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Abstract

We consider a family of Gagliardo-Nirenberg-Sobolev interpolation in-

equalities which interpolate between Sobolev’s inequality and the logarith-

mic Sobolev inequality, with optimal constants. The difference of the two

terms in the interpolation inequalities (written with optimal constant) mea-

sures a distance to the manifold of the optimal functions. We give an ex-

plicit estimate of the remainder term and establish an improved inequality,

with explicit norms and fully detailed constants. Our approach is based on

nonlinear evolution equations and improved entropy - entropy production

estimates along the associated flow. Optimizing a relative entropy func-

tional with respect to a scaling parameter, or handling properly second

moment estimates, turns out to be the central technical issue. This is a

new method in the theory of nonlinear evolution equations, which can be

interpreted as the best fit of the solution in the asymptotic regime among

all asymptotic profiles.
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1. Introduction and main results

Consider the following sub-family of the Gagliardo-Nirenberg-Sobolev in-
equalities

(1) ‖f‖2 p ≤ C
GN
p,d ‖∇f‖

θ
2 ‖f‖

1−θ
p+1

with θ = θ(p) := p−1
p

d
d+2−p (d−2) , 1 < p ≤ d

d−2 if d ≥ 3 and 1 < p < ∞
if d = 2. Such an inequality holds for any smooth function f with sufficient
decay at infinity and, by density, for any function f ∈ Lp+1(Rd) such that ∇f
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2 J. DOLBEAULT AND G. TOSCANI

is square integrable. We shall assume that CGN
p,d is the best possible constant

in (1). In [16], it has been established that equality holds in (1) if f = Fp with

(2) Fp(x) = (1 + |x|2)−
1
p−1 ∀ x ∈ Rd

and that all extremal functions are equal to Fp up to a multiplication by a
constant, a translation and a scaling. See Appendix A for an expression of CGN

p,d .
If d ≥ 3, the limit case p = d/(d− 2) corresponds to Sobolev’s inequality and
one recovers the optimal functions found by T. Aubin and G. Talenti in [3, 23].
When p→ 1, the inequality becomes an equality, so that we may differentiate
both sides with respect to p and recover the euclidean logarithmic Sobolev
inequality in optimal scale invariant form (see [20, 25, 16] for details).

It is rather straightforward to observe that Inequality (1) can be rewrit-
ten, in a non-scale invariant form, as a non-homogeneous Gagliardo-Nirenberg-
Sobolev inequality: for any f ∈ Lp+1 ∩ D1,2(Rd),

(3)
∫

Rd
|∇f |2 dx+

∫
Rd
|f |p+1 dx ≥ Kp,d

Å∫
Rd
|f |2 p dx

ãγ
with

(4) γ = γ(p, d) := d+2−p (d−2)
d−p (d−4) .

The optimal constant Kp,d can easily be related with CGN
p,d . Indeed, by op-

timizing the left hand side of (3) written for fλ(x) := λd/(2 p) f(λx) for any
x ∈ Rd, with respect to λ > 0, one recovers that (3) and (1) are equivalent.
The detailed relation between Kp,d and CGN

p,d can be found in Section 7.

Define now

CM :=
Å
M∗
M

ã 2 (p−1)
d−p (d−4)

, M∗ :=
∫

Rd

Ä
1 + |x|2

ä− 2 p
p−1 dx = π

d
2

Γ
Ä
d−p (d−4)

2 (p−1)

ä
Γ
Ä

2 p
p−1

ä .

Consider next a generic, non-negative optimal function,

f
(p)
M,y,σ(x) := σ

− d
4 p

Å
CM +

1
σ
|x− y|2

ã− 1
p−1

∀ x ∈ Rd

and let us define the manifold of the optimal functions as

M
(p)
d :=

{
f

(p)
M,y,σ : (M,y, σ) ∈Md

}
.

We shall measure the distance to M
(p)
d with the functional

R(p)[f ] := inf
g∈M

(p)
d

∫
Rd

î
g1−p

Ä
|f |2 p − g2 p

ä
− 2 p

p+1

Ä
|f |p+1 − gp+1

äó
dx .



IMPROVED INTERPOLATION INEQUALITIES 3

To simplify our statement, we will introduce a normalization constraint and
assume that f ∈ L2 p(R2, (1 + |x|2) dx) is such that

(5)
∫
Rd |x|2 |f |2 p dx(∫

Rd |f |2 p dx
)γ = d (p−1)σ∗M

γ−1
∗

d+2−p (d−2) , σ∗(p) :=
(
4 d+2−p (d−2)

(p−1)2 (p+1)

) 4 p
d−p (d−4)

.

Such a condition is not restrictive, as it is always possible to cover the general
case by rescaling the inequality, but significantly simplifies the expressions. As
we shall see in the proof, the only goal is to fix σ = 1.

Our main result goes as follows.

Theorem 1. Let d ≥ 2, p > 1 and assume that p < d/(d − 2) if d ≥ 3.
For any f ∈ Lp+1 ∩ D1,2(Rd) such that Condition (5) holds, we have∫

Rd
|∇f |2 dx+

∫
Rd
|f |p+1 dx− Kp,d

Å∫
Rd
|f |2 p dx

ãγ
≥ Cp,d

Ä
R(p)[f ]

ä2(∫
Rd |f |2 p dx

)γ
where γ is given by (4).

The constant Cp,d is positive and explicit. We do not know its optimal value.
See Appendix A for an expression of Cp,d, which is such that

lim
p→1+

Cp,d = 0 and lim
p→d/(d−2)−

Cp,d = 0 .

The space Lp+1 ∩ D1,2(Rd) is the natural space for Gagliardo-Nirenberg in-
equalities as it can be characterized as the completion of the space of smooth
functions with compact support with respect to the norm ‖ · ‖ such that
‖f‖2 = ‖∇f‖22 + ‖f‖2p+1. In this paper, we shall also use the notations
‖f‖p,q := (

∫
Rd |x|p |f |q dx)1/q, so that ‖f‖q = ‖f‖0,q.

Under Condition (5), we shall deduce from Theorem 4 that

(6) R(p)[f ] ≥ CCK ‖f‖2 p (γ−2)
2 p inf

g∈M
(p)
d

∥∥∥|f |2 p − g2 p
∥∥∥2

1

with δ = d + 2 − p (d + 6) for some constant CCK whose expression is given
in Section 3, Eq. (13). Putting this estimate together with the result of Theo-
rem 1, with

Cp,d := Cd,p CCK
2 ,

we obtain the following estimate.

Corollary 2. Under the same assumptions as in Theorem 1, we have∫
Rd
|∇f |2 dx+

∫
Rd
|f |p+1 dx− Kp,d

Å∫
Rd
|f |2 p dx

ãγ
≥ Cp,d ‖f‖

2 p (γ−4)
2 p inf

g∈Md(p)

∥∥∥|f |2 p − g2 p
∥∥∥4

1
.
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The critical case p = d/(d−2) corresponding to Sobolev’s inequality raises
a number of difficulties which are not under control at this stage. However,
results which have been obtained in such a critical case, by different methods,
are the main motivation for the present paper.

In [9, Question (c), p. 75], H. Brezis and E. Lieb asked the question of
what kind of distance to M

(p)
d is controlled by the difference of the two terms

in the critical Sobolev inequality written with an optimal constant. Some
partial answers have been provided over the years, of which we can list the
following ones. First G. Bianchi and H. Egnell gave in [5] a result based on
the concentration-compactness method, which determines a non-constructive
estimate for a distance to the set of optimal functions. In [15], A. Cianchi,
N. Fusco, F. Maggi and A. Pratelli established an improved inequality us-
ing symmetrization methods. Also see [14] for an overview of various results
based on such methods. Recently another type of improvement, which relates
Sobolev’s inequality to the Hardy-Littlewood-Sobolev inequalities, has been
established in [17], based on the flow of a nonlinear diffusion equation, in the
regime of extinction in finite time. Theorem 1 does not provide an answer
in the critical case, but gives an improvement with fully explicit constants in
the subcritical regime. Our method of proof enlightens a new aspect of the
problem. Indeed, Theorem 1 shows that the difference of the two terms in
the critical Sobolev inequality provides a better control under the additional
information that ‖f‖2,2 p is finite. Such a condition disappears in the setting
of Corollary 2.

In this paper, our goal is to establish an improvement of Gagliardo-
Nirenberg inequalities based on the flow of the fast diffusion equation in the
regime of convergence towards Barenblatt self-similar profiles, with an explicit
measure of the distance to the set of optimal functions. Our approach is based
on a relative entropy functional. The method relies on a recent paper, [19],
which is itself based on a long series of studies on intermediate asymptotics of
the fast diffusion equation, and on the entropy - entropy production method
introduced in [4, 2] in the linear case and later extended to nonlinear diffu-
sions: see [21, 22, 16, 12, 11]. In this setting, having a finite second moment is
crucial. Let us give some explanations.

Consider the fast diffusion equation with exponent m given in terms of
the exponent p of Theorem 1 by

(7) p =
1

2m− 1
⇐⇒ m =

p+ 1
2 p

.

More specifically, for m ∈ (0, 1), we shall consider the solutions of

(8)
∂u

∂t
+∇ ·

î
u
Ä
η∇um−1 − 2x

äó
= 0 t > 0 , x ∈ Rd
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with initial datum u(t = 0, ·) = u0. Here η is a positive parameter which
does not depend on t. Let u∞ be the unique stationary solution such that
M =

∫
Rd u dx =

∫
Rd u∞ dx. It is given by

u∞(x) =
Å
K +

1
η
|x|2
ã 1
m−1

∀ x ∈ Rd

for some positive constant K which is uniquely determined by M . The follow-
ing exponents are associated with the fast diffusion equation (8) and will be
used all over this paper:

mc :=
d− 2
d

, m1 :=
d− 1
d

and ‹m1 :=
d

d+ 2
.

To the critical exponent 2 p = 2 d/(d− 2) for Sobolev’s inequality corresponds
the critical exponent m1 for the fast diffusion equation. For d ≥ 3, the con-
dition p ∈ (1, d/(d − 2)) in Theorem 1 is equivalent to m ∈ (m1, 1) while for
d = 2, p ∈ (1,∞) means m ∈ (1/2, 1).

It has been established in [21, 22] that the relative entropy (or free energy)

F [u|u∞] :=
1

m− 1

∫
Rd

î
um − um∞ −mum−1

∞ (u− u∞)
ó
dx

decays according to
d

dt
F [u(·, t)|u∞] = −I[u(·, t)|u∞]

if u is a solution of (8), where

I[u(·, t)|u∞] := η
m

1−m

∫
Rd
u
∣∣∣∇um−1 −∇um−1

∞

∣∣∣2 dx
is the entropy production term or relative Fisher information. If m ∈ [m1, 1),
according to [16], these two functionals are related by a Gagliardo-Nirenberg
interpolation inequality, namely

(9) F [u|u∞] ≤ 1
4
I[u|u∞] .

We shall give a concise proof of this inequality in the next section (see Re-
mark 1) based on the entropy - entropy production method, which amounts to
relate d

dt I[u(·, t)|u∞] and I[u(·, t)|u∞]. We shall later replace the diffusion pa-
rameter η in (8) by a time-dependent coefficient σ(t), which is itself computed
using the second moment of u,

∫
Rd |x|2 u(x, t) dx. By doing so, we will be able

to capture the best matching Barenblatt solution and get improved decay rates
in the entropy - entropy production inequality. Elementary estimates allow to
rephrase these improved rates into improved functional inequalities for f such
that |f |2 p = u, for any p ∈ (1, d/(d− 2)), as in Theorem 1.

This paper is organized as follows. In Section 2, we apply the entropy -
entropy production method to the fast diffusion equation as in [11]. The key
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computation, without justifications for the integrations by parts, is reproduced
here since we need it later in Section 6, in the case of a time-dependent diffusion
coefficient. Next, in Section 3, we establish a new estimate of Csiszár-Kullback
type. By requiring a condition on the second moment, we are able to produce
a new estimate which was not known before, namely to directly control the
difference of the solution with a Barenblatt solution in L1(Rd).

Second moment estimates are the key of a recent paper and we shall
primarily refer to [19] in which the asymptotic behaviour of the solutions of
the fast diffusion equation was studied. In Section 4 we recall the main results
that were proved in [19], and that are also needed in the present paper.

With these preliminaries in hand, an improved entropy - entropy produc-
tion inequality is established in Section 5, which is at the core of our paper.
It is known since [16] that entropy - entropy production inequalities amount
to optimal Gagliardo-Nirenberg-Sobolev inequalities. Such a rephrasing of our
result in a more standard form of functional inequalities is done in Section 6,
which contains the proof of Theorem 1. Further observations have been col-
lected in Section 7. One of the striking results of our approach is that all
constants can be explicitly computed. This is somewhat technical although
not really difficult. To make the reading easier, explicit computations have
been collected in Appendix A.

2. The entropy - entropy production method

Consider a solution u = u(x, t) of Eq. (8) and define

z(x, t) := η∇um−1 − 2x

so that Eq. (8) can be rewritten as

∂u

∂t
+∇ · (u z) = 0 .

To keep notations compact, we shall use the following conventions. If A =
(Aij)di,j=1 and B = (Bij)di,j=1 are two matrices, let A : B =

∑d
i,j=1Aij Bij and

|A|2 = A : A. If a and b take values in Rd, we adopt the definitions:

a·b =
d∑
i=1

ai bi , ∇·a =
d∑
i=1

∂ai
∂xi

, a⊗b = (ai bj)di,j=1 , ∇⊗a =
Å
∂aj
∂xi

ãd
i,j=1

.

Later we will need a version of the entropy - entropy production method
in case of a time-dependent diffusion coefficient. Before doing so, let us recall
the key computation of the standard method. With the above notations, it is
straightforward to check that

∂z

∂t
= η (1−m)∇

Ä
um−2∇ · (u z)

ä
and ∇⊗ z = η∇⊗∇um−1 − 2 Id .
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With these definitions, the time-derivative of 1−m
m η I[u|u∞] =

∫
Rd u |z|2 dx

can be computed as

d

dt

∫
Rd
u |z|2 dx =

∫
Rd

∂u

∂t
|z|2 dx+ 2

∫
Rd
u z · ∂z

∂t
dx .

The first term can be evaluated by∫
Rd

∂u

∂t
|z|2dx

=−
∫

Rd
∇ · (u z) |z|2dx

= 2
∫

Rd
u z ⊗ z : ∇⊗ z dx

= 2 η
∫

Rd
u z ⊗ z : ∇⊗∇um−1 dx− 4

∫
Rd
u |z|2dx

= 2 η (1−m)
∫

Rd
um−2∇u⊗∇ : (u z ⊗ z) dx− 4

∫
Rd
u |z|2dx

= 2 η (1−m)
∫

Rd
um−2 (∇u · z)2dx+ 2 η (1−m)

∫
Rd
um−1 (∇u · z) (∇ · z) dx

+ 2 η (1−m)
∫

Rd
um−1 (z ⊗∇u) : (∇⊗ z) dx− 4

∫
Rd
u |z|2dx .

The second term can be evaluated by

2
∫

Rd
u z · ∂z

∂t
dx

= 2 η (1−m)
∫

Rd
(u z · ∇)

Ä
um−2∇ · (u z)

ä
dx

=−2 η (1−m)
∫

Rd
um−2

Ä
∇ · (u z)

ä2
dx

=−2 η (1−m)
∫

Rd

î
um(∇ · z)2 + 2um−1(∇u · z) (∇ · z) + um−2(∇u · z)2

ó
dx .

Summarizing, we have found that

∫
Rd

∂u

∂t
|z|2dx+ 4

∫
Rd
u |z|2dx

= −2 η (1−m)
∫

Rd
um−2

î
u2(∇·z)2+u (∇u · z) (∇ · z)−u (z⊗∇u) : (∇⊗ z)

ó
dx .

Using the fact that

∂2zj

∂xi ∂xj
=
∂2zi

∂x2
j

,
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we obtain that∫
Rd
um−1 (∇u · z) (∇ · z) dx

= − 1
m

∫
Rd
um (∇ · z)2 dx− 1

m

∫
Rd
um

d∑
i,j=1

zi
∂2zj

∂xi ∂xj
dx

and

−
∫

Rd
um−1 (z ⊗∇u) : (∇⊗ z) dx

=
1
m

∫
Rd
um |∇z|2 dx+

1
m

∫
Rd
um

d∑
i,j=1

zi
∂2zi

∂x2
j

dx

can be combined to give∫
Rd
um−2

î
u (∇u · z) (∇ · z)− u∇u⊗ z : ∇⊗ z

ó
dx

= − 1
m

∫
Rd
um (∇ · z)2 dx+

1
m

∫
Rd
um |∇z|2 dx .

This shows that

(10)
d

dt

∫
Rd
u |z|2 dx+ 4

∫
Rd
u |z|2 dx

= −2 η
1−m
m

∫
Rd
um
Ä
|∇z|2 − (1−m) (∇ · z)2

ä
dx .

By the arithmetic geometric inequality, we know that

|∇z|2 − (1−m) (∇ · z)2 ≥ 0

if 1 −m ≤ 1/d, that is, if m ≥ m1. Altogether, we have formally established
the following result.

Proposition 3. Let d ≥ 1, m ∈ (m1, 1) and assume that u is a non-
negative solution of (8) with initial datum u0 in L1(Rd) such that um0 and
x 7→ |x|2 u0 are both integrable on Rd. With the above defined notations, we
get that

d

dt
I[u(·, t)|u∞] ≤ − 4 I[u(·, t)|u∞] ∀ t > 0 .

The proof of such a result requires to justify that all integrations by parts
make sense. We refer to [12, 13] for a proof in the porous medium case (m > 1)
and to [11] for m1 ≤ m < 1. The case m = 1 was covered long ago in [4].

Remark 1. Proposition 3 provides a proof of (9). Indeed, with a Gronwall
estimate, we first get that

I[u(·, t)|u∞] ≤ I[u0|u∞] e− 4 t ∀ t ≥ 0
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if I[u0|u∞] is finite. Since I[u(·, t)|u∞] is non-negative, we know that

lim
t→∞
I[u(·, t)|u∞] = 0 ,

which proves the convergence of u(·, t) to u∞ as t→∞. As a consequence, we
also have limt→∞F [u(·, t)|u∞] = 0 and since

d

dt

Ä
I[u(·, t)|u∞]− 4F [u(·, t)|u∞]

ä
=

d

dt
I[u(·, t)|u∞] + 4 I[u(·, t)|u∞] ≤ 0 ,

an integration with respect to t on (0,∞) shows that

I[u0|u∞]− 4F [u0|u∞] ≥ 0 ,

which is precisely (9) written for u = u0.

3. A Csiszár-Kullback inequality

Let m ∈ (‹m1, 1) with ‹m1 = d
d+2 and consider the relative entropy

Fσ[u] :=
1

m− 1

∫
Rd

î
um −Bm

σ −mBm−1
σ (u−Bσ)

ó
dx

for some Barenblatt function

(11) Bσ(x) := σ−
d
2

Ä
CM + 1

σ |x|
2
ä 1
m−1 ∀ x ∈ Rd

where σ is a positive constant and CM is chosen such that ‖Bσ‖1 = M > 0.
With p and m related by (7), the definition of CM coincides with the one of
Section 1. See details in Appendix A.

Theorem 4. Let d ≥ 1, m ∈ (‹m1, 1) and assume that u is a non-negative
function in L1(Rd) such that um and x 7→ |x|2 u are both integrable on Rd. If
‖u‖1 = M and

∫
Rd |x|2 u dx =

∫
Rd |x|2Bσ dx, then

Fσ[u]

σ
d
2

(1−m)
≥ m

8
∫
Rd B

m
1 dx

Å
CM ‖u−Bσ‖1 +

1
σ

∫
Rd
|x|2 |u−Bσ| dx

ã2

.

Notice that the condition
∫
Rd |x|2 u dx =

∫
Rd |x|2Bσ dx is explicit and

determines σ uniquely:

σ =
1
KM

∫
Rd
|x|2 u dx with KM :=

∫
Rd
|x|2B1 dx .

For further details, see Lemma 5 and (20) below, and Appendix A for detailed
expressions of KM and

∫
Rd B

m
1 dx. With this choice of σ, since Bm−1

σ =
σ
d
2

(1−m)CM + σ
d
2

(mc−m) |x|2, we remark that
∫
Rd B

m−1
σ (u−Bσ) dx = 0 so

that the relative entropy reduces to

Fσ[u] :=
1

m− 1

∫
Rd

[um −Bm
σ ] dx
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Proof of Theorem 4. Let v := u/Bσ and dµσ := Bm
σ dx. With these nota-

tions, we observe that∫
Rd

(v − 1) dµσ =
∫

Rd
Bm−1
σ (u−Bσ) dx

= σ
d
2

(1−m)CM

∫
Rd

(u−Bσ) dx+ σ
d
2

(mc−m)
∫

Rd
|x|2 (u−Bσ) dx = 0 .

Thus ∫
Rd

(v − 1) dµσ =
∫
v>1

(v − 1) dµσ −
∫
v<1

(1− v) dµσ = 0 ,

which, coupled with∫
v>1

(v − 1) dµσ +
∫
v<1

(1− v) dµσ =
∫

Rd
|v − 1| dµσ ,

implies ∫
Rd
|u−Bσ|Bm−1

σ dx =
∫

Rd
|v − 1| dµσ = 2

∫
v<1
|v − 1| dµσ .

On the other hand, a Taylor expansion shows that

Fσ[u] =
1

m− 1

∫
Rd

î
vm − 1−m (v − 1)

ó
dµσ =

m

2

∫
Rd
ξm−2 |v − 1|2 dµσ

for some function ξ taking values in the interval (min{1, v},max{1, v}), thus
giving the lower bound

Fσ[u] ≥ m

2

∫
v<1

ξm−2 |v − 1|2 dµσ ≥
m

2

∫
v<1
|v − 1|2 dµσ .

Using the Cauchy-Schwarz inequality, we getÅ∫
v<1
|v − 1| dµσ

ã2

=
Å∫

v<1
|v − 1|B

m
2
σ B

m
2
σ dx

ã2

≤
∫
v<1
|v−1|2 dµσ

∫
Rd
Bm
σ dx

and finally obtain that

Fσ[u] ≥ m

2

Ä∫
v<1 |v − 1| dµσ

ä2∫
Rd B

m
σ dx

=
m

8

(∫
Rd |u−Bσ|Bm−1

σ dx
)2∫

Rd B
m
σ dx

,

which concludes the proof. �

Notice that the inequality of Theorem 4 can be rewritten in terms of
|f |2 p = u and g2 p = Bσ with p = 1/(2m−1). See Appendix A for the compu-
tation of

∫
Rd B

m
σ dx, σ, CM and KM in terms of

∫
Rd |x|2 u dx and M∗. In the

framework of Corollary 2, we observe that Condition (5) can be rephrased as

(12) σ =
1
KM
‖f‖2 p2,2 p =

1
K1

‖f‖2 p2,2 p

‖f‖2 p γ2 p

= σ∗ .

Altogether we find in such a case that

R(p)[f ] = p−1
p+1 Fσ∗ [u] ≥ CCK

∥∥∥ |f |2 p − |g|2 p ∥∥∥2

1
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with

(13) CCK = p−1
p+1

d+2−p (d−2)
32 p σ

d p−1
4 p

∗ M1−γ
∗ .

Remark 2. Various other estimates can be derived, based on second order
Taylor expansions. For instance, as in [16], we can write that

Fσ[u] =
∫

Rd

î
ψ(vm)− ψ(1)− ψ′(1) (vm − 1)

ó
dµσ

with v := u/Bσ and ψ(s) := m
1−m s1/m, and get

Fσ[u] ≥ 1
m

2−2m
‖vm − 1‖2

L1/m(Rd,dµσ)

max
¶
‖vm‖L1/m(Rd,dµσ), ‖1‖L1/m(Rd,dµσ)

©2− 1
m

.

Using ‖vm‖L1/m(Rd,dµσ) = ‖1‖L1/m(Rd,dµσ) = ‖Bm
σ ‖

m
1 and∫

Rd
|um −Bm

σ | dx =
∫

Rd
|um −Bm

σ |Bm (m−1)
σ Bm (1−m)

σ dx

≤ ‖vm − 1‖L1/m(Rd,dµσ) ‖B
m
σ ‖

1−m
1

by the Cauchy-Schwarz inequality, we find

Fσ[u] ≥ ‖um −Bm
σ ‖

2
1

m 2 2m ‖Bm
σ ‖1

.

With f = um−
1
2 , this also gives another estimate of Csiszár-Kullback type,

namely

R(p)[f ] ≥ κp,d

‖f‖
d
2

(p−1)
2,2 p ‖f‖

1
2

(d+2−p (d−2))
2 p

inf
g∈M

(p)
d

∥∥∥|f |p+1 − gp+1
∥∥∥2

1
,

for some positive constant κp,d, which is valid for any p ∈ (1,∞) if d = 2
and any p ∈ (1, d

d−2 ] if d ≥ 3. Also see [24, 12, 10, 18] for further results on
Csiszár-Kullback type inequalities corresponding to entropies associated with
porous media and fast diffusion equations.

4. Recent results on the optimal matching by Barenblatt solutions

Consider on Rd the fast diffusion equation with harmonic confining po-
tential given by

(14)
∂u

∂t
+∇ ·

[
u
(
σ
d
2

(m−mc)∇um−1 − 2x
)]

= 0 t > 0 , x ∈ Rd ,

with initial datum u0. Here σ is a function of t. Let us summarize some results
obtained in [19] and the strategy of their proofs.

Result 1. At any time t > 0, we can choose the best matching Barenblatt as
follows. Consider a given function u and optimize λ 7→ Fλ[u].
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Lemma 5. For any given u ∈ L1
+(Rd) such that um and |x|2 u are both

integrable, if m ∈ (‹m1, 1), there is a unique λ = λ∗ > 0 which minimizes
λ 7→ Fλ[u], and it is explicitly given by

λ∗ =
1
KM

∫
Rd
|x|2 u dx

where KM =
∫
Rd |x|2B1 dx. For λ = λ∗, the Barenblatt profile Bλ satisfies∫

Rd
|x|2Bλ dx =

∫
Rd
|x|2 u dx .

As a consequence, we know that
d

dλ

Ä
Fλ[u]

ä
λ=λ∗

= 0 .

Of course, if u is a solution of (14), the value of λ in Lemma 5 may depend
on t. Now we choose σ(t) = λ(t), i.e.,

(15) σ(t) =
1
KM

∫
Rd
|x|2 u(x, t) dx ∀ t ≥ 0 .

This makes (14) a non-local equation.

Result 2. With the above choice, if we consider a solution of (14) and compute
the time derivative of the relative entropy, we find that
d

dt
Fσ(t)[u(·, t)] = σ′(t)

Å
d

dσ
Fσ[u]

ã
|σ=σ(t)

+
m

m− 1

∫
Rd

(
um−1 −Bm−1

σ(t)

) ∂u
∂t

dx .

However, as a consequence of the choice (15) and of Lemma 5, we know thatÅ
d

dσ
Fσ[u]

ã
|σ=σ(t)

= 0 ,

and finally obtain

(16)
d

dt
Fσ(t)[u(·, t)] = −mσ(t)

d
2

(m−mc)

1−m

∫
Rd
u
∣∣∣∇ [um−1 −Bm−1

σ(t)

]∣∣∣2 dx .
The computation then goes as in [7, 8] (also see [21, 22, 16] for details). With
our choice of σ, we gain an additional orthogonality condition which is useful
for improving the rates of convergence (see [19, Theorem 1]) in the asymptotic
regime t→∞, compared to the results of [8] (also see below).

Result 3. Now let us state one more result of [19] which is of interest for the
present paper.

Lemma 6. With the above notations, if u and σ are defined respectively
by (14) and (15), then the function t 7→ σ(t) is positive, decreasing, with
σ∞ := limt→∞ σ(t) > 0 and

(17) σ′(t) = −2 d
(1−m)2

mKM
σ
d
2

(m−mc)Fσ(t)[u(·, t)] ≤ 0 .
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The main difficulty is to establish that σ∞ is positive. This can be done
with an appropriate change of variables which reduces (14) to the case where σ
does not depend on t. In [19], a proof has been given, based on asymptotic
results for the fast diffusion equation that were established in [16, 7, 6, 8]. An
alternative proof will be given in Remark 3, below.

5. The scaled entropy - entropy production inequality

Consider the relative Fisher information

Iσ[u] := σ
d
2

(m−mc) m

1−m

∫
Rd
u
∣∣∣∇um−1 −∇Bm−1

σ

∣∣∣2 dx .
By applying (9) with u∞ = B1 and η = 1 to x 7→ σd/2 u(

√
σ x) and using the

fact that B1(x) = σd/2Bσ(
√
σ x), we get the inequality

Fσ[u] ≤ 1
4
Iσ[u] .

Now, if σ is time-dependent as in Section 4, we have the following relations.

Lemma 7. If u is a solution of (14) with σ(t) = 1
KM

∫
Rd |x|2 u(x, t) dx,

then σ satisfies (17). Moreover, for any t ≥ 0, we have

(18)
d

dt
Fσ(t)[u(·, t)] = −Iσ(t)[u(·, t)]

and

(19)
d

dt
Iσ(t)[u(·, t)] ≤ −

ñ
4 +

1
2

(m−mc) (m−m1) d2 |σ′(t)|
σ(t)

ô
Iσ(t)[u(·, t)] .

Proof. Eq. (17) and (18) have already been stated respectively in Lemma 6
and in (16). They are recalled here only for the convenience of the reader. It
remains to prove (19).

For any given σ = σ(t), Proposition 3 gives

d

dt
Iσ(t)[u(·, t)] =

Å
d

dt
Iλ[u(·, t)]

ã
|λ=σ(t)

+ σ′(t)
Å
d

dλ
Iλ[u]

ã
|λ=σ(t)

≤ − 4 Iσ(t)[u(·, t)] + σ′(t)
Å
d

dλ
Iλ[u]

ã
|λ=σ(t)

.

Owing to the definition of Iλ, we obtain

d

dλ
Iλ[u] =

d

2
(m−mc)

1
λ
Iλ[u]

− m

1−m
λ
d
2

(m−mc)
∫

Rd
2u
Ä
∇um−1 −∇Bm−1

λ

ä
· d
dλ

Ä
∇Bm−1

λ

ä
dx .

By definition (11), ∇Bm−1
λ (x) = 2xλ−

d
2

(m−mc), which implies

λ
d
2

(m−mc) d

dλ

Ä
∇Bm−1

λ

ä
= −d

λ
(m−mc)x .
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Substituting this expression into the above computation and integrating by
parts, we conclude with the equality

d

dλ
Iλ[u] =

d

2
(m−mc)

1
λ
Iλ[u]

− 2 d
λ

(m−mc)

[
2mλ−

d
2

(m−mc)

1−m

∫
Rd
|x|2 u dx− d

∫
Rd
um dx

]
.

A simple computation shows that

(20) d

∫
Rd
Bm

1 dx = −
∫

Rd
x · ∇Bm

1 dx =
2m

1−m

∫
Rd
|x|2B1 dx =

2m
1−m

KM

and, as a consequence, if λ = σ = 1
KM

∫
Rd |x|2 u dx, then

2mλ−
d
2

(m−mc)

1−m

∫
Rd
|x|2 u dx = d

∫
Rd
Bm
λ dx ,

and finally

(21)
d

dλ
Iλ[u] =

d

2λ
(m−mc)

(
Iλ[u]− 4 d (1−m)Fλ[u]

)
.

Altogether, we have found that

d

dt

(
Iσ(t)[u(·, t)]

)
+ 4 Iσ(t)[u(·, t)]

≤ d

2
(m−mc)

σ′(t)
σ(t)

(
Iσ(t)[u]− 4 d (1−m)Fσ(t)[u]

)
.

The last term of the right hand side is non-positive because by (17) we know
that σ′(t) ≤ 0 and

Iσ(t)[u]− 4 d (1−m)Fσ(t)[u]

= d (1−m)
(
Iσ(t)[u]− 4Fσ(t)[u]

)
+ d (m−m1) Iσ(t)[u]

≥ d (m−m1) Iσ(t)[u] ≥ 0 .

This implies (19). �

To avoid carrying heavy notations, let us write

f(t) := Fσ(t)[u(·, t)] and j(t) := Jσ(t)[u(·, t)]

and denote f(0), j(0) and σ(0) respectively by f0, j0 and σ0. Estimates (17),
(18) and (19) can be rewritten as

(22)


f ′ = −j ≤ 0

σ′ = −κ1 σ
d
2

(m−mc) f ≤ 0

j′ + 4 j ≤ κ2 j
σ′

σ
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where the constants κi, i = 1, 2, are given by

κ1 := 2 d
(1−m)2

mKM
and κ2 :=

1
2

(m−mc) (m−m1) d2 .

Using the fact that limt→∞ f(t) = limt→∞ f(t) = 0, as in the proof of Propo-
sition 3, we find that j(t)− 4 f(t) ≥ 0 and f(t) ≤ f0 e

− 4 t for any t ≥ 0.

Remark 3. The decay of σ can be estimated by

− d

dt

(
σ
d
2

(1−m)
)

=
d

2
(1−m)κ1 f ≤

d

2
(1−m)κ1 f0 e

− 4 t ,

thus showing that σ
d
2

(1−m)
∞ ≥ σ

d
2

(1−m)
0 − d2 (1−m)3

4mKM
f0. Since u0 and Bσ0 have

the same mass and second moment, we know that

f0 =
1

1−m

∫
Rd

Ä
Bm
σ0
− um0

ä
dx =

2mKM

d (1−m)2
σ
d
2

(1−m)
0 − 1

(1−m)

∫
Rd
um0 dx .

Hence we end up with the positive lower bound

σ
d
2

(1−m)
∞ ≥ d

2
(m−mc)σ

d
2

(1−m)
0 +

d2 (1−m)2

4mKM

∫
Rd
um0 dx .

From (22) we get the estimates σ(t) ≤ σ0 for any t ≥ 0 and

j′ − 4 f ′ = j′ + 4 j ≤ κ2 j
σ′

σ
= κ1 κ2 σ

− d
2

(1−m) f f ′ ≤ κ1 κ2 σ
− d

2
(1−m)

0 f f ′

Integrating from 0 to∞ with respect to t and taking into account the fact that
limt→∞ f(t) = limt→∞ f(t) = 0, we get

− j0 + 4 f0 ≤ −
1
2
κ1 κ2 σ

− d
2

(1−m)
0 f2

0 .

By rewriting this estimate in terms of Fσ0 [u0] = f0, Iσ0 [u0] = j0 and after
omitting the index 0, we have achieved our key estimate, which can be written
using

Cm,d :=
d3

2mKM
(m−mc) (m−m1) (1−m)2

as follows.

Theorem 8. Let d ≥ 1, m ∈ (m1, 1) and assume that u is a non-negative
function in L1(Rd) such that um and x 7→ |x|2 u are both integrable on Rd. Let
σ = 1

KM

∫
Rd |x|2 u(x) dx where M =

∫
Rd u(x) dx. Then the following inequality

holds

(23) 4Fσ[u] + Cm,d
(Fσ[u])2

σ
d
2

(1−m)
≤ Iσ[u] .

Recall that KM = K1M
γ , with γ = (d+2)m−d

d (m−mc) . See Appendix A for details.
Notice that this definition of γ is compatible with the one of Theorem 1 if
p = 1/(2m− 1).
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Remark 4. If we do not drop any term in the proof of Proposition 3 and
Lemma 7, an ODE can be obtained for j, based on (10) and (21) and we can
replace (22) by a system of coupled ODEs that reads


f ′ = −j ≤ 0

σ′ = −κ1 σ
d
2

(m−mc) f ≤ 0

j′ + 4 j = d (1−m) (j − 4 f) σ
′

σ + κ2 j
σ′

σ − r

where r := 2σd (m−mc) ∫
Rd u

m
Ä
|∇z|2 − (1−m) (∇ · z)2

ä
dx ≥ 0 and z :=

σ
d
2

(m−mc)∇um−1 − 2x.
It is then clear that the estimates σ ≤ σ0 and j′ + 4 j ≤ κ2 j

σ′

σ , which
have been used for the proof of Theorem 8, are not optimal.

6. Proofs of Theorem 1 and Corollary 2

Let us start by rephrasing Theorem 8 in terms of f = um−1/2. Assume
that

M =
∫

Rd
u dx =

∫
Rd
|f |2 p dx and σ =

1
KM

∫
Rd
|x|2 u dx =

∫
Rd
|x|2 |f |2 p dx

where p = 1/(2m − 1) and using the notation f
(p)
M,0,σ ∈ M

(p)
d defined in Sec-

tion 1, consider the functional

R(p)[f ] := − 2 p
p+1

∫
Rd

[
(|f |p+1 −

Ä
f

(p)
M,0,σ

äp+1
]
dx .

In preparation for the proof of Theorem 1, we can state the following result.

Corollary 9. Let d ≥ 2, p > 1 and assume that p < d/(d− 2) if d ≥ 3.
For any f ∈ Lp+1 ∩ D1,2(Rd) such that Condition (5) holds, we have

∫
Rd
|∇f |2 dx+

∫
Rd
|f |p+1 dx− Kp,d

Å∫
Rd
|f |2 p dx

ãγ
≥ Cp,d

Ä
R(p)[f ]

ä2(∫
Rd |f |2 p dx

)γ
where γ is given by (4).

This results is slightly more precise than the one given in Theorem 1, as
we simply measure the distance to a special function in M

(p)
d , the one with

same mass and second moment, centered at 0. The constant Cp,d is the same
as in Theorem 1: see Appendix A for its expression.
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Proof. By expanding the square in Iσ[u] and collecting the terms with the
ones of Fσ[u], we find that

1
4
Iσ[u]−Fσ[u] = m (1−m)

(2m−1)2
σ
d
2

(m−mc)
∫

Rd
|∇um−

1
2 |2 dx

+ d m−m1
1−m

∫
Rd
um dx+ 1

1−m

Å
mKM σ

d
2

(1−m) −
∫

Rd
Bm
σ dx

ã
.

The last term of the right hand side can be rewritten as

1
1−m

Å
mKM σ

d
2

(1−m) −
∫

Rd
Bm
σ dx

ã
= − m

1−m
d (m−mc)
(d+2)m−d σ

d
2

(1−m)C1M
γ

with γ = (d+2)m−d
d (m−mc) (as in the previous Section) and C1 = M1−γ

∗ (see Appen-
dix A for details). Consequently Inequality (23) can be equivalently rewrit-
ten as

(24) m (1−m)
(2m−1)2

σ
d
2

(m−mc)
∫

Rd
|∇um−

1
2 |2 dx+ d m−m1

1−m

∫
Rd
um dx

≥ m
1−m

d (m−mc)
(d+2)m−d σ

d
2

(1−m)C1M
γ

+ d3 (m−mc) (m−m1) (1−m)2

8mK1

(Fσ[u])2

Mγ σ
d
2

(1−m)
.

This inequality is invariant under scaling and homogeneous. As already no-
ticed in (12), Condition (5) means σ = σ∗, that is m (1−m)

(2m−1)2
σ
d
2

(m−mc) = d m−m1
1−m .

Using the explicit expressions that can be found in Appendix A and reexpress-
ing all quantities in terms of p = 1

2m−1 completes the proof of Corollary 9. See
Appendix A for an expression of Cp,d. �

Proof of Theorem 1. It is itself a simple consequences of Corollary 9.
Let us consider the relative entropy with respect to a general Barenblatt

function, not even necessarilynormalized with respect to its mass. For a given
function u ∈ L1

+(Rd) with um ∈ L1(Rd) and |x|2 u ∈ L1(Rd), we can consider
on (0,∞)× Rd × (0,∞) the function h defined by

h(C, y, σ) =
1

m− 1

∫
Rd

î
um −Bm

C,y,σ −mBm−1
C,y,σ (u−BC,y,σ)

ó
dx

where BC,y,σ is a general Barenblatt function

BC,y,σ(x) := σ−
d
2

Ä
C + 1

σ |x− y|
2
ä 1
m−1 ∀ x ∈ Rd .
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An elementary computation shows that

∂h

∂C
=
mσ

d
2

(1−m)

1−m

∫
Rd

(u−BC,y,σ) dx ,

∇yh =
2mσ−

d
2

(m−mc)

1−m

∫
Rd

(x− y) (u−BC,y,σ) dx ,

∂h

∂σ
= m

d

2
σ−

d
2

(m−mc)
[
C

∫
Rd

(u−BC,y,σ) dx

−m−mc

1−m
1
σ

∫
Rd
|x− y|2 (u−BC,y,σ) dx

]
.

Optimizing with respect to C fixes C = CM , with M =
∫
Rd u dx. Once

C = CM is assumed, optimizing with respect to σ amounts to choose it such
that

∫
Rd |x|2BC,y,σ dx =

∫
Rd |x− y|2 u dx as it has been shown in Lemma 5.

This completes the proof of Theorem 1, since R(p)[f ] ≥ R(p)[f ] by def-
inition of R(p) (see Section 1). Notice that optimizing on y amounts to fix
the center of mass of the Barenblatt function to be the same as the one of u.
This is however required neither in the proof of Corollary 9 nor in the one of
Theorem 1. �

Proof of Corollary 2. It is a straightforward consequence of Theorem 1
and of the Csiszár-Kullback inequality (6) when f ∈ D1,2(Rd) is such that
‖f‖2,2 p is finite. However, ‖f‖2,2 p does not enter in the inequality. Since
smooth functions with compact support (for which ‖f‖2,2 p is obviously finite)
are dense D1,2(Rd), the inequality therefore holds without restriction, by den-
sity. �

7. Concluding remarks

Let us conclude this paper with a few remarks. First of all, notice that
Theorem 4 gives a stronger information than Theorem 1, as not only the
L1(Rd, dx) norm is controlled, but also a stronger norm involving the second
moment, properly scaled.

No condition is imposed on the location of the center of mass, which simply
has to satisfy

(∫
Rd xu dx

)2 ≤ ∫
Rd u dx

∫
Rd |x|2 u dx = σM KM according to

the Cauchy-Schwarz inequality. Hence in the definition of R[f ] and R(p)[f ] (in
Theorem 1) as well as in Corollary 2, the result holds without optimizing on
y ∈ Rd. In [8, 19], improved asymptotic rates were obtained by fixing the center
of mass in order to kill the linear mode associated to the translation invariance
of the Barenblatt functions. Here this is not required since, as t → ∞, the
squared relative entropy is simply of higher order. Our improvement is better
when the relative entropy is large, and is clearly not optimal for large values of t.
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Our approach differs from the one of G. Bianchi and H. Egnell in [5]
and the one of A. Cianchi, N. Fusco, F. Maggi and A. Pratelli, [15]. It gives
fully explicit constants in the subcritical regime. The norms involved in the
corrective term are not of the same nature.

Let us list a series of remarks which help for the understanding of our
results.

(i) Scaling properties of the Barenblatt profiles. Consider the scaling λ 7→ uλ
with uλ(x) := λd u(λx) for any x ∈ Rd. Then we have

σλ :=
1
KM

∫
Rd
|x|2 uλ dx =

1
λ2

1
KM

∫
Rd
|x|2 u dx =

σ

λ2

and may observe that

Bσλ(x) = λdBσ(λx) .

As a consequence, we find that Fσ[uλ] = λd (m−1)Fσ[u].

(ii) Homogeneity properties of the Barenblatt profiles. Similarly notice that for

any m ∈ (m1, 1), we have CM = C1M
− 2 (1−m)
d (m−mc) and KM = K1M

1− 2 (1−m)
d (m−mc) .

Let uλ := λu and denote by Bσλ the corresponding best matching Barenblatt
function. Using the fact that ‖uλ‖1 = λM if ‖u‖1 = M and observing that

KλM = KM λ
1− 2 (1−m)

d (m−mc) and
∫

Rd
|x|2 uλ dx = λ

∫
Rd
|x|2 u dx ,

we find

σλ =
1

KλM

∫
Rd
|x|2 uλ dx = λ

2 (1−m)
d (m−mc) σ .

Since CλM = λ
− 2 (1−m)
d (m−mc) CM , we find that

Bσλ(x) =
Å
λ

2 (1−m)
d (m−mc) σ

ã− d
2

Ç
λ
− 2 (1−m)
d (m−mc) CM + |x|2

λ
2 (1−m)
d (m−mc) σ

å 1
m−1

= λBσ(x) .

As a consequence, we find that Fσ[uλ] = λmFσ[u].

(iii) The m = 1 limit. As m → 1, which also corresponds to p → 1, we
observe that the constant Cp,d in Theorem 1 has a finite limit. Hence we get
no improvement by dividing the improved Gagliardo-Nirenberg inequality by
(p− 1) and passing to the limit p → 1+, since R(p)[f ] = O(p − 1). By doing
so, we simply recover the logarithmic Sobolev inequality as in [16].

This is consistent with the fact that, as m→ 1−, we have Cm,d ∼ (1−m)2,
σ = O(K−1

M ) = O(1−m) and, since

Bσ(x) ∼ B0(x) := M

Ç
dM

2π
∫
Rd |x|2 u dx

å d
2

exp
Ç
−d

2
M∫

Rd |x|2 u dx
|x|2
å
,
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we also get that Fσ[u] ∼
∫
Rd u log

Ä
u
B0

ä
dx. Hence, in Theorem 8, the addi-

tional term in (23) is of the order of 1−m and disappears when passing to the
limit m→ 1−.

Appendix A. Computation of the constants

Let us recall first some useful formulae. The surface of the d − 1 dimen-
sional unit sphere Sd−1 is given by |Sd−1| = 2πd/2/Γ(d/2). Using the integral
representation of Euler’s Beta function (see [1, 6.2.1 p. 258]), we have∫

Rd

Ä
1 + |x|2

ä−a
dx = π

d
2

Γ
Ä
a− d

2

ä
Γ(a)

.

With this formula in hand, various quantities associated with Barenblatt func-
tions can be computed. Applied to the function B(x) :=

(
1 + |x|2

) 1
m−1 , x ∈ Rd,

we find that

M∗ :=
∫

Rd
B dx = π

d
2

Γ
Ä
d (m−mc)
2 (1−m)

ä
Γ
Ä

1
1−m

ä .

Notice that when M = M∗, B = B1 with the notation (11) of Section 3. As a

consequence, for B1(x) =
(
CM + |x|2

) 1
m−1 , a simple change of variables shows

that

M :=
∫

Rd
B1 dx =

∫
Rd

Ä
CM + |x|2

ä 1
m−1 dx = M∗C

− d (m−mc)
2 (1−m)

M ,

which determines the value of CM , namely

CM =
Å
M∗
M

ã 2 (1−m)
d (m−mc)

.

A useful equivalent formula is CM = C1M
− 2 (1−m)
d (m−mc) where C1 = M

2 (1−m)
d (m−mc)
∗ .

By recalling (20) and observing that∫
Rd
Bm

1 dx =
∫

Rd
Bm−1

1 B1 dx =
∫

Rd
(CM + |x|2)B1 dx = M CM +KM

where KM :=
∫
Rd |x|2B1 dx, using M CM = C1M

γ with γ = (d+2)m−d
d (m−mc) , we

find that
(25)

KM =
d (1−m)

(d+ 2)m− d
C1M

γ and
∫

Rd
Bm

1 dx =
2m

(d+ 2)m− d
C1M

γ .

Consider the sub-family of Gagliardo-Nirenberg-Sobolev inequalities (1).
It has been established in [16, Theorem 1] that optimal functions are all given
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by (2), up to multiplications by a constant, translations and scalings. This
allows to compute CGN

p,d . All computations done, we find

CGN
p,d =

(
(p−1)p+1

(p+1)d+1−p(d−1)

)η (d+2−p (d−2)
2 (p−1)

) 1
2 p

(
Γ
(
p+1
p−1

)
(2π d)

d
2 Γ
(
p+1
p−1
− d

2

))(p−1) η

with 1/η = p (d+ 2− p (d− 2)).
It is easy to relate CGN

p,d and Kp,d. As in [16], apply (3) to fλ such that

fλ(x) = λ
d
2 p f(λx) for any x ∈ Rd. With a :=

∫
Rd |∇f |2 dx, b :=

∫
Rd |f |p+1 dx,

α := d
p + 2− d and β := d p−1

2 p , Inequality (3) amounts to

a λα + b λ−β ≥ Kp,d

Å∫
Rd
|f |2 p dx

ãγ
.

Optimizing the left hand side with respect to λ > 0 shows that

Kp,d
Ä
CGN
p,d

ä2 p γ
=

α+ β

α
α

α+β + β
β

α+β

.

Let us consider (24). With p = 1
2m−1 , that is, m = p+1

2 p , and F [u] =
m

1−m R
(p)[f ] with u = f2 p, it is straightforward to check that

Kp,d =
Ä

2m−1
1−m

ä2 d (m−mc)
(d+2)m−d

M1−γ
∗

σ
d (m−m1)
∗

= 4
(p−1)2

d−p (d−4)
d+2−p (d−2) M

1−γ
∗ σ

d p−1
p
−1

∗

since u = Bσ always provides the equality case. Hence, using Identity (12),
Inequality (24) amounts to∫

Rd
|∇f |2 dx+

∫
Rd
|f |p+1 dx− Kp,d

Å∫
Rd
|f |2 p dx

ãγ
≥ (2m−1)2

m (1−m) σ
− d

2
(m−mc)

∗
d3 (m−mc) (m−m1) (1−m)2

8mK1

Ä
m

1−m R
(p)[f ]

ä2
Mγ σ

d
2

(1−m)
∗

.

Using K1 = d (1−m)
(d+2)m−dM

1−γ
∗ and expressing everything in terms of p, we finally

get

Cp,d = (2m−1)2

8 (1−m)2
((d+ 2)m− d) d2 (m−mc) (m−m1)

Mγ−1
∗
σ∗

= (d−p (d−4)) (d−p (d−2)) (d+2−p (d−2))
16 p3 (p−1)2

Mγ−1
∗

σ∗(p)
.
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