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1 - Introduction.

The Dirac operator is a first order operator which has the form

H = −ich̄ ~α · ~∇ +mc2β(1.1)

where c denotes the speed of light, m > 0 the mass of the electron, h̄ is

Planck’s constant, ~α · ~∇ =
3
∑

k=1

αk∂k and αk are the Pauli-Dirac matrices,

β =

(

I 0
0 −I

)

, αk =

(

0 σk
σk 0

)

(k = 1, 2, 3) .

1



The 2 × 2 matrices σk are the Pauli matrices :

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

All throughout this paper, we shall work with a system of physical units
such that m = c = h̄ = 1 .

In this paper we are interested in perturbed Dirac operators of the form
H+V , V being a scalar potential. Our goal is to find variational character-
izations for the eigenvalues of such operators. We hope that our results can
be of some interest in a priori estimates, as well as practical computations
of atomic energy levels. One expects the eigenvalues of H +V to be critical
points (in an appropriate sense) of the Rayleigh quotient

RV (ϕ) :=
((H + V )ϕ,ϕ)

(ϕ,ϕ)
,

where (·, ·) denotes the inner product in L2(IR3). If H + V were bounded
below, like Schrödinger operators −∆ − Z/|x| for instance, minimizing the
above quotient would give the least eigenvalue (ground state energy). This
standard approach fails for Dirac operators: for physically relevant poten-
tials V , the Rayleigh quotient is neither bounded from above nor from below
(for instance, see [20]). This is the main difficulty we have to face.

Many efforts have been devoted to the characterization and computa-
tion of Dirac eigenvalues. Some works deal with approximate potentials
acting on 2-spinors. The idea is to write Dirac’s equation for the upper
spinor in ψ by performing some adequate transformation. Then, different
procedures have been produced to find approximate Hamiltonians, which
“become exact” in the nonrelativistic limit. For references in this direc-
tion see, for instance, Durand [13], Durand-Malrieu [14], van Lenthe-Van
Leeuwen-Baerends-Snijders [24].

Other approximate Hamiltonians are constructed by using projectors.
One of the first attempts in this direction was made by Brown and Ravenhall.
In [7], they proposed the following (usually called the Brown-Ravenhall “no-
pair”) Hamiltonian

B = Λ+ (H + V )Λ+(1.2)

where Λ+ = χ(0,∞)(H) denotes the projection on the positive spectral sub-
space of the free Dirac operator.

The projected Hamiltonian B has received a lot of attention concerning
the question of the “stability of matter” for relativistic multi-particle systems
(see Lieb-Siedentop-Solovej [26]).
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If 0 is not in the spectrum of H+V , then instead of defining B as above,
one can use the exact positive projector corresponding to H + V , denoted
by Λ+

V . The new operator

B̃V = Λ+
V (H + V )Λ+

V(1.3)

coincides with H+V in its positive spectral subspace. For attractive poten-
tials V that are not “too strong”, minimizing the Rayleigh quotient for B̃V
yields the smallest positive eigenvalue of H + V . This eigenvalue may be
interpreted as the ground state energy. Unfortunately, the exact projector
Λ+
V is not known a priori. This makes its use difficult in numerical compu-

tations. On the contrary, the approximate Brown-Ravenhall Hamiltonian B
is known explicitly.

Several recent papers have been devoted to the mathematical study of the
Brown-Ravenhall Hamiltonian for one-electron atoms with nuclear charge
Z > 0. Its precise form is

BZ := Λ+(H − Zα

|x| )Λ+(1.4)

where α is the fine structure constant (α−1 = 137.037...). Hardekopf and
Sucher [18], on the basis of numerical computations, conjectured that the
operator BZ is strictly positive for Z < Zc = 2α−1/(π/2 + 2/π), that its
first eigenvalue vanishes for Z = Zc, and that BZ is unbounded from below
for Z > Zc. Evans, Perry and Siedentop [16] proved that the operator BZ

is bounded from below if and only if Z ≤ Zc, as predicted in [18]. Tix
[32, 33] proved that the operator BZ is strictly positive for Z ≤ Zc (see
also Burenkov-Evans [8]). Note that the integer part of Zc is 124, strictly
below the critical value Z∗ = 137, for which the first eigenvalue of the Dirac-
Coulomb Hamiltonian H − Zα/|x| vanishes (see for instance [28, 31]).

One the most important properties of the free Dirac operator H is that

H2 = −∆ + 1(1.5)

Another Hamiltonian having the same property is :

√
−∆ + 1(1.6)

This Hamiltonian is positive definite, and so, it does not pose the problems
related to the unboundedness of the Dirac operator. But it is nonlocal, which
contradicts the Causality Principle in special relativity and does not preserve
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the symmetry in the t and x variables for the evolution problem (covariance
of the equation under the action of Lorentz boosts). Nevertheless, the study
of the spectrum of √

−∆ + 1 + V(1.7)

and its use as an approximation model for multi-particle systems is inte-
resting. For references in this direction, let us mention [10, 19, 23, 25] and
references therein.

In 1994, Hill and Krauthauser proposed a variational characterization of
eigenvalues of H + V based on maximization of quotients like

(ψ, (H + V )ψ)

(ψ, (H + V )2ψ)
.

This method works when the spectrum of H + V has a gap around 0. The
mathematical study of this approach has still to be done.

The characterization of the stable eigenvalues of H + V by a minimax
method is a quite natural idea and it has been attempted both analytically
and numerically : in 1986, Talman [30] proposed a minimax procedure to
find the first eigenvalue of H+V for negative potentials V (see also [9]). His
proposal consisted in first maximizing in the lower component of the spinor
ψ, and then minimizing over the upper spinor.

In 1995, in a PDE conference in Toronto (see its proceedings [15]), Es-
teban and Séré presented a minimax technique (without approximation)
inspired of critical point theory. This same result was also presented in
the ICDEMP in Atlanta in March 1997. A sequence of min-max levels was
introduced in [15]:

λk = inf
F⊂Y +

F vector space
dim F=k

sup
ϕ∈F⊕Y −

ϕ 6=0

((H + V )ϕ,ϕ)

(ϕ,ϕ)
.(1.8)

Here, Y ± are the spaces Λ±(H1/2(IR3)). The following result was an-
nounced: for a class of potentials that includes the Coulomb potentials
−a|x|−1 (0 < a < 1/2) , λk is the k’th positive eigenvalue ofH+V (counted
with multiplicity). These values of a correspond to one-electron atoms of
atomic charge Z ≤ 68.

Recently, Griesemer and Siedentop ([17]) proved a general minimax the-
orem on the eigenvalues in a spectral gap of an abstract operator. As an
application, they prove that under appropriate conditions on V , the sequence
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λk defined in (1.8) coincides with the sequence of positive eigenvalues µk of
H + V . The method of proof in [17], as well as the class of potentials V to
which their theorem applies, seems to be quite different from ours: in the
case of Coulomb potentials, they only prove that λk ≤ µk. Another inter-
esting result in [17], is that Talman’s approach, slightly modified, is indeed
mathematically correct for a large class of bounded potentials.

In Section 2 of the present paper, we state and prove some technical
results on the Dirac operator. Sections 3 and 4 deal with two variational
characterizations of the eigenvalues.

Section 3 is devoted to the study of the minimax procedure (1.8). We
give a detailed proof of the results announced in Toronto (see [15]) and in
Atlanta. In [15], we could not treat “strong” Coulomb potentials −a|x|−1 ,
for a ≥ 1/2 , because we were using estimates based on Hardy’s inequality

∫ |u|2
|x|2 ≤ 4

∫

|∇u|2 .

We are now able to treat all a < 2/(π/2 + 2/π) ≈ 0.9 . This corresponds to
an atomic charge Z up to 124. The proof is almost the same for these strong
fields, we simply replace Hardy’s inequality by the very precise estimates of
Tix [32, 33] and Burenkov-Evans [8].

The minimization method introduced in Section 4, follows a completely
different idea. It comes from the reduction of the Hamiltonian to a 2-spinor
function space. The reduced energy functional J+ is nonlinear, but semi-
bounded. For a large family of operators V , the minimization of J+ provides
us with the smallest eigenvalue of H + V (and an associated eigenfunction)
as long as it is positive. This yields an optimal result for the Coulomb
potential −Zα/|x| : our minimization method works for all Z < 137, the
best condition under which H −Zα/|x| possesses a ground state in L2(IR3).
In a sense, J+ seems to contain information related to the exact projector
Λ+
V in an implicit way. Note that the idea to build a semibounded energy

functional had already been introduced by Bayliss and Peel [1] in another
context.

Aknowledgement. The authors wish to thank H. Siedentop for his
interest in this work. His bibliographical remarks have been very useful.

2 - Generalities on the Dirac operator and auxiliary results.

In the Fourier domain, the Dirac operator is a multiplication operator
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(by a 4 × 4 hermitian matrix) :

Ĥ(ξ) = ξ · α+ β ,(2.1)

and it satisfies
Ĥ2 = |ξ|2 + 1 .(2.2)

For every ξ ∈ IR3, Ĥ(ξ) has two eigenvalues, ±
√

|ξ|2 + 1 and one has the
following properties :

Lemma 2.1.

(P1) H is a self-adjoint operator on L2(IR3,CI4), with domain D(H) =
H1(IR3,CI4). Its spectrum is (−∞,−1]∪ [1,+∞). There are two orthogonal
projectors on L2(IR3,CI4) ,Λ+ and Λ− = 1

L2 − Λ+, both with infinite rank,
and such that

{

HΛ+ = Λ+H =
√

1 − ∆ Λ+ = Λ+
√

1 − ∆

HΛ− = Λ−H = −
√

1 − ∆ Λ− = −Λ− √
1 − ∆ .

(2.3)

(P2) The Coulomb potential W (x) = 1
|x| satisfies the following Hardy-

type inequalities :

(ϕ,W (x)ϕ)L2 ≤ π

2
(ϕ,

√
−∆ϕ)L2 ≤ π

2
(ϕ, |H|ϕ)L2 ,∀ϕ ∈ H1/2(IR3,CI4)(2.4)

(

ϕ,W (x)ϕ
)

L2
≤ 1

2
(
π

2
+

2

π
)
(

ϕ, |H|ϕ
)

L2
,∀ϕ ∈ Λ+(H1/2) ∪ Λ−(H1/2)(2.5)

‖W (x)ϕ‖
L2 ≤ 2‖∇ϕ‖

L2 ≤ 2‖Hϕ‖
L2 , ∀ϕ ∈ H1(IR3,CI4).(2.6)

Remark. Equalities (2.3) are a consequence of the following fact : in Fourier
variables, the projectors Λ± are multiplication operators given by the fol-
lowing expressions:

Λ̂±(ξ) =
±Ĥ +

√

|ξ|2 + 1

2
√

|ξ|2 + 1
.(2.7)

Inequalities (P2) are classical, except for (2.5), whose proof, based on a
method of Evans-Perry-Siedentop [16], is contained in the recent papers [8],
[32] and [33]. For the proof of (2.4), see [19] and [21].

Part (P1) of the above lemma enables us to decompose the space
Y = H1/2(IR3,CI4) as the direct sum of two infinite dimensional Hilbert
spaces Y ± which are stable under the action of H. Furthermore, a norm in
Y is given by

||ϕ||
Y

=
(

ϕ, (HΛ+ −HΛ−)ϕ
)1/2

Y×Y ′
=
(

ϕ, |H|ϕ
)1/2

(2.8)
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This norm is the usual H1/2-norm and for ||.||Y , Y + and Y − are orthogonal,
as well as for ||.||

L2 . In the sequel, ||.|| will denote the L2(IR3,CI4)-norm and

||.||Y the H1/2-norm defined in (2.8).

Based on Lemma 2.1, we define now the class of scalar potentials V to
be considered all throughout this section. In the following, we will need to
introduce the Marcinkiewicz space M3(IR3) (see [2]).

Definition 2.2 . We say that a scalar potential V defined a.e. in IR3

satisfies assumption (H1) if it belongs to M3(IR3)+L∞(IR3) and if there is
a positive constant δ such that

Λ+(H + V )Λ+ ≥ δ
√

1 − ∆, Λ−(H + V )Λ− ≤ −δ
√

1 − ∆ in Y.(2.9)

Remark 1. If V belongs to M3(IR3)+L∞(IR3), then V is |H|-bounded. In
particular, any |V | ≤ a|x|−β +C is |H|-bounded for all a,C > 0, β ∈ (0, 1].
If |V | ≤ a|x|−1 , then, by (2.5), V satisfies (H1) if and only if a < (π/4 +
1/π)−1 ≈ 0.9. Moreover, any V ∈ L∞(IR3) satisfies (H1) if ||V ||∞ < 1.

Remark 2. Assumption (H1) implies that for all constants κ > 1 close to
1, there is a positive constant δ(κ) > 0 such that :

Λ+(H + κV )Λ+ ≥ δ(κ)Λ+ , Λ−(H + κV )Λ− ≤ −δ(κ)Λ− on Y ,

In the sequel, we consider potentials V satisfying (H1) and for those,
we will look for eigenvalues of H + V in the spectral gap of H. Before
starting this program, let us recall some well-known results on the spectrum
of (H + V ) . For precise references and proofs, see [31].

Remark 3. Using the Friedrichs extension theorem, inequality (2.9) implies
that Λ+(H+V )Λ+ (resp. Λ−(H+V )Λ− ) can be defined, in a unique way,
as a self-adjoint operator with domain contained in Y + (resp. Y −).

Theorem 2.3 (see e.g. [31]; Theorems 4.5, 4.6, 4.7) Let V be a scalar
potential which is H-bounded and such that V (x) → 0 as |x| → +∞ and
the operator H + V is essentially self-adjoint. Then

σess(H + V ) = σess(H) .

Eigenvalues belonging to the essential spectrum are not stable. So, sta-
ble Dirac states will be represented by eigenvalues lying in the gap of the
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essential spectrum of H, i.e. in the interval (−1, 1). There are a number
of results concerning the nonexistence of eigenvalues lying in the essential
spectrum of Dirac operators. Let us mention the work of A. Berthier and
V. Georgescu (see [4, 5]), where it is proven that if the scalar potential V
satisfies very general decay conditions at infinity, there is no eigenvalue of
the operator H +V in the essential spectrum. In the particular case of the
Coulomb potential, an elementary method based on the virial theorem im-
plies the same result (see [31]). There are also results about the number of
eigenvalues lying in the gap of the essential spectrum of H. More precisely,
these results give conditions for the existence of an infinity of eigenvalues in
the gap (−1, 1). In the case of only a finite number of eigenvalues in this
interval, there are estimates about their number. For more details, see the
exhaustive reference list in [31].

3 - Minimax characterization of Dirac eigenvalues

This section is devoted to the proof of a minimax characterization for the
positive eigenvalues of H+V . More precisely, let us define the nondecreasing
sequence {λk} by

λk(V ) = inf
F⊂Y +

F vector space
dim F=k

sup
ϕ∈F⊕Y −

ϕ 6=0

((H + V )ϕ,ϕ)

(ϕ,ϕ)
.(3.1)

Then, we have the following :

Theorem 3.1. Let V be a scalar potential satisfying assumption (H1).
Assume also that V ∈ L∞(IR3 \BR0) for some R0 > 0 and that we have :

lim
R→+∞

‖V ‖
L∞(|x|>R)

= 0, lim
R→+∞

sup ess |x|>RV (x)|x|2 = −∞ .(H2)

Then, λk is an eigenvalue of H + V , {λk}k≥1 is the non-decreasing se-
quence of eigenvalues of H + V in the interval [0, 1), counted with multi-
plicity, and

0 < δ ≤ λ1 ≤ λk < 1, lim
k→+∞

λk = 1(3.2)

Remark. As it is clear from (3.1), all the eigenfunctions of H + V corres-
ponding to the eigenvalues λk have Morse index equal to +∞ as critical
points of the Rayleigh quotient.

The proof of Theorem 3.1 will be carried out after we prove some tech-
nical auxiliary results.
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Lemma 3.2. Let V satisfy (H1). Assume that there are at least k eigen-
values of H + V in (0, 1), counted with multiplicity, µ1 ≤ · · · ≤ µk. Then,
λk ≤ µk .

Proof.

Let e1, · · · , ek be an orthonormal family of eigenvectors, associated to the
eigenvalues µ1, · · · , µk. Let F = span(Λ+e1, · · · ,Λ+ek). This space has
dimension k, otherwise there would be a linear combination ϕ of e1, · · · , ek
with ϕ ∈ Y −, hence (ϕ, (H + V )ϕ) < 0 by (H1): this is impossible, since
µk ≥ · · · ≥ µ1 ≥ 0. If Π denotes the projector on F +Y −, then the operator
−Π(H +V )Π is self-adjoint and bounded below, and its smallest eigenvalue
is −µk, by the standard theory of Rayleigh quotients (see [29], vol 4). This
theory also gives

µk = sup
ϕ∈F⊕Y −

ϕ 6=0

((H + V )ϕ,ϕ)

(ϕ,ϕ)

hence µk ≥ λk.
⊔⊓

Remark. Let S be the 4×4 matrix

(

0 −i
i 0

)

. S is a self-adjoint involution

which anticommutes with H. So, if ψ is an eigenvector of H + V with
associated eigenvalue λ, then Sψ is an eigenvector of H−V with eigenvalue
−λ. As a consequence, Lemma 3.2 implies the following result:

Corollary 3.3. Let V satisfy (H1). Then, there is no eigenvalue of H+V in
the interval (−λ1(−V ), λ1(V )). If, moreover, V ≤ 0 a.e., then, −λ1(−V ) =
−1 and there is no eigenvalue of H + V in the interval (−1, λ1(V )).

Let us now begin the study of the non-decreasing sequence {λk} defined
by (3.1). It is straightforward to see that λ1 ≥ δ > 0 , from (H1). The

next lemma tells us that the supremum sup
ϕ∈F⊕Y −

ϕ 6=0

((H + V )ϕ,ϕ)

(ϕ,ϕ)
is in fact

a maximum.

Lemma 3.4. Let V satisfy (H1). Then, for all k ≥ 1, and F a k-
dimensional subspace of Y +, there is an orthonormal family ϕ1, · · · , ϕk of
eigenvectors of Π(H + V )Π in F + Y −, with eigenvalues γk ≥ · · · ≥ γ1 > 0
( Π is the projector on F + Y −). Moreover, (ψ,Π(H + V )Πψ) ≤ 0 for any
ψ in the orthogonal space of span(ϕ1, · · · , ϕk) for the L2 scalar product in
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F + Y − and

γk = sup
ϕ∈F⊕Y −

ϕ 6=0

((H + V )ϕ,ϕ)

(ϕ,ϕ)
,

so ϕk is a maximum point.

Proof. Once again, this follows immediately from the standard theory of
Rayleigh quotients (see [29], vol 4), applied to the semibounded self-adjoint
operator −Π(H + V )Π in the Hilbert space F + Y −, defined as a Friedrichs
extension of the corresponding minimal operator. ⊔⊓

Now we proceed to obtain upper bounds for the λk’s. This will be crucial
to prove that the λk’s are achieved.

Lemma 3.5. Let V a scalar potential satisfying (H1)-(H2). Then, for all
k ≥ 1, there exists a k-dimensional subspace of Y +, Fk, such that

sup
ϕ∈Fk⊕Y −

ϕ6≡0

(

(H + V )ϕ,ϕ
)

(ϕ,ϕ)
< 1(3.3)

Corollary 3.6. If V satisfies (H1)-(H2), then for all k ≥ 1,

λk < 1(3.4)

The proof of the corollary is immediate.

Proof of Lemma 3.5. Let G be the Hilbert subspace of Y of the func-

tions e(x) whose Fourier transform can be written as ê(ξ) = θ(|ξ|)
(

1
0
0
0

)

,

θ ∈ C∞([0, 1], IR), supp θ ⊂ (0, 1).
We note that for such functions e, (αk∂ke, e) = 0. Let us now choose

any e1 ∈ G such that ||e1|| = 1. We define eλ(x) = λ−3/2 e1(
x
λ) for λ > 0.

Consider now any ϕ− ∈ Y − satisfying ||ϕ−|| ≤ 1 and take µ = µ(λ) ≥ 0
such that ||ϕ− + µeλ|| = 1. From the properties of G and of the operator
H, we have



















Aλ(e1) : =
(

(H + V )(ϕ− + µeλ), ϕ
− + µeλ

)

= µ2
(

∫

IR3
|e1(x)|2 dx+

∫

IR3
V (λx)|e1(x)|2dx

)

+((H + V )ϕ−, ϕ−) + 2µ Re((H + V )eλ, ϕ
−).

(3.5)

Now, from (H1) we find that
(

(H + V )ϕ−, ϕ−
)

≤ −δ ||ϕ−||2 , for some δ > 0 .(3.6)
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Moreover, by applying Cauchy-Schwarz inequality,

|(Heλ, ϕ−)| ≤ λ−1||~α · ~∇e1|| ||ϕ−|| + ||Λ−eλ|| ||ϕ−|| ,(3.7)

|(V eλ, ϕ−)| ≤
(

∫

|V (λx)|2 |e1(x)|2 dx
)1/2

||ϕ−||(3.8)

Now, let us prove that ||Λ−eλ|| = O
(

λ−1
)

. Indeed,

‖Λ−eλ‖2
L2 = (Λ−eλ,Λ

−eλ) = (Λ−eλ, eλ),

since Λ− is a projection operator. By (2.7),

‖Λ−eλ‖2
L2 =

∫

IR3

√

1 + |ξ|2 − 1

2
√

1 + |ξ|2 |êλ(ξ)|2 dξ

≤ 1

4

∫

IR3
|ξ|2|êλ(ξ)|2 dξ =

1

4λ2

∫

IR3
|ξ|2|ê+(ξ)|2 dξ .

Thus, ‖Λ−eλ‖2
L2 ≤ C2

1

λ2
with C2

1 =
1

4

∫

IR3
|ξ|2|ê+(ξ)|2 dξ.

Moreover, we can use assumption (H2) to obtain

lim
λ→+∞

λ2
∫

IR3
V (λx) |e1(x)|2 dx = −∞(3.9)

∫

IR3
|V (λx)|2|e1(x)|2dx ≤ δ

4

∫

IR3
|V (λx)||e1(x)|2dx ,(3.10)

for λ large enough. Now, for e1 and ϕ− given, µ depends on λ. Indeed,
||ϕ− + µeλ|| = 1 implies that µ||Λ+eλ|| ≤ 1 and again from (2.7), it is easy
to see that for λ large,

‖Λ+eλ‖2
L2 = 1 − ‖Λ−eλ‖2

L2 ≥ 1 − C2
1

λ2
, i.e., µ ≤ 1 +

C2
1

2λ2
,(3.11)

Estimates (3.5) to (3.11) and an optimization w.r.t. ||ϕ−|| imply that

Aλ(e1) ≤ µ2
(

1+
∫

IR3 V (λx)|e1(x)|2dx
)

− δ||ϕ−||2

+2µ

(

||~α·~∇e1||
λ + C1

λ +
(

∫ |V (λx)|2|e1(x)|2dx
)1/2

)

||ϕ−||
≤ µ2

(

1 +
∫

IR3 V (λx)|e1(x)|2dx+ 2
δ

∫

IR3 |V (λx)|2|e1(x)|2dx+O
(

1
λ2

))

≤ 1 +O
(

1
λ2

)

+ 1
2

∫

IR3 V (λx)|e1(x)|2dx < 1 for λ large .

(3.12)
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To end the proof, we consider a k-dimensional subspace of G, Gk and
define F λk as

F λk =
{

λ−
3
2 e1(

.

λ
) | e1 ∈ Gk

}

.(3.13)

Inequality (3.12) can be made uniform for e1 ∈ Gk in such a way that there
exists Aλ > 0 such that

Aλ(e1) <
λ∼+∞

1 uniformly for all e1 ∈ Gk, λ > 0 large .

Then, it is sufficient to define

Fk := F λk , λ large(3.14)

and the lemma is proved. ⊔⊓
Proof of Theorem 3.1.

From Lemma 3.4, the supremum appearing in the definition of λk is
achieved for every k-dimensional subspace F of Y +.

Let us now prove that the min-max is also achieved. We begin with
the case k = 1. Let us consider a minimizing sequence {ϕn1} such that
||ϕ1,n|| = 1 , Λ+ϕ1,n 6= 0,

λ1,n := sup
ϕ∈CI ϕ1,n+Y −

ϕ 6=0

((H + V )ϕ,ϕ)

(ϕ,ϕ)
,(3.15)

is achieved by ϕ1,n and
lim
n
λ1,n = λ1 .

The Euler-Lagrange equation satisfied by ϕ1,n reads

(H + V ) ϕ1,n = λ1,n ϕ1,n + fn ,(3.16)

for some fn which is orthogonal to Y − ⊕ CIϕ1,n for the duality product in
H−1/2×H1/2. Multiplying both sides of this equation by ϕ+

1,n−ϕ−
1,n , where

ϕ±
1,n := Λ±ϕ1,n we obtain

(

(H + V )ϕ+
1,n, ϕ

+
1,n

)

−
(

(H + V )ϕ−
1,n, ϕ

−
1,n

)

≤ λ1,n .(3.17)

Hence, by hypothesis (H1), the sequence {ϕ1,n}n is uniformly bounded in
Y and therefore, relatively compact for the Y -weak and L

q

loc
(IR3)-strong

topologies, 1 ≤ q < 3. Up to subsequences, we may assume that ϕ1 ∈ Y is
the limit of {ϕ1,n}n in those topologies. Finally, assume that the sequence
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of Lagrange multipliers {fn} converges to 0 in H−1/2(IR3). If this holds, we
have

(H + V )ϕ1 = λ1 ϕ1 .

Thus, under the above assumption on fn, Theorem 3.1 will be proved (in the
case k = 1) if we show that ϕ1 6≡ 0 . Assume the contrary. Since V −→

|x|→+∞
0

and V ∈ Lr
loc

(IR3) for r ∈ (2, 3) , V ϕ1,n −→
n→+∞

0 in L2(IR3) + Ls(IR3) for

s ∈ (6
5 ,

3
2). But then, for n large we can write

ϕ1,n =
(

H − λn1

)−1 (

fn − V ϕ1,n

)

(3.18)

The operators
(

H − λn1

)−1

are uniformly bounded, since λ1 ∈ (0, 1). So, if

fn →n 0 in H−1/2(IR3) and ϕ1 ≡ 0,

ϕ1,n −→
n→+∞

0 in L2(IR3) +H1(IR3) +W
1,s

(IR3) ,

which contradicts the normalization ||ϕ1,n|| = 1.

Let us finally prove that the sequence {fn} has to converge to 0 in
H−1/2(IR3). If this were not the case, up to subsequences, we would find
χn ∈ Y +, (χn, ϕ1,n) = 0 such that ||χn||Y = 1 and

Re ((H + V )ϕ1,n, χn)) = Re(fn, χn) ≥ σ > 0(3.19)

for some σ independent of n. Since V is |H|-bounded, there exists a constant
C1 such that for all n, |((H + V )χn, χn)| ≤ C1. Then, for any t > 0, let
us consider the space Gt = span{ϕ+

1,n − tχn} ⊕ Y −. Let us now take any
ψ ∈ Gt of the form ψ = ϕ1,n − tχn + ϕ−, ϕ− ∈ Y −. We obtain :

((H + V )ψ,ψ) = λn1 ||ϕn||2 + 2λn1 Re(ϕn, ϕ
−)

+((H + V )ϕ−, ϕ−) − 2tRe(fn, χn)

+t2((H + V )χn, χn) − 2tRe((H + V )ϕ−, χn)

(3.20)

Since V satisfies assumption (H1), ((H + V )ψ,ψ) ≤ 0 for ||ϕ−||Y large.
Hence, there exists a constant M such that ((H + V )ψ,ψ) ≥ 0 implies
||ϕ−||Y ≤M . This, (3.20) and our assumptions imply that for ||ϕ−||Y ≤M ,

((H + V )ψ,ψ) ≤ λ1,n||ϕ1,n||2 + 2λ1,n Re(ϕ1,n, ϕ
−)

−δ ||ϕ−||2Y − 2tσ + C1t
2 + 2Ct ||ϕ−||Y

≤λ1,n ||ϕ1,n− tχn + ϕ−||2−2tσ+ C1t
2+ 2Ct ||ϕ−||Y− δ ||ϕ−||2Y

13



with C independent of n. Then, we optimize the above inequality in ||ϕ−||Y
to obtain

((H + V )ψ,ψ) ≤ λ1,n||ϕ1,n − tχn + ϕ−||2 − 2tσ +

(

C1 +
C2

δ

)

t2(3.21)

and hence, for t small enough,

sup
ψ∈Gt

((H + V )ψ,ψ)

(ψ,ψ)
≤ λ1,n −

tσ

||ψ||2 < λ1 − ε(3.22)

for some ε > 0, because ||ψ|| is uniformly bounded. Indeed, in the second
step of the proof, we obtained an estimate for {ϕ1,n} in Y and by assumption,
||ϕ−|| ≤M, ||χn|| ≤ 1. The contradiction in (3.22) ends the proof in the case
k = 1.

Case k > 1 : Assume that we have already solved the min-max problem
corresponding to λi , 1 ≤ i ≤ k − 1 and let ϕi be the corresponding eigen-
function. If Fn is a minimizing sequence for λk and ϕk,n the corresponding
maximizer given by Lemma 3.4, we normalize it to have ||ϕk,n|| = 1 and as
above, the Euler-Lagrange equation satisfied by ϕk,n is

(H + V )ϕk,n = λk,n ϕk,n + fn ,(3.23)

for some fn which is orthogonal to Y − ⊕ Fn for the duality product in
H−1/2 ×H1/2 and

lim
n
λk,n = λk .

If λk−1 < λk , then we follow the same steps as in the case k = 1 to conclude
that the weak limit in Y of ϕk,n is a function ϕk satisfying

(H + V )ϕk = λk ϕk , ϕk 6≡ 0 ,

and therefore, ϕk is a solution for the min-max problem defining λk . Note
that the only important change that we make here is to replace Gt with a
similar subspace G̃t := span{ϕ1,n, . . . , ϕk,n − tχn}.

If, on the contrary, λk−1 = λk , let us then define ℓ as the largest integer
in the set {1, . . . , k} such that λℓ < λk . Hence, λℓ+1 = λk−1 = λk and we
can find a subspace Gn of Fn∩{ϕℓ+1, . . . , ϕk−1}⊥, of dimension ℓ+1, which
is minimizing for λℓ+1. So, as in the preceding case, we find a function ϕ,
solution of

(H + V )ϕ = λℓ+1 ϕ = λk ϕ , ϕ 6≡ 0,
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and by construction, (ϕ,ϕi) = 0 for all i ∈ {ℓ + 1, . . . , k − 1}. We define
ϕk := ϕ, and by induction, this ends the proof. ⊔⊓

4 - A minimization procedure providing an eigenstate of Dirac
operators : the ground state.

In this section, we introduce a minimization method which, under ap-
propriate assumptions on the potential V , yields the eigenvalues of H + V
lying in the spectral gap as well as the corresponding eigenfunctions.

The Dirac equation is originally written for 4-spinors. Here, we begin by
making a reduction to an equivalent equation for 2-spinors. Of course, this
requires some conditions on V .

For any ψ with values in CI4, let us write ψ =

(

ϕ
χ

)

, with ϕ,χ taking

values in CI 2. Then, the equation

(H + V ) ψ = λψ in IR3(4.1)

is equivalent to the system
{

Lχ = (E − V ) ϕ in IR3

Lϕ = (E + 2 − V ) χ
(4.2)

with E = λ− 1 and L = i
(

~σ · ~∇
)

=
3
∑

k=1

iσk∂k.

If V ≤ 0 a.e. in IR3 and E > −2 (which is the case for stable eigenvalues,
see Section 2), the system (4.2) can be written as

L
(Lϕ

g
E

)

+ V ϕ = Eϕ , χ =
Lϕ

g
E

in IR3(4.3)

where gE = E + 2 − V . Now, we make the following change of function :

ϕ =
√
gE φ

which is well defined (for V ≤ 0 and E > −2). From (4.3) we obtain

HEφ :=
√
g

E
L
( 1

g
E

L(
√
g

E
φ)
)

= (E − V )(E + 2 − V )φ in IR3(4.4)

and we notice that the operator acting on φ in the left-hand side of (4.4) is
formally symmetric. If φ is a solution of (4.4), we have

(φ, φ)E2 + 2(φ, (1 − V )φ)E − (φ, (2 − V )V φ) − (φ,HEφ) = 0(4.5)
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and we notice that (4.5) holds if and only if

E = J±(E,φ) :=
1

(φ, φ)

(

±
√

∆(E,φ) −
(

φ, (1 − V )φ)
)

(4.6)

where ∆(E,φ) := |(φ, V φ)|2 +(φ, φ)
[

(φ, φ)+(φ,HEφ)−(φ, V 2φ)
]

. Thus, we

have obtained that if E > −2 is an eigenvalue of ϕ 7→ L
(

Lϕ
gE

)

+ V ϕ , there

exists an associated eigenfunction φ 6≡ 0 such that (4.6) holds. The main
idea of Section 4 is to prove conversely that under appropriate conditions,
critical points of J+(E,φ) are solutions of equation (4.4). In fact, for a
given potential W , we will prove this for the operators H + aW with a less
than some constant AW , depending only on the potential W .

In order to proceed further, let us define

T (E,φ) :=(φ, φ)+(φ,HEφ)−(φ, V 2φ)= T̃ (E,ϕ) :=

∫

IR3

|Lϕ|2 + |ϕ|2 − V 2|ϕ|2
gE

so that ∆(E,φ) = (φ, V φ)2 + (φ, φ)T (E,φ) , provided ϕ =
√
gEφ.

We notice that since E has to be real, ∆(E,φ) must be nonnegative for
all the functions φ which we will be considering. Also, for φ 6≡ 0,

T (E,φ) ≥ 0(4.7)

if and only if ∆(E,φ) ≥ |(φ, V φ)|2 ≥ 0 . Then, if φ 6≡ 0 , J+(E,φ) ≥
|(φ,V φ)|+(φ,V φ)

(φ,φ) − 1 ≥ −1 and J−(E,φ) ≤ (φ,V φ)−|(φ,V φ)|
(φ,φ) − 1 ≤ −1 , with

equality if and only if T (E,φ) = 0 .

Thus, if V 6≡ 0 is a nonpositive potential and if (4.7) holds for all (E,φ)
in some adapted set X , with strict inequality, the only functional yielding
positive stable eigenvalues of H + V is J+.

In this section, we will prove that critical points of J+ in a well chosen
but natural class of functions solve equation (4.4). At a formal level, critical
points (E,φ) of the functional J+(E,φ) , satisfying the constraint E =
J+(E,φ) , are indeed solutions of (4.4) (for more details, see step 4 in the
proof of Theorem 4.3 below). Moreover, under adequate assumptions on V ,
we will find the “ground state energy” of H + V as the minimum value of
J+.

Let X0 be defined by

X0 :=

{

ϕ ∈ L2(IR3) ;

∫

IR3

|Lϕ|2 + |ϕ|2
1 + |V | dx < +∞

}
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and

X :=
{

φ ∈ L2(IR3) ;ϕ :=
√
gE φ ∈ X0 for some E ∈ (−1, 0)

}

.

Note that for all φ ∈ X , E ∈ (−1, 0) ,

|||φ|||2E := (HEφ, φ) + (φ, φ) =

∫

IR3

|Lϕ|2 + |ϕ|2
gE

dx < +∞

Note also that if V is a nonpositive scalar potential and ψ=

(

ϕ
χ

)

∈L2\{0}
is an eigenfunction of H + V , associated with an eigenvalue λ > −1, then
the corresponding φ is in X whenever V χ2 ∈ L1(IR3). This last condition is
automatically satisfied if V satisfies assumption (H1) of Section 3.

Now, assume that the scalar potential W satisfies

(J1) W ∈ L∞
loc(IR

3 \ {0}) and either W ∈ L∞(IR3) or W −→
|x|→0

−∞

(J2) W ≤ 0 a.e. in IR3 , lim
R→+∞

||W ||
L∞(|x|>R)

= 0 ,

(J3)

MW := min

(

inf
ϕ∈X0

∫

IR3 |W |−1
(|Lϕ|2 + |ϕ|2)

∫

IR3 |W ||ϕ|2 , inf
ϕ∈X0

∫

IR3 |∇ϕ|2 + |ϕ|2
∫

IR3 W 2|ϕ|2

)

> 0.

Remarks. Assumptions (J1) to (J3) are invariant by multiplication by a
positive constant, i.e. if W satisfies (J1) to (J3), then the same holds for
V = aW for all a > 0. However, assumption (H1) (stated in Section 3) for
V = aW may strongly depend on the value of a.

If Wβ = −|x|−β , β ∈ (0, 1] , it is easy to check that Wβ satisfies assump-
tions (J1) to (J3). To do so, one has to use classical Hardy-type inequalities.

It is also possible to replace a single singularity of V at the origin by
several isolated singularities.

Let us now derive some implications of asumptions (J1)-(J3) which will
be useful in the sequel of the paper.

Proposition 4.1. LetW a potential satisfying (J1) to (J3). For any a0 > 0,
we have

(4.8) l(a0) := inf
0<a<a0

inf
(E,ϕ)∈ (−1,0)×X0

∫

IR3
|Lϕ|2+|ϕ|2
E+2+a|W |

∫

IR3
aW 2|ϕ|2
E+2+a|W |

> 0 .
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Proof of Proposition 4.1.

If W is bounded, the proof immediately follows. If, on the contrary,
W tends to −∞ at 0, then, if l(a0) = 0 , there must exist a sequence
{(En, φn)} ∈ (−1, 0) ×X and an ∈ (0, a0] such that

∫

IR3

W 2|ϕn|2
En + 2 + an|W | = 1 ,

1

an

∫

IR3

|Lϕn|2 + |ϕn|2
En + 2 + an|W | −→

n→+∞
0 .(4.9)

Let us choose β > 0 such that 2 ≤ |W | a.e. in the set {x ∈ IR3 ; 0 <
|x| ≤ 2β} and define ℓ := max|x|≥β |W (x)| . Finally, we consider a function

ξ ∈ C1(IR3) , with values in the interval [0, 1] , such that ξ ≡ 1 on the ball
of radius β, Bβ , supp ξ ⊂ B2β and ∇

√

1 − ξ2 ∈ L∞. Then,

∫

IR3
|Lϕn|2+|ϕn|2
En+2+an|W | ≥ ∫

IR3
|L(ξϕn)|2+|ξϕn|2

(an+1)|W | +

+
|L(

√
1−ξ2ϕn)|2+(1−ξ2)|ϕn|2

2+anℓ
+ rnan

(4.10)

with limn→+∞ rn = 0 . By using (J3) we find :

∫

IR3

|Lϕn|2+|ϕn|2
En+2+an|W | ≥ MW

an+1

∫

IR3
|W |ϕ2

nξ
2 +MW

∫

IR3

W 2ϕ2
n(1−ξ2)

2+anℓ
+ rnan

≥ MW an

an+1

∫

IR3

W 2ϕ2
nξ

2

En+2+an|W | + MW
2+anℓ

∫

IR3

W 2ϕ2
n(1−ξ2)

En+2+an|W | + rnan

≥MW min
(

an
an+1 ,

1
2+anℓ

)

+ rnan

(4.11)

and this shows that (4.9) cannot hold, what ends the proof.

A straightforward corollary of the above proposition is the following

Corollary 4.2. If a potential W satisfies (J1) to (J3), then for a > 0 small
enough, V = aW satisfies

IV := inf
(E,ϕ)∈ (−1,0)×X0

J+(E,φ)≤E

∫

IR3
|Lϕ|2+|ϕ|2
E+2+|V |

∫

IR3
V 2|ϕ|2
E+2+|V |

> 1 .(4.12)

Proof. Since the function l is nonincreasing and stricly positive on IR+,
l(a)/a > 1 for a > 0 small enough. Finally, IaW ≥ (l(a)/a), since the extra
constraint J+(E,φ) ≤ E only increases the value of the infimum. ⊔⊓
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Remark. Note that

IV > 1 ⇒
∫

IR3

V 2(x)|ϕ(x)|2
gE(x)

dx <

∫

IR3

|Lϕ|2 + |ϕ|2
gE(x)

dx

⇔ T (E,φ) = (φ,HEφ) + (φ, φ) − (φ, V 2φ) > 0

⇔ J+(E,φ) > −1

for all
(

E,φ = ϕ√
gE

)

∈ [−1, 0] ×X, such that J+(E,φ) ≤ E .

In order to find the minimal “eigenvalue” E of (4.4), we would like to
minimize J+(E,φ) over the set {(E,φ) ; φ 6≡ 0 , J+(E,φ) = E}. Let us
introduce a relaxed minimization problem over the set

DV :=
{

(E,φ) ∈ (−2, 0) ×X ;φ 6≡ 0, J+(E,φ) ≤ E
}

.(4.13)

Now we are ready to state the main theorem of this section.

Theorem 4.3. Assume that V is a scalar potential satisfying (J1) to (J3)
such that

IV > 1(4.14)

and
DV 6= ∅ .(4.15)

Then, the following infimum

E0 := inf {E ∈ (−2, 0); ∃φ ∈ X with (E,φ) ∈ DV }(4.16)

is achieved in DV by some (E0, φ0). Moreover,

φ0 6≡ 0, J+(E0, φ0) = E0 ∈ (−1, 0)

and φ ≡ φ0 is a solution of (4.4) with E = E0.

Remark. By Corollary 4.2 and Theorem 4.3, if W satisfies (J1) to (J3) and
a > 0 is small enough, then the “ground state” of the operator H + aW is
given by the minimization of J+ over the set DaW . So, Theorem 4.3 applies
to V = −a|x|−β , β ∈ (0, 1] , a > 0 small. Moreover, as shown below (see
Proposition 4.6), this theorem is optimal for the Coulomb potential: in the
case β = 1, one can take any a < 1.

Corollary 4.4. Under the assumptions of Theorem 4.3, the function ψ0 =
(

ϕ0

χ0

)

, with ϕ0 = √g
E0
φ0, χ0 = Lϕ0/gE0

satisfies

Hψ0 + V ψ0 = (E0 + 1)ψ0 in IR3, ψ0 6≡ 0 .(4.17)
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Moreover, E0+1 is the smallest eigenvalue of (H+V ) in (0, 1) corresponding

to an eigenfunction ψ =

(

ϕ
χ

)

such that ϕ ∈ X0.

Proof of Corollary 4.4. The first assertion follows immediately from
Theorem 4.3 and the introduction of this section. As for the fact that E0 +1
is the smallest eigenvalue of H+V in (0, 1) such that ϕ ∈ X0, we just invoke
the fact that J− maps X into (−∞,−1). ⊔⊓
Proof of Theorem 4.3.

Step 1 : E0 ∈ (−1, 0).

Since the set DV is not empty, we have : E0 < 0. Also, from the
definition of J+ and (4.14), E0 ≥ −1. Assume by contradiction that E0 =
−1. Then, since the functional J+ is homogeneous of degree 0, there exists
a sequence {(En, φn)} in DV such that

∫

IR3
h

En
|φn|

2
= 1, −1 < J+(En, φn) ≤ En −→

n→+∞
−1,(4.18)

a contradiction with the following lemma :

Lemma 4.5. Assume that V satisfies (J1)-(J3) and that IV > 1 . If E > −1
and φ ∈ X satisfy

(i)

∫

IR3
(E + 1 − V )|φ|2 dx = 1 (normalization condition)

and

(ii) J+(E,φ) ≤ E

then,

E + 1 > min







√

ζ

2(1 + ζ)
,

1√
1 + ζ

,
ζ

1 + 2
√

1 + ζ +
√

5 + 4(ζ +
√

1 + ζ)







with ζ = IV − 1 .

Proof of Lemma 4.5.

By (ii), θ := E+1 ≥ J+(E,φ)+1 = ‖φ‖−2
{

√

∆(E,φ) +
∫

IR3 V |φ|2 dx
}

.

Now, combining (i) and (ii) we obtain

∆(E,φ) = ‖φ‖2T (E,φ) + (φ, V φ)2 ≤ 1 .(4.19)
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By (i) again,
‖φ‖2T (E,φ) ≤ 1 − (1 − θ‖φ‖2)2(4.20)

and then
T (E,φ) ≤ θ(2 − θ‖φ‖2) ≤ 2θ .(4.21)

On the other hand, since IV > 1, by definition of ζ, we have

(φ,HEφ) + (φ, φ)

1 + ζ
≥ (φ, V 2φ)(4.22)

Hence,

T (E,φ)=(φ,HEφ) + (φ, φ) − (φ, V 2φ) ≥ ζ

1 + ζ

(

‖φ‖2 + (φ,HEφ)
)

,(4.23)

and then

‖φ‖2 ≤ (φ,HEφ) + ‖φ‖2 ≤ (1 + ζ)T (E,φ)

ζ
,(4.24)

∫

IR3
gE(x)|φ|2 dx = 1 + ‖φ‖2 ≤ 1 +

(1 + ζ)T (E,φ)

ζ
.(4.25)

By using Cauchy-Schwarz’s inequality and (4.25) we also have

(
∫

IR3
V |φ|2 dx

)2

≤
(

1 +
(1 + ζ)T (E,φ)

ζ

)
∫

IR3

V 2|φ|2
gE

dx.(4.26)

Clearly, for any a, b > 0 , we have a
b ≥ IV if and only if b ≤ a−b

IV −1 =

ζ−1(a − b) . Taking a =
∫

IR3
|Lφ|2+|φ|2

gE
dx and b =

∫

IR3
V 2|φ|2
gE

dx , we have
a− b = T (E,φ) and

(
∫

IR3
V |φ|2 dx

)2

≤ T (E,φ)

ζ

(

1 +
(1 + ζ)T (E,φ)

ζ

)

(4.27)

Using (4.24) and then (4.27) we have

θ(1+ζ)
ζ T (E,φ) ≥ θ‖φ‖2 = 1+

∫

IR3V |φ|2dx

≥ 1 −
√

T (E,φ)
ζ (1 + 1+ζ

ζ T (E,φ))

(4.28)

If θ ≤
√

ζ
2(1+ζ) ,

(

1 − θ(1+ζ)T (E,φ)
ζ

)

≥ 1 − 2(1+ζ)θ2

ζ ≥ 0, because of (4.21),

and then

T (E,φ)(1 +
(1 + ζ)T (E,φ)

ζ
) ≥ ζ

(

1 − θ
(1 + ζ)

ζ
T (E,φ)

)2

,(4.29)
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or what is equivalent

(

1 + ζ

ζ
− (1 + ζ)2θ2

ζ

)

T (E,φ)2 + (1 + 2(1 + ζ)θ)T (E,φ) − ζ ≥ 0 .(4.30)

Thus, since by assumption, T (E,φ) > 0 , either θ ≥ 1√
1+ζ

or θ < 1√
1+ζ

and

2θ ≥ T (E,φ) ≥ −(1+2θ(1+ζ))+
√

1+4(1+θ)(1+ζ)
2(1+ζ)

ζ
(1−(1+ζ)θ2)

= 2ζ

1+2θ(1+ζ)+
√

1+4(1+θ)(1+ζ)
≥ 2ζ

1+2
√

1+ζ+

√

5+4(ζ+
√

1+ζ)

(4.31)

on the interval

(

0, 1√
1+ζ

]

. ⊔⊓
Step 2 : E0 is achieved.

Let {(En, φn)} be a minimizing sequence for E0. Since IV = 1+ ζ > 1 ,
by (4.23), ζ|||φn|||2En

≤ (1 + ζ)T (En, φn) for all n. Then, by the same
arguments as in the proof of Lemma 4.5, we have

(1 + ζ)
∫

IR3 V 2|φn|2 dx ≤ |||φn|||2En
≤ (1+ζ)T (En,φn)

ζ

≤ 2(1+ζ)(En+1)
ζ < 2(1+ζ)

ζ

(4.32)

This implies that

∫

IR3
V 2|φn|2 dx+ |||φn|||En ≤ 2(2 + ζ)

ζ
(4.33)

Therefore, up to subsequences, we can find φ0 ∈ L2(IR3) such that
φn ⇀

n→+∞
φ0 weakly in L2(IR3) .Moreover, for all ε > 0, there exists R(ε) > 0

such that lim
ε→0

R(ε) = +∞ and ‖φ0‖L2(|x|>R(ε)) ≤ ε
2 .

From (4.33),
∫

IR3
g
−1

En
|Lϕn|2dx ≤ C for some constant C > 0 independent

of n. If V is in L∞(IR3), this implies that {ϕn} is bounded in H1(IR3) and
relatively compact in Lqloc(IR

3) if 2 ≤ q < 6. If on the contrary, V (x) tends
to −∞ when x approaches 0, then {ϕn} is only bounded in H1

loc(IR
3 \{0})

and relatively compact in Lqloc(IR
3 \ {0}), 2 ≤ q < 6. In all cases, {φn} is

relatively bounded in Lqloc(IR
3 \ {0}), 2 ≤ q < 6. Finally, one can use (4.33)

to prove that {φn} is relatively compact in L2
loc(IR

3) and that
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∫

IR3
V |φn|2dx −→

n→∞

∫

IR3
V |φ0|2dx(4.34)

Up to subsequences, we may consider now that lim
n

‖φn‖2 exists and we

define
M = lim

n
‖φn‖2 − ‖φ0‖2 .(4.35)

Let us now prove that

φn −→
n→∞

φ0 in L2(IR3).(4.36)

If M = 0 , (4.36) holds. Assume, by contradiction, that M > 0 . By
definition of J+ we have

(φn, φn)J
2
n +2(φn, (1−V )φn)Jn− (φn, (2−V )V φn)− (φn,HE0φn) = 0

where by Jn we denote J+(En, φn) . Now we consider a function χε ∈
C2(IR3) such that χε ≡ 1 on B(0, ε−1) , supp χε ⊂ B(0, 2ε−1) and
‖∇χε‖L∞ ≤ 2ε and define φεn = φnχε. Obviously, the weak limit of φεn
in L2(IR3) is φε0 := φ0χε. For ε small enough, we obtain:

(φn, φn)(J
2
n + 2Jn) − 2(Jn + 1)(φεn, V φ

ε
n) + (φεn, V

2φεn) − (φεn,HE0φ
ε
n) > Cε

where C is a negative constant independent of n and ε. Then, we use the
lower semicontinuity in X of the quadratic form

φ 7→ (φ,HE0φ) + (φ, φ) − (φ, V 2φ)

and (4.34)-(4.35) to obtain, as n→ +∞ and then as ε→ 0 :

((φ0, φ0) +M) (J
2
+ 2J) − 2(J + 1)(φ0, V φ0)

+(φ0, V
2φ0) − (φ0,HE0φ0) ≥ 0 ,

where J = lim sup
n

Jn.

Now, since −1 < J < 0 , if M > 0 one has:

M (J
2
+ 2J) < 0 .

Hence,

(φ0, φ0)J
2
+2(φ0, (1−V )φ0)J−(φ0, (2−V )V φ0)−(φ0,HE0φ0)>α >0(4.37)
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which implies that for large n , either Jn < J−(E0, φ0) ≤ −1 , which
is impossible, or limn Jn > J+(E0, φ0) , which contradicts the definition
of E0 := limnEn ≥ limn Jn. Therefore, necessarily M = 0 and φn −→

n→∞

φ0 in L2(IR3). This, together with our assumptions on V and lower semi-
continuity implies that

(φ0,HE0φ0) + (φ0, φ0) − (φ0, V
2φ0) ≤

≤ limn

(

(φn,HEnφn) + (φn, φn) − (φn, V
2φn

)

),
(4.38)

∆(E0, φ0) ≤ lim
n

∆(En, φn) ≤ 1 ,(4.39)

and therefore,
J+(E0, φ0) ≤ E0(4.40)

and (E0, φ0) is a minimizer for E0.

Step 3 : Constraint saturation.

Under our assumptions, it is straightforward to see that if (E0, φ0) is
a minimum of problem (4.16), then J+(E0, φ0) = E0 , by definition of E0

and because the map E 7→ J+(E,φ0) is continuous. This also shows that

E0 = inf{J+(E,φ) ; φ 6≡ 0, (E,φ) ∈ (−1, 0) ×X ,J+(E,φ) = E} .(4.41)

Step 4 : Euler-Lagrange equations.

By classical computations, there is a Lagrange multiplier µ ∈ IR such
that (E0, φ0) is a critical point of the functional (1 − µ)E + µJ+ , i. e.,

(1 − µ) + µ∂EJ
+(E0, φ0) = 0 = µ∂φJ

+(E0, φ0) .

These two equalities show that ∂φJ
+(E0, φ0) = 0 , or equivalently

HE0φ0 = (E0 − V )(E0 + 2 − V )φ0 in D′(IR3)

i.e., (E0, φ0) is a solution of (4.4). ⊔⊓
It seems difficult to find a characterization of all potentials V such that

the assumptions of Theorem 4.3 hold. But, in order to fix our ideas about
the validity range of this result, let us look at Coulomb potentials −a|x|−1,
a > 0.

Proposition 4.6 . Let us consider W1(x) := −|x|−1
. Then, for all a ∈

(0, 1), DaW1 6= ∅ and there is a constant ζa > 0 such that

IaW1 = 1 + ζa > 1 ,(4.42)
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and therefore, for all a < 1 the smallest eigenvalue of H− a
|x| in the interval

(−1, 1) is given by the infimum of E over the set DaW1 .

Proof of Proposition 4.6.

It is well known that for all a < 1 there exists a smallest eigenvalue of
H − a

|x| in the gap of the essential spectrum, λa1 > 0 . Moreover, when a
approaches 1 , λa1 converges to 0 . This implies the existence of a minimal
Ea = λa1 −1 in (−1, 0) (given by the minimization method of Theorem 4.3)
and φa ∈ X \ {0} such that (Ea, φa) is a solution of equation (4.4).

The map a 7→ IaW1 is continuous. Assume, by contradiction, that
IA1W1 = 1 for some A1 < 1 . Then, there exist En ∈ (−1, 0),
an → A1 and ϕn in X0 such that J+(En, φn) ≤ En and

∫

IR3

|Lϕn|2 + |ϕn|2
En + 2 + an|W1|

=

(

1 +
1

n

)
∫

IR3

a2
nW

2
1 |ϕn|2

En + 2 + an|W1|
(4.43)

By homogeneity, we can choose the sequence {ϕn} to satisfy

∫

IR3

W 2
1 |ϕn|2

En + 2 + an|W1|
= 1 for all n .

Then, by the definition of J+ we have

−1 < J+(En, φn) = −1 +
an(φn,W1φn)+

√

a2n(φn,W1φn)2+
a2

n
n

||φn||2
||φn||2

≤ −1 + an√
n
√

(φn,φn)
.

(4.44)

Now, if limn(φn, φn) > 0 , (4.44) implies that limn J
+(En, φn) = −1 , and

then for n large, the minimization of J+ on DanW1 provides us with an
eigenvalue of H − anW1 smaller than the minimum eigenvalue of this ope-
rator, λa1 . So, up to subsequences one must have

lim
n

(φn, φn) = 0 .(4.45)

Let us show that this is also impossible and so we will have proved that
A1 = 1 .

If (4.45) holds, we can take a cut-off function χr ∈ C1(IR3), χr ≡ 1 on
B(0, r), supp χr ⊂ B(0, 2r) such that for r small and n large, we have

∫

IR3

|L(ϕnχr)|2
|W1|

dx ≤ β A1

∫

IR3
|W1| |ϕnχr|2 dx(4.46)
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for some β ∈ (1, A−1
1 ) , which is impossible, because for the Coulomb po-

tential one has

inf
ϕ∈H1/2(IR3)

(
∫

IR3
|x||Lϕ|2

)(
∫

IR3
|x|−1|ϕ|2

)−1

= 1

and A1 was supposed to be strictly less than 1 . ⊔⊓
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[15] M.J. Esteban, E. Séré. Existence and multiplicity of solutions for linear
and nonlinear Dirac problems. Partial Differential Equations and Their
Applications. CRM Proceedings and Lecture Notes, volume 12. Eds.
P.C. Greiner, V. Ivrii, L.A. Seco and C. Sulem. AMS, 1997.

[16] W.D. Evans, P. Perry, H. Siedentop. The spectrum of realtivistic one-
electrom atoms according to Bethe and Salpeter. Comm. Math. Phys.
178(3) (1996), p. 733-746.

[17] M. Griesemer, H. Siedentop. A minimax principle for the eigenvalues
in spectral gaps. To appear in J. London Math. Soc.

[18] G. Hardekopf, J. Sucher. Critical coupling constants for relativistic wave
equations and vacuum breakdown in quantum electrodynamics. Phys.
Rev. A 31(4) (1985), p. 2020-2029.

[19] I.W. Herbst. Spectral theory of the operator (p2 + m2)1/2 − Ze2/r.
Comm. Math. Phys. 53 (1977), p. 285-294.

[20] R.N. Hill, C. Krauthauser. A solution to the problem of variational
collapse for the one-particle Dirac equation. Phys. Rev. Lett. 72(14)
(1994), p. 2151-2154.

[21] T. Kato. Perturbation theory for linear operators. Springer, 1966.

[22] W. Kutzelnigg. Relativistic one-electron Hamiltonians for electrons
only’ and the variational treatment of the Dirac equation. Chem. Phys.
(1997).

27



[23] A. Le Yaouanc, L. Oliver, J.-C. Raynal. The Hamiltonian (p2+m2)1/2−
α/r near the critical value αc = 2/π. J. Math. Phys. 38(8) (1997), p.
3397-4012.

[24] E. van Lenthe, R. van Leeuwen, E.J. Baerends, J.G. Snijders. Relativis-
tic regular two-component Hamiltonians. In New challenges in compu-
tational Quantum Chemistry. R. Broek et al ed.. Publications Dept.
Chem. Phys. and Material sciences. University of Groningen, 1994.

[25] Selecta of E. H. Lieb. The stability of matter: from atoms to stars.
Edited by W. Thirring (second edition), Springer.

[26] E.H. Lieb, H. Siedentop, J.P. Solovej. Stability and instability of rel-
ativistic electrons in classical electromagnetic fields. J. Stat. Phys.
(1997).

[27] E.H. Lieb, H. Siedentop, J.P. Solovej. Stability of relativistic matter
with magnetic fields. Phys. Rev. Lett. 79(10) (1997), p. 1755-1758.

[28] A. Messiah. Mécanique quantique II. Masson, Paris, 1960.

[29] M. Reed, B. Simon. Methods of Modern Mathematical Physics. Aca-
demic Press, New York, 1978.

[30] J.D. Talman. Minimax principle for the Dirac equation. Phys. Rev.
Lett. 57(9) (1986), p. 1091-1094.

[31] B. Thaller. The Dirac equation. Springer-Verlag, 1992.

[32] C. Tix. Strict positivity of a relativistic Hamiltonian due to Brown and
Ravenhall. Bull. London Math. Soc. (1998).

[33] C. Tix. Lower bound for the ground state energy of the no-pair Hamil-
tonian. Physics Letters B 405 (1997), p. 293-296.

28


