
On a Liouville type theorem for

isotropic homogeneous fully nonlinear

elliptic equations in dimension two

Jean Dolbeault∗ and Régis Monneau †

December 13, 2002

Abstract
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equations related to a conjecture of De Giorgi in IR
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1 Introduction

In this paper, we are interested in qualitative properties of solutions of nonlinear elliptic
equations in IR2. The kind of results we are going to prove are Liouville type theorems.
The original Liouville theorem states that any bounded harmonic function on the whole
space is constant. In our case we will prove that if the curvature of the level lines of a
solution of a nonlinear elliptic equation is bounded, then this curvature is zero. This
means that the level lines are straight lines and the solution is one-dimensional.

In the formulation we shall use, however, our result is one of the variants of the
famous conjecture of De Giorgi [19] (see below for a list of recent reference on this sub-
ject), in the sense that we prove that the solution is one-dimensional. It is also related
to Serrin type problems [37] (for an unknown open set, overdetermined conditions on
its boundary mean that the boundary is a circle, or, in some cases, a straight line).

We are going to state three results corresponding respectively to a De Giorgi type
problem for ∆u + u− u3 = 0, to a more general free boundary problem of Serrin type
for the equation ∆u + f(u) = 0, and to a general fully nonlinear elliptic equation,
under some appropriate bounds. All these results are actually consequences of a more
technical result of Liouville type in the fully nonlinear case, that will be exposed in
Section 2. The key tool of our proof uses estimates on the curvature of the level lines
that have been introduced by the authors in [20, 21] in the context of free boundaries.

Definition [Bounded curvature of the level set] We shall say that the level set {u = λ}
of a function u has a bounded curvature if there exists a constant δ > 0 such that for
every point X of the level set, there exist two points X−, X+ such that

X ∈ ∂Bδ(X+) ∩ ∂Bδ(X−) and u ≥ λ on Bδ(X+), u ≤ λ on Bδ(X−).

The smallest possible K = 1/δ will be called the curvature.

Later, we will also consider a notion of signed curvature that will be well defined at any
point such that ∇u 6= 0. Here we denote by Bδ(X) the ball of center X and radius δ.

1.1 The semi-linear case

We first state a Liouville type theorem: if the curvature of the level sets is bounded on
IR2, then these level sets are straight lines (and the curvature is identically zero).

Theorem 1 Let u be a bounded solution of

∆u + u− u3 = 0 in IR2 .

If ∇u 6= 0 on IR2 and if each level set {u = λ} has a bounded curvature, then these
level sets are straight lines.
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Theorem 1 is actually a special case of our second result. Let f be such that










f < 0 in (−1, λ0)
f > 0 in (λ0, 1)
f ′(λ0) > 0

(1)

and consider a solution of










u′′0 + f(u0) = 0 in IR
u0(−∞) = −1 , u0(0) = λ0 , u0(+∞) = 1
u′0 > 0 in IR

(2)

Then we have the following Serrin type result.

Theorem 2 Assume that f is an analytic function satisfying (1) such that (2) has a
solution u0. Let u be a solution of

∆u + f(u) = 0 in Ω

where Ω ⊂ IR2 is a C2 connected and simply connected domain. If Ω 6= IR2, we assume
moreover that ∂Ω has a bounded curvature and satisfies the boundary condition

u = λ1 and −
∂u

∂n
= u′0(u

−1
0 (λ1)) on ∂Ω

for some λ1 ∈ [−1, 1). Assume that λ1 < u < 1 on Ω and

∇u(x) 6= 0 ∀ x ∈ Ω .

If each level set {u = λ} has a bounded curvature, then it is a straight line. Moreover,
if Ω 6= IR2, then Ω is a half plane.

It turns out that this result itself can be extended to fully nonlinear elliptic equations.

1.2 The fully nonlinear case

Consider an open set Ω ⊂ IR2 with C2 boundary. Let u be an analytic function on Ω
which is a solution of a fully nonlinear elliptic equation defined by

G(D2u,∇u, u) = 0 , (3)

where G is an analytic function. This equation is homogeneous. Assume moreover that
it is isotropic:

G(D2u,∇u, u) = F(Dnnu, Dττu, Dnτu, |∇u|2, u) .
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Here n and τ are respectively the unit normal and tangential (to the level lines) vectors,
which are defined when∇u 6= 0 by n = ∇u

|∇u|
, τ = −n⊥. We take the direct trigonometric

orientation, so that (τ, n) is a direct basis of IR2. Moreover, when ∇u = 0, we assume
(compatibility condition) that there exists a function F̃ such that

G(D2u, 0, u) = F̃(∆u, det D2u, u) . (4)

For simplicity, we shall say that G and u satisfy Assumption (F0) if all the above
conditions are fulfilled.

For instance we can deal with quasi-linear elliptic equations like the mean curvature
equation

div





∇u
√

1 + |∇u|2



 = f(u, |∇u|2),

as well as fully nonlinear equations like the Monge-Ampère equation

det
(

D2u
)

= f(u, |∇u|2) > 0.

Let [α, β] ⊂ IR. Regarding the boundary conditions, we assume that
{

u = λ1

−∂u
∂n

= u′0(u
−1
0 (λ1))

∣

∣

∣

∣

∣

on ∂Ω , (BC)

for some λ1 ∈ [α, β). Here u0 is a one-dimensional solution satisfying










F(u′′0, 0, 0, u
′2
0 , u0) = 0 in IR

u0(−∞) = α, u0(+∞) = β
u′0 > 0 in IR

(F1)

We assume that the function F = F(a, b, c, v, λ) is analytic and satisfies the following
strong ellipticity assumption. There exists a constant B ≥ ‖u0‖C2(IR) and a constant
C > such that
(

F ′
a

1
2
F ′

c
1
2
F ′

c F ′
b

)

ξ · ξ ≥ C |ξ|2 ∀ ξ ∈ IR2 , ∀(a, b, c, v, λ) ∈ [−B,B]3 × [0,B2]× [α, β] .

(F2)
We also assume that there exists λ0 ∈ (α, β) ⊂ IR such that

∀λ ∈ (α, β) , G(0, 0, λ) = 0 =⇒ λ = λ0

and G ′λ(0, 0, λ0) > 0
(F3)
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Theorem 3 We consider a C2 solution u of (3) on a connected and simply connected
open domain Ω in IR2. We assume the existence of real numbers α < β, B, λ1 ∈ [α, β)
such that (F0), (F1), (F2), (F3) and (BC) are satisfied, ‖u‖C2(Ω) ≤ B and λ1 < u < β
on Ω. If ∇u(x) 6= 0 for any x ∈ Ω and each level set {u = λ} has bounded curvature,
then all level sets are straight lines. Moreover, if Ω 6= IR2, then Ω is a half plane.

Theorem 3 is a consequence of a slightly more technical result, Theorem 4, which will
be stated in the next section. In Theorem 4, we assume for instance that the solution
is analytic. It is actually sufficient to impose like in Theorem 3 that the solution is
of class C2 on Ω. Using a regularity result due to Nirenberg [36], the solution is then
of class C2+ε for some ε > 0. Since G is analytic, u is then also analytic according to
Morrey’s regularity theory [35]. The assumption that G is analytic cannot be removed,
since we use the analyticity of both G and u in the proof of Theorem 3, unless a density
result is available. To our knowledge, this has been proved only if (3) has at most one
solution. Such uniqueness results are not available in the general case.

In the framework of Theorem 2, it is sufficient to impose an L∞ bound instead of
a C2 bound. The L∞ bound implies a uniform C2 bound as it is shown by Danielli &
Garofalo in [18].

1.3 A short review of the literature and outline of the paper

The conjecture of De Giorgi has been formulated in [19] as follows.

Conjecture (De Giorgi [19]). Let u be a solution of ∆u=u3−u in the whole space
IRn, such that |u| < 1 and ∂u

∂xn
> 0. All level sets {u = λ} of u are hyperplanes if n ≤ 8.

An equivalent formulation is that u depends only on one variable.

The first result concerning the conjecture of De Giorgi has been given by Modica &
Mortola [34] for n = 2 under the condition that the level sets of u are the graphs of a
family of functions with a uniform Lipschitz estimate. An extension of this result has
recently been proved by Barlow, Bass & Gui [6] in any dimensions, using probabilistic
methods (see [11, 22] for further results in this direction). Several related results rely
on local bounds and monotonicity properties (see for instance [32, 33, 17, 40, 18]).

The conjecture has been proved by Ghoussoub & Gui in [28] for n = 2 in connection
with results obtained by Berestycki, Caffarelli & Nirenberg in [9], and by Ambrosio &
Cabré in [3] for n = 3 (also see [2], and [29] for a recent result if n = 4, 5). The
method used in [28] relies on the existence of negative spectrum for linear Schrödinger
operators, which is true if n = 1 or 2 [9] but false if n ≥ 3 [28, 5] (also see [31] for
directions towards a counter-example in high dimensions).
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Recently, Farina proved in [25] the conjecture in dimension n = 2 in the quasilinear
case (also see [22, 23, 24, 26, 27] for related results) and independently Danielli &
Garofalo in [18] proved the conjecture in the quasilinear case both in dimension n = 2
and in dimension n = 3. These results are very close to ours, except that we use a
completely different method based on an evaluation of the curvature of the level lines,
which was introduced in [20, 21] in the context of free boundary problems involving fully
nonlinear elliptic equations. The main drawback of the method is that it is apparently
limited to the case n = 2.

The conjecture of De Giorgi is heuristically related with Bernstein’s problem: see
for instance [14] for a short survey on recent results and [12, 39, 13, 30, 2, 15, 16] for
more details.

Many other problems are related to the conjecture of De Giorgi and it is out of the
scope of this introduction to cite all of them. They are of course strongly connected
with other symmetry questions. For instance, when the domain is not the whole space,
free boundary conditions may impose special symmetry properties for the solution and
the domain like in Serrin’s problem [37]. One-dimensional questions that have been
studied by moving planes techniques and sliding methods [10, 7, 8, 11, 23] are very
close to our results. Some extensions, for instance to systems [1], have also already
been studied.

Section 2 is devoted to a statement of Theorem 4, which is the key of our approach,
and its proof. It relies on estimates of the curvature at the points of the level lines
which maximize or minimize the gradient, following an idea of [20, 21]. The technical
part of the proof has been rejected in an appendix. In Section 3, we prove Theorem 3.
Theorem 1 and 2 are easy consequence of Theorem 3.

2 The key result in the fully nonlinear case

In this section, we are going to state and prove the key result of this paper. Note
that since we deal with unbounded domains, we need to introduce an approximation
procedure (Proposition 7, proof in the appendix).

Theorem 4 Let α, β ∈ IR, α < β, and Ω ⊂ IR2 be a connected and simply connected
domain. Under Assumptions (F0), (F1) and (F2), consider an analytic solution u
of (3) with boundary conditions (BC) such that λ1 < u < β, ‖u‖C2(Ω) ≤ B. Assume
that

|∇u|{u=λ} − u′0(λ) → 0 as λ → λ1 or β . (5)
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If there exists a continuous function g such that

|∇u(x)| ≥ g(u(x)) > 0 ∀ x ∈ Ω ,

then the level sets {u = λ} are straight lines.

Exactly as in Theorem 3, we could simply assume that u belongs to C2(Ω) (ana-
lyticity follows from the same reasons). The assumptions on the boundedness of the
curvature in Theorem 3 are contained in the regularity hypotheses and the lower esti-
mate of the gradient. The main difference with Theorem 3 is that the assumption on
the lower bound of the gradient is uniform on any level line. The explicit form of the
function g in Theorem 4 plays no role.

In this section, we are going to use the extrema

m(t) = inf
u(x)=t

|∇u(x)| and M(t) = sup
u(x)=t

|∇u(x)|

which are functions of the level t. We shall also use the sets on which they are reached:

X t
m = {x ∈ IR2 : u(x) = t, |∇u(x)| = m(t)} ,

X t
M = {x ∈ IR2 : u(x) = t, |∇u(x)| = M(t)} .

Like in [20, 21], consider the minimal curvatures of the level lines on these sets:

k(t) = inf
y∈Xt

m

Dττu

|∇u|
(y) and K(t) = inf

y∈Xt
M

Dττu

|∇u|
(y) .

Note that K could also be defined as a supremum, but this would not change the
following results, because these two kinds of curvature are equal for almost every t.
The rest of this section is devoted to the proof of Theorem 4. For simplicity, we
decompose it into two steps.

First step: Assume that the following system holds















F
(

d
dt

(

m2

2

)

, mk, 0, m2, t
)

= 0

dk
dt
≥ −k2

m

and















F
(

d
dt

(

M2

2

)

, MK, 0, M2, t
)

= 0

dK
dt
≤ −K2

M

(6)

for almost all t ∈ (λ1, β). Here the above inequalities have to be understood in the
sense of distributions. A similar statement has been justified in a previous paper, [21],
in the case of bounded level sets.
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Lemma 5 Under the assumptions of Theorem 4, if there exists some t0 for which
k(t0) = 0 (resp. K(t0) = 0), then

k(t)(t− t0) ≥ 0

(resp. K(t)(t− t0) ≤ 0) for any t in the range of u.

Proof. We know that dk
dt
≥ −k2

m
and thus d

dt

(

1
k

)

≤ 1
m

: for any t1 < t2,

(

1

k

)

|t=t2

≤
∫ t2

t1

dt

m(t)
+
(

1

k

)

|t=t1

.

Because k can have positive jumps but not negative ones, this implies that if k(t1) > 0,
then k stays positive as long as m is nonzero. ut

Thus k can only cross zero from negative to positive values and K can only cross
zero from positive to negative values, so that we have to consider only two cases:
Case 1: k and K keep the same sign with sgn(k) = sgn(K).
Case 2: either k and K keep the same sign with sgn(k) = −sgn(K), or at least k or
K changes of sign, which means that

i) either k ≤ 0 ≤ K on an interval (λ1, γ),

ii) or K ≤ 0 ≤ k on an interval (γ, β).

Lemma 6 Under the assumptions of Theorem 4, if k ≤ 0 ≤ K on (λ1, γ), then
k = K = 0 and m = M on (λ1, γ).

Proof. Because of the ellipticity assumption (F2), by the inverse function theorem,
there exists a function H such that

dm2

dt
= H(m2, mk, t) and

dM2

dt
= H(M2, MK, t) .

Then
d
dt

(M2 −m2) = H(M2, MK, t)−H(M2, 0, t) +H(m2, 0, t)−H(m2, mk, t)

+ J
(

M2 −m2
)

≤ J (M2 −m2) , where J = H(M2,0,t)−H(m2 ,0,t)
M2−m2 ∈ L∞(λ1, γ) .

We use the fact that the first two terms on the right hand side on the first line are
nonpositive, because H is nonincreasing in its second argument, as a consequence
of (F2). This gives the following Gronwall estimate:

d

dt

(

(

M2 −m2
)

e
−
∫ t

λ1
J(s)ds

)

≤ 0 .
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By definition, M ≥ m and M(λ1) = m(λ1), so that M ≡ m and k ≡ K ≡ 0 on (λ1, γ).
ut

Let us go back to the proof of Theorem 4 under the assumption that (6) holds.

Proof in Case 2 : there are two cases:

1) Applying Lemma 6, we conclude in case i) that k ≡ K ≡ 0 and m ≡ M on (λ1, γ).
But from Lemma 5, we have 0 ≤ k on (γ, β), and, similarly, K ≤ 0 on (γ, β). If
γ < β, the problem is reduced to case ii) on (γ, β).

2) In case ii), k ≡ K ≡ 0, m ≡ M on (γ, β) by a result analog to the one of Lemma 6,
and if γ > λ1 then case i) holds on (λ1, γ).

In both cases, we obtain k ≡ K ≡ 0 and m ≡ M on (λ1, β). Using the fully nonlinear
partial differential equation, this is possible if and only if the curvature is constant on
each level line. Level lines are therefore circles with the same center. Because |∇u| > 0
and Ω is simply connected, this center is at infinity and all level lines are straight lines.

Proof in Case 1 : Assume for instance that sgn(k) = sgn(K) ≤ 0 on (λ1, β). Let
m0(t) = u′0(u

−1
0 (t)):

dm2
0

dt
= H(m2

0, 0, t) .

Since on the other hand

dm2

dt
= H(m2, mk, t) ≥ H(m, 0, t) ,

we obtain as before an inequality:

d

dt

(

m2
0 −m2

)

≤
(

m2
0 −m2

)

J̃

for some J̃ in L∞(λ1, β). The functions m and m0 have the same value at t = λ1. Then
by a Gronwall argument, we get

d

dt

(

(

m2
0 −m2

)

e
−
∫ t

λ1
J̃(s)ds

)

≤ 0 ,

and deduce that m2
0 −m2 ≤ 0. Integrating this equation from β in place of λ1, we get

the reverse inequality, which implies that m ≡ m0 on (λ1, β). Similarly we get M = m0

on (λ1, β). We conclude as above that all level lines are straight lines.

Second step: The same results hold without (6) as a consequence of the following
approximation result which will be proved in the Appendix.
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Proposition 7 For every ε > 0 small enough, we can find continuous functions
mε, M ε defined on [λ1, β] which satisfy

mε(λ1) = M ε(λ1) = m0(λ1) , mε(β) = M ε(β) = m0(β)
and |mε −m| < ε , |M ε −M | < ε .

We can also find functions kε, Kε defined on (λ1, β) which satisfy











F(mε dmε

dt
, mεkε, 0, (mε)2, t) = 0

dkε

dt
≥ − (kε)2

mε

and











F(M ε dMε

dt
, M εKε, 0, (M ε)2, t) = 0

dKε

dt
≤ − (Kε)2

Mε

(7)
where the equations hold for t∈(λ1, β) a.e. and the inequalities are satisfied in D′(λ1, β).

Applying the first part of the proof to mε, kε, M ε, Kε, we conclude that mε = M ε.
The fact that it is true for every ε > 0 small enough proves by continuity that m = M ,
and then k = K = 0 as previously. The proof of Proposition 7 is by no way difficult
but it is quite technical and for this reason it has been rejected in the appendix.

This ends the proof of Theorem 4. ut

3 Proof of Theorem 3

In this Section, we are going to prove Theorem 3. Proofs of Theorems 1 and 2 are
straightforward consequences of Theorem 3, since the required C2 bound is automati-
cally satisfied in the quasilinear case for bounded solutions [18].

Let us prove that if the gradient is zero at some level λ ∈ (λ1, β), then λ = λ0.
Because λ0 is an unstable critical value by Assumption (F3), we will get a contradiction.
Thus we get a positive lower bound on the gradient, which is uniform on each level
line. We may then conclude by applying Theorem 4.

Step 1 : Consider a sequence (Xn)n∈IN such that |∇u(Xn)| → 0 and u(Xn) → λ ∈
(−1, 1). We claim that G(0, 0, λ) = 0.

By assumption, u is uniformly bounded in C2. According to [36], u also has a uni-
form bound in C2+ε. Thus we can extract a converging subsequence of u(X + Xn) with
limit u∞, locally on compact sets, such that u∞(0) = λ. Because of the boundedness
of the curvature of the level set {u = λ} (in the sense of Definition given in Section 1),
we deduce that D2u∞(0) = 0. The curvature can indeed be written Dττ u∞

|∇u∞|
whenever

∇u 6= 0, so that limn→∞Dττu(Xn) = 0. By Taylor expansion, it is then clear that
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we need both Dnnu∞(0) = 0 and Dnτu∞(0) = 0 to avoid a contradiction with the
definition of the curvature given in Section 1 applied to u∞ at 0. This implies that
λ = λ0 according to (F3).

Step 2 : u∞ ≡ λ0

Because the curvature of the level sets is bounded, we can find a small ball Bε(0)
and a direction ν ∈ S1 such that w := ∂νu∞ is nonnegative on Bε(0). In particular w
satisfies

{

G ′D2uD
2w + G ′DuDw + G ′uw = 0 , w ≥ 0 in Bε(0)

w(0) = 0

Then the strong maximum principle implies that w ≡ 0 on Bε(0). Thus u∞ ≡ λ0 on
Bε(0), and by analyticity of u∞ we get u∞ ≡ λ0.

Step 3 : Construction of a subsolution v on BR

Let φ be a solution of ∆φ + µφ = 0 on BR with φ > 0 on BR and φ = 0 on ∂BR.
For α small enough, we can then build a subsolution v = αφ + λ0 if µ is chosen less

than
F̃ ′

λ

F̃ ′
s

(0, 0, λ0), for F̃ = F̃(s, p, λ) defined by (4), which requires a radius R large

enough and then a curvature K0 = 1
R

small enough.

Step 4 : Contradiction
Because the gradient does not vanishes on IR2, we can introduce natural curvilinear

coordinates. We define an abscissa s on the level line {u = λ0}. Then we note γs the
integral curve of the vector field ∇u containing the point of abscissa s on {u = λ0}.
Then for every point X of Ω, we define

Ψ(X) = (s, t) ,

where X ∈ γs and t = u(X).
In Step 1, we assumed the existence of a sequence of points Xn such that Ψ(Xn) =

(sn, λn) with λn → λ0. One can always find (for some λ′n) a ball BR(Ψ−1(sn, λ′n)), in
which we can define a subsolution v ≤ u, as above. For a good choice of λ′n, we can
also define

u+
n (X) = u(Ψ−1(sn, λ′n) + X)

such that u+
n → u+

∞. Because u∞ ≡ λ0, we can assume that u+
∞ ≥ λ0. Now sliding

the subsolution v below u+
∞, we get that u+

∞ ≥ max v > λ0. In particular this implies
that we can find a sequence of points whose gradient tends to zero, but whose level is
strictly bigger that λ0. This is a clear contradiction with Step 1.

Step 5 : From the previous steps we know that |∇u(Xn)| does not tend to zero. This
proves the existence of a continuous function g such that |∇u(x)| ≥ g(u(x)) > 0 for
any x ∈ IR2 and we conclude by applying Theorem 4. ut
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4 Appendix: an approximation result

This appendix is devoted to the technical part of the proof of Theorem 4 (second step).

4.1 Proof of Proposition 7

We are going to prove Proposition 7 in the case of functions mε, kε (the proof of the
existence of M ε, Kε is similar). This result is based on the following lemma:

Lemma 8 For every t0 ∈ (λ1, β), there exist a constant εt0 > 0 and a sequence of
points xn on the level line {u = t0} such that un(x) = u(x+xn) converges to a function
u∞ which is still a solution of the fully nonlinear elliptic equation, and for which there
exists a map

γt0 : (t0 − εt0 , t0 + εt0) −→ IR2

which has the following properties:






















u∞(γt0(t)) = t for t ∈ (t0 − εt0 , t0 + εt0)
mt0(t) := |∇u∞(γt0(t))| is continuous , mt0(t0) = m(t0) and mt0(t) ≥ m(t)

kt0(t) := K (γt0(t)) , dkt0

dt
≥ − (kt0 )2

mt0

F(mt0 dmt0

dt
, mkt0 , 0, (mt0)2, t) = 0

This (possibly non continuous) map γt0 has furthermore the following properties:

i) either γt0 is an analytic curve both on (t0− εt0 , t0) and (t0, t0 + εt0) but possibly non
continuous at t0.

ii) or the level line {u∞ = t0} is a straight line and there exists a sequence of levels
(ti)i∈ZZ contained in (t0 − εt0 , t0 + εt0), which accumulate at t0 and such that γt0

is analytic on (t0 − εt0 , t0 + εt0)\ (∪i {ti}).

Proof of Proposition 7. With Lemma 8 in hand we may consider a covering of (λ1, β)
by

∪t0∈(λ1 ,β)

(

t0 −
1

4
εt0 , t0 +

1

4
εt0

)

and extract a locally finite covering, i.e. we can find an increasing sequence (tj
0)j∈ZZ

such that
lim

j→−∞
tj0 = λ1 , lim

j→+∞
tj0 = β ,

and such that

(λ1, β) = ∪j∈ZZ

(

tj0 −
1

4
ε

t
j
0

, tj0 +
1

4
ε

t
j
0

)

.
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With the choice 1
4
εt0 in place of the natural choice εt0 , we can insure that for every

j ∈ ZZ, we have either tj+1
0 ∈ (tj0, t

j
0 + ε

t
j
0

) or tj0 ∈ (tj+1
0 − ε

t
j+1

0

, tj+1
0 ). In both cases,

γt
j
0 and γt

j+1

0 are defined on the same interval [tj
0, t

j+1
0 ]. From this remark and the fact

that mt
j
0(tj0) = m(tj0) and mt

j+1

0 (tj+1
0 ) = m(tj+1

0 ), we deduce that the graphs of mt
j
0 and

mt
j+1

0 have to intersect at least in one point in [tj
0, t

j+1
0 ]. Let us choose for a point sj+ 1

2

defined by

sj+ 1

2 = inf
{

s ∈ [tj0, t
j+1
0 ] : mt

j
0(s) = mt

j+1

0 (s)
}

.

Now we can define the functions mε, kε on [tj0, t
j+1
0 ] as

(mε(t), kε(t)) =















(mt
j
0(t), kt

j
0(t)) if t ∈ (tj0 − ε

t
j
0

, sj+ 1

2 ]

(mt
j+1

0 (t), kt
j+1

0 (t)) if t ∈ [sj+ 1

2 , tj+1
0 + ε

t
j+1

0

)

Applying Lemma 6 and 7 of [21], we get that mε, kε has to satisfy the system (7) on
(tj0 − ε

t
j
0

, tj+1
0 + ε

t
j+1

0

).

Repeating this argument on each interval (tj
0, t

j+1
0 ), we can extend the definition

of the functions mε, kε to the interval (λ1, β). The fact that mε(λ1) = m0(λ1) and
mε(β) = m0(β) is a consequence of (5). The fact that mε can be chosen such that
|mε − m| < ε, is a simple consequence of the continuity of m, and the continuity of
each function mt0 for every t0 ∈ (λ1, β). This ends the proof of Proposition 7. ut

4.2 Proof of lemma 8

The proof of lemma 8 is now quite simple. We only have to distinguish between several
different cases.

Let t0 ∈ (λ1, β) and consider a sequence of points xn
1 belonging to the level line

{u = t0} such that |∇u(xn
1)| → m(t0) and u(x + xn

1 ) → u1(x) locally uniformly on
compact sets for some limit function u1. Using the analyticity of u1, we have to deal
with two cases:

Case 1 There exists an ε > 0 s.t. |∇u1| > |∇u1(0)| = m(t0) on {u1 = t0}∩Bε(0)\ {0}.

Case 2 |∇u1| ≡ m(t0) on {u1 = t0}, because of the analyticity.

In the first case, by a continuity argument we deduce that for each level t close
enough to t0, we can find a point on {u1 = t} which is a local minimizer of the gradient
on {u1 = t}, and which is close enough to 0. As a consequence of the caracterization
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of analytic sets (see Theorem 4 in [21]), we get the existence of at least two analytic

curves γt0
+ , γt0

− whose images are contained in
{

F1(x) := d
dτ

(|∇u1|
2/2) = 0

}

, such that

u1(γ
t0
+ (t)) = t for t ∈ [t0, t0 +εt0), u1(γ

t0
± (t0)) = 0, and u1(γ

t0
− (t)) = t for t ∈ [t0−εt0 , t0).

Defining γt0 as the “union” of γt0
+ and γt0

− , we can define

mt0(t) = |∇u1(γ
t0(t))| and kt0(t) = K(γt0(t))

and these functions mt0 , kt0 satisfy system (7) on (t0 − εt0 , t0 + εt0) as a simple conse-
quence of [21].

In the second case we have two subcases:

a) The curvature K defined on the level line {u1 = t0} has at least a local minimum
x− and a local maximum x+.

Because the gradient is constant on the level line {u1 = t0}, the variation of the gradient
with respect to the level t for t close to t0 is driven by the curvature of the level line
{u1 = t0}. A simple analysis like in [21], proves that one can find two analytic curves
γt0

+ , γt0
− as in Case 1, but with the only difference that γt0

+ (t0) may differ from γt0
− (t0).

b)We can find a sequence xn
2 such that u1(x + xn

2 ) → u2(x) and the curvature of the
level line {u2 = t0} is identically zero, i.e. {u2 = t0} is a straight

In case b), we face again two subcases. Consider the set of rational numbers D =
|Q ∩ (t0 − εt0 , t0 + εt0)\ {t0} and denote by (tj)j∈IN its elements. Assume that we can
find an increasing sequence of indices (ji)i≥2, and sequences of functions (ui)i≥2 which
are build as follows. Given a function ui for some i ≥ 2, we assume that there exists a
sequence of points xn

i belonging to the level set {ui = tji
} such that

ui+1(x) = lim
n→+∞

ui(x + xn
i )

and
|∇ui+1| ≡ constant on {ui+1 = tji

} , which is a straight line.

Assume first that the sequence (tji
)i≥2 has an accumulation point in t0.

In this case, up to an infinite sequence of limits, we get the existence of a function
u∞ such that

|∇u∞| = ctji
on {u∞ = tji

}

where the sequence (tji
)i has t0 as an accumulation point. By analyticity of u∞, we

get that F∞(x) = d
dτ

(|∇u∞|
2/2) is identically zero. This implies that we can take for
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γt0 the straight line perpendicular to the level line {u∞ = t0}. Hence kt0 = 0 and mt0

is a solution of

F(mt0
dmt0

dt
, 0, 0, (mt0)2, t) = 0

with mt0(t0) = m(t0). Moreover we have mt0(t) ≥ m(t) by construction.

Assume now that there is no sequence (tji
)i≥2 with t0 as above.

In this case we use the same covering argument as in the proof of Proposition 7,
with

(t0 − εt0 , t0 + εt0) ⊂ ∪tj∈D

(

tj −
1

4
εtj , tj +

1

4
εtj

)

.

We extract a locally finite covering except in t0 where an accumulation may occur.
As in the proof of Proposition 7, by taking for each level a minimum of the gradient
on the union of these curves, we build some functions that we note again mt0 , kt0 and
which satisfy (7) on (t0−εt0 , t0) and on (t0, t0 +εt0) by construction. Using the uniform
convergence of the curvature of the level lines {u2 = t} as t tends to t0, we get, following
Lemma 6 and 7 of [21], that mt0 , kt0 satisfy (7) on (t0 − εt0 , t0 + εt0).

Note that in the statement of Lemma 8, we introduced the limit u∞ of translations
of the function u, namely u(x + xn). Actually in the above proof we considered not
only this limit, but also a sequence of limits of functions given by translations. More
precisely, we considered converging sequences of functions defined by un

k(x + xn
k) →

uk+1(x). The result follows from the fact that, even after a enumerable number of
extractions of limits, the resulting function can be considered as a simple limit of an
appropriate diagonal subsequence.

This ends the proof of lemma 8. ut
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