FROM POINCARE TO LOGARITHMIC SOBOLEV INEQUALITIES:
A GRADIENT FLOW APPROACH
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Abstract. We use the distances introduced in a previous joint paper to exhibit the gradient
flow structure of some drift-diffusion equations for a wide class of entropy functionals. Functional
inequalities obtained by the comparison of the entropy with the entropy production functional reflect
the contraction properties of the flow. Our approach provides a unified framework for the study of
the Kolmogorov-Fokker-Planck (KFP) equation.
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1. Setting of the problem. Our starting point concerns nonnegative solutions
with finite mass of the heat equation in R%

3tut = Aut . (11)

It is straightforward to check that for any smooth enough solution of (1.1) and any
C? convex function v,

d

A ) de = —/ " (u2) | Dus 2 da
dt Rd Rd

so that fRd ¥ (ut) dz plays the role of a Lyapunov functional. To extract some informa-
tion out of such an identity, one needs to analyze the relation between f]Rd ¥ (ug) dx and
Jra ¥ (uy) |Dug|? dzz. This can be done using Green’s function or moment estimates,
with the drawback that these quantities are explicitly ¢-dependent. It is simpler to
rewrite the equation in self-similar variables and replace by the Fokker-Planck
(FP) equation

3tvt = Avt + V- (I ’U) . (12)

This can be done without changing the initial data by the time-dependent change of
variables

u(z) = ﬁ Vlog R(t) (R?t)) , R(t)=+v1+2t.

We shall restrict our approach to nonnegative initial data ug = vg. By linearity, we
can further assume that

/vtdx:/ utdx:/ ugdr =1
R4 Rd R
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without loss of generality. We shall also assume that ¢ is defined on RT. Up to the
change of ¢ into v such that ¥ (s) = t(s) — (1) — 1’ (1)(s — 1), we can also assume
that 1) is nonnegative on R™ and achieves its minimum value, zero, at s = 1.

Eq. has a unique nonnegative stationary solution v = 7 normalized such
that [,y dz =1, namely

e—lz?/2 4
If we introduce p; = wv;/7, then p; is a solution of the Ornstein-Uhlenbeck, or
Kolmogorov-Fokker-Planck (KFP), equation
5‘tpt = Apt — X~ Dpt (13)

with initial data pg = vo/vy. After identifying v with the measure v.2%, the relevant
Lyapunov functional, or entropy, is f]Rd ¥(pt) dy and

d
%/ zb(pt)dv:—/ V" (pe) [ Dpe|* dy
Rd R

We shall restrict our study to a class of functions ¥ for which the entropy and the
entropy production functional are related by the inequality

2\ / RIOLE / W(0) Do dy (1.4)

for some A > 0 (it turns out that in the case of the Gaussian measure we can choose
A =1). This allows us to prove that the entropy is exponentially decaying, namely

/Rﬂ(ﬂt)dv = (/R zb(po)dv) e V>0, (1.5)

if p; is a solution of (1.3)) and if X\ is positive. A sufficient condition for such an
inequality is that

the function h = 1/4" is concave (1.6)

(see for instance [11], p. 201], [8, (2.15)]). At first sight, this may look like a technical
condition but it has some deep implications. We are indeed interested in exhibiting
a gradient flow structure for associated with the entropy or, to be more precise,
to establish that, for some distance, the gradient flow of the entropy is actually .
It turns out that is the natural condition as we shall see in Section

The entropy decays exponentially according to not only when one considers
the L%(Rd) norm (the norm of the square integrable functions with respect to the
Gaussian measure ), i.e. the case 1(p) = (p — 1)?/2, or the classical entropy built
on (p) = plogp, for which is the gradient flow with respect to the usual
Wasserstein distance (according to the seminal paper [27] of Jordan, Kinderlehrer
and Otto). We also have an exponential decay result of any entropy generated by

PP —1-(2-a)p-1)
(2—0a)(l—a)
2

Y(p) = =:a(p), a€l0,1),



and more generally any 1 satisfying (L.6). Notice by the way that ¢(p) = ¥a(p) is
compatible with if and only if o € [0,1) and that ¥(p) = p log p appears as the
limit case when o — 1_.

The exponential decay is a striking property which raises the issue of the hid-
den mathematical structure, a question asked long ago by F. Poupaud. As already
mentionned, the answer lies in the gradient flow interpretation and the construction
of the appropriate distances. Such distances, based on an action functional related
to 1, have been studied in [24]. Our purpose is to exploit this action functional for
the construction of gradient flows, not only in the case corresponding to but also
for KFP equations based on general A-convex potentials V. For the convenience of
the reader, the main steps of the strategy have been collected in Section [2] without
technical details (for instance on the measure theoretic aspects of our approach).

Coming back to our basic example, namely the solution of 7 we may observe
that a solution can easily be represented using the Green kernel of the heat equation
and our time-dependent change of variables. If ¥(p) = ¥ (p), a € [0,1), we may
observe that the exponential decay of the entropy can be obtained using the known
properties of the heat flow and the homogeneity of v, while the contraction properties
of the heat flow measured in the framework of the weighted Wasserstein distances
introduced in [24] can be translated into the exponential decay of the distance of the
solution of to the gaussian measure -, if we assume that p is a probability
measure. We shall however not pursue in this direction as it is very specific of the
potential V(z) = 1 |z|? and of the heat flow (for which an explicit Green function is
available).

Functionals based on entropy densities ¥ satisfying are sometimes called
p-entropies. In this paper, we shall however avoid this denomination to prevent from
possible confusions with the function ¢ and the functional ® used below to define the
action and the weighted Wasserstein distances Wj,.

We shall refer to [19] 28] for a probabilistic point of view. A proof of under
Assumption and the Bakry-Emery condition can be found for instance in [§] or
in the more recent paper [I7]. This approach is based on the Bakry-Emery method
[I1, 21] and heavily relies on the flow of KFP or, equivalently, on the geometric
properties of the Ornstein-Uhlenbeck operator (using the carré du champ: see [I7]).
Strict convexity of the potential is usually required, but can be removed afterwards
by various methods: see [8 12 23]. For capacity-measure approaches of , we
shall refer to [I3] 14, 22]. The inequality itself has been introduced in [I5] with
a proof based on the hypercontractivity of the heat flow and spectral estimates, and
later refined and adapted to general potentials in [6].

Concerning gradient flows and distances of Wasserstein type, there has been a
huge activity over the last years. We can refer to [27, [16] for fundamental ideas, and
to two books, [2, B1], for a large overview of the field. Many other contributions in
this area will be quoted whenever needed in the proofs.

The key of our approach is based on the definition of the h-Wasserstein distance
W), For any entropy density ¢ satisfying (L.6]), we build an action functional on the
space of probability measures in the spirit of [24] using h = 1/¢”, which provides the
distance W}, and generalizes the Wasserstein distance.

The core of the paper is a decay estimate of the action functional (Theorem [2.1]).
The analysis of the equality case in allows to identify the KFP flow as the
gradient flow of the entropy functional w.r.t. W}, in . Our two main results are
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Theorems [Z.1] and

In this paper, our goal is to clarify the relationship between the flow of the Fokker-
Planck equation and the family of inequalities . The main observation is that
any estimate on the action functional can be converted into an estimate on distances,
an Fulerian point of view (as in [30]), which is a major advantage compared to
previous approaches (based on Lagrangian formulations). It turns out that the Fokker-
Planck equation admits a nice metric formulation in terms of an Evolution Variational
Inequality involving W},, that has interesting regularizing and stability properties [5]
and could be extended to more general, non-smooth settings, as the metric-measure
spaces with Ricci curvature bounded from below [31], 3.

The flat case, corresponding to a constant potential V' and to the reference Le-
besgue measure v = £? (so that A = 0), has already been considered in [24] and
further generalized and applied to nonlinear diffusion equation in [I8, 29]. In the
present paper, we deal with general Fokker-Planck equations.

Section [2]is devoted to formal computations and heuristics. Considerations on the
distance and on the entropy functional can be found in Sections [3] and [ respectively.
The KFP flow and its first variation are studied in Section [f] A stronger version of
Theorem is established in Corollary Main results can be found in Section

2. Formal point of view: definitions, strategy and main results. In Sec-
tion |1} we have considered the case of the harmonic potential V(z) = %|:1c|2 We
generalize the setting to any smooth, convex potential V : R? — R with

DV >Al, MeR, (2.1)

known as the Bakry-Emery condition or CD()\, 00) condition, and consider the refer-
ence measure vy given by

yi=eV 24 (2.2)

where .Z? denotes Lebesgue measure on R%. We assume that
y(RY) = / e Vidr=17< . (2.3)
Rd

Next we define the action density ¢ : (0,00) x R? — R as

|wl?
P(p,w) := 7=
h(p)
for some concave, positive, non decreasing function h with sublinear growth. Our
main example is h(p) := p® for some a € (0,1).
Sometimes it will be more convenient to express some properties of ¢ in terms of
the function g(p) := 1/h(p): notice that h is concave if and only if

1
9(p) = 7y setisfies 2 (9 <g9", (2:4)

in particular g is convex (compare with [8 (2.12¢)]).
Based on the action density, we can define the action functional by

P(p, w) := /Rd o(p,w)dy . (2.5)
4



The Kolmogorov-Fokker-Planck (KFP) equation. With the notations A, :=
A — DV - D, the equation

Orpt — Aypr =0 (2.6)

determines the Kolmogorov-Fokker-Planck (KFP) flow Si : po — pt. Its first vari-
ation, R; : wy — wy, can be obtained as the solution of the modified Kolmogorov-
Fokker-Planck equation

8twt — A,y’l.l]t + DZV we = 0.
If wy = Dpy, then w; = Dp;, which can be summarized by
D(Sipo) = Ri(Dpo) -

By duality, using the notations V,-w :=V-w - DV -w and V-w := 2?21 ow; [0z,
if V, - wo = po, we also find that V, - w; = p;, which amounts to

Y, - (Rwo) = Si(Y, - wo) (2.7)

(see Theorem for details). If u = p~, we define the semigroup §8; acting on
measures by S;u = (Sip) .
The main estimate on which our method is based goes as follows.

THEOREM 2.1. Under Assumptions (2.1)—(2.4), if ®(po,wo) < 00, pr = Sipo
and w; = Rywy, then

d
a@(pt,wt)JrQ)\(I)(pt,wt)SO VtZO

In particular

D(pr,wy) < e D(pg,wg) VE>0, (2.8)

and the action functional decays exponentially if A is positive. At formal level, this
follows by an easy convexity argument. The rigorous proof requires many regulariza-
tions. See Theorem for a more detailed version of this result. Now let us review
some of the consequences of Theorem

Entropy, entropy production and generalized Poincaré inequalities. Con-
sider an entropy density function ¢ such that (1) = ¢'(1) = 0. If we define the
entropy functional by

V(p) = g ¥(p) dy

and the entropy production, or generalized Fisher information functional, as the action
functional for the particular choice w = Dp, i.e.

P(p) :== ®(p,Dp) ,
then, along the KFP flow, we get

d

%qj(pt) = *P(pt> = 7®(ptaDPt) (29)
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for a solution p; of (2.6)) if

n__ -
Y=

Notice that (1.6) and (2.4) are equivalent, so the assumption ([1.6) on the entropy
corresponds to the convexity of the action functional. See Section [3.2]for more details.

We can now apply Theorem [23] to the KFP flow. With w = Dp, we find that
the entropy production functional satisfies:

d

ap(ﬂt) +2AP(p) <0, P(p) <e *P(pg) V>0, (2.10)
If X is positive, P(p;) decays exponentially; by integrating (2.10) along the KFP flow
when t varies in RT, using (2.9) and ¥(1) = 0, we recover for p = pg the generalized
Poincaré inequalities

U(p) < % P(p) when A >0, (2.11)

found by Beckner in [15] in the case of the harmonic potential and for h(p) := p©,
a € (0,1), and generalized for instance in [§]. Such inequalities interpolate between
Poincaré and logarithmic Sobolev inequalities. Inequalities and are not
new and we refer the interested reader to [I0, 1], [8 Ineq. (2.51)], [19] @]. See
Theorem [6.3] for details.

If A > 0 and we combine with , we find that the entropy decays
according to

d
(o) +200(p) <0, U(py) < e M W(py) VE>0.

Setting o) (t) := fot e " dr and integrating from 0 to ¢ the inequality

P(pr) < € P(py) — 2Xean(t) P(py)

dt

< Plp) =~ %) (212)

which itself follows from (2.9) and (2.10)), we observe a first reqularization effect along
the KFP flow, namely

L (enn() Pp1)) = 2 P(p0) + eaat)

ean(t) P(pr) < W(py) Vt>0. (2.13)

The h-Wasserstein distance. If p is a measure with absolutely continuous part p
with respect to v, and singular part pu*, if v is a vector valued measure which is
absolutely continuous with respect to v and has a modulus of continuity w, i.e. if

p=py+p- and v=wn~, (2.14)

we can extend the action functional ® to the measures p and v by setting

(I)(:U’7V) = (I)(pvw) = /]Rd ¢(p,IU) dy .
6



We shall say that there is an admissible path connecting pg to pi if there is a solution
(5 Vs)sefo,1) to the continuity equation

Osps +V -vs=0, s€[0,1],

and will denote by I'(uo, pt1) the set of all admissible paths. In terms of densities,
that is if us = psy and vy = w7y, the continuity equations reads

Osps +Vy-we =0.

See [24] for more details. With these tools in hands, we can define the h- Wasserstein
distance between pg and pp by

vﬁmmmw=M{A¥m@wms4mwenmw0}

Notice that h in “h-Wasserstein distance” refers to the dependence of ® in h through
the action density ¢, the usual Wasserstein distance corresponding to h(p) = p. Notice
that the above formula defines the square of the distance Wh, (o, 1) If (41t )ee(o,1) is
a curve of measures, its h- Wasserstein velocity || is determined by

|fue* = il,}f{q’(u,l/) Vv = —(’Mt}.

Using the decomposition (2.14), we compute the derivative of the entropy along an
arbitrary curve (pt)ie(o,r) as

d
%‘I’(pt):/ w’(pt)&:pth:/ V" (pt) Dpy - wy dry
R4 R4

for any (w¢)¢e(o,7) such that (p;y, w:v)ie(o,r) is an admissible curve, and find that

d

—%‘I’ pt) / V" (pe) Dpg - /" (pe) we dy < \/P(py) \/fRd (pe) |we|? dy

by the Cauchy-Schwarz inequality. By taking the optimal case in the infimum w.r.t.
(w¢)te(o,1), We find

W) < VPl il (2.15)

Along the KFP flow, we know that w; = Vp; is such that (p; v, w:V)ieo,r) is an
admissible curve, thus showing that

d

*@‘I’(Pt) = P(pt) > |iul®.

By (2.15)), we also know that

d
Tdt ‘I’(Pt <P Pt |Ht ,

which proves that P(p;) < |j¢|>. Altogether, we have found that

S (o) = ~P(p) = |l = —/P(o0) il (2,16

7



which is the equality case in . This characterizes the KFP flow as the steepest
descent flow of the entropy W, i.e. this is a first charaterization of KFP as the gradient
flow of ¥ with respect to the h-Wasserstein distance.

The KFP flow connects 1 = py with o = v and it has been established in [24]
that one can estimate the length of the path by

Wilen) = [ VPode= [ linlas (2.17)

(see Section [3.5] for details). According to (2.10), when A > 0 we get

Whi(p,7) < V' P(p) /OOO e Mdt = % VP (p) .

This establishes the entropy production — distance estimate

1 .
Wi(p,v) < v VP(p), i n=py.
Along the KFP flow, we also find that

d Plo) _ |3
STy = ——LL_ > /2P
dt (pt) 2 /W(p) V2 (pt)
using (2.11). By applying (2.17)), this establishes the (Talagrand) entropy — distance
estimate

Wi ) < 5 W)

Contraction properties and gradient flow structure. Here as in [24], we use
the technique introduced in [30] and extended in [20, §2]: we consider a geodesic (or
an approximation of a geodesic), and evaluate the derivative of the action functional
along a family of curves obtained by evolving the geodesic with the KFP flow. For
simplicity, we will use the word contraction even in the case A < 0 and specify when
the assumption A > 0 is required (also in Section .

Consider an e-geodesic (p*,w*®) connecting u’ = p° v to pu' = p' v, i.e. an admis-
sible path in I'(uo, 1) such that ®(p§, w) < W2(pd, p) + € for any s € (0,1) and
observe that by , we know that (pi = Sip®, w; = R,w?) is still an admissible
curve connecting S;p° to Sip!. Therefore (2.8)) yields

1 1
Wi o) < [ @(pwd)ds < e [ (o wg)ds < e (W80 +2)
0 0
which, by letting ¢ — 0, proves that the KFP flow contracts the distance:
Wi (8ep?, 8ypt) < e MWy, pt) Yt>0. (2.18)

See Theorem [l for more details. This is our first main result. In case of the
Wasserstein distance, (2.18)) is known to be equivalent to the Bakry-Emery condition

E1); see 3253,

Next, we should again consider an e-geodesic, but for simplicity we assume that
there is a geodesic (p*, w®) connecting o = pu® = p°~ to u = u' = p' 4, i.e. such that
(p*, w®) = W7(o, ), and consider the path

(b} wf) := (Ssep”, Reyw® + t Dpj)
8



connecting o to p := 8¢p. Notice that our notations mean that p® = pg§. Since
Ospi = p} +tAyp; =V - (w] +t Dpj)

the path is admissible and, as a consequence,

1
W2 (1, 0) < / P05, w}) ds .

We can therefore differentiate the right hand side in the above inequality instead of the
distance and furthermore notice that it is sufficient to do it at t = 0; see Theorem
and its proof for details. Along the KFP flow we find that

LW a0) + 3 W) < Wl 3) — W) (219)
which is our second main result. provides the strongest formulation of a A-
contracting gradient flow in a metric setting as a solution of an Evolution Variational
Inequality [2, Ch. 4, 11] and it is related to the above-tangent lemma for displacement
convexity in the framework of the usual Wasserstein distance. Here we have defined
the relative entropy as W(u|vy) := ¥(p) if p < v and pu = pv, and ¥(o|vy) := 40
otherwise. Hence we recover a second characterization of the fact that KFP is the
gradient flow of ¥ with respect to Wj,.

As another consequence, the entropy V¥ is geodesically A-convex. This follows
from . Fix a geodesic p® between p® and u', follow the evolution of p* by KFP
taking first u° and then p' fixed, and apply with gy := 8$;p® and pu = u° or
1t = pt. Because of the minimality of the energy along the geodesic at time ¢ = 0, by
summing the two resulting inequalities we prove the convexity inequality of W. See
[20, Theorem 3.2] for more details.

Notice that the results of Theorems and are still valid for negative
values of A, as well as the characterization of KFP as a gradient flow.

As a final observation, let us notice that, directly from the metric formulation
([2-19), it follows that the KFP flow also has the following regularizing properties
(that we state in the case A > 0 for simplicity)

1
U(p) < 5 Wi(po,y) and Plpr) < 5 Wii(po,7) V>0,

1
2t
The first estimate can indeed be obtained by integrating (2.19) (with A = 0 and
o =) from 0 to t and recalling that ¢ — ¥(p;) is decreasing. As for the second one,

we observe that also t — P(p;) is decreasing by (2.10]), so that (2.13) and (2.19) yield

1d
by %Wf%(ﬂta’)/) :

% (2; P(Pt)) <tP(p) <V(pr) < —

A further integration in time from 0 to ¢t completes the proof. Notice that it is crucial
to start from a measure p = pgy at finite distance from ~.

3. Definition and properties of the weighted Wasserstein distance. In
this section we first recall some definitions and results taken from [24]. The measure
and the functions ¢ and 1 are as in Section [2 and we assume that Conditions (2.1)—

(2.4) are satisfied.



3.1. Properties of the potential. Let VV : R? — R be a A-convex and contin-
uous potential. A-convexity means that the map x — V(z) — 3 |z|? is convex. When
V is smooth in R?, this condition is equivalent to . We are assuming that e~V is
integrable in R?, so that we can introduce the finite and positive measure v defined
by . For simplicity, we shall assume that -y is a probability measure, i.e. Z = 1,
which can always be enforced by replacing V' by V + log Z.

When A\ > 0 the potential V is convex and ~ is log-concave; the integrability of
e~V is equivalent to the property that V(z) T oo at least linearly as |z| T oo; see
e.g. B, Appendix]. As a consequence, there exist two constants A > 0, B > 0 such
that

V(z) > Alz| - B VYzeRe (3.1)

We recall that non smooth, A-convex potentials V' can be approximated from
below by an increasing sequence of A-convex potentials V,,:

A ) n A
V() = GlaP + int (5 le =P + V) = 5 1P)

Moreover, the potentials V,, are A-convex and in the case A > 0, they satisfy conditions
with respect to constants A and B which are independent of n. In particular, the
log-concave measures 7, := e~ V" ¥4 weakly* and monotonically converge in CP(R?)’
to 7.

By this regularization technique, many results could be extended to the case when
V' is just lower semicontinuous and can take the value +oo.

3.2. Convexity of the action density. As in Section [2| consider h on (0, c0)
such that ¢(p,w) = |w|?/h(p). The following result has already been observed in [24]
but we reproduce it here for completeness.

LEMMA 3.1 (Convexity of the action density). With the notations of Section @
the action density ¢ is convex if and only if h is concave on (0,00) or, equivalently,
if g := % satisfies Condition (2.4]).

Proof. By standard approximations, it is not restrictive to assume that g, h €
C?(0,00). First of all observe that

g h=2(g") 94",

so that h” is nonpositive if and only if 2 (¢’)? < gg”. Next we evaluate the second
derivative of ¢ along the direction of the vector z = (z,y) € R x R? as

(D*¢(p,w) z,2) = g"(p) [w* 2* + 49/ (D) w -2y +29(p) y|*-
By minimizing with respect to x € R, we get
9" (p) lwl? (D*é(p,w) z,2) = 2 [g"(p) |wl* g(p) ly]* = 2(d'(P)w-9)?]  (3.2)

if ¢”(p) > 0, with equality for the appropriate choice of 2. The convexity of ¢ is thus
equivalent to

J"(p) lw?g(p) lyl> = 2(d (p)w-y)* Vp>0, Vy, weR.

If ¢ is convex, by choosing y := h(p) ¢'(p) w and using h(p) g(p) = 1, we get

9" (p) [wl* h(p) (¢ (0))? lw]* = 2 [(p) (¢'(p)* |w*]* ¥ p>0, VweR:,
10



which yields (2.4). Conversely, the convexity of ¢ follows from (w - y)? < |w|? |y|?. O
REMARK 3.2 (Main example). Our main example is provided by the function

2
h(p) :=p*, 0<a<l, ¢(p7w)=|1:i,

which satisfies (6.4). When o = 0 we simply get
$(p,w) = |w]?,
and for a =1 we have the 1-homogeneous functional

_ |w]?

P(p,w) : 5

Notice that the above considerations can be generalized to matrix-valued functions
g and h: see [24, Example 3.4].

3.3. The action functional on densities. The action functional ® induced
by ¢ has been defined by (2.5, with domain

D(P) = {(p,w) e LL(RY) x LLR4GRY) 1 p >0, (p,w) < oo}.

Assuming as in Sectionthat @ convex, it is well known that if (pg)ren and (wi)ken
are such that (pg,wy) € D(P) for any k € N and if p, — p in L}Y(Rd), and wy —*
w E L}/ (R%;RY) as n T 0o, then by lower semi-continuity of ®, we have

lin%inf@(phwk) > P(p,w) .

LEMMA 3.3 (Approximation by smooth bounded densities). Consider two func-
tions p € L}/(Rd) and w € L}/(Rd;Rd) such that p > 0 and ®(p, w) < co. Then there
exist two sequences (pr)ren and (Wi)ren of bounded smooth functions (with bounded
derivatives of arbitrary orders) such that infra pr > 0 and

: _ S : _ 11 d. d

ngIglopk—p in L. (RY) %#rglo'wk—w in L., (R RY)
/ pdeZ/ pdy VkeN and lim/ ¢(pk,wk)dv=/ o(p,w)dry .
Rd Rd kToo Rd Rd
Proof. We first truncate p and w from above as follows. Let m := [, pdy

and, for any k € N, my, := [pu(p Ak)dy, R := {x € R? : p(z) < k}. We set
pr. :=my m(pAk) and

wp(e) = J 0@ @) <k and o€ Ry,
"o otherwise .

Clearly pi — p, wj — w pointwise v a.e. in R%, so that Fatou’s Lemma yields

liir%infq)(phwk) > O(p,w) . (3.3)

11



Since p Ak — p in L} (R?) as k T oo, we have my — m and py — p in L} (R?). The
dominated convergence theorem also yields w; — w in L}Y(Rd;Rd). Finally, since
pr > p and |wg| < |w| on Ry, and since g is non increasing,

O(pr, wi,) :/Rd (o, wi) dy = ; d(pr, wy) dy

<[ spwiar< [ slpwidr =),
Ry Rd
so that the “liminf” in is in fact a limit.

Next we perform a lower truncation on p. By a diagonal argument, it is sufficient
to approximate the functions p; and wj we have just introduced, so we can assume
that p is essentially bounded by a constant k and we omit the dependence on k. For
d > 0 we now set ps := (p+0) m/(m + 9). Observe that

d

m(ﬂ—“ﬂ

ps —m = (p—m) and p—ps=

Cm+6

so that m < ps < p on the set RS, and, by convexity of g, we get

g’ (m)| (k —m)
g(k) (6 +m)

On the other hand, on the set R,,, we have p < ps, and then g(ps) < g(p). As a
consequence,

g(ps) < Csg(p) where Cs=1+9§

/ P(ps, w)dy < 05/ é(p,w)dy .
R4 Rd

We can then pass to the limit as § | 0, since ps — p pointwise.

The last step is to approximate the functions p and w, with 6 < p <k, |w| <k,
by smooth functions. We consider a family of smooth approximations p. and w.
obtained by convolution with a smooth kernel. We finally set m,. := fRd pe dy and, in
this framework, redefine p. := m p./m.. Since (p., w.) converges to (p,w) pointwise
a.e. in R? and is uniformly bounded, we can pass to the limit as above when ¢ | 0. O

3.4. The action functional on measures. Since we assumed that A is con-
cave and strictly positive for p > 0, h is an increasing map, so that g is decreasing.
We extend h and g to [0,00) by continuity and we still denote by ¢ the lower semi-
continuous envelope of ¢ in the closure [0,00) x R%. If h(0) > 0 then ¢g(0) < co and
#(0,w) = g(0) ]w|?. When h(0) = 0 we have g(0) = oo and

oo ifw#0,

(ZS(O’w)_{O ifw=0.

We also introduce the recession functional
1 .1
™ (p,w) = sup = p(Ap, Aw) = lim ~ P(Ap, Aw) ,
A>0 A Moo A

which is still a convex and lower semicontinuous function with values in [0, oo, and
1-homogeneous. It is determined by the behaviour of h(p) as p T co. If we set

h%° := lim L(p)
ploo  p
12
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we have

00 ifw#0
*®(p,w) = h h =0,
(e, w) {0 ifw=0 "
and
lw? ifp+£0
> (p,w) = h>r when A% >0.
00 ifp=0and w #0

Let u € M*(R?) be a nonnegative Radon measure and let v € M(R?; R?) be a
vector Radon measure on R?. We write their Lebesgue decomposition with respect
to the reference measure v as

po=py+pt, vi=wy+vt.

We can always introduce a nonnegative Radon measure ¢ € M*(R?) such that ut =
pro <o, vt =wto <o, eg o:=put + |vt| and define the action functional

B )2) = [ olpwdre [ o<t wt)do.

Since ¢>° is 1-homogeneous, this definition is independent of o. As we have done up
to now, we shall simply write ®(u, v) = ®(u, v |y) when there is no ambiguity on the
reference measure .

REMARK 3.4. If h has a sublinear growth, then h* = 0 and, as a consequence,
if ®(p, v) < 400, then we have

v=w-y<7y and ‘P(u,l/):/dcﬁ(p,w)d%
R

so ®(u,v) is independent of the singular part u~. When h has a linear growth,
i.e. h*° >0, if ®(u,v) < 400, then we have

Vl:wl-,ul<<ul.

In both cases, one can choose o = p*, so that

v=w < y+w ot

and if 1/h® is finite, then we have

1
bvln) = [ opwidy+ oz [t
Rd Rd

while the last term simply drops if h*° = 0.

LEMMA 3.5 (Lower semicontinuity, regular approximation of the action func-
tional). The action functional is lower semicontinuous with respect to the weak con-
vergence of measures, i.e. if (Yn), (tn) and (v,) are sequences such that v, — ~
weakly in MT(RY), p, — u weakly in MT(RY) and v,—*v in M(R%;RY) asn T oo,
then

lin%inftl)(,um V) = @(p,v|y).
13



Moreover, for every p € MT(R?) and v € M(R% R?) such that ®(u,v) < oo, there
exist sequences () and (vy,) for which

L 1= pn Y with p,, € C,?(Rd) and inf p, >0, v, :=w,vy withw, € Cg(Rd;Rd)

such that

nToo

P = pandv, = v, lim O (pn, wy) dy = P(u, v |7) . (3.4)
Rd

Proof. The first statement is a well known fact about lower semicontinuity of
convex integrals (see e.g. [1]). Concerning the approximation property , general
relaxation results provide a family of approximations in L}Y(Rd). We can then apply
Lemma |3.3|and a standard diagonal argument. O

3.5. The weighted Wasserstein distance. Denote by B(R?) the collection of
all Borel subsets of R, by M*(R?) the collection of all finite positive Borel measures
defined on R? and by P(R?) the convex subset of all probability measures i.e. all
p € MF(RY) such that p(RY) = 1. If M(R?; R?) is the set of the vector valued Borel
measures v : B(R?) — R with finite variation, i.e. such that

wI(B) ==sup { 3 Iv(B))] -
Jj<n
B = U B;, B; € B(R?) pairwise disjoint, n < oo} < o0
Jj<n

for any B € B(R?), then |v| is in fact a finite positive measure in M+ (R?) and v
admits the polar decomposition v = w |v| where the Borel vector field w belongs to

Lllyl(]Rd;]Rd). We can also consider v as a vector (v',v2,---,v9) of d measures in
M(R% R).

For any T > 0, let CE(0,T;R?) be the set of time dependent measures (1t )eefo,1s
(V#)te(o,) such that

1. t — p¢ is weakly * continuous in Mﬁ)c

(RY),
2. (Vt)ie(o,1) is a Borel family with fOT |ve|(Br)dt < oo for any R > 0,
3. (u,v) is a distributional solution of

Oy +V-vy =0 inR?x(0,7T).

As in [24], we define the weighted Wasserstein distance as follows.

DEFINITION 3.6. The (h,~)-Wasserstein distance between po and p1 € M5 (R%)
is defined by

. 1 1/2
Wh~(po, 1) := inf { {fo O (e, ve |7) dt}

(1,v) € €E(O, LR, pumo = io s =t =} (3.5)
with ®(u,v|7y) = P(p,w) + @*(wh) if p = py +pt and v = wy + whpt,

D(u,v|7y) := 0o otherwise, and P (w) = limyjoo A ¢(A, w).
14



We denote by My, [o] the set of all measures p € M- (R?) which are at finite
Wh ~-distance from o.

Notice that in [24] we were using the notation Wy . instead of W}, . Whenever
there is no ambiguity on the choice of the measure -y, we shall simply write W},. The
next result is taken from [24] Theorem 5.6 and Proposition 5.14]

THEOREM 3.7 (Lower semicontinuity). If ¢ satisfies (2.4) and (2.5), the map
(to, p1) = Wh (o, p1) is lower semicontinuous with respect to the weak * conver-
gence in M;C(Rd). More generally, suppose that v,—*v in M;t _(R9), h,, is mono-

loc
tonically decreasing w.r.t. n and pointwise converging to h, and pi—"po, pT—"p1 in

ME (R?) asn 1 oo. Then

loc

lim inf Wi, 5, (1, 1#1) 2 W (10, 1) -
If moreover v, > v we have

lim Wh, o, (15, #1) = Why (g0, 1) -

n—-+oo

It is possible to reparametrize the path connecting 1o to p; in the definition of Wy,
and establish that, for any 7" > 0,

Wh ~(0,n) = inf {\/T [fOT D(pug, vy | y) di v : (w,v) € CE(0,T;0 — 17)}

where CE(0,T;0 — 1) denotes the set of the paths (u,v) € CE(0,T; R?) such that
pi—o = o and pi—r = 1. By [24, Theorem 5.4 and Corollary 5.18], we have the

THEOREM 3.8 (Existence of geodesics). Whenever the infimum in (3.5) has a
finite value, it is attained by a curve (u,v) € CE(0,1;R?) such that

(b(p’tvut|7):W}%,'y(p’07M1) Vie (071) gl a.e.

In this case we have the equivalent characterization
. 1/2
Wh~(0,1) = min {fOT (@ (pe,ve | 7)] Pt (u,v) € CE(0,T;0 — 77)} .

The curve (put)iefo,1] associated to a minimum for (3.5)) is a constant speed mimimal
geodesic:

Wiy (tsy i) = [t — 8| Why (o, 1) Vs, t€0,1].

We may notice that the characterization of Wj, (o, n) in terms of fOT VO (g, v | y) dt

allows to consider the case T = +oo. By [2, Chap. 1] (also see [24, p. 222]), one
knows that

T
. . . W )
Wi (o ir) < [ Ll di it [ = Jing o2ttt
0 —

for any absolutely continuous curve ¢t — p; such that p;—g = po and pi—r = pp.

Now let us come back to the formal point of view of Section [2] and establish
(2.17) in this framework. Assume that p; is given by KFP and w; = Dp;. The curve
e = pey connects o = po vy with po =~ and, using

\/P(Pt) = \/‘I)(Pt,th) = el

15




it follows that
Win(nn) < [ VPGdi= [ lide
0 0

as already noted in Section [2| (equality case in ([2.15)). On the other hand, for any
(1, v) € CE(0,T; o — pr), T € (0,00), we have || < 1/®(u, v¢) and so

T T
/|ut|dt§/ NGRS
0 0

By taking first the infimum (u,v) € CE(0,T; ug — pr) and then the limit 77 — oo,
we also find

(oo}
/ |/1‘t| dt S Wh,v(POKY) )
0

thus proving the equality in the above inequality. This completes the proof of (2.17)).

4. Entropy and entropy production. Let us consider now a function v such
that ¢"(z) = g(x) for any x > 0. Among all possible choices of 1), we consider
in particular the convex functions 1, : [0,00) — [0,00) depending on a > 0 and
characterized by the conditions

@) = g(@) ) vala) = U(a) =0, ie. vale)= /x@c—r)g(r)dr.

Observe that ¢, € C?(0,00) has a strict minimum at a > 0 and it satisfies the
transformation rule

Ya(x) =1(x) — ¥(a) = Y'(a) (x —a) Ya>0,

independently of the choice of ¢ (for a given function g). When g(z) = 1/ we obtain
the logarithmic entropy density E(z) := xlogx and the family

x
1
E.(x) ::/ (y—r);dr =zlogz —aloga — (1 +loga) (z —a),

which provides useful lower /upper bounds for ¢. In fact, h being concave, if h(0) = 0,
then h(z) > Ma) 3 if 0 < 2 < a, so that

a

P(x) < ) E.(x) Yae(0,a].

On the other hand, when z > a, we have h(z) < @ x, so that
a

h(a)

U(x) > E.(z) Vzé€la,+0), (4.1)

thus showing that 1 (x) has a superlinear growth as x 1 oo.
We can therefore introduce the relative entropy functional

W(p) = / alpla)) () = / (9o@) ~ (@) dy with a= / pdy

16



In the particular case v = E, we set
H(p) ::/ plogpdy —aloga with a:/ pdy .
R4 Rd

Since 1 is convex and superlinearly increasing, if sup,, ¥(p,) < oo, then there exists
a subsequence weakly converging to p in L}r (R?) and

liminf ¥(p,) > ¥(p) .
nToo

REMARK 4.1. If the function ¢ satisfies " = g, ¥(0) = 0 and if (2.4) holds,
then 1 also satisfies McCann’s conditions, i.e. the map x — e*1p(e™%) is conver and
non increasing on (0,00) or, equivalently,

z — >0 and 2?9 —z +9>0 Vr>0.
The convexity of ¢ indeed yields x ' (x) — ¥(x) > —¢(0) = 0. Consider the
function 9(z) := 22" (z) — ' (x) + ¥(z) and observe that lim, o J(z) = 0, since

" = 1/h and h is concave so that, in particular, h(x) > cx near x = 0, for some
positive constant c. On the other hand, setting as usual g = " = 1/h, we have

V' (z) =2% g (z) + 2 g(z) = x%(gﬂg(w)) — % (}l(xx))

and the function x — h(zx)/x being positive, non increasing, we deduce that ¥ (z) > 0,
so that ¥ > 0.

Let us introduce the Sobolev spaces
1,p(mdy . Lpmdy . p p
wir (e i= {p e Wiz ) s [ (6P + |Dpl?) dy < 0}
Rd
For p € VV,}’l(Rd)7 p > 0, we define the entropy production functional as
P(p) := @(p, Dp) with domain D(P) := {p € W;’l(Rd) :p>0, Pp)< oo} .

We also introduce the absolutely continuous functions

T 1 ,
o /0 T T =) =),

and observe that

d r
7L —
g Le(r)

is bounded if and only if h(r) has a linear growth as r 1 co. In the case h(r) = r,
1) = E, to the entropy functional H corresponds the entropy production functional

D 2
Re P
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PROPOSITION 4.2. Let p be nonnegative function in L} (R?). Then p € Wit (R?)
and P(p) < oo if and only if Df(p) € L%(Rd;Rd) and in this case we have

Pe) = [ DS
Rd
If p € D(P) and h(r) > hr for some constant h > 0, then Ly (p) € W,}’l(Rd),
2
[ PR 0y v and PG < bt (42)
R P

Moreover, the functional p — P(p) is lower semicontinuous with respect to the weak
convergence in L}Y(Rd), i.e. if a sequence (pp)nen weakly converges to some p in
LL(RY) and sup,,cy P(pn) < 0o, then p € WEH(R?) and

lian(i)élfP(pn) > P(p) . (4.3)

Proof. Identity (4.3) and D Ly(p) = ﬁ Dp are straightforward if p takes its

values in a compact interval of (0,00). The general case follows as in Lemma by
a standard truncation argument, while the lower semicontinuity is a consequence of
convexity. O

5. The KFP flow and its first variation.

5.1. Variational solutions to the KFP flow. Asin Section let us introduce
the differential operators

V,-v:=e"V-(eVv)=V-v—v- DV,
Ayp:=V, - (Dp)=Ap—Dp-DV,

which, with respect to the measure ~, satisfy the following “integration by parts
formulae” against test functions ¢ € C°(R9):

/ v~DCd’y:—/ V,-v(dy and / Dv~D(d’y:—/ Ayw(dy.
R4 R4 Rd R4
We consider the Kolmogorov-Fokker-Planck equation
Oipr — Aypr =0 in (0,00) x R? . (5.1)

For simplicity, we will consider equations in the whole R? (corresponding to the finite-
ness assumption on the potential V'); necessary adaptations when this is not the case
are straightforward and left to the reader. We will also assume that

the potential V' is smooth with bounded second derivatives. (5.2)

Based on the integration by parts formula, the variational formulation of (5.1]) in the
Hilbert space L?Y(Rd) relies on the symmetric, closed Dirichlet form

a(p;m) = /Rd<Dp,Dn> dy Vop,neW;?RY,
18



where W.-2(R?) is endowed with its natural norm ||p||€v§=2(Rd) = ”p”QL%/(]Rd) + ay(p, p).

Using smooth approximations, it is not difficult to prove that W.-2(R%) is dense in
L% (R9). The abstract theory of variational evolution equation and the log-concavity
of the measure v yield the following result (see e.g. [4, Thm. 6.7]).

PROPOSITION 5.1. Assume that (2.1)—(2.3) hold. For every pg € L%(Rd), the
solution of (5.1)) has the following properties:
1. There exists a unique py = Stpg € VVllDC2 (0, 0; L%(Rd)), t > 0, such that

d

i Pr g e + a5 (pem) =0 V€ WA(RY) . limpy = po in L3(RY) .

(5.3)
If pmin < po < Pmax, then py satisfies the same uniform bounds. The semi-
group (St)e>0 is an analytic Markov semigroup in L?Y(Rd) which can be ezx-
tended by continuity to a contraction semigroup in LY (R?) for every p € [1,00)
and to a weakly * continuous semigroup in L3 (R?).
2. For every p, o € L%(Rd), we have

/ (Stp)ad'y:/ p(Sta)d'y Vt>0.
R R

3. For every t >0, Sy maps L (R?) into Cy(R?) and Lip,(R?) into itself, with
the uniform bound

[StplLipma) < [PlLipmey V>0, Vp € Lip,(RY).

4. If po > 0, [palz* pody < 00 and H(pg) < oo, then the map t — H(py) is
convezx, py € WVM(Rd) for every time t > 0, and

d d
2 d @ — 2t < .
tes[%%] /Rd |z[*pr dy < o0, o H(p:) I(pe) pn (6 U(f)t)) <0

Notice that the Assumption py € L%(Rd) is not needed in Property 4, according
to [, Thm. 6.7].

5.2. Measure valued solutions to the FP flow. We first recall some basic
results on measure-valued solutions of the Fokker-Planck (FP) equation

Oppe = Apy + V- (DVpay) - (t,2) € (0,400) x R, (5.4)

Solutions of ([5.4)) are understood in the sense of distributions, i.e. for any 7" > 0 and
€ C([0,T] x RY), we have

T
/ or dur = / pduo +/ / <8t80t +Apy — DV - D%) dp dt . (5.5)
Rd Rd 0o Jra

For any p € MT(R?), we denote by m,(u), p € [1,00), the p-moment of y, i.e.
mp(1) = [ga|@|P dp(z). By P2(R%) we denote the space of probability measures

on R¢ with finite second moment my. The relative entropy of p with respect to v is
defined as

FH(p|vy) = /dp logpdyifp<vyand p=pvy, H(u|vy):=-+oo otherwise .
R
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Given two probability measures y and v in P(R?), the classical Wasserstein distance
Wo is defined as Wa(u, v) := inf{[ [y, ga [y — 2[*d E]*/? : € T(u,v)}. Here (g, v)
is the set of all couplings between p and v: it consists of all probability measures 3 on
R? x R? whose first and second marginals are respectively p and v, i.e. ©(B x R?) =
w(B) and L(R? x B) = v(B) for any B € B(R?). Notice that the notation W is not
consistent with the one for weighted distances Wj; we shall however use it as it is
classical.

The next lemma is a particular case (for the Relative Entropy functional) of the
general result [2, Theorem 11.2.1]; see also [4, Sect. 6.3] and [5] Sect. 3].
PROPOSITION 5.2 (Uniqueness and stability of the solutions of FP). Let py €
Po(RY).
1. The FP equation has a unique solution py = Siuo in the class of weakly
continuous maps t — p; € MFT(RY) with SUPye (o, M2(p1e) < +00.
2. The unique solution py is continuous with respect to the Wasserstein distance
Wo and Lipschitz continuous in all compact intervals [to,t1] C (0, +00).
3. It is characterized by the family of evolution variational inequalities

1d
2 dt
which hold for a.e. t > 0.
4. In addition, it is stable: pf — po in Po(RY) implies that p — py in Pa(RY)
for allt > 0.
Notice that the measure v provides a stationary solution of . All solutions

e weakly converge to v as t — 4o00. Finally, p, is absolutely continuous with respect
to « for any ¢t > 0, with density p;, and p; is a solution of the KFP flow.

A
W3 (g, v) + 5 W3 (e, v) + Hpe |7) < H(v|y) Vve Py(RY),

5.3. Variational solutions to the modified KFP equation. We consider the
first variation of the KFP flow, i.e. the modified Kolmogorov-Fokker-Planck equation

dw; — Ayw; + D*Vaw; =0 in (0,00) x RY | 13%1 wy =wo in L2(R%RY) (5.6)

for the vector field w : (0,00) x RY — R?. In the Hilbert space W := le’z(Rd;Rd),
we consider the continuous (recall (5.2))) bilinear form

ay(v,w) = /Rd (Dv : Dw+D2Vv-w> dv,

Dv : Dw =}, ; 0;v; 0Ojw;. We look for solutions w € w2 ((o, 00); L2(R4RY)) N
L2

([0, 00); W) solving the variational formulation

d
pr w;-(dy+ay(w, () =0 V{eW. (5.7)
Rd

Observe that vector fields in C}(R?; R?) belong to W. Actually the space of smooth
compactly supported functions C°(R%;R?) is dense in W, and W itself is dense in
L?Y(Rd;Rd). Notice moreover that if ¢ : R — [0,00) is a smooth convex function

with bounded second order derivatives and ((0) = 0, and z(w) := %w (with
z(0) = 0), an easy calculation shows that solutions of (5.7) satisfy

— | ) dy = ay (wr,zw)) 2 0 ae. i (0,00).
20



With these observations in hand, we can apply the variational theory of evolution
equations and a simple regularization argument to prove the next result.

PROPOSITION 5.3. For every wo € L2 (Rd'Rd), there exists a unique solution
w = Rwo of (5.7) in W;;2((0, 00); L2 (RY; Rd))ﬁL2

loc loc

n L,QY (R4, RY). The semigroup R is symmetric

([0, 00); W) with limy o w;, = wo

Rt'w~zdfy=/ w-Rizdy Yw, z€ LZ(R4ERY), V>0,
Rd Rd
and satisfies

[ QR a < [ c(wal) for every wo € L3R RY)

R R

and for every convex function ( : R — [0,00) with ((0) = 0 (which is therefore non
decreasing). In particular R can be extended by density to a contraction semigroup in
Lr(RERY), p € [1,00].

The link between (5.1) and (5.6)) is enlightened by the next result.

THEOREM 5.4. If p; is a variational solution of the KFP equation with
initial datum po € W12(R?), then w; := Dp, belongs to C°([0,00); L2(R?)) and it
is the solution of the modified KFP equation with initial datum wqy := Dpg. In
particular we have

/DStp~wdfy=/ Dp - Rywdy VpGWi’Q(Rd), V'wELi(]Rd;Rd).
R Rd

The same result holds if py belongs to Wvl’l(Rd).

Proof. Since D(A,) is dense in WA}Q(]Rd)7 we can assume that py € D(A,).
Then the regularity result of Proposition shows that p, € D(A,) for every t > 0.
Setting w; := Dp;, we know (see e.g. the argument in the proof of [25, Lemma 5.2])
that @ (wi, wi) < [[AypollL2rey < +o0. For a fixed ¢ € CZ(R%RY), we can then
evaluate

d d d
G| wecar=5 | poccar=—% [ nvcar= [ Do-Dv-car.
R4 Rd R4

dt dt

(5.8)
With the notations 8; = 8/0z; and 8;; = 02 /0x;0x; for i, j = 1, 2...d, let us observe
that

(D(%-¢), = Zaj (0:¢ — G V) = Zafjci —0;¢:0,V — GOZV
and

Dpi - D(V, - €) = D00 05G = 010G 0,V = 91 G 0}

%]
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Inserting this expression in (5.8) and integrating by parts the first term we get
[ Do D%,y
Rd
— Z/ (ajpt 02;Ci dy — Z/ (ajpt 0;C; OV + ;1 i afjv) dy
i YR i YR
=3 [ (— ko0 00.0,6) v
]

- Z/Rd (3th 0;Ci OV + 0;pt G ainV) dry
]

= —Z/}Rd (8i2jpt aJCz + 8j[)t Cz azQJV) d'y
%57

= —/Rd (Dwt : DC+D2th'C) dy = _av(who :

Combined with (5.8)), this shows that w; := Dp; satisfies the variational formulation
of (5.6). The case of pg € W (R?) follows by a standard approximation procedure,
the fact that DS;py = R;Dpg, and the L,ly—contraction property of R. O

5.4. Measure valued solutions to the modified KFP equation. Exactly
like the (K)FP equation, the modified system can be extended to vector-valued mea-
sures initial data. To w;, we associate the vector valued measures v; := w;y €
M(R%; R?); starting from , a further integration by parts yields the weak formu-
lation

d
7 Rdc-dut:/w (AC—DCDV—D2VC)-dut V¢ e C3RY), (5.9)

of the system
&gut = AVt + V- (DV ® Vt) — D2Vl/t s

where (DC DV)J = Zl &»Cj 0;V and (V . (DV ® V))]. = Zz 0; (an Vj).

The semigroup can be extended to initial data which are vector valued measures
with finite total variation using equi-integrability and moment estimates taken from
[24].

PROPOSITION 5.5 (Equi-integrability and moment estimates). Let ¢ be a non-
negative Borel function such that u(¢?) = Jga C%du and y(¢?) = Jza C2dy are finite.
If ®(p,v) < 0o, we have

([, i) < @em) 3 (u(c/2(c2) -
In particular, for every Borel set A € B(R?) we have
(W1(4))” < (1) 1(A) (1 A) /() (5.10)
which in particular yields (y(R?) = 1)

(Iv1®H)" < @) ().
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If moreover my(p) < 0o, we can bound the first moment of |v]| by

mul) = [ bl il < (@) ma) n(mau)/ma)) L s

THEOREM 5.6. For every vg € M(R4RY) with my(|vg|) < +oo, there exists a
unique solution vy = Ry in the class of weakly continuous maps t — v; € M(R% R?)
with sup,e(o ry M1(|ve]) < +oo, for every final time T > 0. When vo = wo~y then
Rivg = Ry wgy. The map vy — Ruyg is stable in the following sense: if

vi—*vy  weakly* in M(R%R?Y) with supmy (|[vh]) < +oo
then Rwi—*Rvg in M(RERY).

Proof. We divide the proof in three steps.
Step 1. Let us first associate to v = w~y € M(R?; R%) the probability measure

v € P(RY), (5.12)

1 1 1w
==V = —
M e TN i ee

where the constant M is a renormalization factor such that v(R?) = 1. Observe that
if my(|v]) = [ga @] |w(z)|dy is finite, then v € P2(R?) and

ma(v) < % m(|v]) . (5.13)

We also choose the action density to be ¢ (p, w) := |w|?/p corresponding to h(p) = p,
and observe that the corresponding functional writes

By(v, w) = M/Rd VIt 22 jw(z)| dy < M(\u|(Rd) + ml(\u|)) . (5.14)

PROPOSITION 5.7. Let us suppose that w € LL(R%R?) with my(Jv]) < 400 and
setv:=w~y, v asin (5.12), w, = Ryw, vy = w7y, vy = Spv. Then

el RY) < [W|RT) . mi(lve]) < [[(RT) +2mi(|v]) +4M ma(y), (5.15)

and for any t > 0, we have

(|ut|(,4))2 < M(|u|(Rd) + m1(|u|)) v(A) ¥ AeBRY. (5.16)

Proof. The first inequality of (5.15)) follows by the L}Y—contraction property of R.
Since the FP flow contracts the Wasserstein distance by Proposition [5.2] and since ~y
is a stationary solution, the triangle inequality for the Wasserstein distance and the

fact that \/ma(p) = Wa(u, dp) yield

Vma(vr) < Wa(vg,y) + vVma(7) < Wa(v,7) + v/ma(7) < v/ma(v) +2¢/ma(v) .
On the other hand, (5.11]) yields

mi(ved) < Vma(o) VB (v wn) < (Vima) + 2v/ma(3)) VPalv,v) -
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Here we used the fact that ®o(vy,v;) < ®o(v,v). This will appear later as a con-
sequence of Theorem and is independent of the present result. Combined with
(5.13)) and (5.14), this proves the estimate on my(|v;]).

Applying (5.10) and (5.14), we get . 0
Step 2: existence. Let us approximate a given vy € M(R%;R?) with m; (|vg]) < +oo
by a sequence v* = wFy—*vy as k — oo in M(R%R?) with wy € L%(Rd;Rd)
and my(Jvg]) — myi(jvg|). We set v¥ = wf v with wf = Rw" so that v¥ solves
(5.9). Thanks to Proposition we know that the first order moment of v¥ are
uniformly bounded. This is sufficient to pass to the limit (up to extraction of a
suitable subsequence) in and to find a solution v; which is weakly* continuous
in M(R?; R?) and satisfies the initial condition in the sense that v;—*vg in M(R?; R?)
ast | 0.
Step 3: uniqueness and stability. It follows by a standard duality argument, like
in the case of Equation (5.6). If v} and v} are two weakly continuous solutions of
(5.9), their difference o := v} — v solves

/Rd Cp-dop = /OT /Rd (&Ct +A¢, — D¢, ® DV — D*V ct) doydt  (5.17)

for every T > 0 and ¢ € C°([0,T] x R4 R%). By a mollification technique, it is not
difficult to check that also holds for every function ¢ € C([0,T] x R%; R?) with
dyp, D¢ and D?¢ continuous and bounded in [0, 7] x R<.

Next, we introduce a family of smooth convex potentials V;, with bounded deriva-
tives of arbitrary orders, which satisfies a uniform Lipschitz condition

|DV,i(z) = DV (y)| < Lz —y| Va,yeR?,
for some positive constant L which is independent of n and such that
V, -V, DV, — DV, D?V,— D?V pointwise as n — 0o .

For a given n € C2°(R%; R?), we consider the solution ¢, of the time reversed (adjoint)
parabolic equation

0C + A, — D¢, -DV —D*V D¢, =0 in (0,T) xR, ¢p=n.

We denote by ¢,, the solution corresponding to V,,. Using a maximum principle that
can be found in [26] and the fact that the first and second order spatial derivatives
of ¢ solve an analogous equation, standard parabolic regularity theory shows that
¢ is sufficiently regular to be used as a test function in and satisfies the uni-
form bound (observe that the second and third derivatives of V;, are still uniformly
bounded)

sup|[C,| + D¢, | < € < 400
t,x
This leads to
T
‘/ n- daT) gc/ / (|DV—DVn|+|D2V—D2Vn|>d|at|dt.
R4 0 R4

Since the first order moment of |o| is uniformly bounded, we can pass to the limit
as n — oo obtaining fRd 1 -dor = 0. As n is arbitrary, we conclude that v} = V2.

The stability is then a simple consequence of uniqueness. O
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6. Action decay along the KFP flow and consequences. We can prove now
our main estimate, which is a refined version of Theorem |2.1) under the assumption
that

for some a € (0,1] the function kY% is concave in (0, 00). (6.1)

(6.1)) is equivalent to
the function h is concave and, for = L‘_—z €[0,1),

(1—-B)hh"+28(W)? <0 holds in the sense of distributions.
In terms of g = 1/h (6.1)) can also be formulated as
9()g"(p) = (L+a ) (¢'(p)* Yp>0, (6.3)
and by (3.2) it yields the refined action estimate

l1—«

(D*6(p,w) 2,2) 2266(p,y) ¥z =(r.y) eRM, with §:= 7.

(6.4)

Such a refinement has interesting consequences, which have been investigated in [6]
7, [23].

THEOREM 6.1. Assume that [2.1) and [2.3) hold, and let (p,w) € L}(R? RT) x
L}/(Rd,Rd) be such that ®(p,w) < oo. If (6.1)) is satisfied, then

d t
O(Sip, Ryw) + 262/ B(Ssp , 0 Rew) e ds < e M PB(p,w) Vi>0,
i=170

with § = 152 € [0,1).

Proof. We first prove the result with the additional assumptions that 0 < ppin <
p < pmax and |w| < wpax v a.e. in RE Assume that h is of class C2(0,00). It
follows that p; = Sip and w; = R;w satisfy the same bounds and, for all ¢ > 0, p;,
Oipy € W,}’z(Rd) and w;, Oyw; € W,}’Q(Rd;Rd). The function ¢ is of class C? in the
strip

Q = [pmins pmax] X {w € RY : |w] < winax}

and its differential D¢ (p, w) can be decomposed in terms of g = 1/h as

Dp¢(pa w) = g/(p) |U”|2 ) Dw¢(pv w) = 29(0) w .

Since g(p) and ¢'(p) are bounded, the differential is also in L2(R%RH!). As a
consequence, the time derivative of ¢ — ®(p;, w;) exists and

d

i O (p, wy) = / (QI(Pt) |’wt\25tpt +2g(pe) wy - at'wt) dy .
Rd

In order to apply (5.3)) and (5.7) we have to verify that all components of D¢(ps,w;)
are in W,}’Q(Rd). We have already seen that they are in L?(R?). Let us compute their
x-derivative:
D (D (pe, wi)) = ¢" (pe)| wiel* Dpe +2g'(pi) wi - Dwy
D (Do d(pr,we)) = 29 (pr) wi Dpy +2g(py) Dw} foranyi=1,2,...d.
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The above functions are in L2(R%), since g(pt), ¢'(pt), 9" (p¢) and wy are bounded, so
we get

d

d
7 (pr, wy) = —;/Rd (D*¢(pr, we)(Dipe, Diwy), (Dipy, iwy)) dry

*2/d9(pt)D2th~wt dy .
R

Recalling (6.4]) and the convexity assumption on V', we find

d
®(pr,wi) < =20 D(pr, Diwe) — 22 8y, wy) -

=1

dt

It follows from Gronwall’s lemma that for all s € (0,t),

d t
e d(py,wy) +20 Z/ ®(py, Oyw,) e dr < e d(py, ws) .

The result follows by passing to the limit as s | 0 and recalling that ¢ is continuous
and bounded on Q and p;, w, converge to p, w as s | 0 in L2(R?) and L2(R%R?)
respectively. The general result for an arbitrary concave function h easily follows by
approximating h by a decreasing family of smooth concave functions in the interval
[Pmin, Pmax). Finally, the general case p € LL(R?), w € L} (R%R?), without upper
and lower bounds, follows by approximation, using Lemmas [3.3] m 3 and 35] O

We can extend the results of Theorem [6.1] to measure valued initial data.
COROLLARY 6.2. Assume that (2.1)~([2.3) and (6.1)) hold. Let p € Po(R?) and
v € M(R%RY) with my(|v]) < 4+o00. Then for every t > 0 we have py = St = pi 7y,
=Rw = w;y with p, € Wvl’l(Rd), wy € Wﬁ}’l(Rd;Rd) ifa <1, and

n t
<I>(pt,wt)+252/ @(p;,&wg) 62)\(5715) ds < 672)\t <I)(,u,1/|’y) Vi>0 ,
; 0

11—«
1+o¢

Proof. This follows directly from the measure formulation of the KFP flow (Propo-
sition and Theorem m O

Let us now consider the entropy functional ¥(p) := fRd p) dry, for a function
¥ as in Section [l We can easily recover the result of 11, p. 201] in our setting
and deduce some consequences which have already been mentioned in Section [2 For
completeness, we state them with a short proof.

THEOREM 6.3. Let p € D(V) with [,, |x|* pdy < oo and let p; := Syp. Assume
that (2.1)-(2.3) holds and h is concave. Then ¥(p;) < oo and P(p;) < oo for every
t > 0, and we have

4
dt

where, as usual, 3 =

(o) = ~Plp) and 5 P(p)+ 23 P(p) <0.

As a consequence, setting ex(t) = ft e dr, we have

0

ean(t)P(pr) < W(p), Pp) < e > P(p)
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foranyt > 0. If X > 0 we also get
U(py) < e 2 (p)

and the following entropy — entropy production inequality, or generalized Poincaré
inequality, holds

U(p) < % P(p), VpeDW) such that / |o:|2pd'y < 00.
]Rd

Proof. 1t is not restrictive to assume that fRd pdy = 1. We first prove Theorem
for a function h which grows at least linearly at co, and therefore satisfies h(r) > hr
for some constant h > 0. The general result follows by writing h as the limit of a
decreasing sequence of such concave functions h,,, observing that the corresponding
actions ¢, and entropies v,, converge increasingly to ¢ and v respectively.

By we know that H(p) is finite and therefore we have

> |D Ly (p)|?
Pt

o0
/ I(p) dt < H(p) < oo and / dy < o0,
0 0
where the second estimate follows from (4.2)).
Applying the chain rule for convex functionals in Wasserstein spaces (see for
instance [2], p. 233]), we obtain that the map t — ¥(p;) is absolutely continuous and

d DL D
\P(Pt) _ 1/1(pt) Dpe

Cdt Rd Pt Pt

By combining Theorems and applied with w; := Dp; and differentiating
with respect to ¢, we get that —%P(pt) > 2A P(pt). All other estimate are easy
consequences that have already been established in Section [2| O

prdy = P(pt) .

7. Contraction of the h-Wasserstein distance and KFP as a gradient
flow. Consider the space &, (R?) of probability measures at finite Wi, distance
from ~. From , we know that + has finite quadratic moments and, as a con-
sequence of 23, Theorem 5.9], any measure in &2, ,(R?) also has finite quadratic
moments. The same result holds for moments of higher order.

THEOREM 7.1. For every o,n € &), ,(RY), we have

Wi (80 ,8im) < e MWy, ,(o,n) Yt>0.

Proof. Tt is a straightforward consequence of Corollary [6.2] and Theorem 0
THEOREM 7.2. For every u € 2, (R?), we have

1d A
5&”’5,7(3%,0) 5 Wi (8ip,0) + U(8ipu|7) < U(o|y) VYoeDW). (7.1)

Proof. Let us first notice that since 27, ,(R?) is stable under the action of the
semigroup (8;), it is sufficient to prove only at ¢ = 0, under the assumption
that p writes as 8;f, for some 7 > 0. We make the additional assumption on the
function h that there exists some h > 0 for which

h(r)>hr ¥Yr>0. (7.2)
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This assumption will be removed later in the proof. Let ¢ > 0 fixed and (p*, w?®) €
LY(RY) x LY (R4, RY), s € [0,1], be an admissible curve connecting o to u such that

Wf?,'y(/”'a 0) < g@(ps7ws) < Wf?,"/(/”'a U) +e€,

where &% (p®, w* fo 5)ds. For any k > 0, we take p% = p® + k > k. Since
h is non decreasmg7 we stlll have

o (prw®) S Wi (p,0) + €. (7.3)

Notice that, thanks to [24, Theorem 5.17] (also see Theorem [3.8)), it is possible to
assume that

Ea(p, w*) = @(pf, w) (7.4)

is constant with respect to s € [0,1]. For ¢ > 0, we set

p?t = Sstpz 3
wdt = Ryw® —t DpSt
It is clear that (p2') connects o + kv to 8;(p + KY) = St + K. Note that, thanks

to the maximum principle, we have pS' > k. We claim that (p5!, ws?) is adrms&ble
Indeed,

Bspt = Sst(Dspy,) + 1 0r (Srpy) jr=st
= —=Sut(V - w') + V5 - (D)
since (pg,w®) is admissible. Hence,
Oupy' =V, - (~Ruw’ +1Dp}') = % - (w}')
It follows from the definition of W,fﬁ that
Wi (Sep+ Ky, 0 + K7y) < Ea(pt wit)
hence, with and , we obtain

[é%(pf@’ta wi’t) - éoé(,oszs)] +

1 1
5 [W}iw(st# +Ky,0 + KY) — Wﬁﬂ(u, 0)] 5

—~Dho| ™

By definition of &, we have

1
Eo(pt, wi) =/ P (Saph, Ryw® — t Dpt) ds
0

where

R, —tDp?
(P(Sstp;i,Rstws_tDpi;t) :/ | tw — /) |
R h(px")

R,w|? Dpst - Ryw* Dpst)?
:/ 7‘ ts,t| dy — 2t — ¢ d’ertz/ 7‘ s,t| dry
re h(pr") re  h(pi") re h(pr")

512 s,t
S/‘E@%Ldvf% 214444
re h(px") Rt h(pi")

?
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and hence,

1 Dps it St
Ealpp i) < Ep(Suupl, Ryw?) — 21 / Do Wi g5, (16)
o Jra  h(px")
LEmMA 7.3. If (7.2 @ holds, then we have
Dp ;-;
dyds =U(Sip+ kv |v) — ¥(o+Ky[7) . (7.7)
Rd p,‘e

Proof. Recall that p' = Sy p3, with p € LL(R?). Then, acting as in the proof
of Proposition [£:2] we get that

Dgt
// | p“' dyds < co V7>0. (7.8)
Rd

The assumption (7.2]) on h then leads to

IDLw d ds < |DP
Rd f@ h2

The next step consists in proving that

5t
/ / | dyds < oo . (7.9)
R4 n

Note that p* > k and the concavity of h implies that

S h K S
oy < M e

d’yds < 00 .

hence

//'RStw|dds< //'R“’”dd
R4 R4
h(r) /1 / w*|®
—_— dvds < oo
T R4 h(pr) 7

since the KFP flow decreases the action. The bound immediately follows from
the previous one and ([7.§] . As a consequence, we can apply the chain rule in Wasser-
stein space, which implies that the function s — ¥(p?) is absolutely continuous on
[1,1] and, for all s € [7,1],

d s DL Pi’t wz,t . Dpst - ws?
*/ Y(py") dy = ‘”s(t ). Eopptdy = | ZEEEdy . (7.10)
Rd R4 Pr P R4 h(prc’ )
Integrating ((7.10)) on [r, 1] and letting T go to 0 finally leads to (7.7). O

Let us go back to the proof of Theorem [7.2 We put (7.5) and (7.6) together and
obtain

1
5 [W}i'y(st,u + Ky, 0+ K"Y) - Wi?,'y (,U,, g))

1 5
<3 [0 (Sstpys Raw®) — Ea(pry, w*)] + t[W(o + Ky |v) — U(Sip + ry |7)] + 7
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We then use the main estimate in Theorem [6.1] with 3 = 0 and (7.4) to write
1 1
5 [62(Sstpi, Rsew®) — Ea(pi, w')] < —5 In(2) Sa (i, w®)
1
S 75 IA(t) Wi%,’y(stﬂ + RY, 0 + K’Y) ’

where I(t) := fol (1 — e2*#) ds. It follows that

1
[Wf%,'y (Stﬂ + Ky, 0+ KVV) - WI%,'Y (Ma U)] + 5 I)\(t) Wi%,'y(st/l + Ky, 0+ H’Y)

DN =

g
St +ry|7) = C(Sn+ Ry [+ 5 -

If we first let € and then k go to 0 in the above estimate, we get that

5 (W2 (St ) = W2, (1,0)] + 5 In(0) W2 (St 0) < 1[W(or| ) — US| )]
(7.11)
as soon as h satisfies the assumption . Now, any concave and non decreas-
ing function h can be decreasingly approched by a sequence (h,) satisfying ,
and the corresponding entropies converge increasingly. Then, with Theorem In-
equality (7.11) turns out to be valid for any general h. To complete the proof of
Theorem 7.2} it just remains to divide by t and let ¢t go to 0. O
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