A more careful analysis of (23) shows that

Y(s) ≤ 1
2

(√
1 + 2κ0

C − 1

)
C Sd s

1+ 2
d ,

which shows that the inequality of Theorem 9 holds with the improved function

ϕ(x) :=

√
C2 + C x+ 1

2
C2

(√
1 + 4x

C − 1

)
− C

but again the reader is invited to check that ϕ(x) ≤ x for any x ≥ 0 and
limx→0+ ϕ(x)/x = 1.

Corollary 12. With the above notations, we have C < 1.

Proof. Assume by contradiction that C = 1. With the notations of Section 3,
let us consider a minimizing sequence (un)n∈N for the functional u 7→ F [u]

G[uq ]

but assume that Jd[u
q
n] = Jd[u

q
?] =: J? for any n ∈ N. This condition is

not restrictive because of the homogeneity of the inequality. It implies that
(G[uqn])n∈N is bounded.

If limn→∞ G[uqn] > 0, then we also have L := limn→∞F [un] > 0, at least
up to the extraction of a subsequence. As a consequence we find that

0 = lim
n→∞

(
Sd J

4
d
? F [un]− G[uqn]

)
= Sd lim

n→∞

[
J

4
d
? F [un]− J

1+ 2
d

? ϕ
(
J

2
d
−1

? F [un]
)]

+ lim
n→∞

[
Sd J

1+ 2
d

? ϕ
(
J

2
d
−1

? F [un]
)
− G[uqn]

]
,

a contradiction since the last term is nonnegative by Theorem 9 and, as
observed in Remark 10, J

4/d
? F [un]− J

1+2/d
? ϕ

(
J

2/d−1
? F [un]

)
is positive unless

F [un] = 0.
Hence we know that L = limn→∞F [un] = 0 and limn→∞ G[uqn] = 0.

According to the caracterisation of minimizers of G by Lieb [37, Theorem
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3.1], we know that up to translations and dilations, uk converges to u?. Thus
there exists fk such that uk = u? + fk with fk → 0, and then

1

C
=

Sd
Cd

= lim
k→∞

1

d2 (d+ 2)2

F[fk]

G[fk]
≥ d+ 4

d
.

This shows that C ≤ d
d+4

, a contradiction.

We may observe that C < 1 means Cd < Sd. This completes the the proof
of Theorem 1.

5. Caffarelli-Kohn-Nirenberg inequalities and duality

Let 2∗ :=∞ if d = 1 or 2, 2∗ := 2 d/(d− 2) if d ≥ 3 and ac := (d− 2)/2.
Consider the space D1,2

a (Rd) obtained by completion of D(Rd \ {0}) with
respect to the norm u 7→ ‖ |x|−a∇u ‖2

L2(Rd)
. In this section, we shall consider

the Caffarelli-Kohn-Nirenberg inequalities( ∫
Rd

|u|p

|x|bp
dx

) 2
p

≤ Ca,b

∫
Rd

|∇u|2

|x|2a
dx (24)

These inequalities generalize to D1,2
a (Rd) the Sobolev inequality (1) and in

particular the exponent p is given in terms of a and b by

p =
2 d

d− 2 + 2 (b− a)

as can be checked by a simple scaling argument. A precise statements on the
range of validity of (24) goes as follows.

Lemma 13. [11] Let d ≥ 1. For any p ∈ [2, 2∗] if d ≥ 3 or p ∈ [2, 2∗) if d = 1
or 2, there exists a positive constant Ca,b such that (24) holds if a, b and p
are related by b = a− ac + d/p, with the restrictions a < ac, a ≤ b ≤ a+ 1 if
d ≥ 3, a < b ≤ a+ 1 if d = 2 and a+ 1/2 < b ≤ a+ 1 if d = 1.

At least for radial solutions in Rd, weights can be used to work as in
Section 2 as if the dimension d was replaced by the dimension (d − 2a).
We will apply this heuristic idea to the case d = 2 and a < 0, a → 0 in
order to prove Theorem 2. See Appendix D for symmetry results for optimal
functions in (24).
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On D1,2
a (Rd), let us define the functionals

F1[u] :=
1

2

( ∫
Rd

|u|p

|x|bp
dx

) 2
p

and F2[u] :=
1

2
Ca,b

∫
Rd

|∇u|2

|x|2a
dx

so that Inequality (24) amounts to F1[u] ≤ F2[u]. Assume that 〈·, ·〉 denotes
the natural scalar product on L2

(
Rd, |x|−2a dx

)
, that is,

〈u, v〉 :=

∫
Rd

u v

|x|2a
dx

and denote by ‖u‖ = 〈u, u〉1/2 the corresponding norm. Consider the opera-
tors

Aa u := ∇u , A∗aw := −∇ · w + 2a
x

|x|2
· w

and La u := A∗a Aa u = −∆u+ 2a
x

|x|2
· ∇u

defined for u and w respectively in L2
(
Rd, |x|−2a dx

)
and L2

(
Rd, |x|−2a dx

)d
.

Elementary integrations by parts show that

〈u, La u〉 = 〈Aa u,Aa u〉 = ‖Aa u‖2 =

∫
Rd

|∇u|2

|x|2a
dx .

If we define the Legendre dual of Fi by F∗i [v] = supu∈D1,2
a (Rd) (〈u, v〉 − Fi[u]),

then it is clear that we formally have the inequality F∗2[v] ≤ F∗1[v] for any
v ∈ Lq(Rd, |x|−(2a− b) q dx) ∩ La(D1,2

a (Rd)), where q is Hölder’s conjugate of p,
i.e.

1

p
+

1

q
= 1 .

Using the invertibility of La, we indeed observe that

F∗2[v] = 〈u, v〉 − F2[u] with v = Ca,b La u ⇐⇒ u =
1

Ca,b
L−1
a v ,

hence proving that

F∗2[v] =
1

2 Ca,b
〈v, L−1

a v〉 .
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Similarly, we get that F∗1[v] = 〈u, v〉 − F1[u] with

|x|− 2a v = κ2−p |x|− bp up−1 (25)

and

κ =

( ∫
Rd

|u|p

|x|bp
dx

) 1
p

= 〈u, v〉 =

( ∫
Rd

|v|q

|x|(2a− b) q
dx

) 1
q

,

that is

F∗1[v] =
1

2

( ∫
Rd

|v|q

|x|(2a− b) q
dx

) 2
q

.

This proves the following result.

Lemma 14. With the above notations and under the same assumptions as
in Lemma 13, we have

1

Ca,b
〈v, L−1

a v〉 ≤
( ∫

Rd

|v|q

|x|(2a− b) q
dx

) 2
q

∀ v ∈ Lq(Rd, |x|−(2a− b) q dx) ∩ La(D1,2
a (Rd)) .

The next step is based on the completion of the square. Let us compute

‖Aa u− λAa L−1
a v‖2

= ‖Aa u‖2 − 2λ 〈Aa u,Aa L−1
a v〉+ λ2 〈Aa L−1

a v,Aa L−1
a v〉

= ‖Aa u‖2 − 2λ 〈u, v〉+ λ2 〈v, L−1
a v〉 .

With the choice λ = 1/Ca,b and v given by (25), we have proved the following

Theorem 15. Under the assumptions of Lemma 13 and with the above nota-
tions, for any u ∈ D1,2

a (Rd) and any v ∈ Lq(Rd, |x|−(2a− b) q dx)∩La(D1,2
a (Rd))

we have

0 ≤
(∫

Rd

|v|q

|x|(2a− b) q
dx

) 2
q

− 1

Ca,b
〈v, L−1

a v〉

≤ Ca,b

∫
Rd

|∇u|2

|x|2a
dx−

(∫
Rd

|u|p

|x|bp
dx

) 2
p

if u and v are related by (25), if a, b and p are such that b = a − ac + d/p
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and verify the conditions of Lemma 13, and if q = p/(p− 1).

If, instead of (25), we simply require that

|x|− 2a v = |x|− bp up−1 ,

then the inequality becomes

0 ≤ Ca,b

(∫
Rd

|v|q

|x|(2a− b) q
dx

) 2
q

− 〈v, L−1
a v〉

≤ Ca,b

(∫
Rd

|u|p

|x|bp
dx

) 2
p

(p−2)
[
Ca,b

∫
Rd

|∇u|2

|x|2a
dx−

(∫
Rd

|u|p

|x|bp
dx

) 2
p

]

Hence Theorem 15 generalizes Theorem 1, which is recovered in the spe-
cial case a = b = 0, d ≥ 3. Because of the positivity of the l.h.s. due to
Lemma 14, the inequality in Theorem 15 is an improvement of the Caffarelli-
Kohn-Nirenberg inequality (24). It can also be seen as an interpolation result,
namely

2

( ∫
Rd

|v|q

|x|(2a− b) q
dx

) 2
q

= 2

( ∫
Rd

|u|p

|x|bp
dx

) 2
p

≤ Ca,b

∫
Rd

|∇u|2

|x|2a
dx+

1

Ca,b
〈v, L−1

a v〉

whenever u and v are related by (25). The explicit value of Ca,b is not known
unless equality in (24) is achieved by radial functions, that is when symmetry
holds. See Proposition 19 in Appendix D for some symmetry results. Now,
as in [30], we may investigate the limit (a, b)→ (0, 0) with b = α a/(1 +α) in
order to investigate the Onofri limit case. A key observation is that optimality
in (24) is achieved by radial functions for any α ∈ (−1, 0) and a < 0, |a| small
enough. In that range Ca,b is known and given by (D.1).

Proof of Theorem 2 (continued). Theorem 2 has been established for radial
functions in Section 2. Now we investigate the general case. We shall restrict
our purpose to the case of dimension d = 2. For any α ∈ (−1, 0), let us
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denote by dµα the probability measure on R2 defined by dµα := µα dx where

µα :=
1 + α

π

|x|2α

(1 + |x|2 (1+α))2
.

It has been established in [30] that

log

(∫
R2

eu dµα

)
−
∫

R2

u dµα ≤
1

16 π (1 + α)

∫
R2

|∇u|2 dx ∀ u ∈ D(R2) ,

(26)
where D(R2) is the space of smooth functions with compact support. By
density with respect to the natural norm defined by each of the inequalities,
the result also holds on the corresponding Orlicz space.

We adopt the strategy of [30, Section 2.3] to pass to the limit in (24) as
(a, b)→ (0, 0) with b = α

α+1
a. Let

aε = − ε

1− ε
(α + 1) , bε = aε + ε, pε =

2

ε
,

and
uε(x) =

(
1 + |x|2 (α+1)

)− ε
1−ε ,

assuming that uε is an optimal function for (24), define

κε =

∫
R2

[
uε
|x|aε+ε

]2/ε

dx =

∫
R2

|x|2α(
1 + |x|2 (1+α)

)2

u2
ε

|x|2aε
dx =

π

α + 1

Γ
(

1
1−ε

)2

Γ
(

2
1−ε

) ,
λε =

∫
R2

[
|∇uε|
|x|a

]2

dx = 4 a2
ε

∫
R2

|x|2 (2α+1−aε)(
1 + |x|2 (1+α)

) 2
1−ε

dx = 4π
|aε|

1− ε
Γ
(

1
1−ε

)2

Γ
(

2
1−ε

) .
Then wε = (1 + 1

2
ε u)uε is such that

lim
ε→0+

1

κε

∫
R2

|wε|pε
|x|bεpε

dx =

∫
R2

eu dµα ,

lim
ε→0+

1

ε

[
1

λε

∫
R2

|∇wε|2

|x|2aε
dx− 1

]
=

∫
R2

u dµα +
1

16 (1 + α)π
‖∇u‖2

L2(R2) .

Hence we can recover (26) by passing to the limit in (24) as ε→ 0+. On the
other hand, if we pass to the limit in the inequality stated in Theorem 15,
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we arrive at the following result, for any α ∈ (−1, 0).

Theorem 16. Let α ∈ (−1, 0]. With the above notations, we have

0 ≤
∫

R2

v log

(
v

µα

)
dx− 4 π (1 + α)

∫
R2

(v − µα) (−∆)−1 (v − µα) dx

≤ 1

16π (1 + α)

∫
R2

|∇u|2 dx− log

(∫
R2

eu dµα

)
+

∫
R2

u dµα

for any u ∈ D, where u and v are related by

v =
eu µα∫

R2 eu dµα
.

The case α = 0 is achieved by taking the limit as α → 0−. Since
−∆ log µα = 8 π (1 + α)µα holds for any α ∈ (−1, 0], the proof of Theo-
rem 2 is now completed, with µ = µ0.

Appendix A. Some useful formulae

We recall that

f(q) :=

∫
R

dt

(cosh t)q
=

√
π Γ( q

2
)

Γ( q+1
2

)

for any q > 0. An integration by parts shows that f(q + 2) = q
q+1

f(q). The

following formulae are reproduced with no change from [20] (also see [28, 25]).

The function w(t) := (cosh t)−
2
p−2 solves

−(p− 2)2w′′ + 4w − 2 pwp−1 = 0

and we can define

Iq :=

∫
R
|w(t)|q dt and J2 :=

∫
R
|w′(t)|2 dt .
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Using the function f , we can compute I2 = f
(

4
p−2

)
, Ip = f

(
2 p
p−2

)
= f

(
4
p−2

+2
)

and get the relations

I2 =

√
π Γ
(

2
p−2

)
Γ
(

p+2
2 (p−2)

) , Ip =
4 I2
p+ 2

=
4
√
π Γ
(

2
p−2

)
(p+ 2) Γ

(
p+2

2 (p−2)

) , J2 =
4 I2

(p+ 2) (p− 2)
.

In particular, this establishes (9), namely

sd =
I
1− 2

d
p

J2 + 1
4

(d− 2)2 I2
, with p =

2 d

d− 2

for any d > 2. The expression of the optimal constant in Sobolev’s inequal-
ity (1): Sd = sd |Sd−1|−2/d, where

|Sd−1| = 2 πd/2

Γ(d/2)

denotes the volume of the unit sphere, for any integer d ≥ 3, follows from
the duplication formula

2d−1 Γ
(
d
2

)
Γ
(
d+1

2

)
=
√
π Γ(d)

according for instance to [1]. See [27, Appendix B.4] for further details.

Appendix B. Poincaré inequality and stereographic projection

On Sd ⊂ Rd+1, consider the coordinates ω = (ρ φ, z) ∈ Rd × R such that
ρ2 + z2 = 1, z ∈ [−1, 1], ρ ≥ 0 and φ ∈ Sd−1, and define the stereographic
projection Σ : Sd \ {N} → Rd by Σ(ω) = x = r φ and

z =
r2 − 1

r2 + 1
= 1− 2

r2 + 1
, ρ =

2 r

r2 + 1
.

The North Pole N corresponds to z = 1 (and is formally sent at infinity) while
the equator (corresponding to z = 0) is sent onto the unit sphere Sd−1 ⊂ Rd.
Now we can transform any function v on Sd into a function u on Rd using

v(ω) =
(
r
ρ

) d−2
2 u(x) =

(
r2+1

2

) d−2
2 u(x) = (1− z)−

d−2
2 u(x) .
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A standard computation shows that∫
Sd
|∇v|2 dω +

1

4
d (d− 2)

∫
Sd
|v|2 dω =

∫
Rd
|∇u|2 dx

and ∫
Sd
|v|q dω =

∫
Rd
|u|q

(
2

1+|x|2
)d−(d−2) q

2 dx .

On Sd, the kernel of the Laplace-Beltrami operator is generated by the con-
stants and the lowest positive eigenvalue is λ1 = d. The corresponding
eigenspace is generated by v0(ω) = 1 and vi(ω) = ωi, i = 1, 2, . . . d + 1. All
eigenvalues of the Laplace-Beltrami operator are given by the formula

λk = k (k + d− 1) ∀ k ∈ N

according to [3]. We still denote by u? the Aubin-Talenti extremal function

u?(x) := (1 + |x|2)−
d−2
2 ∀x ∈ Rd .

Using the inverse stereographic projection, the reader is invited to check that
Sobolev’s inequality is equivalent to the inequality

4

d (d− 2)

∫
Sd
|∇v|2 dω +

∫
Sd
|v|2 dω ≥ |Sd|

2
d

(∫
Sd
|v|

2 d
d−2 dω

) d−2
d

so that the Aubin-Talenti extremal function is transformed into a constant
function on the sphere and incidentally this shows that

Sd =
4

d (d− 2)
|Sd|−

2
d .

With these preliminaries on the Laplace-Beltrami operator and the stere-
ographic projection in hand, we can now state the counterpart on Rd of the
Poincaré inequality on Sd.
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Lemma 17. For any function f ∈ D1,2(Rd) such that∫
Rd
f

u?
(1 + |x|2)2

dx = 0 ,

∫
Rd
f

(1− |x|2)u?
(1 + |x|2)3

dx = 0 ,

and

∫
Rd
f

xi u?
(1 + |x|2)3

dx = 0 ∀ i = 1 , 2 , . . . d

the following inequality holds∫
Rd
|∇f |2 dx ≥ (d+ 2) (d+ 4)

∫
Rd

f 2

(1 + |x|2)2
dx .

Proof. On the sphere we know that∫
Sd
|∇v|2 dω +

1

4
d (d− 2)

∫
Sd
v2 dω ≥

(
λ2 +

1

4
d (d− 2)

)∫
Sd
v2 dω

=
1

4
(d+ 2)(d+ 4)

∫
Sd
v2 dω

if v is orthogonal to vi for any i = 0, 1, . . . d+1. The conclusion follows from
the stereographic projection.

Appendix C. Flow on the sphere and consequences

We recall that Equation (18) admits special solutions with separation of
variables given by

v?(t, x) = λ(d+2)/2 (T − t)
d+2
4 (u?((x− x0)/λ))

d+2
d−2 (C.1)

where u?(x) := (1 + |x|2)−(d−2)/2 is the Aubin-Talenti extremal function,
x ∈ Rd and 0 < t < T . Such a solution is generic near the extinction time T ,
in the following sense.

Lemma 18. [21, 42]. For any solution v of (18) with nonnegative, not
identically zero initial datum v0 ∈ L2d/(d+2)(Rd), there exists T > 0, λ > 0,
c > 0 and x0 ∈ Rd such that v(t, ·) 6≡ 0 for any t ∈ (0, T ) and

lim
t→T−

(T − t)−
d+2
4 sup

x∈Rd
(1 + |x|2)

d+2
2

∣∣∣∣ v(t, x)

v?(t, x)
− c

∣∣∣∣ = 0
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if v? is defined by (C.1).

If v solves the fast diffusion equation (18) on Rd, then we may use the
inverse stereographic projection (see Appendix B) to define the function w
on Sd such that

v(t, x) = e−
d+2
4
τ
(

2
1+r2

) d+2
2 w(τ, y)

where τ = − log(T − t), r = |x| and y =
(

2x
1+r2

, 1−r2
1+r2

)
∈ Sd ⊂ Rd × R.

With no loss of generality, assume that c = λ = 1 and x0 = 0. According
to Lemma 18, w uniformly converges as τ → ∞ to 1 on Sd. Let dσd denote
the measure induced on Sd ⊂ Rd+1 by Lebesgue’s measure on Rd+1. We may
then write

J(t) = e−
d
2
τ

∫
Sd
w

2 d
d+2 dσd

and∫
Rd
|∇u

d−2
d+2 |2 dx = e−

d−2
2
τ

(∫
Sd

∣∣∇w d−2
d+2

∣∣2 dσd +
1

4
d (d− 2)

∫
Sd

∣∣w d−2
d+2

∣∣2 dσd)
with τ = − log(T − t), so that dτ

dt
= eτ . Hence w solves

wτ = Lw
d−2
d+2 − 1

4
d (d− 2)w

d−2
d+2 +

1

4
(d+ 2)w

where L denotes the Laplace-Beltrami operator on the sphere Sd, and

d

dt
J = − 2 d

d+ 2
e−

d−2
2
τ

(∫
Sd

∣∣∇w d−2
d+2

∣∣2 dσd +
1

4
d (d− 2)

∫
Sd

∣∣w d−2
d+2

∣∣2 dσd) ,

d

dt

∫
Rd
|∇u

d−2
d+2 |2 dx = − 2

d− 2

d+ 2

∫
Sd

(
Lw

d−2
d+2 − 1

4
d (d− 2)w

d−2
d+2

)2

w−
4
d+2 dσd .
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Using the Cauchy-Schwarz inequality, that is, by writing that[ ∫
Sd

∣∣∇w d−2
d+2

∣∣2 dσd +
1

4
d (d− 2)

∫
Sd

∣∣w d−2
d+2

∣∣2 dσd ]2

=

[ ∫
Sd

(
Lw

d−2
d+2 − 1

4
d (d− 2)w

d−2
d+2

)
w−

2
d+2 w

d
d+2 dσd

]2

≤
∫

Sd

(
Lw

d−2
d+2 − 1

4
d (d− 2)w

d−2
d+2

)2

w−
4
d+2 dσd

∫
Sd
w

2 d
d+2 dσd ,

we conclude that

Q = J
2
d
−1

∫
Sd

∣∣∇w d−2
d+2

∣∣2 dσd
is monotone decreasing, and hence

H′′ =
J′

J
H′ + 2 J Sd Q′ ≤ J′

J
H′ .

This establishes the proof of Lemma 8 for any d ≥ 3.

Appendix D. Symmetry in Caffarelli-Kohn-Nirenberg inequalities

In this Appendix, we recall some known results concerning symmetry and
symmetry breaking in the Caffarelli-Kohn-Nirenberg inequalities (24).

Proposition 19. Assume that d ≥ 2. There exists a continuous function
α : (2, 2∗)→ (−∞, 0) such that limp→2∗ α(p) = 0 for which the equality case
in (24) is not achieved among radial functions if a < α(p) while for a < α(p)
equality is achieved by

u?(x) :=
(

1 + |x|
2
δ

(ac−a)
)−δ

∀x ∈ Rd

where δ = ac+b−a
1+a−b . Moreover the function α has the following properties

(i) For any p ∈ (2, 2∗), α(p) ≥ ac − 2
√

d−1
p2−4

.

(ii) For any p ∈
(
2, 2 d2−d+1

d2−3 d+3

)
, α(p) ≤ ac − 1

2

√
(d−1) (6−p)

p−2
.

(iii) If d = 2, limp→2∗ β(p)/α(p) = 0 where β(p) := α(p)− ac + d/p.
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This result summarizes a list of partial results that have been obtained
in various papers. Existence of optimal functions has been dealt with in [14],
while Condition (i) in Proposition 19 has been established in [31]. See [29] for
the existence of the curve p 7→ α(p), [23, 24] for various results on symmetry
in a larger class of inequalities, and [28] for Property (ii) in Proposition 19.
Numerical computations of the branches of non-radial optimal functions and
formal asymptotic expansions at the bifurcation point have been collected in
[26, 35]. The paper [30] deals with the special case of dimension d = 2 and
contains Property (iii) in Proposition 19, which can be rephrased as follows:
the region of radial symmetry contains the region corresponding to a ≥ α(p)
and b ≥ β(p), and the parametric curve p 7→ (α(p), β(p)) converges to 0 as
p→ 2∗ =∞ tangentially to the axis b = 0. For completeness, let us mention
that [5, Theorem 3.1] covers the case a > ac − d/p also we will not use it.
Finally, let us observe that in the symmetric case, the expression of Ca,b can
be computed explicitly in terms of the Γ function as

Ca,b = |Sd−1|
p−2
p

[
(a−ac)2 (p−2)2

p+2

] p−2
2 p
[

p+2
2 p (a−ac)2

] [
4
p+2

] 6−p
2 p

[
Γ( 2

p−2
+ 1

2)
√
π Γ( 2

p−2)

] p−2
p

(D.1)

where the volume of the unit sphere is given by |Sd−1| = 2π
d
2 /Γ

(
d
2

)
.
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[21] M. del Pino and M. Sáez, On the extinction profile for solutions of ut =
∆u(N−2)/(N+2), Indiana Univ. Math. J., 50 (2001), pp. 611–628.

[22] J. Dolbeault, Sobolev and Hardy-Littlewood-Sobolev inequalities: duality
and fast diffusion, Math. Res. Lett., 18 (2011), pp. 1037–1050.

[23] J. Dolbeault, M. Esteban, G. Tarantello, and A. Tertikas, Radial
symmetry and symmetry breaking for some interpolation inequalities, Calculus
of Variations and Partial Differential Equations, 42 (2011), pp. 461–485.

[24] J. Dolbeault and M. J. Esteban, About existence, symmetry and symme-
try breaking for extremal functions of some interpolation functional inequali-
ties, in Nonlinear Partial Differential Equations, H. Holden and K. H. Karlsen,
eds., vol. 7 of Abel Symposia, Springer Berlin Heidelberg, 2012, pp. 117–130.

[25] , Branches of non-symmetric critical points and symmetry breaking in
nonlinear elliptic partial differential equations. Preprint, 2013.

[26] , A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequal-
ities, Journal of Numerical Mathematics, 20 (2013), pp. 233—249.

[27] J. Dolbeault, M. J. Esteban, and A. Laptev, Spectral estimates on the
sphere. To appear in Analysis & PDE, 2013.

37



[28] J. Dolbeault, M. J. Esteban, and M. Loss, Symmetry of extremals of
functional inequalities via spectral estimates for linear operators, J. Math.
Phys., 53 (2012), p. 095204.

[29] J. Dolbeault, M. J. Esteban, M. Loss, and G. Tarantello, On the
symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities, Adv.
Nonlinear Stud., 9 (2009), pp. 713–726.

[30] J. Dolbeault, M. J. Esteban, and G. Tarantello, The role of Onofri
type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-
Nirenberg inequalities, in two space dimensions, Ann. Sc. Norm. Super. Pisa
Cl. Sci. (5), 7 (2008), pp. 313–341.

[31] V. Felli and M. Schneider, Perturbation results of critical elliptic equa-
tions of Caffarelli-Kohn-Nirenberg type, J. Differential Equations, 191 (2003),
pp. 121–142.

[32] V. A. Galaktionov and J. R. King, Fast diffusion equation with critical
Sobolev exponent in a ball, Nonlinearity, 15 (2002), pp. 173–188.

[33] V. A. Galaktionov and L. A. Peletier, Asymptotic behaviour near
finite-time extinction for the fast diffusion equation, Arch. Rational Mech.
Anal., 139 (1997), pp. 83–98.

[34] G. Jankowiak, Logarithmic Hardy-Littlewood-Sobolev and Onofri inequali-
ties. In preparation, 2014.

[35] Jean Dolbeault, Maria J. Esteban, Branches of non-symmetric critical
points and symmetry breaking in nonlinear elliptic partial differential equa-
tions, tech. rep., Preprint Ceremade, 2013.

[36] J. King, Self-similar behaviour for the equation of fast nonlinear diffusion,
Philosophical Transactions of the Royal Society of London. Series A: Physical
and Engineering Sciences, 343 (1993), p. 337.

[37] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related in-
equalities, Ann. of Math. (2), 118 (1983), pp. 349–374.

[38] E. H. Lieb and M. Loss, Analysis, volume 14 of graduate studies in math-
ematics, American Mathematical Society, Providence, RI, 4 (2001).

[39] E. Onofri, On the positivity of the effective action in a theory of random
surfaces, Comm. Math. Phys., 86 (1982), pp. 321–326.

38



[40] M. A. Peletier and H. F. Zhang, Self-similar solutions of a fast diffusion
equation that do not conserve mass, Differential Integral Equations, 8 (1995),
pp. 2045–2064.
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